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1 Introduction

In a recent series of papers a new understanding has been gained of the symmetries of

Einstein gravity and gauge theories [1–3]. In particular, it has been shown that the BMS

symmetries of asymptotically flat spacetimes [4–8] yield an infinite set of spontaneously bro-

ken conservation laws underlying soft energy theorems and gravitational memory [1–3]. The

corresponding Goldstone bosons are the soft gravitons and photons that carry zero energy

but a nonzero angular momentum. Hence, the infinite set of vacua are characterized by an

angular momentum. Similarly, an analysis of asymptotic BMS-type symmetries of horizons

have been studied in [9] (see also [10–15]), suggesting an infinite set of soft gravitons and

photons quantum hair, potentially relevant to the resolution of the information paradox.

The aim of the paper is to analyze the BMS-type symmetry action on isolated horizons

and provide a field theory interpretation in the membrane paradigm framework [16–18]. We

consider first asymptotically flat spacetimes and study the symmetries from the viewpoint

of the non-relativistic field theory on a horizon membrane.1 We will show that super-

translations shift the field theory spatial momentum which is related by a Ward identity

to the particle number symmetry current. The symmetry is spontaneously broken with a

corresponding Goldstone boson, that can in principle be detected quantum mechanically.

The different isolated horizons are characterized by an angular momentum. Area preserv-

ing superrotations are also spontaneously broken on the horizon membrane and we will

identify two corresponding Goldstone bosons. Next, we will consider asymptotically AdS

spacetimes where the construction of asymptotic symmetries leads to the conformal group.

There are no BMS transformations of the timelike boundary at infinity. Yet, there is still a

BMS-type symmetry action on the horizon. We will inquire as to what is the interpretation

of this in the holographic superfluid field theory defined at the timelike boundary. We will

see that the horizon supertranslation Goldstone boson maps to the superfluid Goldstone

gapless mode.

1See [19] for a recent discussion of BMS symmetries and the membrane paradigm.
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The paper is organized as follows. In section 2 we will consider spacetimes with an

isolated horizon, define the horizon asymptotic symmetries and analyze their spontaneous

breaking on the horizon membrane. In section 3 we will consider a bulk background with a

horizon in asymptotically AdS spacetime that describes a holographic superfluid. We will

show the relation between the spontaneous breaking of horizon supertranslations and the

boundary superfluid gapless mode.

2 Horizon BMS symmetries

In this section we will consider spacetimes with an isolated horizon. We will study asymp-

totic symmetries near the horizon. These are a subset of diffeomorphisms that preserve

the structure of the horizon: supertranslations and superrotations. We will consider their

realization on a membrane stretched nearby and will show that these symmetries, when

viewed from the effective low energy non-relativistic field theory on the membrane, are

spontaneously broken global symmetries. For supertranslations we identify the Goldstone

mode as the one arising from a spontaneous breaking of the particle number symmetry.

Similarly, superrotations are spontaneously broken area preserving diffeomorphisms of the

membrane hypersurface.

In the following, we will denote the four-dimensional spacetime coordinates by

XA = (t, xa, r), a = 1, 2, and the horizon location at r = 0.

2.1 Asymptotic symmetries at a horizon

Consider a spacetime metric in Gaussian null coordinates. It has the generic form

ds2 = F (t, xa, r)dt2 + 2ha(t, x
a, r)dxadt+ 2dtdr + γab(t, x

a, r)dxadxb . (2.1)

Near a horizon the functions F , ha, and γab read

F (t, xa, r) = −2κ(t, xa)r +O(r2)

ha(t, x
a, r) = 2Ωa(t, x

a)r +O(r2)

γab(t, x
a, r) = γ

(0)
ab (t, xa) + 2Ξab(t, x

a)r +O(r2) , (2.2)

consistent with the presence of a null surface at r = 0. The form of Gaussian null coordi-

nates is such that the horizon metric is the non-degenerate two-dimensional γ
(0)
ab adapted

to the horizon cross-sections.

