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1 Introduction

In a series of works, a new formulation has been developed, which expresses tree-level S-

matrix of massless particles in arbitrary dimensions, as an integral over the moduli space

of Riemann spheres. This so-called Cachazo-He-Yuan (CHY) representation has been pro-

posed originally for amplitudes in gravity, Yang-Mills, and bi-adjoint scalar theories [1, 2],

and extended to a large variety of theories in [3, 4]. For example, a remarkably simple

formula gives all multi-trace gluon-graviton amplitudes in the Einstein-Yang-Mills the-

ory; other theories with compact CHY formulas include the U(N) non-linear sigma model

(NLSM), Dirac-Born-Infeld (DBI) theory and a special Galileon theory1 (sGal) [4, 5].

Different theories correspond to different integrands of the integral formula, but the

universal part in the construction is given by the delta-function constraints, known as

scattering equations [1, 9, 10]

∑

b 6=a

ka · kb
σa − σb

= 0, for a = 1, 2, . . . , n, (1.1)

where σa denotes the position of the ath puncture. Only n − 3 equations out of the n

equations are independent because of the SL(2,C) symmetry, and the system has (n− 3)!

solutions in general. These equations have made an appearance in previous literature in

different contexts [11–17]. Elegant worldsheet models have been proposed [18, 19] for the

original CHY formulas, and more recently generalized to these new theories [20, 21].

In four dimensions, further simplifications occur since any null vector can be written

as a bi-spinor, kαα̇ = λαλ̃α̇. As first pointed out in [9], when reduced to 4d the scattering

1Galileon theories are effective field theories in the decoupling limit of massive gravity [6] and DGP

model [7]. Amplitudes in these theories have been studied in e.g. [8].
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equations become delta-function constraints of Roiban-Spradlin-Volovich (RSV) formula

for N =4 super-Yang-Mills (SYM) tree amplitudes [22], originally derived from Witten’s

twistor string theory [23]. These equations also appeared in two different formulas for

N =8 supergravity (SUGRA) tree amplitudes, proposed in [24, 25] and later derived from

a new twistor string theory [26, 27]. We will refer to them as four-dimensional polynomial

scattering equations since they take polynomial form with degree d = 1, . . . , n−3:

n
∑

a=1

taσ
m
a λ̃α̇

a = 0 for m = 0, 1, . . . , d, λα
a − ta

d
∑

m=0

ραmσm
a = 0 for a = 1, . . . , n, (1.2)

where the variables are σa, ta for a = 1, 2, . . . , n and ραm for m = 0, . . . , d, and the scattering

equations decompose into n − 3 sectors labeled by d. It is well known that for both

Yang-Mills and gravity case, exactly the sector-d equations are needed for amplitudes in

the helicity sector k = d + 1 (e.g. those with k negative-helicity gluons or gravitons).

Importantly, as derived in [9], the number of solutions is the Eulerian number En−3,d−1 for

the 4d scattering equations in sector d, which add up to the total number of solutions

(n−3)! =
∑n−2

d=1 En−3,d−1.

In [28], based on the four-dimensional ambitwistor string theory, similar formulas have

been obtained for N = 4 SYM and N = 8 SUGRA amplitudes. The delta-function con-

straints in these formulas are labeled by k = 2, . . . , n−2 and take rational form (hence will

be referred to as four-dimensional rational scattering equations). It is convenient to divide

n particles into two sets, one of k particles and the other of n−k, e.g. {1, 2, . . . , k} and

{k+1, k+2, . . . , n}, and the rational form of the equations reads

λ̃α̇
I −

n
∑

i=k+1

λ̃α̇
i

(I i)
= 0 for I = 1, . . . , k, λα

i −
k

∑

I=1

λα
I

(i I)
= 0 for i = k + 1, . . . , n, (1.3)

where we have defined the two-bracket (a b) := (σa − σb)/(tatb) by writing σ’s as σα
a =

1
ta
(1, σa). As discussed in [28], the formulas based on these rational equations have a

relatively simpler form, but with the bose/fermi symmetry not as manifest as those with

polynomial equations.

In the first part of the paper, we study four-dimensional tree amplitudes in various

theories with these 4d scattering equations. As we will review shortly, both forms of the 4d

equations can be derived from reducing the scattering equations (1.1) to four dimensions,

so they are of course equivalent to each other. However, since the twistor string theories

behind these two types of formulas are very different, it is not obvious at all how to directly

connect these them. In section 2.1, We will show that the two forms of the 4d scattering

equations, (1.2) and (1.3), are simply related to each other by a GL(k) transformation.

It turns out that (1.3) is basically the GL(k)-fixed version of (1.2) with e.g. {1, 2, . . . , k}

chosen as the labels for fixing the GL(k) redundancies. When imposing these equations in

delta functions of these twistor-string-inspired formulas (or 4d CHY formula in short), we

work out the action of GL(k) transformation on the formula, then it becomes obvious how

to translate between the integral measure and integrand of the formula with polynomial

or rational form equations.
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We proceed in section 2.2 to write new 4d formulas for tree amplitudes in NLSM, DBI

and sGal. As pointed out in [4], a significant simplification is that only the middle sector,

k = d+1 = n/2, is needed for amplitudes in these theories. While NLSM and sGal only have

scalars, we find that the formula for DBI amplitudes begs to be put in the supersymmetric

form when reduced to four dimensions. This is parallel to the cases of Yang-Mills and

gravity formulas in 4d, which take the nicest form as we include the supermultiplet and

write them in a manifestly supersymmetric manner [22, 24, 25]. In the end, the formula

naturally leads us to find the N = 4 supersymmetric completion of the usual DBI theory.

Together with the formula for bi-adjoint φ3 theory [29] and that for Einstein-Yang-Mills

amplitudes in 4d (and its supersymmetric extensions) [30], all CHY formulas discovered

so far have been written as twistor-string-like form in 4d, with supersymmetric extensions

when possible.

The upshot is a nice formula for all super-amplitudes in the maximally (N =4) super-

symmetric DBI theory, for which we will refer as super-DBI or SDBI for short [31]. This is a

theory with half of the supersymmetries linearly realized and half non-linearly realized, and

the Lagrangian of the theory has only been written down very recently [32]. The fermionic

sector is known to coincide with the Volkov-Akulov theory [33] with fermions now carrying

fundamental SU(4) indices. We find it intriguing that a very compact formula contains all

tree-level amplitudes of the theory with such a complicated Lagrangian. In fact, as already

expected from [4], only one new ingredient is needed to get our 4d formula for amplitudes

in SDBI, NLSM and sGal.

In the second part we apply our results to a very interesting problem: emission of soft

particles for amplitudes in these theories. There has been renewed interests in exploring

connections between symmetries and universal soft behavior of amplitudes [34]. Here we

will focus on the emission of soft Goldstone particles of spontaneously broken symmetry.

