
J
H
E
P
0
7
(
2
0
1
6
)
0
3
8

Published for SISSA by Springer

Received: May 26, 2016

Accepted: July 3, 2016

Published: July 8, 2016

Bootstrap bound for conformal multi-flavor QCD on

lattice

Yu Nakayama

Department of Physics, Rikkyo University,

Toshima, Tokyo 171-8501, Japan

Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,

5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

E-mail: nakayama@theory.caltech.edu

Abstract: The recent work by Iha et al. shows an upper bound on mass anomalous di-

mension γm of multi-flavor massless QCD at the renormalization group fixed point from the

conformal bootstrap in SU(NF )V symmetric conformal field theories under the assumption

that the fixed point is realizable with the lattice regularization based on staggered fermions.

We show that the almost identical but slightly stronger bound applies to the regularization

based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap

in SU(Nf )L × SU(Nf )R symmetric conformal field theories. For Nf = 8, our bound im-

plies γm < 1.31 to avoid dangerously irrelevant operators that are not compatible with the

lattice symmetry.

Keywords: Conformal and W Symmetry, Lattice Quantum Field Theory, Lattice QCD,

Technicolor and Composite Models

ArXiv ePrint: 1605.04052

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2016)038

mailto:nakayama@theory.caltech.edu
http://arxiv.org/abs/1605.04052
http://dx.doi.org/10.1007/JHEP07(2016)038


J
H
E
P
0
7
(
2
0
1
6
)
0
3
8

Contents

1 Introduction 1

2 Bootstrap program and results 2

3 Discussions 6

1 Introduction

Realizing strongly coupled conformal gauge theories on a lattice has been one of the active

research arenas in theoretical physics. It would give non-perturbative information on vari-

ous critical exponents such as mass anomalous dimension γm = 3−∆ψ̄ψ. Finding a model

with larger mass anomalous dimension is important for its possible application to particle

physics (see e.g. [1] and reference therein). We note that in four dimensions, as long as

we work in Lagrangian quantum field theories, it is necessary to consider gauge theories to

realize any non-trivial renormalization group fixed point, and the Monte-Carlo simulation

to probe such non-trivial renormalization group fixed points is thus much more difficult

than in the lower dimensions.

One of the simplest examples of possible conformal gauge theories in four dimensions

is multi-flavor massless QCD [2]. While we have a better theoretical control in the weakly

coupled regime [3] (so called Banks-Zaks fixed point in the literature), we have two unsolved

issues in the strongly coupled regime: (1) what is the critical number of flavors with a given

gauge group? (2) what is the maximal value of the mass anomalous dimension?

We concentrate on the second issue here. There is an absolute bound on the mass

anomalous dimension γm ≤ 2 from the unitarity bound of conformal field theories [4].1

There is a proposed more stringent bound γm ≤ 1 from the analysis of the Schwinger-Dyson

equation [7]. Intuitively, the latter corresponds to the bound on the coupling constant

where the SU(Nf )L×SU(Nf )R symmetric four-Fermi terms become relevant, inducing the

Nambu-Jona-Lasinio mechanism of chiral condensation. Note, however, that unless in the

large Nf limit, in which the mass anomalous dimension and the relevance of the four-Fermi

interaction may be related, there is no simple relation such as ∆four−fermi = 2∆ψ̄ψ, relating

the mass anomalous dimension and the instability due to the four-Fermi terms. Indeed, the

approximation used in the Schwinger-Dyson equation may be only justifiable in the large

Nf limit. Whether γm = 1 or γm = 2 is when the conformality will be lost in multi-flavor

massless QCD is still under debate [8, 9].

1Throughout the work, we assume that the renormalization group fixed point shows conformal invariance

rather than mere scale invariance, which is true in the weakly coupled regime [5]. See e.g. [6] for the validity

of this assumption.

– 1 –



J
H
E
P
0
7
(
2
0
1
6
)
0
3
8

Along the line of this reasoning, the conformal bootstrap gives more quantitative bound

on the mass anomalous dimension in relation to the (ir)relevance of the SU(Nf )L×SU(Nf )R
symmetric four-Fermi terms. While being rigorous, the bound is weak as we will see in

the next section and does not exclude the possibility of having larger mass anomalous

dimension, in particular in the large Nf limit.

On the other hand, in the recent paper [10], Iha et al. addressed a similar but slightly

different question: what is the largest mass anomalous dimension of conformal multi-flavor

QCD under the assumption that it is realizable with the regularization based on staggered

fermions. The action for the staggered fermion has a smaller symmetry of U(Nf/4)L ×
U(Nf/4)R than massless QCD in the continuum limit, and we obtain a more constraint

from the condition that there is no relevant deformations that cannot be forbidden by the

lattice symmetry. It should be noted that their results do not exclude the possibility for

multi-flavor massless QCD to realize a fixed point violating their bound. Rather, it means

that such a fixed point cannot be approached with the lattice action based on the staggered

fermions without further fine-tuning.