κ = κ(`) is the surface gravity of the horizon, defined in terms of the null normal to

the horizon hypersurface `A as

`B∇B`A = κ`A . (2.3)

Ωa is the horizon’s extrinsic curvature one-form defined as

Ωa = kB∇a`B, (2.4)

with kA an ingoing null vector and kA`
A = 1. Ξab is defined by

Ξab =
1

2
Lkγab = σ

(k)
ab +

1

2
θ(k)γab , (2.5)

where σ
(k)
ab and θ(k) are the ingoing shear and expansion.
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The second fundamental form of the horizon, Θab, reads

Θab =
1

2
L`γ

(0)
ab = σ

(`)
ab +

1

2
θ(`)γ

(0)
ab , (2.6)

where σ
(`)
ab and θ(`) are horizon shear and expansion. In the Gaussian null coordinates, Θab

is the time derivative of the horizon metric, while Ξab is the radial derivative evaluated

at r = 0.

We will study a subset of diffeomorphisms ξA that preserves the horizon. To do this

we impose several conditions. First we require that

Lξgtr = Lξgrr = 0 . (2.7)

This preserves the gauge fixing of the Gaussian null coordinates. Second, we impose the

conditions

Lξgtt = 0 +O(r), Lξgat = 0 +O(r) , (2.8)

which preserve the vanishing of the functions F and ha as required for the presence of

a horizon.

The condition that Lξgrr = 0 forces the time component of ξt to be independent of the

radial direction. Solving the remaining equations we find the following form for the vector

field generating this class of diffeomorphisms

ξA∂A = α(t, xa)∂t+
(
Ra(xa)− rγab∂bα(t, xa)

)
∂a−

(
r∂tα(t, xa)− r2Ωa∂

aα(t, xa)
)
∂r+ · · · ,

(2.9)

where α and Ra are arbitrary functions. This is consistent with the results of [13], except

that for the moment we allow for the function α to depend on time. We have a fam-

ily of “supertranslations” associated with the function α and “superrotations” associated

with the horizon spatial vector Ra. These are reminiscent of the supertranslations and

superrotations associated with the asymptotic symmetries preserving the structure of null

infinity in asymptotically flat spacetimes, the BMS group. Therefore we will refer to these

as horizon BMS transformations.

Next we ask what is the effect of these transformations on the horizon data. The

evaluation of Lξgtt at O(r) gives the change in the surface gravity κ due to the horizon

BMS transformations

κ→ κ+ α∂tκ+ ∂2t α+ κ∂tα+Ra∂aκ . (2.10)

Similarly, Lξgta at O(r) gives the shift of Ωa

Ωa → Ωa + α∂tΩa − ∂t∂aα− κ∂aα+ Ωb∂aR
b +Rb∂bΩa . (2.11)

The effect of the transformations of the horizon intrinsic metric γ
(0)
ab is

γ
(0)
ab → γ

(0)
ab + α∂tγ

(0)
ab + LRγ(0)ab . (2.12)

– 3 –
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In particular, the effect of the superrotation is that of a spatial diffeomorphism on the

horizon variables. Finally, Lξgab at O(r) yields the correction to Ξab:

Ξab → Ξab −∇a∇bα+ 2Ω(a∂b)α . (2.13)

The Noether charges associated with the horizon supertranslations Qst and superrota-

tions Qsr read [13]

Qst = 2

∫
d2x
√
γ κα, Qsr = −

∫
d2x
√
γRaΩa , (2.14)

where we have used units such that 16πGN = 1.

2.2 Isolated horizons

A case of special interest is that of an isolated horizon [20, 21] (for a review, see [22]).

The idea is to generalize the features of a Killing horizon so that one can find a quasi-local

definition of a horizon in equilibrium, without reference to the complete global structure

of the spacetime. We will consider transformations that map between isolated horizons

keeping the surface gravity fixed.

