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1 Introduction

1.1 The resurgence paradigm

The calculation of the anomalous magnetic moment of the electron to ten significant figures

stands as testament to efficacy of perturbation theory in quantum field theory (QFT) [1].

The fact that perturbative expansions, even in the simpler setting of quantum mechanics

(QM), are quite generally divergent may then be a cause of some cognitive dissonance

to the practicing physicist. Resurgence theory is perhaps the therapy that perturbation

theory demands.

Consider, for example, a ground state energy obtained as a perturbative expansion in

some real and positive coupling g2,

Epert =
∞∑
n=0

cn(g2)n . (1.1)

Due to the proliferation of Feynman diagrams it is quite generic to find factorial growth

cn ∼ Ann! and the perturbative expansion, whilst initially providing increasingly accurate

results, will begin to diverge. Borel summation can provide a way to attach a meaning

to such asymptotic series. In this method the factorial growth is essentially traded for an

integral via n! =
∫∞

0 dte−ttn. One first constructs the Borel transform,1

B[Epert](t) =

∞∑
n=0

cn
n!
tn , (1.2)

which will have a finite radius of convergence and then one can perform the resummation,

S[Epert](g2) =
1

g2

∫ ∞
0
B[Epert](t)e

− t
g2 dt . (1.3)

There is some danger here! The integral (1.3) may not be well defined; the Borel trans-

formed series can have poles along the integration path. It is oft said that this occurs

when the coefficients cn are non-alternating but even an alternating series can be non-

Borel summable and indeed we will encounter this. In this case it is natural to deform the

integration contour by extending t to the complex plane and integrating along a ray i.e.,

Sθ[Epert](g2) =
1

g2

∫ eiθ∞

0
B[Epert](t)e

− t
g2 dt , (1.4)

which is called directional Borel resummation. If B[Epert](t) is regular for arg(t) = θ (and

decays sufficiently fast at infinity), then Sθ[Epert](g2) defines an analytic function in the

wedge of the complex coupling plane −π/2 + θ ≤ arg( g2) ≤ π/2 + θ.

If B[Epert](t) has singularities along the direction arg(t) = θ, this is called a Stokes

direction. For example if the original direction of integration (1.3), arg(t) = 0, is a Stokes

1In practice one might not have access to the full infinite series (1.1) but only a truncation in which case

it is necessarily to use some approximation to the full series, e.g. a Padé approximant, as an input to this

Borel transformation.

– 2 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
8

direction we can dodge the singularities by picking θ = ε > 0 small and positive, in this

way we avoid poles in the original integration cycle and we can calculate the well defined

Sε[Epert](g). However we could equally choose θ = −ε < 0 and calculate S−ε[Epert](g).

If B[Epert](t) has singularities in the complex wedge −ε ≤ arg( t) ≤ ε, these two lateral

summations, S±ε[Epert](g), are generically different but still yield the same asymptotic

perturbative expansion (1.1) once expanded at weak coupling. This jumping as one deforms

an integration cycle is known as the Stokes phenomenon.

Generically, the original real positive coupling arg(g2) = 0 lies on a Stokes line — the

location at which such a jump takes place. Thus we have traded our initial asymptotic series

expression for the ground state energy for a finite but ambiguous result. Evidently this is

still unsatisfactory; physical observables surely shouldn’t be blighted with such ambiguity.

We have of course missed the vital part of the physics; the non-perturbative sector.

In these cases one should include in the path integral contributions from non-perturbative

saddle points and the fluctuations around them. These non-perturbative contributions

quite certainly correct the real part of the energy as in quantum mechanics where instanton

effects can lift perturbative degeneracies or give band structures. These non-perturbative

contributions are, however, by themselves ambiguous. As shown by Bogomolny [2] and

Zinn-Justin [3], even the leading contribution to a path integral from integration over the

quasi-zero-mode associated to separated instanton I and anti-instanton Ī pairs has an

ambiguous imaginary part. Far from compounding our problems, this is just the medicine

needed — the [I Ī] ambiguity exactly cancels that of the perturbative sector. This is

remarkable: the divergent behaviour of late terms in the perturbative sector is compensated

by early terms in a non-perturbative sector. This is the first example of resurgent behaviour.

The story runs deeper; the perturbative series around the one instanton sector [I]

will itself also have factorial growth and gives rise, in a similar fashion, to an ambiguous

imaginary part that will cancel against early terms in the [I I Ī] sector and so on. The

resurgence conjecture is then that the unambiguous physical observable can be understood

as an example of Écalle’s resurgent trans-series [4] of the form,2

E(g2) = Epert +
∑
i

e
−Si
g2
∑
k>0

c
(i)
k (g2)k , (1.5)

in which in addition to the perturbative sector one should sum over all non-perturbative

saddles labelled by {i} with corresponding actions Si.

From a path-integral perspective the transseries representation of physical observables

looks exactly like the semi-classical approximation. The perturbative expansion around the

standard vacuum configuration gives rise to an asymptotic series without any exponentially

suppressed factor sitting in front, while from each non-trivial saddle point we obtain an

exponentially suppressed factor, coming from the classical action of the saddle, times its

associated asymptotic perturbative expansion.

A not so widely appreciated fact about the semiclassical expansion is that the am-

plitudes associated with certain saddle points, for example the aforementioned instanton-

anti-instanton events, are not well-defined precisely along the Stokes line g2 real. This

2For simplicity we are writing here only height-0, log-free transseries, see [5] for more details.
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has a beautiful geometric origin, we can decompose à la Morse [6] the original contour

of integration over the space of fields into the sum of certain privileged contours of in-

tegrations called Lefschetz thimbles. As we vary the argument of the coupling constant

two things will happen: first the semi-classical expansion will generically receive contri-

butions from all finite action complex saddles living in a complexification of the space of

fields and secondly precisely at Stokes line this thimble decomposition will jump discon-

tinuously, that is, in addition to the jump in the resummation of the perturbative series,

the sum over non-perturbative saddle points will also jump and the two “ambiguities” will

precisely cancel.

After we sum over all the finite action complexified saddles, the semiclassical expan-

sion (1.5) should not be thought of as an approximation, a resurgent trans-series is an

exact coded representation of the physical observable, i.e. it really is an analytic function

in a certain wedge of the complex coupling plane.

1.2 Resurgence in QFT and the PCM

The general philosophy above is expected to hold in quantum field theories in which both

perturbative and non-perturbative contributions play a role. Factorially divergent series

abound in 4-d Yang-Mills or QCD arising both from growth in diagrammatica and from

the so-called renormalons [7] coming from IR and UV contributions to loop momenta

integration. This standard renormalons diagrams argument suggest that generically, in

asymptotically free theory, we should expect singularities in the Borel transform along the

real axis. However, once we consider these theories on R3 × S1, due to the presence of

non-trivial holonomies around the circle, we see [8] that renormalon type divergences are

actually reproduced by the combinatorics of diagrams getting mixed with the discretized

momenta along the S1. We refer to IR/UV renormalons as singularities in the Borel

transform along the positive/negative real axis that remain at finite locations once we take

the approriate large-N limits, without making any reference to their diagrammatic origins

or otherwise.3

As a first step towards full QCD, it is natural to study the ideas and implications of

resurgence in a simpler setting of two-dimensions [9]. The SU(N) Principal Chiral Model

(PCM), whose action is given by,

SPCM =
1

2πt

∫
d2σ tr

[
∂+gg

−1∂−gg
−1
]
, (1.6)

with g ∈ SU(N), provides a rather effective toy model to QCD since it displays asymptotic

freedom, a dynamically generated mass gap and confinement. Being an integrable theory

in two-dimension [10, 11] the PCM has the advantage of also being sufficiently simple to

remain tractable; for instance the mass gap can be exactly determined [12, 13]. Although

the SU(N) PCM does not possess instantons (in the sense that π2[SU(N)] = 0 and there is

no topological charge), it does have a non-perturbative sector whose constituents, known

as unitons [14], are finite action field configurations that solve second order Euclidean

equations of motion, i.e. they are not BPS objects but genuine saddles [15].

3We thank Tin Sulejmanpasic for discussions on this issue.
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In [9, 16] the resurgent structure of the two-dimensional SU(N) PCM was studied.

The technique employed was to study the spatially compactified Euclidean theory with

twisted boundary conditions corresponding to turning on a background gauge field for

the diagonal SU(N) ⊂ SU(N)L × SU(N)R global symmetry of the theory. This regime is

adiabatically connected to the PCM defined on R2 and many features of the original theory

remain visible in an effective one-dimensional quantum mechanics that comes when taking

the radius of spatial compactification very small. In particular, the large order behaviour

of this QM exhibits non-alternating factorial growth with poles along the positive real

half-line of the Borel plane. These poles can be matched precisely to certain instanton-

anti-instanton configurations in the QM. What is quite astonishing is that the origin of

these non-perturbative saddles can be exactly identified in the two-dimensional quantum

field theory — they correspond to “fractons”. When the PCM is put on R×S1 the unitons

fractionalize and break up into these fractons when their size becomes comparable to the

radius of compactification. In this way, the fractons lead to a semi-classical realisation of

IR renormalons and the mass gap in the circle-compactified theory.

This is a generic feature of 2-d (and perhaps 4-d) asymptotically free QFTs as for

example the CPN model [17, 18], the Grassmanian models and the O(N) model [19]. In

particular, the mass gap of the O(6) sigma model directly relates to non-perturbative

scales in AdS/CFT [20] and more specifically it translates to non-perturbative effects in

the 4-d N = 4 Super-Yang-Mills cusp anomalous dimension, whose resurgence properties

were the subject of [21, 22]. We should emphasise resurgence is not the statement that

the perturbative sector encodes all non-perturbative information. Instead resurgence can

allow sectors of a theory of a given fixed topological charge to communicate when need to

cancel ambiguities - this idea is called the resurgence triangle [17]. In some cases extra

symmetries can mean certain sectors simply do not exist and the resurgence triangle can

truncate [17].

Whilst our main focus in the present context is in 2-d QFTs, important progress has

already been made in higher dimensional QFTs in the context of 3d Chern-Simons matter

(ABJM) and N = 2 supersymmetric 4d Yang-Mills gauge theories [23] building on [24],

where supersymmetric localisation allows for comparison to exact quantities. Recently this

was further developed in [25] and extended to 5d N = 1 supersymmetric theories. The

examples of 4d N = 2 [23, 24] and 5d N = 1 [25] supersymmetric gauge theories show

that the perturbative expansion is Borel summable within a given topological sector —

presumably as a consequence of the extended supersymmetry — and the Borel resummation

does not require communication between different sectors.

1.3 Resurgence puzzles

The study of resurgence has thus far proven to be very profitable but let us mention two

puzzling features that the present study will help to shed light on:

1. Complex Saddles and QFT. The situation described above in which the cuts in the

Borel plane lie on either the positive or the negative real axis is not at all generic.

In fact we should expect that in general the singularities might be scattered across
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the entire complex plane. To understand how resurgence works in these cases will

require a better understanding of the non-perturbative saddles that give rise to such

singularities. These will typically be associated to complex field configurations that

will need to be understood in a field theory context.

2. Multiple couplings and Borel flow. The Lagrangian defining the QFT may have

several bare parameters and complicated RG flows. In this case it is not obvious how

to understand physical observables as resurgent trans-series. Furthermore the semi-

classical regime in which we will apply resurgence is only adiabatically connected

to the original quantum field theory. The structure of the Borel plane does not

remain invariant under this adiabatic flow and having multiple couplings, together

with RG-invariant quantities, might tell us how this Borel flow takes place not only

qualitatively but also quantitatively.

1.4 The η-deformed Principal Chiral Model

To advance the study of resurgence in QFT and target the puzzling features, we would like

to find a candidate theory that is rich enough to include a variety of non-perturbative sectors

and multiple couplings but yet remain tractable. A class of deformations of the PCM chiral

model that has received substantial recent interest are the Yang-Baxter deformed σ-models

introduced by Klimcik [26, 27]. These theories, which exactly meet our requirements, are

specified by a certain matrix R, that we shall detail later, and a parameter η (which a

priori should be taken to be real) and are defined by the action,

Sη =
1

2πt

∫
d2σ tr

[
∂+gg

−1 1

1 + ηR
∂−gg

−1

]
. (1.7)

Whilst the deformation breaks the global symmetry down to SU(N)L ×U(1)R, the theory

remains integrable (at least classically) and thus amenable to study. The broken SU(N)R
symmetry is not completely lost; its avatar is present in the structure of non-local charges

whose Poisson bracket relations give rise to a classical version of a quantum group Uq(sl(N))

with parameter q = exp (πηt) [28]. This quantum group symmetry is expected to be

manifest in the exact S-matrix of the theory.

This Yang-Baxter deformation, after suitable modifications, can be equally well applied

to the PCM on symmetric or semi-symmetric spaces (supercosets) [29] including the well-

known example of PSU(2, 2|4)/SO(4, 1)×SO(5) relevant to superstrings in AdS5×S5 [30].

This offers intriguing prospects as a Lagrangian description for quantum group deforma-

tions of holography. In the later context the Yang-Baxter σ-model is often called an

η-deformation and we adopt this nomenclature.

There is much left to be understood about η-deformed AdS5 × S5 [31, 32] and in

particular the status of the deformed σ-model as a CFT is questionable but that concern

is irrelevant to our current investigation. It would be remiss not to mention that a related

class of integrable theories [33–35] known as λ-deformations has recently been developed

that extend the idea of a current-current perturbation of a (gauged-)Wess-Zumino-Witten

model. These λ-deformations are classically related to (1.7) via a Poisson-Lie T-duality

– 6 –
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together with some analytic continuations [36–38]. This class of theories is expected to

display a similar quantum group symmetry but with the parameter q = exp
(

iπ
k

)
a root of

unity. There is by now good evidence that λ-deformed σ-models based on semi-symmetric

spaces have target space times that solve the equations of type II supergravity and may

define CFTs [39–41]. For a recent review see [42].