In this paper, we address the similar question for the other regularization based on

Wilson fermions (or domain wall fermions), in which one can only preserve the SU(Nf )V
subgroup of SU(Nf )L × SU(Nf )R symmetry of the conformal multi-flavor QCD. From the

bootstrap analysis in SU(Nf )L × SU(Nf )R symmetric conformal field theories, we will see

that the bound is almost identical but slightly stronger. While our results, like theirs,

do not exclude the possibility of realizing larger mass anomalous dimension in conformal

multi-flavor QCD (e.g. for Nf = 8), it implies that if there is any possibility to realize it,

we need to tune effective four-Fermi interactions very carefully beyond what we normally

do in lattice QCD with the regularization that only preserves SU(Nf )V symmetry.

2 Bootstrap program and results

Our numerical conformal bootstrap program is basically same as the seminal studies in [11–

15] (but with more complicated symmetry group of SU(Nf )L × SU(Nf )R than SO(N) or

SU(N)) except that we use the refined implementation of the numerical semidefinite pro-

gramming by SDPB [16]. We consider the four-point functions 〈ΦiLiRΦ̄jLjRΦkLkRΦ̄lLlL〉 of

a scalar operator ΦiLiR in the fundamental × fundamental representation (a.k.a. bifunda-

mental) of SU(Nf )L × SU(Nf )R (i.e. meson operator in QCD) with the scaling dimension

∆Φ and their complex conjugates Φ̄iLiR . In the following equations, we sometimes use the

abbreviation of symmetric traceless T , anti-symmetric A, and singlet S representation in

each SU(Nf ).

The crossing symmetry of the four-point functions gives the following OPE sum rule:2

0 =
∑

O∈Φ×Φ̄

λ2
OV

(+)
AdjAdj+

∑
O∈Φ×Φ

λ2
OV

(−)
TA +

∑
O∈Φ×Φ̄

λ2
OV

(−)
AdjAdj+

∑
O∈Φ×Φ̄

λ2
OV

(+)
AdjS+

∑
O∈Φ×Φ

λ2
OV

(+)
AA

2This sum rule was originally obtained for the purpose of bootstrapping the finite temperature QCD.

The computation is straightforward but tedious group theoretic combinatorics, which we have implemented

with Mathematica based on the general algorithm presented in [12]. Eventually, we have shifted our focus

on the case with Nf = 2 and O(n) ×O(m) models in [20, 21]. The author would like to thank T. Ohtsuki

for the collaboration.
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+
∑

O∈Φ×Φ̄

λ2
OV

(+)
SS +

∑
O∈Φ×Φ

λ2
OV

(+)
TT +

∑
O∈Φ×Φ̄

λ2
OV

(−)
AdjS +

∑
O∈Φ×Φ̄

λ2
OV

(−)
SS (2.1)

where (±) denotes the even (+) or odd (−) spin contributions. By using the convention

F = v∆Φg∆O,l(u, v)− u∆Φg∆O,l(v, u)

H = v∆Φg∆O,l(u, v) + u∆Φg∆O,l(v, u) (2.2)

with the conformal block g∆O,l being normalized as in [17], whose explicit expression can

be found in [18], the each representation contributes to the sum rule as

V
(+)
AdjAdj =



(1 +N−2
f )F

(−1+N−2
f )H

−2N−1
f F

F

−H
N−2
f F

N−2
f H

−N−1
f F

−N−1
f H


, V

(−)
TA =



0

0

0

−F
−H
F

−H
0

0


, V

(−)
AdjAdj =



(1 +N−2
f )F

(−1+N−2
f )H

−2N−1
f F

−F
H

−N−2
f F

−N−2
f H

N−1
f F

N−1
f H



V
(+)
AdjS =



−2N−1
f F

−2N−1
f H

2F

0

0

−2N−1
f F

−2N−1
f H

F

H


, V

(+)
AA =



0

0

0

F

H

F

−H
−F
H


, V

(+)
SS =



F

H

0

0

0

F

H

0

0



V
(+)
TT =



0

0

0

F

H

F

−H
F

−H


, V

(−)
AdjS =



−2N−1
f F

−2N−1
f H

2F

0

0

2N−1
f F

2N−1
f H

−F
−H


, V

(−)
SS =



F

H

0

0

0

−F
−H

0

0


(2.3)

Here, we have symmetrized the two SU(Nf )s because in the sum rule, one cannot distin-

guish the SU(Nf )L and SU(Nf )R. We also note that for this four-point function, the sum
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Figure 1. Bounds on the scaling dimension of operators in the singlet representation.

rule is the same with or without extra U(1)A. In other words, the U(1)A anomaly cannot

be seen in the bootstrap bound we study.3

Our main focus in this paper is Nf = 8 which is under debate whether the theory

possesses a fixed point for the SU(3) gauge group, but we may study the other flavor

groups with no difficulty. In this section, we will set Nf = 8 in the following, but we will

comment on the case Nf = 16 in section 3. A reader who is interested in the other Nf

may contact the author.