First, one demands that the horizon be non-expanding, i.e. that θ(`) = 0. The

Raychaudhuri equation then implies that the shear must also vanish σ
(`)
ab = 0. This re-

stricts the horizon metric γ
(0)
ab to be independent of time. An isolated horizon satisfies also

the conditions

κ = constant, ∂tΩa = 0, ∂tΞab = 0 . (2.15)

In this case one has a relationship between Ξab and Ωa [22]

∇(aΩb) + ΩaΩb −
1

2
R

(2)
ab −

1

2
Rab − κΞab = 0 , (2.16)

where R
(2)
ab is the two dimensional intrinsic curvature of the cross-section. Now suppose we

want to make a supertranslation that takes one isolated horizon to another, keeping the

surface gravity fixed. The form of α can be found by solving the equation

∂2t α+ κ∂tα = 0 , (2.17)

giving

α(t, xA) = n(xa)e−κt +G(xa) . (2.18)

Under supertranslations Ωa shifts like the gradient of a scalar

Ωa → Ωa − κ∂aG , (2.19)

and if n(x) is constant then also

Ξab → Ξab −∇a∇bG+ 2Ω(a∂b)G . (2.20)

Note, that (2.19) and (2.20) follow from a change in the way one foliates the null horizon

hypersurface [21].

– 4 –
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In the following discussions we will consider time independent supertranslation param-

eters. In general, Ωa can be expressed in the form

Ωa = εa
b∂bρ+ ∂aφ . (2.21)

One can show that (see e.g. [22])

∂[aΩb] = 2ImΨ2 εab , (2.22)

where Im represents the imaginary part and Ψ2 is one of the (complex) Weyl curvature

scalars.2 Hence, ρ the divergence-free part of Ωa is fixed by the curvature data

∇2ρ = 2ImΨ2 . (2.23)

On the other hand, the gradient part of φ shifts under a supertranslation as

φ→ φ+G . (2.24)

If one starts with Ωa = 0, then the ingoing expansion transforms as

θ(k) → θ(k) +∇2G . (2.25)

Let us calculate the Noether charge associated with the horizon supertranslation (2.14).

Expanding α(x) = G(x) in a complete set of harmonics and using the fact that κ is a

constant we see that the zero mode of G, i.e. G = const., gives the Noether charge density

sT , where s is the entropy density proportional to the horizon area s =
√
γ

4GN
and T = κ

2π is

the temperature. The integral over all higher modes of the function G(x) vanishes in the

stationary state, which is consistent with the statement that a stationary horizon has no

additional classical supertranslation hair [9].

Under a superrotation, the surface gravity is unchanged and

Ωa → Ωa + LRΩa, γ
(0)
ab → γ

(0)
ab + LRγ(0)ab , (2.26)

which is a diffeomorphism of the horizon null surface. Ra can be decomposed as

Ra = εab∂bf + ∂ag . (2.27)

The horizon area/entropy density shifts under a superrotation as

√
γ → √γ +∇2g . (2.28)

The divergence free part of Ra corresponds to area preserving diffeomorphisms and includes

f and g such that ∇2g = 0. Under these the shift in the area/entropy density is zero.3

With area preserving superrotations we get

γ
(0)
ab → γ

(0)
ab + 2εc(aDb)Dcf + 2DaDbg , (2.29)

2Ψ2 = CABCD`
AmBm̄CnD, where CABCD is the bulk Weyl tensor and (`A,mB , m̄C , nD) is a null tetrad

basis in the Newman-Penrose formalism.
3In general the integrated total area is unchanged, in particular if the horizon is a compact surface. If

it is non-compact one has to impose fall-off conditions near infinity to eliminate this term.
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where Da is the covariant derivative associated with γ
(0)
ab . It is useful to consider an orthog-

onal decomposition of the metric. In two dimensions a symmetric rank two tensor has three

components. These can be decomposed into a trace part, plus traceless pieces separated

into longitudinal and transverse components and expressible in terms of two scalars

γ
(0)
ab =

1

2
γT δab +

(
DaDb −

1

2
δabD

2

)
µ+ 2εc(aDb)Dcσ. (2.30)

Thus, we see that area preserving superrotations amount to the shifts σ → σ + f and

µ→ µ+ g of the horizon metric (2.30).

The Noether charge of superrotations reads (2.14)

Qsr = −
∫
d2x
√
γ
(
εab∂af∂bρ+ ∂ag∂aφ

)
. (2.31)

Integrating by parts and (2.23) we find that (up to boundary terms)

Qsr =

∫
d2x
√
γ
(
2fImΨ2 + g∇2φ

)
. (2.32)

In the first term, only the zero mode of f contributes and one gets the angular momentum

of the horizon [22, 23], e.g. of a rotating black hole. In particular, there is no additional

superrotation classical hair. The second term appears to yield a non-trivial contribution.