1.5 Summary of results

In a fortuitous case of symbiosis, in this work we apply the ideas of resurgence to the

η-deformed σ-model and draw concurrent insight about the technique of resurgence itself

and the structure of the η-deformed theory. In this work we focus on the simplest case of

the SU(2) η-deformed principal chiral model — the extension to higher rank groups should

be quite similar and will be pursued elsewhere. Let us summarise some of the key findings:

• Deformed unitons. We demonstrate explicitly that the known uniton solutions of

the PCM persist in a suitably deformed sense as classical saddles of the action (1.7).

These give rise to finite, and quantised, actions which are not classified by the usual

topological instanton charge.

• Complex saddles. Intriguingly we find new complex saddles of (1.7) whose actions

are finite but as η → 0 diverge and so do not contribute to the undeformed PCM.

• Dimensional reduction. After applying a twisted spatial compactification the η-de-

formed theory gives rise to a quantum mechanics with a two-term periodic potential

of the Whittaker-Hill type (known to be a quasi-integrable QM [43, 44]). This theory

has both instanton configurations and complex field configurations whose actions

match respectively those of the fractons constituents of the unitons and the complex

saddles in the two-dimensional QFT.

• Large order behaviour and resurgence. The perturbative expansion of the ground

state energy gives an asymptotic series whose Borel transform has cuts in both the

positive and the negative half line. The leading and first sub-leading terms of the large

order perturbation theory are precisely tied to the above non-perturbative saddles in

line with expectations from resurgence.

• Critical coupling ηc. For η > ηc ≈ 0.27 the dominant contribution to the large order

behaviour of the perturbative energy coefficients, and the singularity nearest the

origin (but on the negative real axis) in the Borel plane, comes not from instanton-

anti-instanton events but from the complex saddle. The large order perturbation

theory for η > ηc is alternating in sign but, due to the sub-dominant contribution

coming from the singularity in the positive half line associated with instanton-anti-

instanton events, this series remains non-Borel summable along the positive real line.

• Analytic continuation in η. We consider also the case of pure imaginary η = iηR,

with ηR ∈ R. The pole structure on the Borel plane now includes similar cuts in the

positive real axis and also a complex conjugate pair of cuts (with positive real part)

– 7 –
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that correspond to complex saddles. There are three regimes: 0 ≤ ηR / 0.4 in which

the singularity along the real axis dominate; 0.4 / ηR ≤ 1√
2

in which the dominating

large order behaviour is due to the complex conjugate pairs of singularities; 1√
2
<

ηR ≤ 1 in which the imaginary part of the complex conjugate pair vanishes and the

relevant quantum mechanics has two different real types of instanton corresponding

to tunnelling between vacua separated by large and small barriers.

• Stokes jumps and Seiberg-Witten theory. A Stokes graph consists of trajectories with

constant phase of a WKB functional.4 As the coupling is analytically continued

over a Stokes line the topology of this graph will change. The same construction

arises in Seiberg-Witten theory where the topology jumps are a manifestation of

Wall Crossing. We find that the QM of the η-deformed theory gives a Stokes graph

for an Nf = 2 mass deformation of an SU(2) gauge theory with equal masses for the

flavours. See also the very recent papers [45, 46].

1.6 Outline

We proceed in section 2 where we shall first recapitulated the requisite details of the

η-deformed Principal Chiral Model before discussing its non-perturbative semi-classical

configurations of the deformed uniton and the complex saddle. In section 3 we then consider

the theory on R× S1 and illustrate the fractionalisation of the saddle point configurations

and give details of the reduction to quantum mechanics. In section 4 we examine the

large order behaviour of perturbation theory of this reduced theory paying attention to

the location of the poles in the Borel plane. In section 5 we demonstrate the resurgent

aspects of this system by comparison of the large order perturbative behaviour to low

orders of perturbation theory around non-perturbative saddles. In section 6 we discuss the

Stokes graphs and match to Seiberg-Witten theory. We then return to a discussion and

interpretation of our results.

2 The η-deformed PCM

2.1 PCM background

The Principal Chiral Model (PCM) for the group G is given by,

SPCM =
1

2πt

∫
Σ

d2σ

|G|∑
a=1

Ra+R
a
− , (2.1)

in which Σ is the world sheet taken to be R(1,1) and the right-invariant forms are Ra± =

Raµ∂±X
µ = Tr(Ta∂±gg

−1) for generators Ta of the algebra5 g whose dimension is |G|. The

PCM is asymptotically free and strongly coupled in the IR with a mass scale generated

through dimensional transmutation. As is well known, this theory has a GL⊗GR symmetry

under which g transform as g → UL g UR with UL/R ∈ GL/R two constant matrices, and is

4We will define this more precisely later.
5See the appendix for conventions.
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both classically and quantum mechanically integrable [10, 11]. The S-matrix is two-particle

factorisable and hence multi-particle scattering processes can be obtained as a succession

of two-particle scattering events. The S-matrix can be determined from the factorised

bootstrap and the theory solved using Bethe-ansatz. [2, 3]

Although these theories, after analytic continuation to an Euclidean signature, have no

topological sector, π2[SU(N)] = 0, they do posses non-perturbative saddle configurations

known as unitons introduced in the seminal work of Uhlenbeck [14]. A uniton is a finite

action field configuration solving the Euclidean equations of motion which are a harmonic

condition,

∂(U−1∂̄U) + ∂̄(U−1∂U) = 0 , (2.2)

and obey, modulo a constant rotation,

U · U = −1 . (2.3)

Let us specialise to the case of the G = SU(2). We adopt a Hopf parametrisation for

the group element,

g =

(
z1 iz2

iz̄2 z̄1

)
, z1 = cos θeiφ1 , z2 = sin θeiφ2 , (2.4)

with ranges θ ∈ [0, π], φ1 ∈ [0, π] and φ2 ∈ [0, 2π], such that the PCM (2.1) defines a

σ-model whose target space is a round S3 with metric,

ds2 =
1

t

(
dθ2 + cos2 θdφ2

1 + sin2 θdφ2
2

)
. (2.5)

The uniton U : R2 → SU(2) is specified by a holomorphic function f(z) (z = t+ ix) ,

U =
−i

1 + |f |2

(
1− |f |2 2f̄

2f |f |2 − 1

)
. (2.6)

When the function f(z) is a polynomial of degree k we speak of the k-uniton and we find

that the uniton action is,

SPCM[U ] =
1

2πt
8πk , k ∈ Z . (2.7)

It may seem counter intuitive to have such a quantised action but if we write the uniton

in Hopf coordinates,

φ1 =
π

2
, φ2 = π +

i

2
log

f(z)

f̄(z̄)
, cos θ =

−1 + |f |2

1 + |f |2
, (2.8)

it becomes evident that we are dealing not with general maps into the whole of S3 but

rather with maps that are varying over an S2 since the uniton can be seen as the embedding

of a CP1 lump into SU(2). More precisely the quantisation of the action can be related to

a non-contractible loop in field space, i.e. F = {g : S2 → S3} has π1(F ) = π3(SU(2)) = Z,

see the beautiful orange book by Manton and Sutcliffe [47].
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2.2 The η-deformed PCM generalities

An interesting class of theories called variously as Yang-Baxter σ-models and η-defor-

mations (we prefer the later term) has been obtained by Klimcik [26, 27] as integrable

deformations of the PCM. To introduce these we require an operator R acting on the

algebra g of a compact bosonic group G, that solves the modified Yang-Baxter equation,6

[RA,RB]−R ([RA,B] + [A,RB]) = [A,B] , ∀A,B ∈ g . (2.9)

Given a solution R of the modified YB equation we can consider the general action,

Sη =
1

2πt

∫
d2σ RT+(I− ηR)−1R− . (2.10)

This is integrable — at least classically. Lets look at the equations of motion which,

with the introduction of,

J± = O−1
± R± , O± = I± ηR , (2.11)

can be written as,

0 = ∂+J− + ∂−J+ − [R+,J−]− [R−,J+] . (2.12)

In addition we have the Bianchi identity,

0 = ∂+R− − ∂−R+ − [R+, R−] . (2.13)

The classical integrability is then established [27] since the equations of motion and Bianchi

identity follow as a flatness conditions for a spectral parameter dependent Lax connec-

tion L(µ),

L±(µ) =

[(
−η2 +

1 + η2

1± µ

)
I± ηR

]
J± , ∂+L− − ∂−L+ = [L+,L−] . (2.14)

In the simplest rank 1 example, G = SU(2), there is a unique R that acts on generators

normalised as Ti = 1√
2
σi by,

R : {T1, T2, T3} → {−T2, T1, 0} , (2.15)

and the matrix entering the deformed PCM is,

O−1
− = (I− ηR)−1 =

1

1 + η2

 1 −η 0

η 1 0

0 0 1 + η2

 . (2.16)

Then the deformed action is simply,

Sη =
1

2πt

1

1 + η2

∫
d2σ

[
R1

+R
1
− +R2

+R
2
− + (1 + η2)R3

+R
3
− − η(R1

+R
2
− −R2

+R
1
−)
]
.

(2.17)

6Further algebraic details may be found in the appendix.
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As a σ-model we have a target space whose metric is a squashed three-sphere equipped

with a pure gauge NS two-form,

ds2 =
1

t(1 + η2)

(
R2

1 +R2
2 + (1 + η2)R2

3

)
, B2 =

η

t(1 + η2)
d(cos θdψ) . (2.18)

Since the B-field is pure gauge in this case there is no danger in allowing η to become pure

imaginary. In this case one see that η2 = −1 corresponds to the O(3) sigma model (the

action will develop a gauge invariance allowing one to reduce the degrees of freedom to just

an S2’s worth), whilst η = 0 is the SU(2) PCM, or equivalently, the O(4) sigma-model.

This interpolating theory was used in the classic work of Polyakov and Wiegmann [10].

Using TBA, the work [48] established the exact mass gap of the theory. The classical

integrability of the σ-model on the squashed three-sphere was established long ago [49] and

an understanding of the symmetries as q-deformations was developed in [50].

Quantum mechanically, of the two couplings η and t, there is an RG invariant param-

eter ζ = t η and a single RG flow equation chosen between,

d t

d log µ
= −cG

4
t2
(
1 + η2

)2
, (2.19)

d η

d log µ
=
cG ζ

4

(
1 + η2

)2
, (2.20)

where cG is the quadratic Casimir in the adjoint. A more convenient combination, that is

closer to an overall coupling that sits outside the action eq. (2.10), is given by,

g2 = t(1 + η2) ,
d g2

d log µ
=
cG
4
g4(−1 + η2) , (2.21)

in terms of which ζ is given as,

ζ2 = g4 η2

(1 + η2)2
. (2.22)

The solution in parametric form (for ζ > 0) is,

log µ/µ0 = − 1

cGζ
arctan

2ζ√
g4 − 4ζ2

+
2

cGg2
. (2.23)

In figure 1 we plot the phase portrait of the RG flow of the couplings g2 and η2 allowing

η2 to take both positive and negative values. For η2 ≤ 0 the RG invariant quantity ζ2 ≤ 0

and the theory is asymptotically free [48] in the coupling g2 with the coupling η2 flowing

to −1 in the UV. There are two fixed points, one at η2 = −1 which corresponds to the

O(3) σ-model, and the second one for η2 = 0 which is the undeformed PCM. Note that the

η = 0 fixed line is “unstable“ under this deformation, any non-zero ζ will automatically

make us flow away from it. Although the figure illustrates also the flow for η2 < −1 one

should keep in mind that the target space metric will not have a positive definite signature.

For the case of η2 > 0 we have that the RG invariant quantity ζ2 > 0 and the situation

is different; the theory in the IR is strongly coupled in g2 as before however as we approach

the UV this coupling will decrease to a minimum value g2
min = 2ζ which occurs when η = 1
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1
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3
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g
2

Η
2

Figure 1. A phase portrait of the RG evolution of the couplings g2 (horizontal) and η2 (vertical).

The arrows point towards the UV and the colouring is such that from blue to red the absolute value

of the RG invariant parameter ζ2 increases in magnitude (ζ2 > 0 for η2 > 0).

at a scale log µ/µ0 ≈ 1/ζ. This minimum value of g2 is not a fixed point of the RG flow

since the running of η2 continues at this point and then for higher energies the theory

becomes once again strongly coupled in g2. At large energies, for ζ > 0 target space of

deformed σ-model will again become extremely curved rendering the σ-model description

incomplete. Note however that the ratio between the two strong coupling scales ΛUV and

ΛIR is parametrically large Λ2
UV/Λ

2
IR = eπ/(2ζ), so by picking a very small RG invariant ζ

we can obtain an RG flow for which the coupling g2 ∼ 2ζ remains small and η2 ∼ O(1)

for a long RG flow time thus justifying later on our weak coupling expansion g � 1 and

η fixed.