The famous Adler’s zero means that the emission of a single soft Goldstone boson gives

vanishing amplitude [35, 36], and double-soft emission probes the coset algebra structure

of the vacuum (cf. [37] for double-soft-scalar emission in N = 8 SUGRA). More recently,

new double-soft-emission theorems have been proposed for certain effective field theories

with spontaneously broken symmetries, such as NLSM, DBI and sGal [38]. Double-soft-

fermion emission has been studied in various theories including Volkov-Akulov theory and

SUGRA [39].

In section 3 we use our four-dimensional formulas to obtain double soft emissions

of the theories under consideration, including scalar-emissions in NLSM and sGal, and

emissions of scalars, fermions and other particles in SDBI, SYM and SUGRA. The 4d

formulas allow us to derive all these universal double-soft theorems; in particular, when

the flavors of the two soft particles do not form a SU(N ) singlet, the leading order vanishes

and we obtain sub-leading soft theorems probing coset structure of broken symmetries.

Note that for these effective field theories, it is not clear how to apply standard techniques

such as BCFW recursions [40, 41], thus it is important that our formula provides very

strong evidence in favor of these theorems. The double-soft theorems in super-DBI theory

are particularly interesting since they will provide clues for the mysterious non-linearly

realized (super)symmetries of the theory.
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2 Scattering equations and formulas in four dimensions

2.1 Relations between different forms of 4d scattering equations

We start with a lightening review of how (1.2) and (1.3) follow from (1.1) when reduced

to four dimensions. For (1.2) it is more convenient to go to the manifestly parity-invariant

form [15, 42], which can be obtained by introducing ρ̃’s and rewriting equations for λ̃’s

similar to those for λ’s [42]:

λa − ta

d
∑

m=0

ρmσm
a = 0, λ̃a − t̃a

d̃
∑

m=0

ρ̃mσm
a = 0, tat̃a =

∏

b 6=a

1

σa − σb
, (2.1)

where d̃ = n−2−d. These equations are completely equivalent to (1.2), and it was first

shown in [9] (see also [29]) that their solutions of all the sectors d = 1, . . . , n−3 are in

one-to-one correspond to those of scattering equations when reduced to four dimensions.2

The scattering equations, (1.1), were originally derived as the null condition p2(z) = 0

for a vector-valued polynomial map from Riemann sphere to momentum space: [10]:

pµ(z) :=
n
∑

a=1

kµa
∏

b 6=a

(z − σb) , (2.2)

which is a degree-(n − 2) polynomial. In four dimensions, p2(z) = 0 is equivalent to

the existence of polynomials λ(z) :=
∑d

m=0 ρmzm and λ̃(z) :=
∑d̃

m=0 ρ̃mzm, such that

pαα̇(z) = λα(z)λ̃α̇(z). This is the origin of sectors in 4d: the degrees of λ(z) and λ̃(z), d

and d̃ respectively, must satisfy d + d̃ = n − 2, thus the solutions of scattering equations

must split into exactly n−3 sectors, d = 1, 2, . . . , n−3. By using (2.1) and kαα̇a = λα
a λ̃

α̇
a , we

can verify that (2.2) gives pαα̇(z) = λα(z)λ̃α̇(z).

Here we show that the same is true for (1.3), and we first define a rational map

equivalent to pµ(z)

wµ(z) :=
n
∑

a=1

kµa
z − σa

=
pµ(z)

∏n
b=1(z − σb)

. (2.3)

The proof is actually very simple: by plugging (1.3) into wαα̇ and recall that (I i) =

(σI − σi)/(tIti):

wαα̇ =

k
∑

I=1

λα
I λ̃

α̇
I

z − σI
+

n
∑

i=k+1

λα
i λ̃

α̇
i

z − σi
=

∑

I,i

tIti λ
α
I λ̃

α̇
i

σI − σi

(

1

z − σI
−

1

z − σi

)

=

(

k
∑

I=1

tIλ
α
I

z − σI

)(

n
∑

i=k+1

tiλ̃
α̇
i

z − σi

)

,

2By this we mean one-to-one correspondence between solutions of (1.1) for σ’s and solutions for σ’s

of (1.2) (or (1.3)) with all sectors. Given any such σ-solution, the solutions for t’s in (1.3) (and ρ’s, t’s

in (1.2)) are determined uniquely by the equations.
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which immediately gives w2(z) = 0. Thus any solution of (1.3) is a solution of w2(z) = 0,

or equivalently the scattering equations (1.1). Since the total number of solutions from all

sectors of (1.3) (or (2.1)) is (n−3)!, we see that any solution of (1.1) also corresponds to a

solution of (1.3) (or (2.1)).

Now we turn to the transformation between the two forms of 4d scattering equations.

It was first pointed out in [43] that (1.2) can be viewed as the constraints on σ’s through

those on the so-called Veronese form of the Grassmannian (= k × n matrix up to GL(k)

transformation). From (1.2), we see that the form of the matrix (the “C-matrix”) reads [43]

Cm+1,a = taσ
m
a , for m = 0, . . . , d, a = 1, . . . , n. (2.4)

By writing λ, λ̃ both as n× 2 matrices, and ρ as 2×k matrix, (1.2) become C · λ̃ = ρ ·C−

λT = 0 (here the dot “·” and letter “T” denote matrix multiplication and transportation

respectively). Geometrically speaking, this means that the C-plane is orthogonal to λ̃-

plane, and it contains the λ-plane. For our purpose it is actually more convenient to

rewrite the latter constraints as the statement that the orthogonal complement of C, C⊥

(which is a (n−k)-plane or a (n−k)× n matrix), is orthogonal to the λ-plane. Thus (1.2)

becomes

C · λ̃ = 0 , C⊥ · λ = 0 . (2.5)

To go from this form to (1.3) simply requires a GL(k) transformation c = L · C to

bring a k × k sub-matrix to be the identity. In our choice, this identity-matrix part is the

sub-matrix cI J = δI J , and now we need to see what the remaining part, denoted as cI i
for i = k + 1, . . . , n look like. Note that we have denoted the row labels as I = 1, . . . , k. It

is straightforward to work out the remaining part, which has been previously spelled out

as the link-representation form [44, 45]:

cI i =
ti
∏

J 6=I σiJ

tI
∏

K 6=I σIK
. (2.6)

Note that after the fixing it is trivial to write c⊥ (see below). By performing the transfor-

mation

t̃i = tiβi, t̃I =
1

tIβI
, with βi =

∏

J

σiJ , βI =
∏

K 6=I

σIK , (2.7)

we can absorb an overall factor in (2.6), and the link variables become cI i = t̃I t̃i/σI i. Let

us spell out the constraints c · λ̃ = c⊥ · λ = 0 in this gauge-fixed form:

(

1k×k | ck×(n−k)

)

· λ̃ = 0k×2 ,
(

(

−cT
)

(n−k)×k

∣

∣

1(n−k)×(n−k)

)

· λ = 0(n−k)×2 , (2.8)

which are exactly (1.3) (where the t’s have been renamed as t̃’s)! Thus the rational scatter-

ing equations, derived from 4d ambitwistor strings in [28], is nothing but the gauge-fixed,

or link-representation form of the polynomial equations.