However, ∇2φ = 0 follows from the projection of the bulk Einstein tensor on the hori-

zon that implies the conservation of the stretched membrane stress energy tensor, as we

discuss in the next section. Alternatively, upon integration by parts it vanishes since

∇2g = 0, which on the membrane worldvolume also follows from the conservation of the

stress energy tensor.

2.3 Stretched membrane and non-relativistic field theory

The shift behavior in Ωa and γ
(0)
ab is indicative of Goldstone modes associated with the

spontaneous breaking of the horizon BMS symmetries [9]. The choice of φ in the horizon

metric spontaneously breaks the horizon supertranslation symmetry, while the choice of

σ and µ breaks the horizon area preserving superrotation symmetry. The effect of the

supertranslations and superrotations is to shift between these “vacua”, with the Goldstone

modes parametrizing the breaking. The Goldstone modes associated with this breaking

live on the two-dimensional horizon cross-section. However, unlike the case of BMS trans-

formations acting at null infinity, a precise definition of what we mean by vacua in the

horizon case still requires a clarification. In the following we consider the realization of the

horizon BMS symmetries as symmetry transformations acting on the degrees of freedom

living on a stretched membrane near the horizon at r = rc in the limit as rc → 0 [17, 18].

The Brown-York stress tensor is interpreted as the expectation value of the stress tensor

of a field theory on the membrane.

The Brown-York quasi-local stress tensor takes the form

Tµν = 2 (Kδµν −Kµ
ν) , (2.33)

– 6 –
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where xµ = (t, xa) are coordinates on the slice r = rc and Kµν the extrinsic curvature of

the slice. We will consider the metric (2.1) near an isolated horizon

ds2 = −2κrdt2 + 2dtdr + 4rΩa(x)dxadt+ (γab + 2rΞab(x))dxadxb +O(r2). (2.34)

Following [17, 18] we evaluate (2.33) on a slice of constant r = rc in the metric (2.34)

and take the limit rc → 0. In this limit, there is a divergence associated with the infinite

red/blue shift at the horizon. One finds

T tt = 0, T ta = −2Ωa, T ab = 2κδab , (2.35)

where in the last equality one must renormalize by the redshift factor of
√
rc. One can inter-

pret this as the stress tensor of a 2+1 dimensional thermal field theory, with the horizon one-

form Ωa identified with the expectation value of the momentum current. Thus, we see that

the action of the supertranslation on membrane theory is a shift in this expectation value.

As an example, consider the Rindler metric

ds2 = −2κrdt2 + 2dtdr + δabdx
adxb, (2.36)

which covers a patch of Minkowski spacetime, with horizon at r = 0. This metric also

arises as the near-horizon limit of a metric describing a non-extremal, non-rotating black

hole. The horizon momentum current is zero. After the infinitesimal supertranslation, the

metric (2.36) changes to

ds2 = −2κrdt2 + 2dtdr + 4r∂aφdx
adt+

(
δab +

2r

κ
∂a∂bφ

)
dxadxb . (2.37)

This is still a flat solution to the vacuum Einstein equations up to higher order corrections

in ∂φ. Computing the membrane stress tensor in this case, one finds a non-zero shifted

momentum current (we ignore a numerical factor)

T ta ≡ Pa = ∂aφ . (2.38)

The supertranslation is therefore associated with a physical change in the state of the

membrane theory.

It has been argued that the field theory on the cutoff surface Σ and r = rc provides

a holographic description of bulk geometry [24–26] and in the context of the fluid/gravity

correspondence [27–30]. The limit rc → 0 is special. For a generic black hole metric, as

one takes this null limit the metric becomes degenerate. In addition, the behavior of the

boundary metric is analogous to the c→∞ limit of the Minkowski metric

ds2 = −c2dt2 + dxadx
a , (2.39)

with the identification of c with the redshift factor r
−1/2
c . The limiting dual field theory de-

scription at the horizon membrane is expected to be a non-relativistic Galilean field theory.