Our philosophy here is that we will view the deformed σ-model being an effective theory

up to some UV scale. For all values of ζ, the Ricci scalar of the target space of deformed

σ-model is diverging in the IR indicating that non-perturbative effects will take hold. In

general our goal in the resurgence analysis that follows is to understand this IR behaviour

and thus the issue of the UV behaviour, and its resolution, will not have an impact on our

analysis. We will use resurgence for the weak coupling expansion in g � 1 while η will be

a fixed, possibly complex, number. It is very likely that, to make a connection (i.e. the

Borel flow mentioned in the Introduction) between the Borel plane of the QFT and that

one of the reduced model that we will shortly introduce, we will have to perform some

appropriate double scaling limit in g and η or possibly fix η to be close to 1 or i modulo

some small, order g corrections. We will study this precise connection in future works.
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2.3 Deformed-uniton solution

We would like to find uniton solutions, Uη of the SU(2) η-deformed PCM7 i.e. maps that

obey the Euclidean equations of motion and obey,

Uη.Uη = −1 , lim
η→0

Uη = U . (2.24)

To ensure that the first of these conditions is solved let us make an assumption that in

Hopf coordinates the solution for φ1 and φ2 is the same as in the undeformed case given

in eq. (2.8). This is consistent; upon plugging this into the full second order equation of

motions in the deformed theory one finds that the equations of motion for φi reduce to an

η-independent condition on θ,

ff̄ ′∂θ − f̄f ′∂̄θ = 0 , (2.25)

which is simply solved by θ = θ(|f |2). The second order equations of motion for θ(|f |2)

now dramatically simplify to,

0 = −1

8

[
1 + 2η2 sin2(θ)

]
sin(2θ) + |f |2θ′(|f |2) + |f |4θ′′(|f |2) . (2.26)

This has a solution that matches to the undeformed uniton in the limit η → 0 given by,

cos θ(|f |2) =

√
1 + η2(|f |2 − 1)√

(1 + |f |2)2 + η2(|f |2 − 1)2
. (2.27)

We can also rewrite equation (2.26) by changing variables to x = log |f |2, obtaining,

d2θ(x)

dx2
=

1

8

[
1 + 2η2 sin2(θ)

]
sin(2θ) , (2.28)

which is precisely the equation of motion of a particular quantum mechanical model that

we will shortly study in detail.

Although the full uniton is not a BPS configuration, note that the solution for the

function θ obeys a rather suggestive 1st order equation,

dθ(x)

dx
= ∓1

2

(
sin2(θ) + η2 sin4(θ)

) 1
2 for x ≷ 0 . (2.29)

Indeed this equation arises from a Bogomolny rewriting of the action of the η-deformed

PCM evaluated on the ansatz θ = θ(|f |2) and φi given by (2.8). In summary we have a

deformed uniton solution,

Uη =
−i√

(1 + |f |2)2 + η2(1− |f |2)2

(√
1 + η2(1− |f |2) 2f̄

2f −
√

1 + η2(1− |f |2)

)
. (2.30)

Substitution of the uniton ansatz into the action (2.17) making use of the pseudo-BPS

condition eq. (2.29) shows that,

Sη[Uη] =
1

2πt

∫
d2z|f |2f ′(z)f̄ ′(z̄)θ′(|f |2)2 , (2.31)

7In [27] a bijection was set up between classical solutions of the undeformed and η-deformed PCM.

However, this argument relied on Minkowski signature and the solutions we present in Euclidean do not

immediately follow. We thank C. Klimcik for correspondence on this.
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Figure 2. The (negative of the) Lagrangian density corresponding to the real SU(2) η-deformed

uniton on R2. On the left we have no deformation η = 0, in the center η = 1 which has the effect

of slightly spreading the support of the uniton and punching a hole in the middle of the uniton and

on the right η = i/
√

2 in which case the deformation sharpens and reduces the support of the lump.

(The moduli were fixed to λ1 = 0 and λ2 = 0.5 .)

from which it is easy to see, after changing variables w = f(z) and making further use of

eq. (2.29) that the action for a k-uniton (i.e. for f(z) a polynomial of degree k) evaluates to,

Sη[Uη] =
1

2πt(1 + η2)
4πk

(
1 + (η + η−1) arctan(η)

)
, k ∈ Z

=
k

t(1 + η2)
2SI ,

(2.32)

where,

SI =
(
1 + (η + η−1) arctan(η)

)
, (2.33)

will correspond later to the action of a quantum mechanical instanton (i.e. the fracton).

Note that as η → 0 the uniton action Sη[Uη] reduces to the undeformed case (2.7) and

the instanton action SI → 2. The minimal uniton solution is obtained by plugging into

eq. (2.30),

f(z) = λ1 + λ2 z , (2.34)

where λi ∈ C are the moduli of the solution, with λ2 6= 0. The modulus λ1 can be thought

as the centre of the uniton while λ2 is a size modulus. The real uniton on R2 behaves like

a lump and can be best visualised by plotting its Lagrangian density,

Lη[Uη] =
−4(1 + |f |2)2f ′f̄ ′

[(1 + |f |2)2 + η2(1− |f |2)2]2
, (2.35)

as shown in figure 2. The effect of the deformation is rather mild, as we increase η ∈ R the

Lagrangian density becomes slightly punched out. We can easily consider the case η = iηR
with ηR ∈ R just by analytical continuation of the deformed uniton solution (2.30) and the

uniton action (2.32) remains real. As we increase ηR, the action density for the deformed

uniton in this case steepens and its support gets smaller as we can see in figure 2. In

both cases, η real and purely imaginary, we can vary over the moduli space of λi and no

fractionalisation occurs, the lump remains coherent.
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2.4 Complex uniton solution

Conventionally one would consider only saddle points of PCM for which the field g is indeed

an element of G. However, there is by now some substantial evidence [6, 9, 51–54] that

suggests that complex field configurations could play an important role in determining the

resurgent structure of the theory and that we should also look for finite action solutions

to the equations of motion when g ∈ GC. To this end, in the η-deformed theory we can

search for solutions in which, as in the uniton, φi are real and obey (2.8) but θ(|f |2) is

allowed to become complex but still satisfy the equation of motion eq. (2.26). Remarkably

there is indeed such a solution,

θ(|f |2) =
π

2
+ i arctanh

(
1

2

√
1 + η2

(
1

|f |
+ |f |

))
, (2.36)

which corresponds to a complex-uniton U cη ∈ SL(2,C) given by,

U cη =
1√

4|f |2 − (1 + η2)(1 + |f |2)2

(√
1 + η2(1 + |f |2) 2if̄

2if −
√

1 + η2(1 + |f |2)

)
. (2.37)

We call this solution to the complexified η-deformed PCM equation of motion a

complex-uniton because the matrix U cη lives in the natural complexification SL(2,C) of

the original target space SU(2).

In this case, the action when f(z) has degree k is given by,

Sη[U
c
η ] =

1

2πt(1 + η2)
4πk

(
1− (η + η−1)arccot(η)

)
, k ∈ Z .

=
k

t(1 + η2)
2SCI ,

(2.38)

where,

SCI =
(
1− (η + η−1)arccot(η)

)
, (2.39)

will correspond later to a complex-instanton solution in the quantum mechanically reduced

deformed PCM.

The reason quite evidently that these solutions have not been, to the best of our

knowledge, considered before in the literature is that in the limit η → 0 the action diverges

and can not give any contributions to the PCM path integral. This is readily seen by

looking at the Lagrangian density for η → 0 and f(z) = λz (the constant term in f(z) just

corresponds to a shift in the centre of the uniton and can be set to zero here) which reads,

Lη=0 =
4|λ|2

(−1 + |z|2|λ|2)2
, (2.40)

and evidently diverges along a circle in the complex plane where the denominator vanishes.

The effect of the η-deformation is to smooth out this singularity giving a finite value to

the action.
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Figure 3. The (negative of the) Lagrangian density corresponding to the n = 2 SU(2) η-deformed

complex-uniton on R2 for values of η = {0.1, 0.5, 1}. (The top row shows the real part, while the

second row shows the imaginary part.) We centre the uniton by setting λ1 = 0 and fix the size as

λ2 = 0.5 . The effect of the η-deformation is very pronounced and serves to resolve a singularity in

the Lagrangian density.

The minimal complex-uniton is obtained from eq. (2.37) by choosing,

f(z) = λ1 + zλ2 , (2.41)

where λi ∈ C are the moduli of the solution.

In contrast, for the complex-uniton on R2 the effect of the η-deformation is drastic,

it has the effect of smoothing out a singular Lagrangian density to give a finite action

configuration for η > 0 (see figure 3).

Note also that if we analytically continue the complex-uniton solution (2.37) to η =

iηR with ηR ∈ R we obtain a Lagrangian density which has a non-integrable singularity.

The reason is that our solution (2.36) becomes singular when analytically continued to

purely imaginary η. The complex-uniton action in this regime can be obtained via analytic

continuation of (2.38) from arg(η) = π/2 ± ε (see later on section 3.3 as well as [54])

obtaining two types of actions,

Sη[U
c
η ] =

k

t(1 + η2)
2SCI ,

Sη[Ũ cη ] =
k

t(1 + η2)
2SC̃I ,

(2.42)

where
SCI =

(
1− (ηR − η−1

R ) arctanh(ηR)
)
− i

π

2
(ηR − η−1

R ) ,

SC̃I =
(
1− (ηR − η−1

R ) arctanh(ηR)
)

+ i
π

2
(ηR − η−1

R ) .
(2.43)

– 16 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
8

There is another way of smoothening these field configuration for η purely imaginary.

If we allow, as we should, all the field configuration to become complex, then we can

replace in (2.27)–(2.36) |f(z)|2 → Z0|f(z)|2 with Z0 ∈ C. This corresponds to the choice

of a complex centre x0 = logZ0 for the instanton or complex-instanton solution to (2.28).

The modulus of Z0 acts simply as a scale modulus but its phase allow us to move the

singularities of the Lagrangian density away from the domain of the spatial integration. In

particular the action density for the complex-uniton for Z0 = eiα in the undeformed theory

becomes,

Lη=0 =
4|λ|2eiα

(−1 + |z|2eiα|λ|2)2
, (2.44)

to compare against (2.40). For α ∈ (0, 2π) the above action density has no singularities

over z ∈ C and it integrates precisely to the uniton action but we stress again that the

corresponding complex-uniton is a genuine SL(2,C) matrix even in the undeformed theory.

This issue of complex moduli is at the very core of the Morse-Picard-Lefschetz approach

to the path integral of quantum field theories as discussed in section 5.2.

3 Fractionalization and reduction to QM

3.1 Twisted spatial compactification

Recent works [17, 18, 55–57] have emphasised the idea of adiabatic continuity as a useful

technique in the study of the IR physics of QCD-like gauge theories on R4 (or R2). The

idea is to place the theory on R3×S1
L (or R×S1

L) such that when the radius L is sufficiently

small the theory enters a weakly coupled domain.

Of course, the physics in this regime may be quite different to that of the theory on

R4; for a thermal compactification we have a deconfined phase at small L and a confined

phase at large L. In such a case calculations performed at small L will not tell us a great

deal about the long distance physics relevant for the theory at large L. If instead one takes

a spatial compactification, the small L behaviour can be adiabatically connected to the

large L-regime, note that the fermions need a spatial compactification as well to prevent

any Hagedorn instability [58]. For 2-d theories on R×S1
L a thermal compactification would

only give rise to a cross-over between the deconfined regime at small L and the confined

one at large L, it is only in the N =∞ limit that we obtain a true phase transition as we

dial the radius of the S1.

This idea has been applied to the PCM eq. (1.6), which as discussed in the introduction,

can serve in many ways as a good prototype for QCD but in the easier scenario of two-

dimensions. In [9] it was studied in detail how the properties of compactification of the

SU(N) PCM on R× S1
L are related to a choice of boundary conditions,

g(t, x+ L) = eiHLg(t, x)e−iHR , ψ(t, x+ L) = ±eiHLψ(t, x)e−iHR , (3.1)

in which ψ denote any fermions in the game and the − sign corresponds to anti-periodic

thermal boundary conditions and the + sign to periodic spatial boundary conditions. These

boundary conditions can equally well be thought of as turning on background gauge fields
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for HL ×HR inside the global SU(N)L × SU(N)R symmetry. Two conditions are required

of the choice of HL and HR for adiabaticity. First is that the free energy F should be at

a stationary point as we vary the boundary conditions and second that F/N2 → 0 for any

L. The eigenvalues of the axial HA = 1
L(HL − HR) obey a tree level effective potential

which is extremised only when HA = 0 and thus attention can be restricted to vectorial

gauge field for HV = 1
L(HL+HR). By integrating out the KK-modes one finds an effective

potential V (Ω) for the Wilson loop Ω = exp i
∮
dxHV = exp iLHV which depends crucially

on the sign choice of fermionic boundary conditions. For thermal boundary conditions this

potential is minimised by,

Ωthermal = ei 2πk
N 1 , (3.2)

leading to a free energy that does not satisfy the adiabaticity requirements as expected. For

QCD-like theories on R3×S1
L, this holonomy would correspond to a VEV for the Polyakov

line that breaks the ZN centre symmetry.

Conversely, the minimisation of the effective potential for spatial compactifications is

achieved by,

Ωthermal = ei νπ
N diag

(
1, ei 2π

N , . . . , ei
2π(N−1)

N

)
, ν = 0, 1 for N = odd, even. (3.3)

For QCD-like theories on R3 × S1
L this would correspond to a VEV for the Polyakov line

that preserves the ZN centre symmetry since tr(Ω) = 0.

For SU(2) this has the simple interpretation of turning on a background field for

the U(1)V ,

HV =
π

2

(
1 0

0 −1

)
. (3.4)

In the case at hand, the η-deformations the situation is slightly subtle. For −1 < η2 <

0, as discussed previously, the theory is asymptotically free and the story outlined above

transfers directly. Indeed one can calculate the effective potential in this case and establish

that the same boundary conditions, eq. (3.4), are required. For the case of η2 > 0 the

theory on R2 is both IR and UV strongly coupled. We can, and shall, of course still study

the spatial compactification but should be appropriately more cautious in interpreting the

implications of the results of the reduced theory to that on R2. Nonetheless what we shall

find is a rather consistent story that is valid for both −1 < η2 < 0 and η2 > 0.