To obtain formulas for tree amplitudes, we need to impose either form of the equations

by writing down integral measure localized by delta functions, and when integrating over

– 5 –
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d2nσ there is a GL(2,C) redundancy to be fixed. For theories with N supersymmetries, it

is very natural to also include fermionic delta functions involving Grassmann odd variables

which label the supermultiplet. We use the superspace (λ, {λ̃|η}) with Grassmann variables

ηA where A = 1, . . . ,N , and in this superspace, for example, the on-shell superfields [46]

for N =4 SYM and N =8 SUGRA read:

Φ(SYM)(η) = g+ + ηAΓA +
1

2!
ηAηBφAB +

1

3!
ηAηBηCǫABCDΓ̄

D + η1η2η3η4 g−, (2.9)

Φ(SG)(η) = h+ + ηAλA +
1

2!
ηAηBvAB +

1

3!
ηAηBηCχABC +

1

4!
ηAηBηCηDφABCD + · · · .

(2.10)

Given the superspace, supersymmetry dictates that we include fermonic delta functions

for η’s in the same form as those for λ̃’s. Now we can write down the formulas and see

how the measures and integrands of these two forms transform between each other. Let us

start with the rational form

Mn,k=

∫
∏n

a=1 dσadt̃a/t̃
3
a

volGL(2,C)

k
∏

I=1

δ2|N

(

{λ̃I |ηI}−
n
∑

i=k+1

t̃I t̃i{λ̃i|ηi}

σIi

)

n
∏

i=k+1

δ2

(

λi−
k

∑

I=1

t̃it̃IλI

σiI

)

Irat
n,k

:=

∫

dµ
(N )
n,k Irat

n,k(t̃i, t̃I) , (2.11)

where Mn,k is the n-point, k-sector amplitude in the theory under consideration;3 on

the second line we defined the measure dµ
(N )
n,k for rational-form equations with N super-

symmetries, and (as we will see why shortly) we indicated the explicit dependence of the

rational-form integrand Irat on t̃i, t̃I .

Performing the transformation in (2.7) and keeping track of the Jacobians, we get

Mn,k =

∫
∏n

a=1 dσadta/t
3
a

volGL(2,C)

(

n
∏

i=k+1

βi
−2

)(

k
∏

I=1

β2
I t

4
I

)

×
k
∏

I=1

δ2|N

(

{λ̃I |ηI} −
n
∑

i=k+1

βiti{λ̃i|ηi}

βItIσIi

)

×
n
∏

i=k+1

δ2

(

λi −
k

∑

I=1

βitiλI

βItIσiI

)

Irat
n,k

(

βiti,
1

βItI

)

=

∫

dΩ
(N )
n,k (Vk)

4−N

(

n
∏

i=k+1

βi
−2

)(

k
∏

I=1

β2
I t

4
I

)

Irat
n,k

(

βiti,
1

βItI

)

. (2.12)

where the GL(k) transformation is performed and we have defined the Jacobian

Vk =
k
∏

I=1

tI
∏

J 6=K

σJK , (2.13)

3For NLSM, SDBI and sGal only the sector k = n/2 is non-vanishing, and a sum over all sectors is

needed for bi-adjoint φ3 theory; see subsection 2.2 for details.

– 6 –
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as well as the polynomial-form measure with N supersymmetries (d2nσ =
∏n

a=1 dσadta/t
3
a

here)

dΩ
(N )
n,k :=

d2nσ

volGL(2,C)

d
∏

m=0

δ2|N

(

n
∑

a=1

taσ
m
a {λ̃a|ηa}

)

∫

d2kρ
n
∏

a=1

δ2

(

ta

d
∑

m=0

ρmσm
a − λa

)

.

(2.14)

From (2.12), we find that the integrand with polynomial form of 4d scattering equations is

related to the one with rational-form equations in a simple way:

Ipol
n,k(ta) = (Vk)

4−N

(

n
∏

i=k+1

βi
−2

)(

k
∏

I=1

β2
I t

4
I

)

Irat
n,k

(

βiti,
1

βItI

)

. (2.15)

2.2 Formulas for tree amplitudes with 4d scattering equations

Now we are ready to write down four-dimensional twistor-string-inspired formulas for

tree amplitudes. Note that the formulas contain overall (super-)momentum-conserving

delta functions (for supersymmetric theories): M = δ4(P )δ0|2N (Q)M with Pαα̇ :=
∑n

a=1 λ
α
a λ̃

α̇
a , Q

α̇,A :=
∑n

a=1 λ̃
α̇
aη

A
a .

We first recall the twistor-string and ambi-twistor string formulas for n-

point Nk−2MHV, color-ordered tree amplitude in N = 4 super-Yang-Mills theory

(SYM) [22, 23, 28]:

MSYM
n,k (1, 2, . . . , n) =

∫

dΩ
(N=4)
n,k

1

(12)(23) · · · (n1)
=

∫

dµ
(N=4)
n,k

1

(12)(23) · · · (n1)
, (2.16)

From (2.15), one can see that the formulas with two forms of the 4d scattering equations

have identical integrands. This integrand is just the so-called Parke-Taylor factor.

For N = 8 supergravity (SUGRA) amplitudes, the formula with rational equations

reads [28]:

MSUGRA
n,k =

∫

dµ
(N=8)
n,k det′Hk det

′
Hn−k , (2.17)

where det′ denotes the minor with any one column and one row deleted (since the rows

and columns add up to zero), and H and H are k × k and (n − k) × (n − k) matrices of

the form:

Hab =
〈a b〉

(a b)
for a 6= b, Haa = −

k
∑

b=1,b 6=a

Hab, a, b ∈ {1, . . . , k}; (2.18)

Hab =
[a b]

(a b)
for a 6= b, Haa = −

n
∑

b=k+1,b 6=a

Hab, a, b ∈ {k + 1, . . . , n}. (2.19)

Note that the integrand det′Hk det
′
Hn−k is not permutation invariant, but when we rewrite

the formula with the polynomial form of the equations, the integrand obtained from (2.15)

becomes those in [24, 25], which are permutation invariant. Henceforth for simplicity we

– 7 –
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will only write formula with rational form equations explicitly, the formula using polynomial

form can be get from (2.15).

Very recently the formula for double-partial amplitudes in the bi-adjoint φ3 theory,

Mφ3

n [α|β] has been obtained in [29]. By (2.15) we translate it into a formula with rational

equations:

Mφ3

n [α|β] =
n−2
∑

k=2

∫

dµ
(0)
n,k

det′Hk det
′
Hn−k

1

α[(12) · · · (n1)]

1

β[(12) · · · (n1)]
, (2.20)

where we have Parke-Taylor factors with orderings α, β and the determinants appeared

in (2.17). It is interesting to see that the formula is more complicated than SYM or SUGRA,

especially in that one has to sum over all sectors. Each k sector gives contributions (the

“scalar blocks” [29]) with unphysical poles which only cancel each other in the sum over

sectors.

