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1 Introduction

We would like to understand collective macroscopic behaviour of matter subject to external

fields. In the high-temperature limit this is often captured by classical hydrodynamics. The

ingredients that go into writing down the hydrodynamic equations are: the identification of

relevant variables (conserved densities, order parameters), the derivative expansion (small

gradients near equilibrium), and symmetry constraints. The hydrodynamic equations are

modified when the system is subject to external electric and magnetic fields. The latter will

induce polarization (electric, magnetic, or both) in a fluid, and as a result the transport

properties of the fluid will change. Our focus here will be on isotropic relativistic matter

because a) electromagnetic fields are intrinsically relativistic, b) relativistic fluids have

more symmetry than non-relativistic fluids, and c) relativistic fluids have been a subject of

much recent attention in the literature due to their appearance in heavy-ion physics [1, 2],

in gravitational physics, through the holographic duality [3], and even in condensed matter

physics [4, 5]. The systematic description (including the derivative expansion) of polarized

relativistic fluids is largely missing, and the present paper is a step in filling that gap.
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In order to understand the hydrodynamics of matter subject to external fields, one

needs to understand its thermodynamics first. In what follows we will describe the pro-

cedure for obtaining the energy-momentum tensor and the current density for stationary

equilibrium polarized matter subject to external gravitational and electromagnetic fields.

We will find simple expressions for “bound” currents, including equilibrium surface currents

and surface momenta.

Let us start with the standard description of equilibrium thermodynamics without

external fields. In the grand canonical ensemble at temperature T0 = 1/β0 and chemical

potential µ0, extensivity in the large-volume limit dictates that the logarithm of the grand-

canonical partition function Z[T0, µ0] is proportional to the d-dimensional spatial volume,

lnZ = β0

∫
ddx P (T0, µ0) ,

where the pressure P (T0, µ0) is constant in equilibrium [6]. The partition function Z may

be computed from a Euclidean path integral with a Euclidean (imaginary) time compact-

ified with period β0, see e.g. [7]. In the path integral action, the fundamental fields of the

microscopic theory can then be coupled to time-independent external sources: the (Eu-

clidean) metric gEµν and the (Euclidean) gauge field AE
µ . The gauge field couples to the

conserved current, whose time component is the charge density corresponding to the chem-

ical potential. See ref. [8] for a convenient parametrization of the Euclidean sources gE and

AE. The Euclidean path integral gives rise to the partition function Z = Z[T0, µ0, g
E, AE],

where T0 = 1/β0 is the coordinate periodicity of the Euclidean time. We assume that the

coupling to time-independent external sources leaves the system in equilibrium, so that no

entropy is produced. The temperature and the chemical potential will be altered by the

external sources and are not uniform any more. For example, the equilibrium temperature

becomes T (x) = T0/
√
gE00(x) [6]. Similarly, the chemical potential will be shifted by the

time component of the external gauge field. We can write W = −i lnZ as

W [T0, µ0, g
E, AE] = −iβ0

∫
ddx

√
gE F(T0, µ0, g

E, AE) , (1.1)

where
√
gE is the square root of the determinant of gEµν , and F is the negative of the grand

canonical free energy density. In flat space and without external gauge fields, F reduces to

the pressure P , and in general F is a complicated function of the spatially varying external

sources. In a slight abuse of terminology, we will refer to F as the free energy density,

and to W as the free energy. Varying W with respect to a time-independent source gives

rise to a zero-frequency insertion in the Euclidean path integral of the operator coupled

to the source. The relevant operators are the energy-momentum tensor (coupled to the

metric), and the conserved current (coupled to the gauge field). Thus W is the generating

functional for zero-frequency correlation functions of the energy-momentum tensor and the

current in equilibrium.