– 7 –
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In a non-relativistic field theory there is a Ward identity relating the Galilean momen-

tum Pa and and particle number current Ja. The shift the horizon momentum current

under a supertranslation implies a shift in the particle number current4

Pa = mJa = ∂aφ . (2.40)

Thus, from the non-relativistic horizon membrane theory the spontaneous breaking of

supertranslations is the spontaneous breaking of the particle number symmetry, which

is a global U(1) symmetry. That particle number symmetry is spontaneously broken in

the membrane theory is expected since the vacuum state has finite temperature. The

horizon supertranslation Goldstone is thus identified with the Goldstone that arises in the

spontaneous breaking of this U(1) symmetry. The conservation of the number current

implies that

∂aJa = ∇2φ = 0 , (2.41)

since we are considering time independent situation corresponding to a stationary

black hole.

The particle number symmetry is spontaneously broken together with the Galilean

boosts. A Ward identity implies a relation between the corresponding Goldstone bosons

known as an inverse Higgs relation [31, 32]. Thus, the velocity vacuum expectation value

va is related to the gradient of the U(1) phase (the Goldstone) via

va =
1

m
∂aφ . (2.42)

consistent with (2.40).

While there is no classical supertranslation hair, the value of the phase φ (2.24) can

be detected if there is a quantization of circulation e.g. around a vortex∮
va · dla =

2π~
m

n , (2.43)

where va is the velocity. At the quantum level, the supertranslations shift between vacua

leads to a change in the quantum vortex number, which is in principle detectable. This

implies that there is a non-trivial quantum hair due to the Goldstone mode.

The momentum current leads also to an angular momentum density ` via

T ta =
1

2
εa
b∂b` , (2.44)

which vanishes classically for a curl free T ta but not quantum mechanically following (2.43).

Note that rotation invariance is not spontaneously broken if ` is a function x2. However, if

it is broken there is no new Goldstone boson, since it is related to G by the Ward identity

that relates the rotation current R to T ta by R = εabxaT
t
b. The total angular momentum

of the membrane state is L =
∫
d2x
√
γ`.

4This can be seen e.g. from the commutator in the centrally extended Galilean algebra

[Ki, Pj ] = −iδijmQ, where Pi and Ki are the generators of spatial translations and boosts, m is the mass

and Q is the particle number central extension.

– 8 –



J
H
E
P
0
7
(
2
0
1
6
)
0
6
5

To summarize, from the membrane paradigm viewpoint, the horizon system corre-

sponds to a spontaneously broken particle number phase of a non-relativistic field theory

at finite temperature. The phase φ characterizing the vacua cannot be detected classically

but can be detected quantum mechanically. The different states are characterized by an

angular momentum quantum number.

In addition to the phase φ associated with the supertranslations we have the metric

components σ and µ, which shift under associated area preserving superrotations (2.27).

These degrees of freedom have zero energy and can be viewed as the Goldstone bosons in

the membrane theory associated with the spontaneous breaking of area preserving diffeo-

morphisms. The latter is a global symmetry of the membrane field theory and

Tab → Tab +
2

κ
εc(a∂b)∂cf +

2

κ
∂a∂bg . (2.45)

Equivalently, the corresponding components of the spatial stress corresponding to (2.30)

shift by f and g. The conservation of the stress energy tensor requires that ∇2g = 0.

Can f and g also be detected quantum mechanically? The answer appears to be

in principle affirmative, via a non single valued field configuration that gives a nonzero

result upon integration over a closed surface. One can also consider an interplay between

supertranslations and superrotations. Consider, for instance, a choice of the phase φ = x

giving the particle number current Ω1 = 1,Ω2 = 0. The action of a superrotation on Ω

yields δΩa = (∂1∂2f + ∂21g, ∂
2
2f + ∂1∂2g), which may be detected quantum mechanically

via a quantum field configuration that gives a nonzero result upon integration along a

closed contour.