The formula for gravity can be derived from “double-copy” of Yang-Mills, divided by

φ3, which we denote as “GR = YM⊗YM”. This can be viewed as the Kawai-Lewellen-Tye

(KLT) relations [47] between the amplitudes, or equivalently [2, 4] the relation between

CHY integrands of these theories. For example, GR = YM ⊗ YM means that, by taking

two copies of the CHY integrand for YM, and divided by that of bi-adjoint φ3 theory, we

obtain the CHY integrand for gravity. From the observation of [29], a nice feature of the

4d formulas is that this double-copy procedure works for each k-sector individually: one

can easily derive (2.17) from (2.16) and (2.20) for each k [29].

Now we proceed to formulas for the effective field theories, including super-DBI, NLSM

and sGal. We first consider N =4 super-DBI theory, which has an on-shell superfield

Φ(SDBI)(η) = γ+ + ηAψA +
1

2!
ηAηBSAB +

1

3!
ηAηBηCǫABCDψ̄

D + η1η2η3η4 γ−, (2.21)

where the supermultiplet contains photons, photinos and scalars. It is well known that

for photon scatterings in Born-Infeld theory, only helicity-conserved amplitudes with even

multiplicity are non-vanishing. By supersymmetry this generalizes to the superamplitude,

thus we will only have the middle sector k = n/2 for even n. We omit the subscript k = n/2

of the measure, and write

dµ(N )
n :=dµ

(N )
n,n

2

=
d2nσ

volGL(2,C)

n/2
∏

I=1

δ2|N



{λ̃I |ηI}−
n
∑

i=n/2+1

{λ̃i|ηi}

(I i)





n
∏

i=n/2+1

δ2



λi −

n/2
∑

I=1

λI

(i I)



 .

(2.22)

Recall that it is permutation invariant.

It turns out that we only need one more ingredient for writing down the formulas for

amplitudes in all the three theories. We define an n × n antisymmetric matrix An with

entries Aab =
sab
(a b) for a 6= b and Aaa = 0. It has two null vectors and we define the reduced

pfaffian and determinant as

Pf ′An :=
(−)a+b

(a b)
Pf |A|a,ba,b , det′An =

(

Pf ′An

)2
. (2.23)
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One can show that the rank of the matrix An is less than n−2 when we plug in the solutions

of 4d scattering equations in any sector except the middle sector k = n/2 [4]. Thus det′An

is only non-vanishing for the sector k = n/2, which already suggests strongly that it should

appear in the formula for SDBI. The formula for the complete tree-level S-matrix in N =4

super-DBI reads:

MSDBI
n =

∫

dµ(4)
n det′An. (2.24)

As shown in [4], we have double-copy relations for special Galileon theory and

super-DBI:

sGal = NLSM⊗NLSM, BI = YM⊗NLSM, SDBI = SYM⊗NLSM, (2.25)

where the last relation follow from the second one by supersymmetry. From these relations,

it has become clear that the formula for NLSM and sGal must take the form

MNLSM
n (1, 2, . . . , n) =

∫

dµ(0)
n

1

(12)(23) · · · (n1)

det′An

Hn
, (2.26)

MsGal
n =

∫

dµ(0)
n

(

det′An

)2

Hn
, (2.27)

where we have defined Hn := det′Hn/2 det
′
Hn/2. Unlike the bi-adjoint φ3 theory, these

scalar amplitudes are only non-vanishing for the k = n/2 sector of the solutions to 4d

scattering equations. This can be explained from the appearance of det′An, as already

noticed in [4]. The double-copy relations (2.25) also specify to the middle sector in 4d,

where only the term k = n/2 in (2.20) is needed [29].

There is a further relation which makes these formulas much simpler than (the middle-

sector) φ3 amplitudes. As we checked up to ten points, Hn and Pf ′An are actually propor-

tional to each other:

Pf ′An = det Jn

2
Hn , (2.28)

where the proportionality factor is det Jn

2
with entries of the matrix of the form (I i)−1 for

rows labelled by I = 1, . . . , n/2 and columns by i = n/2 + 1, . . . , n. It is straightforward

to find

det Jn

2
=

∏

J<K(J K)
∏

j<k(j k)
∏

I,i(I i)
. (2.29)

We will not prove this very interesting identity in the paper, but just to say that it simpli-

fies (2.26) and (2.27) further:

MNLSM
n (1, 2, . . . , n) =

∫

dµ(0)
n

1

(12)(23) · · · (n1)
det Jn

2
Pf ′An, (2.30)

MsGal
n =

∫

dµ(0)
n det Jn

2

(

Pf ′An

)3
. (2.31)

In this form, it becomes very clear that, unlike the φ3 case, there is no spurious pole for

amplitudes in NLSM or sGal, and their formulas take a much simpler form. For NLSM,

DBI and sGal, their formulas contain (Pf ′An)
t for t = 1, 2, 3 respectively.
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We have very strong evidence for the new 4d formulas, (2.24), (2.30), (2.31), by com-

paring with their general-dimension CHY formulas, or by studying their factorization prop-

erties directly. More explicitly, we have computed numerically up to six points and verify

that they give correct amplitudes. For example, by directly evaluating (2.24) for n = 4

we find

MN =4 SDBI
4 = δ4(P ) δ0|8(Q)

[3 4]2

〈1 2〉2
. (2.32)

Similarly we have checked six-scalar amplitudes in all three theories, and in N =4 super-

DBI six-photon amplitudes [48], two-fermions-four-photon and two-scalar-four-photon am-

plitudes [51], as well as six-fermion amplitudes.4

3 Double soft theorems

In this section, as both consistency checks and more importantly applications of the new

4d formulas proposed in the previous section, we derive the double soft theorems in N =4

super-DBI, NLSM, sGal. We also discuss some double limits in N = 4 SYM and N = 8

SUGRA [28].

As shown in [38], in the simultaneous double soft limit, there are two types of solutions

to the scattering equations – those non-degenerate ones, i.e. all σ’s are distinct from each

other, and a unique degenerate solution with the two σ’s of the soft legs coincide. We find

exactly the same conclusion for the solutions of 4d scattering equations (1.3).

The key observation [38] is that, when the contribution of the degenerate solution

dominates over that of non-degenerate ones in the double soft limit, one can derive double

soft theorems by evaluating the formula for the degenerate solution only. Here we will

see that it is indeed the case for all super-amplitudes in N = 4 super-DBI involving the

emission of a pair of soft photons, fermions or scalars.