Furthermore, since we are not working at N = ∞, our choice of twisted boundary

condition on R×S1
L is by no means a guarantee of adiabatic continuity. There is no phase

transition as we shrink the radius of S1, nonetheless, as noted in [59], this choice of maximal

twist is very particular even at finite N hinting towards volume independence also when

N = 2. These caveats aside, we will study the compactification of the η-deformed SU(2)

PCM in the presence of the maximal twist (3.4) and leave for further studies the precise

connection with the theory on R2.

Rather than working with twisted boundary conditions it is expedient to work instead

with periodic fields,

g̃(t, x) = e−iHL
x
L geiHR

x
L , g̃(t, x+ L) = g̃(t, x) . (3.5)
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Following the discussion above, we will turn on only a vectorial twist,

HL = HR =

(
ξ 0

0 −ξ

)
, (3.6)

where ξ = π/2 will correspond to the maximal twist (3.4).

We calculate the Lagrangian for this periodic field given in terms of right-invariant

forms as,

Lη[g̃] =
1

t

3∑
a=1

Ra−[g̃](O−1
− )abR

b
+[g̃] , (3.7)

using the coordinates x± = 1
2(t± ix) resulting in,

g2Lη[g̃] = ∂iθ∂iθ + f+(θ) cos2 θ∂iφ1∂iφ1 + f−(θ) sin2 θ∂iφ2∂iφ2 +
1

2
η2 sin2(2θ)∂iφ1∂iφ2

− 2ξ sin2 θ
(
η2 cos2 θ∂xφ1 + f−(θ)∂xφ2

)
+ ξ2f−(θ) sin2 θ + iηξ sin 2θθ̇ .

(3.8)

where we defined,

2f±(θ) = 2 + η2(1± cos(2θ)) .

In the above, we have introduced the coupling g2 = t(1 + η2) and we have dropped the

pure gauge B-field of the η-deformation (the term in the action is a total derivative and

imaginary in Euclidean signature) and note that the final imaginary term coming from the

twisted boundary conditions is also a total derivative and will be henceforth discarded.

The U(1)L- and U(1)R-currents, corresponding to the symmetry g → eiεLσ3ge−iεRσ3 of

the untwisted theory, are given by,

J Lµ = −2

t

(
cos2(θ)∂µφ1 + sin2(θ)∂µφ2

)
,

J Rµ =
2

t(1 + η2)

(
cos2(θ)

(
1 + η2 cos(2θ)

)
∂µφ1 + sin2(θ)

(
−1 + η2 cos(2θ)

)
∂µφ2

)
.

(3.9)

Reflecting the isometries of the squashed sphere target space, we note that the left acting

symmetry is insensitive to the deformation while the right acting symmetry is modified.

We further see that the twisting used is equivalent to turning on a spatial component of

the background gauge field of the vectorial action since,

Lη[g̃] = Lη[g] +
ξ

2

(
J Lx + J Rx

)
+

1

g2
ξ2f−(θ) sin2 θ . (3.10)

We will use now a small-L effective quantum mechanics by performing a KK-reduction

and dropping all the x dependence from the fields. Clearly such a reduction will be for-

getful regarding the UV-renormalon singularities, which can be only extracted from the

microscopic theory.

An important subtlety in performing the KK-reduction is that it is not quite true that

all KK-momentum carrying states can be discarded. The issue is that states that carry

non-zero winding number can contribute to the low-energy dynamics on the same footing

as states that carry zero winding number, as already noted in [9].
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In particular we have to consider when φ2 carries a non-trivially winding around the S1,

φ2(t, x) = 2π n
x

L
+ φ̃2(t) , (3.11)

with n ∈ Z.

Taking into account the factor of L that comes from performing the integral around

the S1 one finds, after rotating back to Lorentzian signature, an Hamiltonian of the form,

H =
g2

4L
PIGIJPJ +

L(πn+ ξ)2

g2
sin2(θ)

(
1 + η2 sin2(θ)

)
, (3.12)

where the momenta PI = {pθ, pφ1 , pφ2} are coupled via the inverse metric on the squashed

sphere namely,

GIJ =

 1 0 0

0 f−(θ) sec2 θ
1+η2

− η
1+η2

0 − η
1+η2

f+(θ) csc2 θ
1+η2

 . (3.13)

As explained above we see that, after picking the maximal twist ξ = π/2, the states with

zero winding number for φ2 will have exactly the same energy as the states with winding

number −1.

We are interested in the ground state of this system and to this end we employ the

Born-Oppenheimer approximation which separates the dynamics of the light degrees of

freedom pθ with the heavy ones pφi as in [9]. Remembering the subtleties about winding

modes we can also set n = 0 from now on and choose the maximal twist ξ = π/2. Thus

we arrive at a one-dimensional quantum mechanics of interest given by eq. (3.12) with

pφi = 0, n = 0 and ξ = π/2,

H =
g2

4L
p2
θ +

Lπ2

4g2
sin2(θ)

(
1 + η2 sin2(θ)

)
. (3.14)

We can rescale the time variable to remove the energy scale 1/L and some numerical

factor to put the above Hamiltonian in the form,

HQM =
g2

2
p2
θ +

1

2g2
sin2(θ)

(
1 + η2 sin2(θ)

)
, (3.15)

with the corresponding Lagrangian given by,

LQM =
1

2g2

[(
dθ(t)

dt

)2

− sin2(θ)
(
1 + η2 sin2(θ)

)]
. (3.16)

The corresponding Schrödinger equation can be put in the form,

Ψ′′(θ) + (a− 2q cos(2θ)− 2p cos(4θ))Ψ(θ) = 0 , (3.17)

with the parameters,

p =
η2

16g4
, q = −(1 + η2)

4g4
, a =

1

8g2

(
16E − 4− 3η2

)
. (3.18)
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This differential equation is called the three-term Whittaker-Hill equation and some of

its properties are known.8 Although it will not be directly relevant for what follows,

it is notable that whilst this is not an integrable QM (in the sense that its spectrum

can’t be given in closed form in terms of known functions), it is an example of a quasi-

exactly-solvable QM (for a recent comprehensive treatment [61]) in which some — but

not all — eigenstates for particular values of the parameters can be found exactly. This

Whittaker-Hill equation also emerges in certain inflationary scenarios as describing entropy

fluctuations during reheating [62] (this paper also contains a useful exploration of stability

properties of the equation).

We notice that our Hamiltonian can be directly related (for η2 < 0) to the su-

persymmetric quantum mechanics studied in [54, 63] with a superpotential of the form

W (θ) = cos(θ) after the fermions are integrated out.

That our deformed bosonic theory reduces in one-dimension to the supersymmetric

completion of the undeformed theory seems, at first sight, rather peculiar. One anticipates

that the twisted reduction of the two-dimensional supersymmetric Principal Chiral Model

would be the natural origin for the supersymmetric quantum mechanics studied in [54, 63]

and that this would be a rather different theory from the bosonic η-deformed PCM. However

there is one sense in which the η-deformation and the supersymmetric deformation are

similar; they both modify the S-matrix of the theory by means of a quantum group. Indeed

the supersymmetric part of the S-matrix of the SUSY PCM for spinors in the O(4) model

is identical to the soliton S-matrix of the supersymmetric sine-Gordon theory evaluated at

a value of coupling such that scattering is reflectionless [64, 65] . This in turn is related to

an affine SU(2) quantum group with parameter q a root of unity. This was extended in [66]

to the SU(N) PCM wherein the supersymmetric part of the S-matrix is a q root unity

affine quantum group deformation of SU(N). It would be interesting to try and clarify

this possible relation at the level of Lagrangians perhaps by directly integrating out the

fermions from the PCM.

As expected, for η → 0 the QM defined by eq. (3.17) reduces to the well known Mathieu

equation studied in this PCM context in [9, 16]. More generally the Mathieu equation has

been carefully studied in a number of works as an example of a QM where degenerate

minimum give rise to a banded spectrum [67, 68]. This system also plays a key role in

the study of 4-dimensional N = 2 supersymmetric pure SU(2) gauge theory and its wall

crossing phenomenon [69, 70].

Before proceeding, let us make a small digression concerning the reduced quantum

mechanics eq. (3.12). If instead of adopting Euler angles we use R4 embedding coordinates

to parametrise the group element as,

g =

(
x1 + ix2 x3 + ix4

−x3 − ix4 x1 − ix2

)
, |~x|2 = 1 , (3.19)

8See e.g. http://dlmf.nist.gov/28.31 and the books [44, 60], we thank Gerald Dunne and Gleb Arutyunov

for related discussions.
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then the Lagrangian corresponding to eq. (3.12) can be expressed compactly as,

g2

L
L =

(
δij + η2x̃ix̃j

)
ẋiẋj − ξ2(x2

3 + x2
4)
(
1 + η2(x2

3 + x2
4)
)
, (3.20)

in which x̃i = {x2,−x1, x4,−x3}. For η2 = 0 this quantum mechanics on an S3 with a

quadratic potential in the embedding coordinates has been well studied under the name

of the C. Neumann model [71] and is known to be integrable both classically [14, 72] and

quantum mechanically [73].9 It seems quite likely then, given the integrable 2-d origin

of eq. (3.20) that the full η-deformed quantum mechanics is also integrable and will be

pursued elsewhere [74]. Intriguingly an integrable deformation of the Neumann model has

already arisen in relation to spinning strings in η-deformed AdS5 × S5 in [75] — though

the structure there seem more involved than the simple Lagrangian of eq. (3.20).

3.2 Unitons on R× S1

To put the minimal unitons and the minimal complex-unitons on R×S1
L, and to take care

of the twisted boundary conditions we use the results of [76, 77] and we simply make the

replacement,

f(z) = e−π
z
L

(
λ1 + λ2e

2π z
L

)
, (3.21)

with z = t+ ix such that,

Uη(t, x+ L) = eiHV Uη(t, x)e−iHV , (3.22)

where HV is the maximal twist matrix of (3.4).

Here something quite different happens as we vary over the moduli-space, both the

real and complex-uniton solutions break-up or fractionalize. In the regime λ1 � 1 � λ2

there is no fractionalisation however when λ1 ∼ λ2 � 1, regardless of the value of η these

semi-classical solutions break up into widely separated lumps of Lagrangian density. This

is illustrated in figure 4 for the real uniton and figures 5 and 6 for the real and imaginary

contributions to the Lagrangian density of the complex-uniton.

As well as seeing the fractionalisation in the Lagrangian density, we can see it directly

at the level of field space. Let us focus on the field θ(x, t) defined via eq. (2.27) for the

real uniton and (2.36) for the complex-uniton but with the function f(z) appropriate for

R× S1
L with for concreteness real moduli. For λ1λ2 � 1, which holds in the fractionalized

regime, the derivative with respect to x — i.e. the dependence in the S1
L — is suppressed

and θ(x, t) ∼ θ(t) effectively truncates to the zero-KK mode sector. The field φ2 given by

equation (2.8) does instead depend on x and interpolates between a configuration with 0

winding and a configuration with winding −1. For the real uniton this gives a correlated

fracton-anti-KK-fracton profile so schematically we write the fractionalisation as U →
[F0F−1] where the subscript are to remind that the field φ2 has different winding numbers.

As we will see later on, the action of each fracton event can be computed from our

quantum mechanic model and it is precisely equal to (2.33) so that the uniton, even in the

9We thank Oleg Evnin for drawing our attention to this.
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Figure 4. The (negative of the) Lagrangian density corresponding to the real SU(2) η-deformed

uniton on R × S1 with twisted boundary conditions for real moduli. The radius of the S1 is set

to one. The top line shows for η = {0, 0.5, 1} (left to right) a regime of uniton moduli space

λ1 � 1 � λ2 (the plot shows λ1 = e2 and λ2 = e−4) in which there is no fractionalisation. Here

the effect of the η-deformation creates some partial splitting in the uniton but not a complete

fractionalisation. The lower lines shows for η = {0, 0.5, 1} (left to right) when λ1 ∼ λ2 � 1 (the

plot shows λ1 = λ2 = e−15) and regardless of the value of η the uniton has fully broken up into a

fracton-anti-fracton pair.

deformed theory, is indeed composed by a fracton and a KK-anti-fracton and its action is

given by (2.32).

For the complex-uniton, we find that the profile of θ(t) is such that the real part remains

constant however the imaginary part is non-constant and it fractionalizes into two equal

constituents. As for the uniton, even in this case the field φ2 is given by equation (2.8)

so it does depend on x and interpolates between a configuration with 0 winding and a

configuration with winding −1. For these reasons we denote the fractionalisation of the

complex-uniton as UC → [CF0 CF−1], i.e. the complex-uniton is formed by a complex-

fracton and a KK-complex-fracton. We will shortly show that the action of a complex-

fracton can be computed from our quantum mechanical model and it is precisely equal

to (2.39) explaining why the complex-uniton action is given by (2.32).

The profiles of θ for both these cases are plotted in figure. 7.

3.3 Non-perturbative saddles in the reduced quantum mechanics

We can understand the origin of the fracton and the complex-fracton from the reduced

quantum mechanics. Let us rewrite here the Hamiltonian of interest after a rescaling10

becomes

H = p2
θ + sin2(θ)

(
1 + η2 sin2(θ)

)
= p2

θ + V , (3.23)

10We rescaled the Lagrangian so that the factor 1/(2g2) sits outside of the action and g2 plays the role of ~.

– 23 –



J
H
E
P
0
7
(
2
0
1
6
)
0
8
8

Figure 5. The real part of the Lagrangian density corresponding to the SU(2) η-deformed complex-

uniton on R×S1 with twisted boundary conditions for real moduli. The radius of the S1 is set to one.