The actual implementation of the numerical conformal bootstrap is based on cboot [19],

which uses the SDPB as a core part of the semi-definite programming. For the truncation

of the search space by number of derivatives, our numerical results in this section are

based on Λ(= Nmax) = 17, which is slightly better than the one used in [10]. The other

parameters such as the number of included spin are chosen appropriately so that the

numerical optimization is stable.

Our first result is the bound on the scaling dimensions of the singlet operator in

SU(Nf )L × SU(Nf )R symmetric conformal field theories that appears in the OPE of the

scalar operators Φ and Φ̄. When the scaling dimension of this operator becomes less than

four, it is regarded as a dangerously irrelevant operator (because in our explicit models

in mind, there is no such relevant operators in the UV continuum limit), and we have to

tune the corresponding coupling to realize the fixed point in any regularization in use. We

again emphasize that this does not mean that such a fixed point cannot exist, but it only

means that the realization on the lattice requires further fine-tuning due to the dangerously

irrelevant operator.

3A possible way to avoid U(1)A symmetry is to introduce a gap assumption in spin one sector in the

singlet representation, but we a priori do not know how much gap should be introduced.
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A plot in figure 1 shows the bound on the scaling dimensions of the singlet operator

for Nf = 8. This plot directly tells that the bound is ∆Φ > 1.21 or γm < 1.79 in order to

avoid the existence of a dangerously irrelevant operator that is singlet. As a side remark,

we have found that the bound actually coincides with the bound on the scaling dimensions

of the singlet operator in the four-point function of scalar operators in the fundamental

(vector) representation in SO(128) symmetric conformal field theories. This symmetry

enhancement is similar to the observation made in [14, 20].

Let us compare our bound with the one that has been (implicitly) studied in [10].

They studied the bound on the scaling dimensions of operators that appear in the OPE of

the scalar operators in the adjoint representation of the SU(Nf )V symmetry. Due to the

above mentioned symmetry enhancement, the bound on scaling dimension of the singlet

operator which they could have computed must be identical to the bound on the scaling

dimensions of the singlet operator appearing in the OPE of the scalar operators in the fun-

damental (vector) representation in SO(63) symmetric CFTs. We have explicitly checked

this numerically with the same search space dimension (i.e. same Λ), which directly shows

that our bound is slightly weaker than theirs.

Now, we are going to study the bound on the scaling dimensions of operators in

the symmetric traceless × symmetric traceless representation and anti-symmetric × anti-

symmetric representation because these include singlet scalar operators in the SU(Nf )V ,

so one may not be able to exclude the corresponding deformations from the effective action

without fine-tuning if we use the regularization that only preserves the SU(Nf )V symmetry

(such as Wilson fermions or domain wall fermions). Therefore these operators become

dangerously irrelevant if the scaling dimensions become less than four.

The resulting bound on the scaling dimensions can be found in figure 2 and figure 3.

Our result shows that in order to avoid these dangerously irrelevant operators, we need

∆Φ > 1.69 or γm < 1.31 from the bound for the symmetric traceless × symmetric traceless

representation in figure 2, which is stronger than the one from the anti-symmetric × anti-

symmetric representation.

Our bound can be compared with the one studied in SU(Nf )V symmetric conformal

field theories from the four-point functions of scalar operators in the adjoint representa-

tion [10]. At first sight, it seems that our bound in figure 2 coincides with their bound

in Fig A1, and our bound in figure 3 coincides with their bound in Fig A2. However, a

more delicate comparison shows that they are very close but not identical if we use the

same search space dimension Λ for the comparison. It turns out that our bound on ∆Φ is

slightly stronger (i.e. the bound on mass anomalous dimension γm is stronger). As for the

bound on the mass anomalous dimension for the possible phenomenological applications,

however, the difference is minor in practice.4 We also note that unlike in three dimensions

near the kink, the convergence of the numerical conformal bootstrap bound with respect

to the search space dimension Λ is not dramatically fast in four dimensions, so one may

expect a further improvement on the bound by increasing Λ. Indeed, we see certain degrees

4It is noted that the bound is very close to the mass anomalous dimension proposed in [22, 23] from the

Monte Carlo simulations based on Wilson fermions.
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Figure 2. Bounds on the scaling dimension of operators in the symmetric traceless × symmetric

traceless representation.
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Figure 3. Bounds on the scaling dimension of operators in the anti-symmetric × anti-symmetric

representation.

of improvement by increasing Λ in figure 4, but we believe that the possible improvement

on the bound must be much less than 0.1 and does not reach γm = 1.0. We will discuss

the Λ→∞ limit further from a slightly different viewpoint in the next section.