3.1 Double soft theorems in N = 4 super-DBI

Let us start with an (n+ 2)-point amplitude with even n in N =4 super-DBI theory,

Mn+2 =

∫

dµ
(4)
n+2 det

′An+2, (3.1)

and here we write the measure dµ
(4)
n+2 as,

d2(n+2)σ

volGL(2,C)

n/2
∏

I=1

δ2|4
(

{λ̃I |ηI} −
n
∑

i=n/2+1

{λ̃i|ηi}

(I i)
−

{λ̃p|ηp}

(I p)

)

× δ2|4
(

{λ̃q|ηq} −
n
∑

i=n/2+1

{λ̃i|ηi}

(q i)
−

{λ̃p|ηp}

(q p)

)

×
n
∏

i=n/2+1

δ2
(

λi −

n/2
∑

I=1

λI

(i I)
−

λq

(i q)

)

δ2
(

λp −

n/2
∑

I=1

λI

(p I)
−

λq

(p q)

)

, (3.2)

4The six-fermion amplitude in Volkov-Akulov theory was obtained in [49], and very recently reproduced

in [50] using a formula similar to our (2.24).
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where I = n+2, 1, . . . , n/2 and i = n/2+ 1, . . . , n, n+1. For the sake of brevity, here and

in the rest of this paper we denote the indices n+ 1 and n+ 2 as p and q respectively.

To be concrete, we perform anti-holomorphic and holomorphic soft limits for the ex-

ternal legs p and q respectively, and introduce a small real parameter ǫ to control this

simultaneous double soft limit:

λ̃p → ǫλ̃p, λq → ǫλq, (3.3)

while λp, ηp and λ̃q, ηq stay finite [37]. In this limit, we have (a b) ∼ O(1) for non-degenerate

solutions, while for the degenerate solution, (p q) ∼ O(ǫ).

Now we can study the scaling behavior of the formula in ǫ for both degenerate and

non-degenerate solutions. In the double soft limit (3.3), the bosonic part of measure (3.2)

behaves as dµ
(0)
n+2 ∼ O(ǫ) for the degenerate solution and dµ

(0)
n+2 ∼ O(ǫ0) for non-degenerate

solutions while det′An+2 ∼ O(ǫ4) and det′An+2 ∼ O(ǫ2) for the degenerate solution and

non-degenerate ones respectively.

We also need to consider the scaling behavior from fermionic delta functions in the mea-

sure (3.2), which strongly depends on the SU(4) flavors of the soft particles. Let first recall

the on-shell superfield (2.21) and the following fermionic δ-function in the measure (3.2)

n/2
∏

I=1

δ0|4



ηI −
n
∑

i=n/2+1

ηi
(I i)

−
ηp

(I p)



× δ0|4



ηq −
n
∑

i=n/2+1

ηi
(q i)

−
ηp
(q p)



 . (3.4)

While it is obvious that for any pair of soft particles, it is O(1) for non-degenerate solu-

tions in the limit (3.3), the case for the degenerate solution is more subtle. One needs to

distinguish between two cases: (i) when the two soft particles form a SU(4) flavor-singlet,

i.e. (γ+, γ−) photon pair, (ψA, ψ̄
A) fermion pair, or (SAB, S

AB) scalar pair, and (ii) when

they do not form a singlet, e.g. (ψA, ψ̄
B) or (SAD, S

BD).

For the first case, the leading-order contribution comes from picking out all ηp, ηq from

the last fermonic delta function of (3.4), and the remainder becomes exactly fermionic delta

functions for n-point formula. The last fermonic delta function evaluates to 1/(p q)2−2s

which behaves as ∼ O(ǫ2s−2), where “s” denotes the spin of the soft pair. For the second

case, we also have one ηp from other fermonic delta functions, and the factor becomes

1/(p q)1−2s. When combining with the bosonic measure and integrand, for both cases the

contribution from degenerate solution always dominates.

The second case is sub-leading compared to the first case, so we refer to the latter as

the “leading-order” double-soft theorems and the former as the “sub-leading” ones. We

first discuss the leading-order case, and postpone the very interesting discussion of the

subleading case to the end of this subsection.

It is convenient to introduce the change of variable for the degenerate solution [38]

σp = ρ− ǫ
ξ

2
, σq = ρ+ ǫ

ξ

2
(3.5)
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with σqp = ǫ ξ ∼ O(ǫ), and we have dσpdσq = ǫ dρ dξ. In these variables, the integrand,

det ′A, becomes

det′An+2 = ǫ2
s2pqt

2
pt

2
q

ξ2
det′An +O(ǫ4), (3.6)

and we can write the complete measure involving a pair of soft particles of spin s in a
unified form:

ǫ

(

−
ǫξ

tptq

)

−2(1−s)
dtpdtq
t3pt

3
q

dρ dξδ2



λ̃q−
n
∑

i=n/2+1

λ̃i

(q i)
−

tptqλ̃p

ξ



δ2



λp−

n/2
∑

I=1

λI

(p I)
+

tptqλq

ξ



dµ(4)
n +O(ǫ2s).

Our task is to perform the integral over tp, tq, ξ and ρ by using the four additional

delta functions above. For this purpose it is convenient to rewrite these delta functions as

δ2



λ̃q −
n
∑

i=n/2+1

λ̃i

(q i)
−

tptqλ̃p

ξ



=
1

tptq[pq]
δ



1−
n
∑

i=n/2+1

[p i]

[pq]

tqti
σqi



δ





n
∑

i=n/2+1

[qi]

[qp]

ti
tpσqi

+
1

ξ



 ,

δ2



λp −

n/2
∑

I=1

λI

(p I)
+

tptqλq

ξ



 =
−1

tptq 〈pq〉
δ



1−

n/2
∑

I=1

〈qI〉

〈qp〉

tptI
σpI



 δ





n/2
∑

I=1

〈pI〉

〈pq〉

tI
tqσpI

−
1

ξ



 .

(3.7)

It is clear now that from the r.h.s. of (3.7), we can use the two delta functions without ξ

to fix tp, tq:

t−1
p =

n/2
∑

I=1

〈qI〉

〈qp〉

tI
σpI

, t−1
q =

n
∑

i=n/2+1

[pi]

[pq]

ti
σqi

. (3.8)

After integrating out tp, tq, the formula in the double soft limit (3.3) becomes

M
(s)
n+2 = (−1)1−2sǫ1+2s

∫

dµ(4)
n det′An

∫

dρdξ
spq

(tptq)2s ξ4−2s
δ(f1)δ(f2) +O(ǫ2+2s), (3.9)

where we used the superscript (s) for the spin of the soft pair. Here we also denote

f1 =
n
∑

i=n/2+1

[qi]

[qp]

ti
tp

1

σqi
+

1

ξ
= −

1

spq

n
∑

i=n/2+1

n/2
∑

I=1

[i|q|I〉 tIti
σpIσqi

+
1

ξ
, (3.10)

f2 =

n/2
∑

I=1

〈pI〉

〈pq〉

tI
tq

1

σpI
−

1

ξ
= −

1

spq

n
∑

i=n/2+1

n/2
∑

I=1

[i|p|I〉 tIti
σpIσqi

−
1

ξ
, (3.11)

and in the second equality we have plugged in the solution for tp, tq.