The top line shows for η = {0.1, 0.5, 1} (left to right) a regime of uniton moduli space λ1 � 1� λ2

(the plot shows λ1 = e2 and λ2 = e−4) in which there is no fractionalisation. The lower lines

shows for η = {0.1, 0.5, 1} (left to right) when λ1 ∼ λ2 � 1 (the plot shows λ1 = λ2 = e−15) and

regardless of the value of η the complex-uniton has fully broken up. Note the vertical scale changes

between plots since the densities are divergent as η → 0.

Figure 6. The imaginary part of the Lagrangian density corresponding to the SU(2) η-deformed

complex-uniton on R × S1 with twisted boundary conditions for real moduli. Plots ordered as in

figure 5 (for the same values of λ1,2 respectively).
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Figure 7. The profile of θ(t) in the fractionalised regime for the uniton (left) and complex-uniton

(right) with real parts in blue and imaginary in red.

and the corresponding Euclidean Lagrangian is obviously

LE =

(
dθ(t)

dt

)2

+ sin2(θ)
(
1 + η2 sin2(θ)

)
= θ̇2 + V , (3.24)

whose variation gives the second order equation of motion

θ̈(t) =
1

2

(
1 + 2η2 sin2(θ)

)
sin(2θ) . (3.25)

To classify all the non-perturbative solutions to the equation of motion we first have

to find the complex critical points of the potential

V (θ) = sin2(θ) (1 + η2 sin2(θ)) (3.26)

in the strip Re θ ∈ [0, π] of the complex plane θ ∈ C. We can easily solve for V ′(θ) = 0 for

arbitrary η ∈ C with |η| ≤ 1, finding generically 7 critical points:

θ = 0 θ =
π

2
, θ = π ,

θ = θcr , θ = θ̄cr ,

θ = π − θcr θ = π − θ̄cr ,

(3.27)

where θcr ∈ C is given by,

θcr =
π

2
− 1

2
Im

[
log

(
1 +

√
1 + 2η2

1−
√

1 + 2η2

)]
+

i

2
Re

[
log

(
1 +

√
1 + 2η2

1−
√

1 + 2η2

)]
. (3.28)

If we start with η = 0 we immediately see that θcr → ∞ so we are only left with the

three critical points {0, π/2, π} of the undeformed Mathieu case, as discussed in [9]. As we

turn on η 6= 0 with arg(η) = 0 we see that θcr becomes finite and purely imaginary, of the

7 critical points 3 are real while 4 are complex, see figure 8.

If we increase the argument of η, θcr acquires a real part that becomes exactly equal

to π/2 for η = iηR with 0 < ηR < 1/
√

2 so generically we have 7 critical points, 3 real

and 4 complex. When η is purely imaginary and in modulus less than 1/
√

2 we have that

θcr = π − θ̄cr so we are left with only 5 critical points, 3 real and 2 imaginary, see figure 8.

As η approaches i/
√

2 the two critical points θcr and θ̄cr approach one another, and for

η = i/
√

2 we have that θcr = π/2 so we are left with only 3 real critical points, see figure 9.
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Re Θ

-0.5

0.5

Im Θ

0.5 1.0 1.5 2.0 2.5 3.0
Re Θ

-0.5

0.5

Im Θ

η = 2
3 η = 2

3 e
iπ/4

0.5 1.0 1.5 2.0 2.5 3.0
Re Θ

-0.5

0.5

Im Θ

η = 2
3 e

iπ/2

Figure 8. The red dots correspond to the critical points of the potential (3.26) for different values

of η. As we increase the argument of η while keeping its modulus fixed, the two critical points θcr

and π− θ̄cr come closer together moving on the blue curve, while θ̄cr and π− θcr move closer along

the green curve. For arg(η) = π/2 we are left with 5 critical points.

0.5 1.0 1.5 2.0 2.5 3.0
Re Θ

-0.5

0.5

Im Θ

0.5 1.0 1.5 2.0 2.5 3.0
Re Θ

-0.6

-0.4

-0.2

0.2

0.4

0.6

Im Θ

η = 1√
2
eiπ/2 η = eiπ/2

Figure 9. The red dots correspond to the critical points of the potential (3.26) for different values

of η. For η = i/
√

2 the critical point θcr coincide with π/2 and we only have 3 real critical points.

For |η| > 1/
√

2, while keeping arg(η) = π/2, θcr moves along the real axis and we have 5 real

critical points.
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Figure 10. Profile of the potential (3.26) for θ real and η = 9
10 i. For |η| > 1/

√
2 with arg(η) = π/2

the critical points are all real.

If we keep increasing the modulus of η while keeping its argument to π/2 we see that

θcr remains real and moves on the real axis towards the origin, while θ − θcr moves on

the real axis towards π. In this regime we have once again 5 critical points all reals, see

figure 9. For η purely imaginary and in modulus larger than 1/
√

2, the critical points can

be easily understood by plotting the potential V (θ) for real θ as in figure 10. In this regime

there are two different types of instanton events corresponding to tunnelling between the

tall barrier or the short one.

The most general solution to the equation of motion (3.25) can be obtained by making

use of the Weierstrass elliptic functions [54] but we will only be interested in finite action

solutions to (3.25). The first of such solutions is a typical instanton event interpolating

between θ → 0 as t→ −∞ and θ → π as t→ +∞, with profile given by,

θI(t) = π − arccos

[ √
1 + η2 tanh(t− t0)√
1 + η2 tanh(t− t0)2

]
, (3.29)

where t0 ∈ R denotes the instanton centre zero-mode. The action can be computed,

SI = 1 + (η + η−1) arctan η , (3.30)

and it is precisely equal to the fracton action (2.33). In the η → 0 limit the instanton

reduces to the standard instanton of the reduced PCM case of [9] and its action stays

finite SI → 2.

Clearly an anti-instanton solution can also be found and it has exactly the same action

while its profile is given by,

θĪ(t) = arccos

[ √
1 + η2 tanh(t− t0)√
1 + η2 tanh(t− t0)2

]
. (3.31)

For η real the instanton and the anti-instanton are real solutions (if the modulus t0 is

chosen to be real) while for generic complex η the profile θI and the action SI have a non-

zero imaginary part. As η becomes purely imaginary, η = iηR with ηR ∈ R, the function

θI becomes real once again (for t0 ∈ R) and the instanton action can be rewritten as,

SI = 1− (ηR − η−1
R ) arctanh ηR , (3.32)

which is clearly real.
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Note that for any η ∈ C both the instanton and the anti-instanton interpolates between

different vacua, namely θ = 0 and θ = π. This tells us that only correlated event IĪ

interpolating between the same vacuum θ = 0 can (and will) communicate with standard

perturbation theory around the vacuum θ = 0.

Perhaps more interesting are the complex-instanton solutions, called complex-bions

in [54],

θCI(t) =
1

2

[
−π + 2i arctanh

(√
1 + η2 cosh(t− t0)

)]
, (3.33)

together with {π − θCI , θCI , π − θCI}, all with action,

SCI = 1− (η + η−1) arccot η . (3.34)

As we see in figure 11, for η real θCI(t) is purely imaginary (for t0 ∈ R). The complex-

instanton solution tunnels from θ → 0 as t → −∞ to θ → θcr given in (3.28) and then

tunnels back to the same vacuum θ → 0 as t → +∞, and similarly for all the other

complex-instanton solutions written above. Note that despite the complex-instanton being

a solution living in the complexification of the field space its action is real. In the limit

η → 0 the complex-instanton θCI(t) becomes singular for t = t0 and its action (3.34)

diverges but this only happens if we keep the centre modulus real! If we allow ourself to

consider t0 ∈ C, and we should since the field space should be complexified in its entirety,

we can see the presence of this additional saddle even in the η = 0 case (see the discussion

on complex-unitons of section 2).

If we increase the argument of η the solution θCI(t) will stop being purely imaginary and

the action 3.34 will become complex, but the complex-instanton will remain a configuration

interpolating between the vacuum θ → 0 for t→ −∞, then off to the complex critical point

θcr and back again for t→ +∞ to the same vacuum θ → 0.

When η = iηR with 0 < ηR < 1/
√

2 the complex-instanton (3.33) develops two non-

integrable singularities as displayed in figure 11. To obtain a smooth profile function we

can either reach η purely imaginary from arg(η) = π/2 ± ε or we can consider a complex

centre t0 modulus. As explained in detail in [54], when η = iηR with 0 < ηR < 1/
√

2 the

branch cut of arctanh produces two types of complex-instanton solutions with actions:

SCI =
(
1− (ηR − η−1

R ) arctanh(ηR)
)
− i

π

2
(ηR − η−1

R ) ,

SC̃I =
(
1− (ηR − η−1

R ) arctanh(ηR)
)

+ i
π

2
(ηR − η−1

R ) ,
(3.35)

one complex conjugate of the other.

Note that for any η ∈ C the complex-instanton interpolates between the same vacuum.

This tells us that a single complex-instanton event CI can (and will) communicate with

standard perturbation theory around the vacuum θ = 0.

4 Perturbation theory in the reduced quantum mechanics

Now that we have a better knowledge of the non-perturbative sector of our η-deformed

PCM and of the reduced quantum mechanics, we want to understand if these instanton
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Figure 11. Profile of the complex-instanton solution (3.33) for η = 1
2 (right) η = 1

2 e
iπ/2 (left),

with real part in blue and imaginary part in red.

(fracton) and complex-instanton (complex-fracton) events play any role in the semi-classical

expansion of physical quantities. To achieve this we consider a very simple quantity: the

ground state energy of the quantum mechanics (3.15) obtained from the maximally twisted

reduction of our QFT.

4.1 WKB Perturbation theory and Borel singularities

We will compute the ground state energy in perturbation theory and we will see how this

will be insufficient to obtain an unambiguous result because we will be missing some crucial

non-perturbative effect. To compute the large orders perturbative coefficients, we found

that using a standard WKB approach was numerically faster than using uniform WKB.

We consider the time independent Schrödinger equation associated with the Hamilto-

nian (3.23),

− g4 d2

dx2
ψ(x) +Q(x)ψ(x) = 0 , (4.1)

where Q(x) = V (x)− g2E, with E the rescaled energy and V (x) = sinx+ η2 sin2 x.

We can use a WKB ansatz for the wave-function,

ψ(x) = e
−S(x)

g2 , (4.2)

reducing the time-independent Schrödinger equation to a Riccati equation for S(x):

g2S′′(x) + S′(x)2 −Q(x) = 0 . (4.3)

We are interested in studying the resurgence properties of the energy levels of the

quantum mechanical system above in the limit g → 0 with η ∈ C fixed. In particular for

the ground state energy we can make the ansatz:

S(x) =

∞∑
n=0

g2nSn(x) , (4.4)

E(0) =

∞∑
n=0

g2nEn . (4.5)
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with E0 = 1, while the coefficients En will be some factorially growing, η dependent,

complex numbers. The auxiliary functions Sn(x) can be expanded as

Sn(x) =

∞∑
m=0

Sn,mx
2m , (4.6)

for some complex, η dependent, coefficients Sn,m, since we have assumed that the functions

Sn(x) are regular11 at x = 0.

We plugged the ansatz (4.5) in (4.3), expanded as a power series in g2, and imposed

that the Riccati equation is satisfied order by order in g2. These are the first few terms in

the small g2 expansion of the Riccati equation

O(g0) : S′0(x)2 − (sin2 x+ η2 sin4 x) = 0 ,

O(g2) : S′′0 (x) + 2S′0(x)S′1(x) + E0 = 0 ,

O(g4) : S′′1 (x) + 2S′0(x)S′2(x) + S′1(x)2 + E1 = 0 .

At this point we can use the small x expansion (4.6) and solve for the unknown coef-

ficients {En, Sn,m} order by order in g and in x.

Note that this procedure is completely independent from the argument of η, in par-

ticular we can find the perturbative coefficients {En} for the energy levels of the quantum

mechanical system (4.1) for all values of η ∈ C. Obviously, the Hamiltonian associated

with (4.1) is an Hermitian operator only for arg(η) = 0 or arg(η) = π/2. Nonetheless, the

study of the large order behaviour of the coefficients {En} will be extremely interesting

if we allow arg(η) to vary in [0, π/2], despite the quantum mechanical model (4.1) not

describing a physical system for generic η ∈ C.

We can compare the first few perturbative coefficients En for different values of η

E(0) = 1− 1

4
g2 − 1

16
g4 − 3

64
g6 +O(g8) , η = 0 ,

E(0) = 1− 1

16
g2 − 61

256
g4 +

777

4096
g6 +O(g8) , η =

1

2
,

E(0) = 1− 7

16
g2 − 13

256
g4 +

15

4096
g6 +O(g8) , η =

i

2
,

(4.7)

obtained with standard WKB analysis as described above, against the coefficients (4.20),

for B = 1/2 (i.e. the ground state), that we will shortly obtain using uniform WKB

approach and the two match perfectly for all values of η ∈ C.

As anticipated, we expect these coefficients {En} to grow factorially with n, hence

all the series in (4.5) are only asymptotic. The first thing we want to understand is

the structure of non-perturbative contributions that one must add to our ansatz (4.5) to

construct a proper transseries of the form (1.5).

11For excited states this ansatz has to be changed since the wave-function ψ(x) must have some nodes. In

particular if we look for the N -th energy level, with N = 2ν+1 and ν a half integer, the energy will be E(ν) =

1+2ν+O(g2) while the WKB wave-function must take the form S(x) = S
(ν)
0 (x)+g2(ν log x+S

(ν)
2 (x))+O(g4).

The function S
(ν)
0 (x) can be expanded has in (4.6) while S

(ν)
n≥2 will have both positive as well as negative

integer powers of x.
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Figure 12. The convergence of the Padé approximant for η = 0.2.

We first fix η ∈ C and then generate, using the procedure outlined above, the first

Np = 150 perturbative coefficients {En}, while keeping 200 significant precision digits.