3 Discussions

In this work, we have obtained an upper bound on the mass anomalous dimension in

conformal multi-flavor QCD, assuming that the fixed point is realizable by regularization
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preserving the SU(Nf )V out of SU(Nf )L×SU(Nf )R. The bound is numerically very similar

but not identical to the one studied in [10]. For Nf = 8, our bound implies γm < 1.31 to

avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

Is our bound saturated by the actual conformal multi-flavor QCD? To address the

point, we note that with the current technology of the conformal bootstrap, it is difficult

to specify the gauge group, and our bound applies to any gauge theory with the same flavor

symmetries. It is therefore very probable that our bound is not optimum, say for the study

of the massless QCD with the SU(3) gauge group. A possible idea to incorporate the gauge

group is to study baryon operators or to study non-local observables, which may require

further ingenuity from the viewpoint of the conformal bootstrap.5

In relation to the above point, we have also studied the case with Nf = 16. With

the same search space dimensions (i.e. Λ = 17) as in the case of Nf = 8, we have found

that the bound is γm < 1.29. The choice of this Nf is motivated by the Banks-Zaks fixed

point: if we had studied the SU(3) gauge group, one would find the very weakly coupled

IR fixed point with the very small mass anomalous dimension γm = 0.026 computed in

perturbation theory. It is obvious that the perturbative result satisfies our bound but does

not saturate it. From this we should learn that our bounds are more useful in the strongly

coupled regime in which the perturbative computation is not available.

To conclude the paper, we would like to discuss the large Nf limit of our bound. In

particular it is of academic interest if the bound becomes identical to the generalized free

theory line in the large Nf limit so that our bound on the mass anomalous dimension

becomes as small as γm = 1. This possibility is motivated from the observation that the

bound in figure 2 may look a straight line for smaller ∆Φ and the slope becomes smaller

5Recently, the similar question has been addressed in three-dimensional multi-flavor massless QED with

the help of monopole operators [24, 25].
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Figure 5. The asymptotic behavior of the bound on the scaling dimensions of the scalar opera-

tors in the symmetric traceless × symmetric traceless representation in SU(10000)L × SU(10000)R
symmetric conformal field theories as a function of Λ−1.

for larger Nf . To motivate it further, we have empirically observed that the bound on

the scaling dimension of the scalar operators in the symmetric traceless representation in

SO(N) symmetric conformal field theories in the large N limit approaches the one for the

generalized free theory line i.e. ∆T = 2∆φ (at least in the range ∆T < 4). We do conjecture

that the bound is actually the generalized free line in the large N limit.

On the other hand, the bound on the scaling dimensions of the symmetric traceless ×
symmetric traceless operator in SU(Nf )L×SU(Nf )R symmetric conformal field theories is

weaker than the one of the symmetric traceless representation in SO(N) symmetric confor-

mal field theories. While it may seem likely that for small ∆Φ, the bound seems to approach

the generalized free theory line in the large Nf limit, we do conjecture that the bound on

the scaling dimensions of scalar operators in the symmetric traceless × symmetric traceless

representation in SU(Nf )L×SU(Nf )R symmetric conformal field theories is strictly weaker

than the generalized free theory line. To support our conjecture, in figure 5, we present the

bound at ∆Φ = 2.0 with different values of Λ with Nf = 10000. A crude extrapolation, in

the spirit of [26, 27], shows that the bound at Λ =∞ tends to ∆TT ∼ 4.5 which is above the

generalized free theory one (i.e. 4.0). It should be contrasted with the case with SO(N) the-

ory bound in which ∆T can be as small as 4.01 or less even with Λ ∼ 20 at N = 100000000.

Finally, at the risk of repetition, we would like to stress that there is nothing wrong with

conformal field theories, possibly including conformal multi-flavor QCD, possessing dan-

gerously irrelevant operators, violating any of the bounds we have discussed. Indeed, we do

– 8 –
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know the existence of four-dimensional conformal field theories with SU(Nf )×SU(Nf ) sym-

metry but violating our bounds with dangerously irrelevant operators. One example is the

supersymmetric QCD in which the scaling dimension of chiral operators in the fundamental

× fundamental representation (i.e. supersymmetric meson operator) goes down to ∆Φ = 1

hitting the unitarity bound. Our bound does not contradict the case here, for the supersym-

metric QCD does possess dangerously irrelevant operators. A part of the reason why such

a fixed point may be stable is because supersymmetry protects the perturbation against it.
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