3 Horizon BMS supertranslations and holographic superfluid

In the asymptotically AdS case the boundary is timelike and the construction of asymptotic

symmetries leads to the conformal group. Yet, there is still a BMS-type symmetry action

on the horizon as described in the previous section. We can ask what is the intrepretation

of this in the holographic field theory defined at the boundary. In the following we will

consider a class of stationary metrics that are solutions to the Einstein equations with

matter and negative cosmological constant. Via the gauge/gravity duality these are dual

to equilibrium superfluid states in the dual field theory. We will denote the bulk coordinates

by XA = (xµ, r).

Consider a metric with the general form

ds2 = F (r)uµuνdx
µdxν − 2uµdx

µdr +G(r)Pµνdx
µdxν + 2J(r)u(µζν)dx

µdxν , (3.1)

where uµ is a unit four-vector associated with a uniform boost and ζµ is orthogonal to uµ,

i.e. ζµu
µ = 0. It is solution to Einstein equations with matter that consists of a complex

scalar and an electromagnetic field [33]. uµ is the normal component of the superfluid

velocity while ζµ is the gradient of the phase of the condensate that breaks spontaneously

the U(1) global symmetry leading to a superfluid phase at the boundary.

– 9 –
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Near the horizon at r = rh the functions F and J have the form

F = −2κ(r − rh) +O(r − rh)2 ,

J = 2J ′(rh)(r − rh) +O(r − rh)2 . (3.2)

This choice of gauge is close to the null Gaussian coordinates. The horizon metric has the

3-dimensional degenerate form

γµν = G(rh)Pµν , (3.3)

where Pµν = ηµν + uµuν is the projector orthogonal to uµ.

As in the null Gaussian case of the previous section, we impose the following conditions

Lξgrr = 0 ,

Lξgrµ = 0 ,

uµLξgµν = O(r − rh) . (3.4)

The solution for the symmetry generators ξA reads

ξA∂A =
(
αuµ +Rµ −G(rh)−1(r − rh)Pµν∂να

)
∂µ − (r − rh)(uµ∂µα) ∂r + · · · . (3.5)

Rµ is a vector field satisfying uν∂νR
µ = 0 and Rµuµ = 0. The effect of the function J(r)

occurs at higher orders in (r − rh). α and Rµ are the parameters of supertranslations and

superrotations, respectively.

Consider the one-form cµ defined via

∇µ`ν = cµ`
ν . (3.6)

cµ`
ν = κ. For our fluid metric, `µ = uµ and one finds

∇µ`ν = −(1/2)uνuλ∂rgµλ = −κuµuν + J ′(rh)ζµu
ν . (3.7)

It follows that that

cµ = κuµ − J ′(rh)ζµ . (3.8)

The component of cµ along uµ encodes information about the surface gravity κ, while the

component orthogonal encodes the information about the one-form Ωa.

To find the change in cµ we consider the O(r − rh) part of uνLξgµν , i.e.

δcµ = uνLξgµν |r=rh . (3.9)

This can be written as

cµ → cµ + δκuµ

(
αuλ∂λJ

′(rh) +Rλ∂λJ
′(rh)

)
ζµ

− κP νµ∂να− P νµuλ∂ν∂λα+ J ′(rh)P λµ ζν∂λR
ν , (3.10)

where

δκ = αuλ∂λκ+ κuλ∂λα+ uλuσ∂λ∂σα+Rµ∂µκ . (3.11)

– 10 –
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These are similar to the previous formulas for the shift of κ and Ωa. Consider supertrans-

lations such that κ and J ′(rh) remains unchanged constants, that is

δκ = 0 ,

δJ ′(rh) = 0 ,

δζµ =− κP νµ∂νG . (3.12)

As before, the supertranslation corresponds to a shift in the superfluid velocity ζµ by the

gradient of scalar. As noted above, the bulk gravity theory is dual to a superfluid theory

at the boundary. ζµ = P λµ ∂λφ, is a component of the superfluid velocity, where φ is the

Goldstone boson associated with spontaneous breaking of U(1) symmetry in the dual field

theory. Supertranslation acts as a shift of the phase φ→ φ+G. Thus, the Goldstone boson

associated with the breaking of the horizon BMS symmetry is dual to the U(1) Goldstone

in the holographic field theory dual. The infinite degeneracy in horizon states corresponds

to the U(1) degeneracy of vacua in the field theory.
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