We Borel transform the ground state energy, truncated to order 2Np : E
(0)
T = E0 + . . . +

g2NpENp using,

BT (t) =

Np+1∑
n=1

En−1

n!
tn . (4.8)

Since we only kept a finite number Np of terms, this Borel transform is an entire function

in the complex t-plane. For this reason we study the pole structure of the Borel-Padé

approximants (see e.g. [84]),

Bn,m(t) =
Pn(t)

1 +Qm(t)
, (4.9)

where the polynomials Pn(t) and Qm(t) can be constructed from BT (t) and have degrees n

and m respectively, with Np = n+m. The idea of the Borel-Padé technique is certainly not

new and its applications to strongly coupled particle physics were summer school material in

1970 [78].12 The use of Borel-Padé approximants are supported by their strong convergence

properties. For instance taking a diagonal approximant m = n, we can compare the

first predicted value for the series with the known result as a function of n and find an

exponential convergence,

expRn =

∣∣∣∣∣E
predicted
2n+1

Eactual
2n+1

− 1

∣∣∣∣∣ ∼ Ce−σn . (4.10)

This is illustrated by the log plot of figure 12 in which we find σ ∼ 1.69 for η = 0.2. Similar

exponential efficacy of the Borel-Padé method was conjectured in [79] and the method

was used to predict quite successfully the then unknown 4-loop contribution to the β-

function of QCD. More recently the exponential convergence of the Borel-Padé method was

verified against explicit calculations using localisation techniques of correlation functions of

Coulomb branch operators in four-dimensional N = 2 superconformal field theories in [80].

12In particular see lectures of Simon, Martin, Basdevant, Alabiso et al., and Villani within.
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Figure 13. Singularities of the diagonal Borel-Padé approximant B75,75(t) in the complex Borel

plane for different values of η = 0, η = 1
5 , η = 3

4 . The dashed red circle denotes |t| = |SIĪ |, while

the dashed blue circle denotes |t| = |SCI |.

The Borel-Padé approximants, being rational functions, will have poles in the complex

t-plane. As we increase the number of coefficients Np we can obtain better and better

Borel-Padé approximants and their pole structure is supposed to converge to the branch-

cut structure of the complete Borel transform,

B(t) =

∞∑
n=1

En−1

n!
tn . (4.11)

We can see from figures 13–14 that the singularity structures of the Borel-Padé ap-

proximants change dramatically as we dial η ∈ C.

For arg(η) = 0, the only two Stokes directions, i.e. singular directions, for B(t) are

θ = arg(t) = 0 and θ = π. In this regime we know that there are two non-perturbative

field configurations which can mix with perturbation theory, an instanton-anti-instanton

configuration with action (3.30),

SIĪ = 2SI = 2
(
1 + (η + η−1) arctan(η)

)
, (4.12)

and a complex-instanton configuration with action (3.34),

SCI =
(
1− (η + η−1) arccot(η)

)
. (4.13)

Note that for η ∈ R both actions are real, SIĪ > 0 while SCI < 0. We see in figure 13 that

the Borel transform has two branch-cuts starting precisely at t = SIĪ and t = SCI .
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2

Figure 14. Singularities of the diagonal Borel-Padé approximant B75,75(t) in the complex Borel

plane for η = eiπ/5

2 (left) and η = eiπ/2

2 (right). The dashed red circle denotes |t| = |SIĪ | while

the dashed blue circle denotes |t| = |SCI |. On the left plot the branch cuts are in the directions

arg t = argSIĪ and arg t = argSCI while on the right plot an additional branch is present in the

direction arg t = argSC̃I .

If we try to go back to the undeformed case, η = 0, we can see that the branch cut along

the Stokes lines θ = π tries to disappear, moving towards −∞, since SCI ∼ − π
2η + O(η0)

as η → 0, while the branch cut along θ = 0 starts precisely at t = SIĪ ∼ 4 + O(η), as

expected from the undeformed Principal Chiral Model analysis carried out in [9] and shown

in figure 13.

As we increase the argument of η, we see in figure 14 that the two Stokes lines move

from θ = 0, π to the directions θ = arg(SIĪ) and θ = arg(SCI) and the two branch cuts

start precisely at t = SIĪ and t = SCI .

When we reach arg(η) = π/2, i.e. η = iηR with ηR ∈ R and |ηR| < 1/
√

2, the

Borel transform of the ground state energy has three branch cut. The reason is that the

complex-instanton action (3.34) has a branch cut discontinuity in the complex η plane

running precisely between −i and i. This gives rise to a third type of non-perturbative

saddle (see the discussion in section 3.3) which can mix with perturbation theory. The

actions (3.32)–(3.35) of the three relevant non-perturbative field configurations for η = iηR
with ηR ∈ R and |ηR| < 1/

√
2 are:

SIĪ = 2
(
1− (ηR − η−1

R ) arctanh(ηR)
)
, (4.14)

SCI =
(
1− (ηR − η−1

R ) arctanh(ηR)
)
− i

π

2
(ηR − η−1

R ) , (4.15)

SC̃I =
(
1− (ηR − η−1

R ) arctanh(ηR)
)

+ i
π

2
(ηR − η−1

R ) . (4.16)

Note that SIĪ is once again real, while SCI and SC̃I are complex and furthermore they

are complex conjugates to one another: SC̃I = SCI . We have thus three Stokes lines at

θ = 0 and θ = ±arg(SCI), and the branch cuts of the Borel transform start precisely at

t = SIĪ , t = SCI and t = SC̃I respectively, as shown in figure 14.

Finally, if we crank up the modulus of η such that |η| ≥ 1/
√

2, while keeping arg(η) =

π/2, we know from the analysis of section 3.3 that the complex-instantons cease to exist

and we only have two types of non-perturbative saddles, both with real actions and the

only Stokes line is for θ = 0.
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4.2 Uniform WKB

To analyse the perturbative expansion in detail we follow the uniform WKB method that

is well-suited to potentials with degenerate minima [67]. This consists of two steps, first

one is to solve the Schrödinger equation about a given minimum perturbatively and then

one invokes a global boundary condition that will fully determine the energy levels.

Since the potential in (3.23) is locally harmonic, a sensible ansatz for the wave-

function is,

ψ(θ) =
Dν

(
u(θ)
g

)
√
u′(θ)

, (4.17)

in which Dν(z) is a parabolic cylinder function and ν = B − 1
2 is parameter that will

be determined via the global boundary condition but is exponentially close to an integer.

Substitution of this ansatz into the Schrödinger equation yields a non-linear equation,

V − 1

4
u2(u′)2 − g2E + g2B(u′)2 +

g4

2

√
u′

(
u′′

(u′)
3
2

)′
= 0 , (4.18)

which is studied perturbatively with,

E =
∞∑
n=0

En(B, η)g2n , u(y) =
∞∑
n=0

un(y,B, η)g2n . (4.19)

The first few terms of the energy series are for the potential of equation (3.23) are given by,

E0 = 2B ,

E1 =
1

8

(
4B2 + 1

) (
3η2 − 1

)
,

E2 =
B

32

(
−67η4 − 22η2 − 3

)
+
B3

8

(
−17η4 − 2η2 − 1

)
,

E3 =
9
(
171η6 + 109η4 + η2 − 1

)
1024

+
B2

128

(
1707η6 + 653η4 + 17η2 − 17

)
+

5B4

64

(
75η6 + 13η4 + η2 − 1

)
.

(4.20)

We can set η = 0 and read the coefficients of the undeformed case already computed in [67]

and, for B = 1/2 we can directly compare against the numerical coefficients (4.7) found

using standard WKB for different values of η with perfect agreement.

We compute the wave-function in perturbation theory and at zero’th order the wave-

function is given by,

u0(θ)2 = 4

∫ θ

0
dθ̃

√
V (θ̃)

=
2

η

[
η

(
1− cos(θ)

√
η2 sin2(θ) + 1

)
−
(
η2 + 1

)
tan−1

(
η cos(θ)√

η2 sin2(θ) + 1

)

+
(
η2 + 1

)
tan−1(η)

]
.

(4.21)
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The first and second order wave-functions are given in terms of u0 by,

u1(θ) =
B

u0

(
log

(
1

8

(
η2 + 1

)
u0(θ)2

)
+ 2 tanh−1

(
sin(θ) cos(θ)√

V (θ)

))
,

u2(θ) = −4B2 + 3

4u0(θ)3
+

2Bu1(θ)

u0(θ)2
+
χ(θ)

u0(θ)
− u1(θ)2

2u0(θ)
,

(4.22)

in which the function χ is quite unpleasant to write in full but is obtained by solving,

16V
5
2χ′ = 4V V ′′ − 16E1V

2 − 5(V ′)2 − 16B2V , (4.23)

with the constant of integration such that u2(0) = 0. The values of these wave-functions

at the mid-point θ = π
2 will presently become useful and they are given by,

u0

(π
2

)
=
√

2SI , u1(π/2) = (2SI)
− 1

2B log

[
1

4
SI(1 + η2)

]
,

u2

(π
2

)
=

1

96
√

2S
3
2
I (1 + η2)

[
− 24B2

(
η2 + 1

)(
log

(
η2 + 1

4
SI

)
− 4

)
log

(
η2 + 1

4
SI

)

− 12
(
4B2 + 3

) (
η2 + 1

)
+ SI

(
−12B2

(
17η4 + 6η2 − 3

)
− 67η4 − 66η2 + 9

) ]
,

(4.24)

in which we recall that SI is precisely the instanton action defined in equation (3.30).

5 Resurgence analysis

We are now in position to obtain a transseries ansatz for the ground state energy of the

quantum mechanics (3.23) and obtain some novel predictions.

As explained in the Introduction and as we have just seen in practice, the Borel

transform of the perturbative ground state energy (4.5) will generically have branch cuts

along some Stokes directions arg(t) = θ. The two lateral resummations Sθ+ε(Epert) and

Sθ−ε(Epert) will differ from one another and furthermore their difference will be exponen-

tially suppressed,

Sθ+ε(Epert)− Sθ−ε(Epert) ∼ 2π i e−Sθ/g
2
Φθ(g

2) , (5.1)

with Sθ ∈ C and arg(Sθ) = θ and Φθ(g
2) a new function with an asymptotic expansion for

g2 ∼ 0.

Thanks to a standard dispersion-like argument [81, 82] we can relate the large order

behaviour of the perturbative coefficients En in (4.5) to all the discontinuities of the Borel

transform B[Epert]:

En ∼
∑
θ∗

1

2πi

∫ eiθ∗∞

0
dwwn Discθ∗(Epert(w)) , (5.2)

where θ∗ runs over all the Stokes directions while the discontinuity is precisely related to

the jump in the lateral resummations Discθ(E
pert(w)) = Sθ+ε(Epert)− Sθ−ε(Epert).
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From the discussion of section 4, we know that B[Epert] has two Stokes directions θ = 0

and θ = π for η ∈ R while for η = iηR with 0 < ηR < 1/
√

2 we have three Stokes directions

for θ = 0 and θ = ±arg(SCI) following (4.15)–(4.16).

Let us start with the η ∈ R case. A careful analysis of equation (5.2) together with

our numerical studies of the perturbative coefficients En for numerous values of η, reveals

that the large order perturbative coefficients behave for n� 1 as,

En ∼A(η)

(
1

2SI

)n+1

Γ(n+ 1)

(
1 + a

(1)

IĪ
(η)

2SI
n

+ a
(2)

IĪ
(η)

(2SI)
2

n(n− 1)
+O(n−3)

)
+

+B(η)

(
1

SCI

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (η)

SCI

n− 1
2

+O(n−2)

)
+ . . .

, (5.3)

where we omitted higher instanton contributions. In the above equation A(η) and B(η) cor-

respond to the Stokes constants in the singular directions θ = 0 and π respectively, while SI
and SCI are precisely the instanton and complex-instanton actions (3.31)–(3.34). The coeffi-

cients a
(i)

IĪ
(η) are the perturbative coefficients on top of the instanton-anti-

instanton solution while a
(i)
CI are the perturbative coefficients on top of the complex-

instanton solution.

For η = iηR with 0 < ηR < 1/
√

2 the situation is very similar and the large order

perturbative coefficients behave for n� 1 as,

En ∼A(iηR)

(
1

2SI

)n+1

Γ(n+ 1)

(
1 + a

(1)

IĪ
(iηR)

2SI
n

+ a
(2)

IĪ
(iηR)

(2SI)
2

n(n− 1)
+O(n−3)

)
+

+B(iηR)

(
1

SCI

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (iηR)

SCI

n− 1
2

+O(n−2)

)
+

−B(iηR)

(
1

SC̃I

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (iηR)

SC̃I
n− 1

2

+O(n−2)

)
+ . . . ,

(5.4)

where the actions SCI and SC̃I are precisely given by (4.15)–(4.16) and we omitted again

higher instanton contributions. Note that in the above equation the Stokes constants A(η)

and B(η), the instanton-anti-instanton perturbative coefficients a
(i)

IĪ
(η), and the complex-

instanton coefficients a
(i)
CI are exactly the same as in (5.3), simply evaluated at purely

imaginary η = iηR. We have checked this also for generic complex values of η and it

remains correct.

Making use of the uniform WKB approach13 [67] we can compute the Stokes con-

stant A(η) and the perturbative coefficients on top of the instanton-anti-instanton solu-

tion a
(i)

IĪ
(η).

We first write the energy transseries for the N th level,

E(N)(g2) = E

(
B = N +

1

2
, g2

)
+ δν

[
∂E(B, g2)

∂B

]
B=N+ 1

2

+O(δν2) , (5.5)

13Roughly we need to use the resurgent asymptotic behaviour of the parabolic cylinder functions in the

complex plane, we refer to [67] for all the technical details.
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where the asymptotic series E(B = N+ 1
2 , g

2) is precisely the object we computed in (4.19)

in terms of the coefficients (4.20). At leading non-perturbative order, the parabolic cylinder

function index ν in (4.17) is exponentially close to the level number N and δν = ν −N as

explained in [67].