Now the problem of integrating over ρ and ξ resembles that in deriving double soft

theorems in arbitrary dimensions in [38], and we recall the transformation of the delta

functions,

δ(f1)δ(f2) = −2δ(f1 + f2)δ(f1 − f2) . (3.12)
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The key point here is to note that f1 ± f2 can be simplified to particularly nice form as

a sum over {1, . . . , n} ! Let us make a partial fraction decomposition for 1/σpIσqi, then

f2 + f2 can be written as

f1 + f2 = −
1

spq

n
∑

i=n/2+1

n/2
∑

I=1

(

1

ρ− σi
−

1

ρ− σI

)

[i|(p+ q) |I〉

(i I)
(3.13)

= −
1

spq







n
∑

i=n/2+1

1

ρ− σi

n/2
∑

I=1

[i|(p+ q) |I〉

(i I)
+

n/2
∑

I=1

1

ρ− σI

n
∑

i=n/2+1

[i|(p+ q) |I〉

(I i)







.

By 4d scattering equations (1.3), the two inner sums simply give [i|p + q|i〉 and

[I|p+ q|I〉, and

f1 + f2 =
1

spq

n
∑

a=1

2ka · (p+ q)

ρ− σa
. (3.14)

The same technique works for f1−f2, and one obtains immediately the solution for ξ from

f1 − f2 = 0 as follows

ξ−1 =
1

2spq

n
∑

i=n/2+1

n/2
∑

I=1

(

1

ρ− σi
−

1

ρ− σI

)

[i|(p− q) |I〉

(I i)
=

1

spq

n
∑

a=1

ka · (p− q)

ρ− σa
. (3.15)

By the way, from eq. (3.8) and eq. (3.5) one can get a similar result for tptq:

t−1
p t−1

q =
1

spq

n
∑

i=n/2+1

n/2
∑

I=1

(

1

ρ− σi
−

1

ρ− σI

)

[pi] 〈Iq〉

(i I)
=

1

spq

n
∑

a=1

[pa] 〈aq〉

ρ− σa
. (3.16)

Now we can package everything together. First we localize the ξ-integral by δ(f1−f2),

and regard the ρ-integral as a contour integral with contour C encircling the zeroes of

f1 + f2 = 0,

M
(s)
n+2 = (−1)1−2sǫ1+2s

∫

dµ(4)
n det′An

∮

C

dρ

2πi

spq (tptq)
−2s ξ−2(1−s)

f1 + f2
+O(ǫ2+2s) . (3.17)

Plugging eqs. (3.14), (3.15), (3.16) into eq. (3.17) immediately gives

M
(s)
n+2 = (−ǫ)1+2s

∫

dµ(4)
n det′An

∮

C

dρ

2πi

(

∑n
a=1

[p|a|q〉
ρ−σa

)2s (
∑n

b=1
kb·(p−q)
ρ−σb

)2(1−s)

∑n
c=1

kc·(p+q)
ρ−σc

+O(ǫ2+2s).

This integral do not receive the contribution from a simple pole at ρ = ∞ due to momentum

conservation. Thus we only need to consider simple poles at ρ = σa with a = 1, 2, . . . , n

and obtain by the residue theorem

M
(s)
n+2 = ǫ1+2s

n
∑

a=1

(

ka · (q − p)
)2−2s

[p|a|q〉2s

2ka · (p+ q)
M(s)

n +O(ǫ2+2s). (3.18)
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It is highly non-trivial that the combinations appeared, f1+f2, f1−f2 and tptq, all become

a sum over a = 1, . . . , n, which is what we need to derive the nice soft theorems (3.18). The

key for this to happen is the use of scattering equations (1.3). Note that these theorems

now directly hold for superamplitudes in four dimensions, i.e. hard particles can be any

particles in supermultiplet (2.21).

The double soft photon limit (s = 1) and double soft scalar limit (s = 0) in the DBI

theory are obtained using CHY representations in [38], while the double fermion limit for

s = 1
2 without flavors is conjectured by studying six-fermion amplitudes in Volkov-Akulov

theory [39]. Here we have shown that these seemingly different double soft theorems can be

unified for superamplitudes in N =4 SDBI, and this unified form (3.18) certainly deserves

further study.

3.1.1 Sub-leading theorems in N = 4 super-DBI

Now we turn to the case that the two soft particles are not in a flavor singlet of SU(4), and

for simplicity we consider (ψA, ψ̄
B) fermion-pair, and (SAD, S

BD) scalar-pair.

For convenience, let us first rewrite the fermionic δ-function (3.4) here

n/2
∏

I=1

δ0|4



ηI −
n
∑

i=n/2+1

ηi
(I i)

−
ηp

(I p)



× δ0|4



ηq −
n
∑

i=n/2+1

ηi
(q i)

−
ηp
(q p)



 ,

and take a closer look. Unlike the single-flavor case, here we pick ηAp from one of those

δ-functions with ηI , and the remaining three η’s, (η3q )B for s = 1
2 or ηDp (η2q )BD for s = 0,

from the last δ-function. The operation of extracting ηAp from those δ-functions amounts to

taking derivative ∂/∂ηI with a factor 1/(I p) and a sum over I. Furthermore, an additional

η from the last δ-function must come from the sum
∑

i ηi/(q i). To be more precise, by

projecting upon the relevant terms in the ηp and ηq, one finds the fermionic part of the

measure contributing to the leading soft limits,

−

(

−
ǫξ

tptq

)2s−1 n
∑

i=n/2+1

n/2
∑

I=1

1

(q i)(I p)
ηBi

∂

∂ηAI
δ(2n)

(

Fn

)

+O(ǫ2s)

= −(−ǫ)2s−1 (tptq)
2(1−s)

ξ1−2s







n/2
∑

I=1

1

ρ− σI

n
∑

i=n/2+1

ηBi ∂ηA
I

(i I)
+

n
∑

i=n/2+1

1

ρ− σi

n/2
∑

I=1

ηBi ∂ηA
I

(I i)







× δ(2n)
(

Fn

)

+O(ǫ2s)

= −(−ǫ)2s−1 (tptq)
2(1−s)

ξ1−2s

n
∑

a=1

(Ra)
B
A

ρ− σa
δ(2n)

(

Fn

)

+O(ǫ2s), (3.19)

where we denote the product of fermionic δ-functions, and the SU(4) generator on the

leg a as:

δ(2n)
(

Fn

)

≡

n/2
∏

I=1

δ0|4



ηI −
n
∑

i=n/2+1

ηi
(I i)



 , (Ra)
B
A ≡ ηBa

∂

∂ηAa
. (3.20)
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In eq. (3.19), we have used the same trick as the bosonic case, and the fermionic scattering

equations:

n
∑

i=n/2+1

1

(I i)
ηAi = ηAI ,

n/2
∑

I=1

1

(i I)

∂

∂ηAI
=

∂

∂ηAi
, (3.21)

where the second set of equations follow from those equations for η̃’s (written in the con-

jugate superspace) by the replacement η̃ → ∂/∂η.