The Euclidean external sources gEµν and AE
µ may be “un-Wick-rotated” to Minkowski

time to obtain the physical real-time external sources gµν and Aµ, for example gE00 = −g00,
gE0k = −ig0k, AE

0 = −iA0 etc. In what follows we will omit the dependence on T0 and µ0,
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and will denote the Euclidean generating functional with arguments continued to physical

time as W [g,A], so that

W [g,A] =

∫
dd+1x

√
−gF(T0, µ0, g, A) , (1.2)

where
∫
dd+1x stands for −iβ0

∫
ddx. We may as well view

∫
dd+1x as containing an integral

over the physical time, as the argument of the integral does not depend on time anyway.

For a relativistic microscopic theory without gauge and gravitational anomalies, the

generating functional is both gauge- and diffeomorphism-invariant. Let us further assume

that all long-range interactions are screened due to a non-zero temperature T , so that

the spatial correlations are local on scales longer than the screening length. The effective

description of static correlations on such long scales will then be given by W [g,A], where

the density F is a local function of the external sources. For external fields that vary slowly

in space, the above locality implies that F may be written as a derivative expansion in the

gradients of the external fields. See ref. [8] for a study of the local generating functional in

the Euclidean form, and ref. [9] for the Minkowski form. Here we will use the Minkowski

form, in which the underlying gauge and diffeomorphism invariance is manifested in a more

straightforward way.

In order to implement the derivative expansion in practice, one needs to postulate the

derivative scaling of the external sources gµν and Aµ. Physically, this amounts to deciding

whether the external sources are taken as “strong” or “weak” on the scale of the spatial

inhomogeneity in equilibrium. In refs. [8, 9], the external sources were taken as “weak” in

the sense that both gµν and Aµ were assumed to be O(1) in the derivative expansion, so

that both electric and magnetic fields appear at order O(∂) in the expansion. This choice of

scaling makes the description of equilibrium polarization rather awkward: for example, in

3+1 dimensions, the thermodynamic response to constant homogeneous magnetic field B

appears at the same order as the response to two derivatives of temperature, B2 ∼ (∂T )2.

In order to describe polarized matter in constant (or slowly varying in space) electric

and magnetic fields, a different derivative counting scheme is more natural, one in which

constant homogeneous electric and magnetic fields are taken to be O(1) in the derivative

expansion, rather than order O(∂). This will be our goal here: to implement the derivative

expansion of the free energy in the regime when the external gravitational field is still

“weak” so that gµν is O(1), while the external electromagnetic field is “strong” so that the

field strength Fµν = ∂µAν − ∂νAµ is O(1). Following the general approach of ref. [9], we

will obtain simple expressions for the energy-momentum tensor and the conserved current

in relativistic polarized matter subject to external fields.

2 Free energy

2.1 Thermodynamic parameters

Let us first outline the starting point. The free energy W [g,A] is a gauge- and

diffeomorphism-invariant functional of Aµ, gµν , and their derivatives. Being in equilib-

rium means that that there is a Killing vector V , such that the Lie derivative with respect
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to V vanishes on all observables, £V (. . . ) = 0. In suitable coordinates, V µ = (1,0). In

the grand canonical ensemble, the equilibrium state is parametrized by the temperature,

velocity, and the chemical potential. Their relation to the external sources is

T =
1

β0
√
−V 2

, uµ =
V µ

√
−V 2

, µ =
V µAµ + ΛV√
−V 2

, (2.1)

where β0 is a constant setting the normalization of temperature, and ΛV is a gauge pa-

rameter which ensures that µ is gauge-invariant. The constant µ0 is absorbed into ΛV .