As mentioned in section 4.2 to determine fully the energy levels we have to impose a

global boundary condition. This global boundary condition is an extra constraint that the

uniform WKB function (4.17) must satisfy and it arises from the Bloch phenomenon. The

eigenfunctions of a periodic potential must satisfy: ψ(x + π) = eiθBψ(x), where θB is the

Bloch angle θB ∈ [0, π] that labels states in a given band of the spectrum. We can compute

δν by making use of this global boundary condition expressed by equation (63) of [67] and

if we consider the lowest part of the band and set the Bloch angle to θB = 0 we obtain,

1 ∼ g δν

u(π/2)
exp

(
u(π/2)2

2g2

)
, (5.6)

where u(x) is the uniform WKB wave function, solution to (4.18), evaluated at mid turning

point. We can expand the wave-function at mid-turning point as an asymptotic power series

in g and the first few coefficients are given in (4.24). At leading order we have,

δν ∼

√
8

g2(1 + η2)
exp

(
−SI
g2

)
, (5.7)

where SI is once again given by (3.31). By substituting (5.7) in our transseries (5.5) we

see that the splitting of the lowest band is, as expected, a one instanton effect.

By expanding the global boundary condition to order e−2SI/g
2
, we obtain an imaginary

part of δν,

Im δν = ± π 16

1 + η2

[
1 +

(
2B
√

2SIu1(π/2)−B2

− 3

4
−
√

(2SI)3u2(π/2)− SIu1(π/2)2
) g2

SI

]
exp

(
−2SI
g2

)
,

(5.8)

where the sign ± is correlated with arg(g2) ≷ 0. The leading imaginary part of the

energy transseries (5.5) coming from the two-instanton sector, including the perturbative

fluctuations around it, can be found from,

Im

[
δν

∂E(B, g2)

∂B

]
B= 1

2

=

± 2π
16

1 + η2

[
1 +

1

24

(
−23 + 77η2 +

8

(1 + η2)

)
g2

2SI
+O(g−4)

]
exp

(
−2SI
g2

)
.

(5.9)

By imposing that this purely imaginary term in the transseries (5.5) is cancelled

exactly by the discontinuity of the resummation of the perturbative expansion

Disc0(Epert(g)) translates immediately into the large-order behaviour of the perturbative

coefficients and we can read the Stokes constant A(η) and the first perturbative correction
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on top of the instanton solution a
(1)

IĪ
:

A(η) = − 16

1 + η2
, (5.10)

a
(1)

IĪ
(η) =

1

24

(
−23 + 77η2 +

8

1 + η2

)
. (5.11)

As a check of our result we see that a
(1)

IĪ
(0) = −5

8 in precise agreement with equa-

tions (103)–(104) of [67]. A path integral derivation, as opposed to our approach based on

the Schrödinger equation, of (5.11) would be an amazing check of the resurgent program.

For the sine-Gordon model this agreement has been shown up to three loops [83].

Note that the uniform WKB is completely oblivious of the argument of η ∈ C so we

use (5.10) and (5.11) for generic η. It is also interesting to notice that from the uniform

WKB is not at all obvious how to extract the Stokes constant B(η) and the perturbative co-

efficients a
(i)
CI(η) associated with the complex-instanton. A superficial expansion of δν seems

to contain only powers of exp(−SI/g2) while we know from the singularities of B(E(pert))

that we should also find terms of the form exp(−SCI/g2). Clearly these terms must be hid-

ing in the asymptotic nature of the uniform WKB wave-function expansion (4.19)–(4.24)

but for the moment we do not know how to extract them.14 Thanks to our study of the

large order behaviour of the perturbative coefficients we predict

B(η) =
4 i√

π3 (1 + η2)
,

a
(1)
CI (η) =

1

48

(
−29 + 95η2 +

8

1 + η2

)
.

(5.12)

A proper complexified path integral derivation of (5.12) would be an amazing check of the

resurgent program.

5.1 Large order behaviour in quantum mechanics

Let us analyse more in detail the large order behaviour of the perturbative coeffi-

cients (5.3)–(5.4). Firstly, for η ∈ R, we have that |2SI | ≤ |SCI | for 0 ≤ η ≤ ηc ≈ 0.274

so that the leading asymptotic behaviour of the perturbative energy coefficients (5.3) is

given by,

En ∼ EAs
n = A(η)

(
1

2SI

)n+1

Γ(n+ 1)

(
1 + a

(1)

IĪ
(η)

2SI
n

)
. (5.13)

We plugged in the above equation the Stokes constant (5.10) and the first instanton co-

efficient (5.11) obtained via resurgence theory and we can see from figure 15 the perfect

agreement with the numerical coefficient En evaluated in section 4.1.

We can push it even further and consider the difference,

En − EAs
n ∼ A(η)

(
1

2SI

)n+1

Γ(n+ 1)

(
a

(2)
I (η)

(2SI)
2

n(n− 1)
+O(n−3)

)
. (5.14)

14We thank Gerald Dunne and Mithat Unsal for discussion on this issue.
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Figure 15. Ratio between the exact perturbative coefficients En and their asymptotic large order

behaviours EAs
n for different η. On the left plot η < ηc and the instanton-anti-instanton action is

the dominant effect, while on the right plot η > ηc and the complex-instanton is dominant.

We applied Richardson extrapolation (see e.g. [84]) and obtained predictions for a
(2)

IĪ
(η)

for different values of η presented in table 1. The coefficient a
(2)

IĪ
(η) can be in principle

computed by expanding (5.9) to higher order in g2 making use of the global boundary

condition, although it is necessary to know the uniform WKB wave-function u3(π/2) at

mid turning point as in (4.24).

For η > ηc we have that |2SI | > |SCI | so that the leading asymptotic behaviour of the

perturbative energy coefficients (5.3) is,

En ∼ EAs
n = B(η)

(
1

SCI

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (η)

SCI

n− 1
2

)
. (5.15)

We substituted in the above equation the predicted (5.12) Stokes constant15 and the first

perturbative correction to the complex-instanton and we can see from figure 15 the perfect

agreement with the numerical coefficient En evaluated in section 4.1.

Turning to the complex sector, we can also push it further and consider the difference,

En − EAs
n ∼ B(η)

(
1

SCI

)n+1/2

Γ

(
n+

1

2

)(
a

(2)
CI (η)

(SCI)
2

(n− 1/2)(n− 3/2)
+O(n−3)

)
.

(5.16)

We applied Richardson extrapolation and obtained predictions for a
(2)
CI (η) for different val-

ues of η presented in table 2. Note that the predicted Stokes constant and the perturbative

coefficients a
(1)
CI (η) , a

(2)
CI (η) cannot be obtained from uniform WKB in any straightforward

manner so they are genuine new predictions, coming from resurgent theory, for the pertur-

bative expansion on top of the complex-instanton solution!

We pass now to the complex realm with η = iηR and ηR ∈ R. For 0 ≤ ηR ≤ η̃c ≈ 0.402

we have that |2SI | ≤ |SCI | = |SC̃I |. In this regime the leading asymptotic behaviour of the

15Note that, despite B(η) being purely imaginary, since the complex-instanton action is negative the

factor (SCI)
−n−1/2 produces an additional i making everything real.
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η Estimate of a
(2)

IĪ
(η)

4 i/20 −0.021810957

i/20 −0.096233596

0 −0.10156250000

1/20 −0.1069366843

1/10 −0.1233298339

3/20 −0.1515473901

4/20 −0.192911406

Table 1. The numerical estimate of a
(2)

IĪ
(η) from the large order behaviour of the perturbative

expansion. We use 150 perturbative coefficients and the 12th Richardson extrapolation. For η = 0

we agree with the expected value a
(2)

IĪ
(0) = −13/128.

η Estimate of a
(2)
CI (η)

2/5 −0.371895139

1/2 −0.5871153429

3/4 −1.718457263

1 −4.280381944

2 −51.79280382

Table 2. The numerical estimate of a
(2)
CI (η) from the large order behaviour of the perturbative

expansion. We use 150 perturbative coefficients and the 12th Richardson extrapolation.

perturbative energy coefficients (5.4) is given by,

En ∼ EAs
n = A(iηR)

(
1

2SI

)n+1

Γ(n+ 1)

(
1 + a

(1)

IĪ
(iηR)

2SI
n

)
. (5.17)

We plugged in the above equation the Stokes constant (5.10) and the first instanton coef-

ficient (5.11) obtained via resurgence theory and in figure 16 we see the perfect agreement

with the numerical coefficient En evaluated in section 4.1.

Once again we can consider the difference

En − EAs
n ∼ A(iηR)

(
1

2SI

)n+1

Γ(n+ 1)

(
a

(2)

IĪ
(iηR)

(2SI)
2

n(n− 1)
+O(n−3)

)
, (5.18)

and after Richardson extrapolation we can obtain predictions for a
(2)

IĪ
(η) for different values

of η, see table 1.

Finally for ηR > η̃c ≈ 0.402 we have that |2SI | > |SCI | = |SC̃I |. In this regime the

leading asymptotic behaviour of the perturbative energy coefficients (5.4) is given by,

En ∼ EAs
n = B(iηR)

(
1

SCI

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (iηR)

SCI

n− 1
2

)

)

−B(iηR)

(
1

SC̃I

)n+1/2

Γ

(
n+

1

2

)(
1 + a

(1)
CI (iηR)

SC̃I
n− 1

2

)
.

(5.19)
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Figure 16. Ratio between the exact perturbative coefficients En and their asymptotic large order

behaviours EAs
n for different η = iηR. On the left plot the instanton-anti-instanton action is the

dominant effect, while on the right plot the two complex-instantons are the competing saddles

producing an oscillating behaviour.

From (4.15)–(4.16) we know that SCI = SC̃I so that for n � 1 the two saddles will

compete with one another producing an oscillating asymptotic behaviour on top of the

factorial growth,

EAs
n ∼ Γ

(
n+

1

2

)
sin [(n+ 1/2) arg(SCI)]

|SCI |g+1/2

(
1 +O(n−1)

)
, (5.20)

matching beautifully the numerical coefficients En as depicted in figure 16.

5.2 The role of complex saddles

As already realised long time ago by Bogomolny and Zinn-Justin [2, 3] (see also [85])

and recently revisited in the context of Morse-Picard-Lefschetz theory [54, 86], when we

consider instanton-anti-instanton events we have to be careful on the integration over quasi-

zero modes.

In a path-integral approach we would be tempted to integrate over R for the sep-

aration τ between the instanton and the anti-instanton event but this would lead to a

diverging contribution to the partition function. A more careful analysis suggests that the

correct contour of integration, also called Lefschetz thimble, associated to the instanton-

anti-instanton event lives in a complexification of the field space. Depending on arg(g) ≷ 0

the correct contour of integration in the relevant direction of the complexified field space

is given by τ ∈ R± iπ.

The integral over the correct thimble for the instanton-anti-instanton contribution

produces precisely the correct imaginary and exponentially suppressed term to compensate

for the jump in lateral resummation of the perturbative vacuum contribution [54, 86].

Since we complexify the coupling constant to avoid Stokes lines it is only natural that we

complexify also the field space to allow for more general field configurations.

This is also suggesting that in principle all finite action solutions to the complexified

equation of motions could contribute to the transseries expansion of any physical observ-

ables. This has been seen in the context of the analytic continuation of the path integral of
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quantum mechanics in phase space [51] and the analytic continuation of Chern-Simons [6].

These two examples are rather peculiar since they have first order in time equation of

motion. For field theories with second order in time eoms the only examples we are aware

of is given by the analytic continuation of Liouville theory [52].

In this work we have presented a new example of quantum field theory with second

order in time equation of motions, for which there exist finite action solution living in a

complexification of the field space: the complex-unitons (2.37). We believe that their frac-

tionalize constituents, the complex-instanton, will manifest themselves in the transseries

expansion of some physical observables of the η-deformed SU(2) PCM. We are currently

computing such a candidate observable.

6 Stokes phenomena and Seiberg-Witten theory

On a slightly different note from the previous sections, we will analyse now the connection

between our quantum mechanics (3.23) and N = 2 gauge theories in 4-d.

As we have seen, the presence of poles in the Borel plane means that lateral Borel

resummations undergo jumping phenomena as one crosses Stokes lines. A helpful way to

visualise these jumps is as topology changes of Stokes graphs (an elegant presentation with

many more details than provided here can be found in [87]). As we shall detail shortly these

Stokes graphs can be understood as spectral networks [88] in N = 2 gauge theories. To

explain this we first return to the general Schrödinger type equation (4.1) with a coupling

ε = g2 > 0, (
d2

dq2
− 1

ε2
Q(q; ε)

)
Ψ = 0 , (6.1)

and a WKB ansatz,

Ψ =
1
√
χ

exp

∫ q

χ(q′)dq′ , (6.2)

in which χ(q) =
∑∞

i=−1 ε
iχi(q) and in general Q =

∑∞
i=0 ε

iQi. For quantum mechanics

Q = Q0 = V − E and χ−1(q) =
√
V (q)− E.

Viewing q as a local coordinate on a Riemann surface one has that λ = εχ(q)dq is a

globally defined holomorphic differential one-form whose leading term is just the classical

differential λ0 = χ−1dq =
√
V (q)− Edq. The exact WKB quantisation condition reads,∫

γ
λ = 2πε

(
k +

1

2

)
, k ≥ 0 , (6.3)

where the regular perturbative series has an integration cycle running between two real

turning points (zeros of Q0).