Note eq. (3.19) ∼ O(ǫ2s−1) as we claimed, which means that the double-soft behavior

is sub-leading for non-singlet soft pair, compared to the singlet pair. However, recall

behavior of dµ(0) and det ′A, it is still the case that the degenerate solution is dominant at

this order, see also table 2 at the end of the section. By eq. (3.19) and repeating the exact

same derivation gives for M
(s)
n+2

− (−ǫ)2+2sspq

∫

dµ(0)
n det′An

∮

C

dρ

2πi

(

n
∑

a=1

[p|a|q〉
ρ−σa

)2s( n
∑

b=1

kb·(p−q)
ρ−σb

)1−2s n
∑

c=1

(Rc)BA
ρ−σc

δ(2n)
(

Fn

)

n
∑

d=1

kd·(p+q)
ρ−σd

+O(ǫ3+2s).

Similarly, performing the ρ-integral by encountering simple poles at ρ = σa yields

M
(s)
n+2 = −ǫ2+2sspq

n
∑

a=1

(ka · (q − p))1−2s [p|a|q〉2s

2ka · (p+ q)
ηBa

∂

∂ηAa
M(s)

n +O(ǫ3+2s) (3.22)

for two soft fermions (ψA, ψ̄
B) emission (s = 1

2) and two soft scalars (SAD, S
BD) emission

(s = 0) respectively. The result bears striking similarity with the double soft scalar theorem

in N =8 SUGRA [37] (see [52–54] for recent works on double soft behavior in N =4 SYM).

In that case, the theorem directly probes the coset structure (E7(7)/SU(8)) of the vacua,

and we hope that our results here, which has similar structure, can be useful for studying

the coset structure of N =4 SDBI theory.

3.2 More double-soft theorems

Having established all double-soft theorems in super-DBI, we now briefly discuss double

soft theorems for NLSM, sGal, as well as those in N =4 SYM and N =8 SUGRA. For color-

ordered amplitudes in SYM and NLSM, we will focus on the case that the soft particles

are adjacent.

All we need are the behavior of the Parke-Taylor factor and that for det′H det′H, in

the double soft limit. For non-degenerate solutions, the Parke-Taylor factor has leading

order behavior of O(1), while for the degenerate solution, it is straightforward to get

1

(12) · · · (np)(pq)(q1)
=

1

(12) · · · (n1)

t2pt
2
q

ǫ ξ

(

1

ρ− σn
−

1

ρ− σ1

)

+O(ǫ0), (3.23)
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Building Block O(d) O(nd)

dµ(0) 1 0

det′A 2 4

Parke-Taylor factor -1 0

det′H det′H 2 2

Table 1. Leading scaling behavior in soft parameter ǫ of the building blocks in the limit (3.3).

Here “d” and “nd” stand for the degenerate and non-degenerate solutions respectively.

in the double soft limit (3.3). Similarly, in the double limit, det′H det′H ∼ O(ǫ2) for

non-degenerate solutions, while for degenerate solution, we have

det′Hk+1det
′
Hn−k+1 = ǫ2

(

−
k

∑

I=1

HqI

)

det′Hk

(

−
n
∑

i=k+1

Hpi

)

det′Hn−k +O(ǫ3) (3.24)

= −ǫ2 tptq

n
∑

a=1

[p|a |q〉

ρ− σa
det′Hk det

′
Hn−k +O(ǫ3)

= −ǫ2 spq det
′
Hk det

′
Hn−k +O(ǫ3),

where the same trick as the case for f1± f2 and tptq is nicely used again. Of course, it also

holds for k = n/2, namely Hn+2 = −ǫ2spqHn +O(ǫ3) in the same limit.

We summarize the soft scaling behavior in ǫ for all the (bosonic) building blocks in

table 1.

For U(N) NLSM and the special Galileon theory, let us recall the formula for their

amplitudes:

MNLSM
n+2 =

∫

dµ
(0)
n+2

1

(12) · · · (np)(pq)(q1)

det′An+2

Hn+2
, MsGal

n+2 =

∫

dµ
(0)
n+2

(

det′An+2

)2

Hn+2
.

(3.25)

By power counting of the soft parameter ǫ for building blocks, again we find the soft scalar

limits at leading order only receive the contribution from the degenerate solution. The

same derivation as for SDBI gives the leading double soft scalar theorems:

Mn+2(1, . . . , n, p, q) = ǫmSMn(1, . . . , n) +O(ǫm+1), (3.26)

where m = 0 for NLSM and m = 3 for sGal, and soft factors are given respectively by

SNLSM =
kn · (p− q)

2kn · (p+ q)
+

k1 · (q − p)

2k1 · (q + p)
, SsGal = spq

n
∑

a=1

(

ka · (p− q)
)2

2ka · (p+ q)
, (3.27)

which coincide with the leading-order results of [38]. Note that single and double scalar

emissions in NLSM were also investigated in [55–57].

Finally we make a classification of double soft theorems for N = 4 SYM and N = 8

SUGRA. Unlike the case for the other three theories, the degenerate solution does not

always dominate for leading double soft limit in N =4 SYM and N =8 SUGRA, as listed
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in table 2. For SYM, the degenerate solution still dominates for the following three cases,

giving double-soft theorems:

Mn+2

(

. . . ,ΓA(p), Γ̄
A(q)

)

=
1

ǫ

1

spq

(

[p|kn|q〉

2kn · (p+ q)
−

[p|k1|q〉

2k1 · (p+ q)

)

Mn +O(ǫ0),

(3.28)

Mn+2

(

. . . , φAB(p), φ
AB(q)

)

=
1

ǫ2
1

spq

(

kn · (p− q)

2kn · (p+ q)
−

k1 · (p− q)

2k1 · (p+ q)

)

Mn +O(ǫ−1),

(3.29)

Mn+2

(

. . . , φAD(p), φ
BD(q)

)

=
1

ǫ

(

(Rn)
B
A

2kn · (p+ q)
−

(R1)
B
A

2k1 · (p+ q)

)

Mn +O(ǫ0) . (3.30)

Similarly for SUGRA, we find that for the following cases of double-soft particles in the

supermultiplet (2.10), the degenerate solution dominates and we have the corresponding

double-soft theorems

Mn+2

(

. . . , vAB(p), v̄
AB(q)

)

=
ǫ

p · q

n
∑

a=1

[p|a|q〉2

2ka · (p+ q)
Mn +O(ǫ2), (3.31)

Mn+2

(

. . . , χABC(p), χ̄
ABC(q)

)

= −
1

spq

n
∑

a=1

ka · (p− q) [p|a|q〉

2ka · (p+ q)
Mn +O(ǫ), (3.32)

Mn+2

(

. . . , χADE(p), χ̄
BDE(q)

)

= ǫ

n
∑

a=1

[p|a|q〉

2ka · (p+ q)
(Ra)

B
AMn +O(ǫ2), (3.33)

Mn+2

(

. . . , φABCD(p), φ
ABCD(q)

)

=
1

ǫ

1

spq

n
∑

a=1

(

ka · (p− q)
)2

2ka · (p+ q)
Mn +O(ǫ0), (3.34)

Mn+2

(

. . . , φADEF (p), φ
BDEF (q)

)

= −
n
∑

a=1

ka · (p− q)

2ka · (p+ q)
(Ra)

B
AMn +O(ǫ). (3.35)

Thus we have obtained, from formulas with the 4d rational scattering equations [19], all

these universal double-soft theorems, among which some are new and others are known

previously. The most famous one is the double soft-scalar theorem (3.35) in SUGRA [37],

and more recently, double soft graviphotino (spin-1/2) theorems in supergravity were stud-

ied in four dimensions as well as three dimensions in [39, 58]. In N =4 SYM, double scalar

theorems (3.30) were obtained using BCFW recursions in [52, 53], and from string theory

in [54]; double gluino/scalar theorems, (3.28) and (3.29), were given in [59] from MHV

diagrams.