More generally we can analytically continue ε → e−iθε such that the Schrödinger

equation becomes, (
d2

dz2
− e2iθ

ε2
Q(z; e−iθε)

)
Ψ = 0 , (6.4)

where now z is recognised as a complex variable. In effect, rotating θ corresponds picking

out a ray in which we would like to perform a Borel resummation.
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In what follows a crucial role is played by Stokes curves which are trajectories of the

quadratic differential,

φ = Q0(z)dz ⊗ dz , (6.5)

and its square root λ0 = χ−1(z)dz such that φ = λ0 ⊗ λ0. A directional Stokes curves

emanating from a point a is a trajectory z(t) of constant phase i.e.

λ0 · ∂t = eiθ ⇔ Im eiθ

∫ z

a

√
Q0(z)dz = 0 . (6.6)

A generic trajectory is asymptotic in both directions to a singular point (perhaps the same

one and often at infinity). A separating trajectory connects a turning point to a singular

point and a finite trajectory is asymptotic in both directions to a turning point (perhaps

the same one) or is closed.

For the case at hand with V (z) = sin2(z)(1 + η2 sin2(z)), we plot in figures 17 and 18

Stokes graphs for, respectively, η real and η pure imaginary. Both cases exhibit finite Stokes

trajectories connecting real turning points indicating a Stokes direction at θ = 0. In the

case of η pure imaginary there are additional Stokes directions in which finite trajectories

connect real and complex turning points. As we take the energy parameter of the quadratic

differential to zero, this Stokes directions occurs precisely at the angle set by the complex

uniton configuration θ = arg(SCI) and θ = arg(SC̃I), as can be seen in figure 19. This is in

line with the locations of poles in the Borel plane, see figure 14 and surrounding discussion.

There is a beautiful connection between Stokes graphs and N = 2 gauge theories [88]

where the differential λ0 is identified with the Seiberg-Witten differential λSW. As the angle

θ progresses these Stokes graphs can undergo topology changing morphs and for particular

values of θ, where the topology jumps, a finite Stokes curve appears. These finite Stokes

curves correspond exactly to the appearance of BPS states, and can be directly identified

with BPS strings configuration [89] in the M-theory brane construction of the N = 2 gauge

theory. What then of the full quantum differential λ? The conjecture in [90, 91] is that

periods give the exact prepotential of the Ω-deformed theory in the NS limit i.e.

F(a; ε1) = lim
ε2→0
{ε1ε2 logZ(a, ε1, ε2)} (6.7)

obeys

a =

∮
A
λ , aD =

∂F
∂a

=

∮
B
λ (6.8)

with λ = εχ(q)dq. The idea is that the ~ = ε expansion of the quantum mechanics exactly

matches the ε1 expansion of the prepotential.

This connection has been most clearly exemplified by considering the quantum me-

chanics associated to the Mathieu equation [69, 70, 91–93] for which the corresponding

gauge theory is the SU(2) Nf = 0 theory. Since the quantum mechanics associated to

the undeformed Principal Chiral Model is that of the Mathieu equation and that of the

η-deformed PCM is the Whittaker-Hill equation it is natural to wonder if there is some
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similar connection at play here. Indeed this is the case; the η-deformed quantum mechanics

can be related to a mass deformation of the SU(2) gauge theory.16

For the Whittaker-Hill equation eq. (3.17) we have a quadratic differential,

φWH = (−a+ 2q cos(2θ) + 2p cos(4θ))dθ ⊗ dθ . (6.9)

The quadratic differential of the first realisation of the SU(2) Nf = 2 gauge theory whose

differential is [95],

φNf=2 =

(
− Λ

z4
− 2

Λm1

z3
+ 2

u

z2
− 2

Λm2

z
+ Λ2

)
dz ⊗ dz , (6.10)

where Λ is the scale of the theory, u the parameter along the Coulomb branch and mi are

masses of two flavour hypermultiplets. These two differentials coincide after the transfor-

mation z = e2iθ and the identification,

u =
a

8
, M = m1 = m2 =

q

4
√
p
, Λ =

√
p

2
. (6.11)

In terms of the parameters of the η PCM, eq. (3.18), we see the nice relation,

M =
1

4tη
, Λ = − η

8g2
. (6.12)

It is striking that the mass parameter is the simple RG invariant combination of parameters

in the η-deformed model. One interesting feature of the SU(2) Nf = 2 gauge theory is

that for a certain value of the bare mass, Seiberg-Witten singularities coincide and the

theory enhances to an Argyres-Douglas SCFT [96]. In the conventions above this occurs at

M = 2Λ [88] and in our variables this happens for η2 = −1
2 , precisely the value for which

the complex critical points coalesce into a single real value as discussed in section 3.3.

From the quantum mechanics point of view we expect a drastic change in the trans-

series expansion once η2 passes this critical value, while in the gauge theory side we have

that the Argyres-Douglas point corresponds to the critical point of a phase transition [97].

In [97] the free energy of the Nf = 2 SU(2) theory has been computed exactly for M < 2Λ

in a suitable decompactification limit and it corresponds to the imaginary part of the

Seiberg-Witten prepotential evaluated at aD = 0, i.e. at a point where the B cycle shrinks

to zero (6.8). If we increase M while keeping aD = 0, we can reach the point M = 2Λ

where the cycle A also shrinks to zero size. Precisely at the Argyres-Douglas point the

Riemann surface defined by the Seiberg-Witten differential develops a cusp and the free

energy manifests a non-analytic behaviour signalling the presence of a phase transition. It

would be very interesting to understand if we can learn anything new about the two phases

of the transition from the quantum mechanical model.17

16Whilst this manuscript was in the final stages of preparation two preprints [45] and [46] studied the

Whittaker-Hill equation, in the context of the 4-d/2-d correspondence, where it emerges as a limit of the

null vector decoupling equation associated to irregular conformal blocks for the Nf = 2 SU(2) gauge theory

(as previously noted in [94]). The preprint [46] also provides insights into the topology changes exhibited

in the Stokes graphs relevant to these gauge theories.
17We thank Jorge Russo for bringing these important aspects to our attention.
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Figure 17. Stokes graphs for η = 1/2 (with E = 0.1) as we rotate the angle θ = {0, π8 ,
3π
8 ,

π
2 }

(top left to bottom right). Turning points are indicated in purple, generic trajectories in grey and

separating/finite trajectories in red. At θ = 0 there are finite Stokes trajectories connecting the

real turning points (along the horizontal axis) and simultaneous Stokes trajectories connecting the

real turning points to the complex turning points arising from the η-deformation.

As a final comment we note that the ~ expansion of the quantum mechanics corresponds

to the small Ω-deformation limit ε1 → 0 while ε2 = 0. A natural question would be to

understand the connections between this expansion and the weak gauge coupling constant

expansion performed in [23, 25] (see also the earlier work [24]) for a similar class of N = 2

theories.

7 Conclusions

In this paper we analyse the η-deformed SU(2) principal chiral model. We find uniton-

like solutions to the second order equation of motions that reduce to the standard uniton

solutions in the PCM model when we send the deformation parameter η → 0. Furthermore

we find new solitons that are solutions to the complexified equation of motions. These

complex-unitons have quantized actions and live in a natural complexification of the field

space Sl(2,C) ⊃ SU(2).

We put the theory on a cylinder R × S1
L with twisted boundary conditions related to

adiabaticity and subsequently performed a KK-reduction to obtain an effective quantum

mechanics for the low energy degrees of freedom. The quantum Hamiltonian thus obtained
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Figure 18. Stokes graphs for η = i/2 (with E = 0.1) as we rotate the angle θ = {0, π8 ,
3π
8 ,

π
2 }

(top left to bottom right). At θ = 0 a finite Stokes line connects the real turning points. Between

the second and third panels we see a topology jump, in contrast to the case of η ∈ R displayed in

figure 17, indicating a Stokes direction with finite trajectory connecting the real turning point to

the complex turning point.
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Figure 19. Here we plot the critical Stokes graph for η = i/2 at the angle θ = arg(SCI) as we

take E = 0. This reflects the location of singularities in the Borel plane of the perturbation theory

illustrated in figure 14.
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is related to the Whittaker-Hill equation and displays a large variety of non-perturbative

finite action soliton solutions. These non-perturbative objects are instantons modified by

the η-deformation, forming the fractionalized constituent of the previously discussed uniton

solutions. Furthermore we find additional non-perturbative objects living in a complexifi-

cation of the quantum mechanical model. These complex-instanton solutions are precisely

the fractionalized constituent of the new complex-uniton solutions discussed.

Resurgence theory combined with a Morse-Picard-Lefschetz approach to the path in-

tegral of quantum field theory suggests that all finite action solutions living in a complex-

ification of the field space should contribute to the semi-classical expansion of physical

observables. We strengthen this claim by studying the asymptotic perturbative expan-

sion of the ground state energy of our reduced quantum mechanics. We identify all the

Stokes lines of the Borel transform of the perturbative ground state energy and relate them

precisely to the instanton-anti-instanton and complex-instantons events.

We expect these fractionalized constituents of the unitons and the complex-unitons to

contribute to the transseries representation of the path integral for the η-deformed principal

chiral model. Note however that generically, due to the running of the coupling constant,

the location of the singularities in the Borel plane might change as we perform this adiabatic

continuation from R2 to R×S1
L as explained in [9]. In the model under consideration we have

an additional RG-invariant parameter that might allow us to understand quantitatively how

this Borel flow behaves. We are currently investigating in perturbation theory some bona-

fide quantum field theory observable to match against the quantum mechanics expectations

of the Borel plane structure.

We make use of uniform WKB and resurgence theory to extract non-perturbative

information out of the large order behaviour of the perturbative energy coefficients and

we predict the first few non-perturbative corrections on top of these solitonic objects. A

proper complexified path integral derivation of these perturbative corrections is not present

at the moment and it would a beautiful confirmation of the resurgence program.

Finally we relate the Stokes phenomena associated with the jumps in lateral resum-

mation for the perturbative expansion of the ground state energy of our quantum me-

chanics with the Stokes graph associated with the spectral network of a very particular

4-dimensional N = 2 supersymmetric gauge theory. We relate the Schrödinger equation as-

sociated with the Whittaker-Hill equation to the Seiberg-Witten quadratic differential of a

4-d N = 2 gauge theory with gauge group SU(2) and Nf = 2. As we dial the η-deformation

parameter to the particular value η = i/
√

2 we have that multiple complexified classical

vacua of the quantum mechanics coalesce and the corresponding 4-d N = 2 theory is driven

to an Argyres-Douglas SCFT.
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A Algebraic details

A.1 Conventions

For a compact semi-simple Lie group G corresponding to an algebra g, we parametrise

a group element g ∈ G by local coordinates Xµ, µ = 1, 2, . . . , dim(G). The right and

left invariant Maurer-Cartan forms, as well as the orthogonal matrix (or adjoint action)

relating them, are defined as,

La± = Laµ∂±X
µ = Tr(Tag

−1∂±g) , Ra± = Raµ∂±X
µ = Tr(Ta∂±gg

−1) ,

Raµ = Dab L
b
µ , Dab = Tr(TagTbg

−1) ,
(A.1)

where,

dL = −L ∧ L , dR = R ∧R , dDDT = −F , Fab := fabcRc . (A.2)

The generators Ta obey [Ta, Tb] = fab
cTc, are normalised as Tr(TaTb) = δab, and with

respect to the Killing metric, defined by fac
dfbd

c = −cG δab, the structure constants with

lowered indices fabc are totally antisymmetric. Group theoretic indices are frequently raised

by using δab. World-sheet light cone coordinates are defined as σ± = τ ± σ.

A.2 Drinfeld double and the R-matrix

It may be helpful to the reader to summarise some salient facts about the R-matrix that

is used to define the η-deformations. Consider a semisimple Lie group G, a Lie algebra g,

and a matrix R (an endo-morphism of g), assumed to be anti-symmetric with respect to

the Killing form on g, which defines a bracket,

[A,B]R = [RA,B] + [A,RB] , ∀A,B ∈ g . (A.3)

A sufficient condition for (A.3) to satisfy the Jacobi identity is the modified classical YB

equation (mYB),

[RA,RB]−R[A,B]R = −c2[A,B] , ∀A,B ∈ g , c ∈ C . (A.4)

Up to trivial rescaling there are three distinct choices for the parameter c; c2 = 1, c2 = −1

and c2 = 0. Here we shall restrict to a compact bosonic group for which the only solutions

are c2 = −1.
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The two Lie-brackets (the usual one [A,B] and [A,B]R) over the same vector space

define a bi-algebra. Thinking of the [A,B]R as defining an algebra gR we have a Drinfeld

double defined by d = g ⊕ gR = gC viewed as a Lie algebra. Indeed, gC may be equipped

with an inner product,

〈A+ iB,A′ + iB′〉 = Im(A+ iB,A′ + iB′) ,

with respect to which g is a maximal isotropic and when R is anti-symmetric w.r.t. (·, ·)
so is gR.

We can specify a Cartan basis of gC: Hµ are a Hermitian basis for the Cartan sub

algebra and Eα and E−α are the raising and lowering operators for a root ~α (see e.g [27]

section 2.2 for details). Then a basis for the real algebra g is given by {Tµ, Xα
+, X

α
−} with

α > 0) where,

Tµ = iHµ , X± =
i√
2

(Eα ± E−α) . (A.5)

In this basis a canonical choice for the R matrix is given by a simple action,

R : {T,X+, X−} 7→ {0, X−,−X+} . (A.6)

Although we shall not consider this in the present context, it is possible to augment this R
with “homogenous” solutions to the classical c2 = 0 Yang-Baxter Equation, i.e. rotations

amongst Cartan directions associated to so-called Drinfeld-Reshetikhin twist.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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