It is also interesting to compare the double soft theorems in different theories. First let

us discuss the case of two soft particles form a SU(N ) singlet in supersymmetric theories

or without flavors in non-supersymmetric theories. The double soft scalar factors are all of

the form (p ·q)α (ka ·(p−q))β/ka ·(p+q), where the exponents (α, β) are (0, 2), (0, 1), (1, 2),

(-1, 1), (-1, 2) for SDBI, NLSM, sGal, SYM and SUGRA respectively. Similarly double soft

factors for spin-12 fermions are of the form (p · q)α (ka · (p− q))β [p|ka|q〉
γ /ka · (p+ q), three

exponents are (0, 1, 1), (-1, 0, 1) and (-1, 1, 1) for SDBI, SYM and SUGRA. For double soft

(gravi-)photon emission, the structure is the same with exponents (0, 0, 2) and (-1, 0, 2) for
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Theory Soft particle pair O(d) O(nd) O(nd)−O(d) “d” dominant

N =4 SDBI

(

γ+, γ−
)

3 4 1 X
(

ψA, ψ̄
A
)

2 4 2 X
(

ψA, ψ̄
B
)

3 4 1 X
(

φAB, φ
AB

)

1 4 3 X
(

φAD, φ
BD

)

2 4 2 X

NLSM (φ, φ) 0 2 2 X

sGal (φ, φ) 3 6 3 X

N =4 SYM

(

g+, g−
)

0 0 0
(

ψA, ψ̄
A
)

-1 0 1 X
(

ψA, ψ̄
B
)

0 0 0
(

φAB, φ
AB

)

-2 0 2 X
(

φAD, φ
BD

)

-1 0 1 X

N =8 SUGRA

(

h+, h−
)

3 2 -1
(

ψA, ψ̄
A
)

2 2 0
(

ψA, ψ̄
B
)

3 2 -1
(

vAB, v̄
AB

)

1 2 1 X
(

vAD, v̄
BD

)

2 2 0
(

χABC , χ̄
ABC

)

0 2 2 X
(

χADE , χ̄
BDE

)

1 2 1 X
(

φABCD, φ
ABCD

)

-1 2 3 X
(

φADEF , φ
BDEF

)

0 2 2 X

Table 2. Leading scaling in ǫ of the formulas of scattering amplitudes in the double limit (3.3). In

soft pairs with flavors indices, one demands A 6= B which corresponds to two soft particles do not

form a SU(N ) flavor singlet. Here the tick X denotes that the degenerate solution is dominant at

leading order, and in these cases we give the double-soft theorems in this section.

SDBI and SUGRA. For the case that only one flavor index is different in two soft particles,

all soft operators involve the R-symmetry SU(N ) generator RB
A , and the remaining part

has similar structure just like the first case. The similarities of these soft factors may reflect

double-copy relations and other connections between the corresponding theories. We leave

it for future study.

4 Discussions

In this paper we have studied formulas, inspired by Witten’s twistor string [23] and other

twistor-string models [24–28], for four-dimensional tree-level scattering amplitudes in vari-

ous theories. The formulas are based on 4d scattering equations in either polynomial (1.2)

or rational form (1.3), which can be obtained by reducing the general scattering equa-

tions (1.1) to four dimensions. We have shown that the rational-form equations simply

follow from fixing the GL(k) redundancy of the polynomial form, and how these two types

of formulas for amplitudes are related to each other (see (2.15)).
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What is special and advantageous about working in four dimensions is that the equa-

tions and formulas naturally split into sectors. This is not surprising for theories with

helicity sectors, such as Yang-Mills, gravity and Born-Infeld theory (with only the helicity-

preserving, middle sector). With four-dimensional on-shell superspace, the formulas are

most naturally written in supersymmetric form, and in particular we obtain a new for-

mula (2.24) for amplitudes in the N = 4 supersymmetric completion of DBI [32]. It is

intriguing that formulas for scalars in non-linear sigma model and special Galileon theory

only exist in the middle sector, and take a very similar form as that of DBI. This again

shows that these scalar theories are very special and have simple amplitudes: the formu-

las, (2.30) and (2.31), are in sharp contrast with (2.20) of φ3 theory, which requires a sum

over all sectors in four dimensions. It is also worth noticing that, the integrands of these

formulas (2.24), (2.30) and (2.31), can be used with both rational and polynomial form of

the scattering equations, with the factor V 4−N
n

2

for the latter. This is the same as the case

of N =4 SYM, but not so for N =8 SUGRA, bi-adjoint φ3 etc.

We have applied the formulas to study soft emissions, especially double-soft theorems

of amplitudes in these theories. The key idea is the same as in general dimensions [38],

namely universal behavior of double-soft emission is completely controlled by the degen-

erate solution, see table 2. It is remarkable to see that evaluating this solution alone

gives all the universal double-soft factors, which in turn provide crucial information on

the coset structure of the spontaneous symmetry breaking. In particular, we obtain sub-

leading theorems for double-scalar or double-fermion emissions in super-DBI theory, which

resemble the double-scalar case in N =8 supergravity [37]. We also classified these double-

soft theorems in N = 4 SYM and N = 8 SUGRA. From the table, we see that in many

cases the degenerate solution is dominant beyond leading order, O(nd) − O(d) > 1, such

as double-soft scalar emission in N = 4 SDBI. In these cases one can derive sub-leading

(and even sub-sub-leading) double-soft theorems by the same method as the one in this

paper and [38].

A longstanding open question is how to generalize tree-level formulas for N =4 SYM

and N = 8 SUGRA, to formulas at one loop. There has been considerable progress for

one-loop CHY formulas in general dimensions [60–63], and it would be very interesting

to do so for supersymmetric theories in 4d (see [64] for a conjecture for N =8 SUGRA).

Another important question is to see what is special about these effective field theories

in four dimensions. The supersymmetric DBI theory seems to be a perfect candidate for

studying both loop generalizations and the simplicity in 4d. Other interesting directions

include further study of the soft theorems and the physics behind it. Just as double-

scalar theorems in N = 8 SUGRA probing the coset structure of E7(7) symmetries, the

double-fermion theorems in super-DBI can reveal the structures of non-linearly realized

supersymmetries of the theory. Related to this, it would be also very interesting to study

sub-leading theorems similar to those in [38], which involve bosonic derivatives (rather

than fermionic ones in this paper). Perhaps by combining these two types of sub-leading

theorems, one can associate them to possible hidden symmetries and structures.
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