Without external gauge fields, relations (2.1) are the covariant versions of the statement

that T
√
−g00 and µ

√
−g00 are constant in equilibrium [6]. The vector uµ is the normalized

(u2 = −1) velocity of matter, and the coordinates in which V µ = (1,0) correspond to the

matter “at rest”. Both T and µ are gauge invariant and transform as scalars under dif-

feomorphisms. For a discussion of gauge and diffeomorphism covariance of the equilibrium

parameters see section 5 of ref. [10]. For a system occupying a spacetime region M with a

boundary ∂M, we assume that the generating functional can be separated into bulk and

boundary contributions, and we take

W [g,A] =

∫
M
dd+1x

√
−gF +

∫
∂M

ddx
√
γ L . (2.2)

Here the first term describes the bulk contribution, and the second term the boundary

contribution. To leading order in the derivative expansion, F is the pressure, and L is the

surface tension. In the bulk term, g is the determinant of gµν , and F is a function of T , uµ,

µ, as well as of the sources Aµ, gµν , and their derivatives. For the boundary with coordinates

ya whose shape is specified by xµ(ya), the tangent vectors are eµa = ∂xµ/∂ya, and the

projector onto the boundary is Pµν = gµν − nµnν . The induced metric on the boundary is

γab = eµaeνb gµν . In the boundary term, γ is the determinant of the induced metric, while L

in addition may depend on nµ, the spacelike unit normal vector to the boundary.

2.2 Response to external sources

The energy-momentum tensor and the current are defined as

δW [g,A] =
1

2

∫
M
dd+1x

√
−g Tµν δgµν +

∫
M
dd+1x

√
−g Jµ δAµ

+
1

2

∫
∂M

ddx
√
γ T µνs δgµν +

∫
∂M

ddx
√
γ Jµs δAµ

+

∫
∂M

ddx
√
γ Kµν

s £nδgµν +

∫
∂M

ddx
√
γ Kµ

s £nδAµ + . . . , (2.3)

where £n is the Lie derivative along the normal, the dots denote boundary terms with

higher normal derivatives of the sources. The variations are performed at fixed V µ and

ΛV . Here Tµν , Jµ are the bulk energy-momentum tensor and the current, and Tµνs , Jµs
are the boundary energy-momentum tensor and the current. The tensors Kµν

s and Kµ
s

describe interactions between bulk and boundary degrees of freedom. The gauge- and
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diffeomorphism-invariance of W [g,A] implies conservation laws

∇µJµ = 0 , (2.4a)

∇µTµν = F νλJλ . (2.4b)

The derivative expansion for the free energy density F in the generating functional (2.2)

gives rise to the derivative expansion for the equilibrium Tµν and Jµ, as described in [9].

The boundary energy-momentum tensor and the current in (2.3) may be decomposed into

the contributions tangential to and normal to the boundary,

Tµνs δgµν = T abs δγab + Πa
s δga + Πs δgn ,

Jµs δAµ = Jas δAa + Js δAn .

Here δga is the pullback of P λµ δgλνn
ν to the boundary, δgn = nµnνδgµν , δAa is the pull-

back of δAµ to the boundary, and δAn = nµδAµ. Similarly, one can vary the generating

functional with respect to the field strength Fµν ,

δFW [g,A] =
1

2

∫
M
dd+1x

√
−g Mµν δFµν +

1

2

∫
∂M

ddx
√
γMab

s δFab

+

∫
∂M

ddx
√
γMa

s δFa +

∫
∂M

ddx
√
γ Lµνs £nδFµν + . . . (2.5)

where again δFab is the pullback of δFµν to the boundary, δFa is the pullback of P λµ δFλνn
ν

to the boundary, and the dots denote boundary terms with higher normal derivatives of

δFµν . This defines the bulk polarization tensor Mµν , and the boundary polarization tensor

Mab
s .1 The surface terms Js, Πa

s , Πs, M
a
s depend on how the equilibrium is set up, and what

the boundary conditions on ∂M are, as determined by the nature of the phase separation

at ∂M.

In all the above variations, we assume that the region M occupied by matter is un-

changed. One could also consider the response of the generating functional to changing the

shape of ∂M, however this will not be needed for our purposes. See ref. [11] for a recent

discussion of surface terms in the Euclidean generating functional.

The polarization tensor contains both electric and magnetic components. We define

the electric field as Eµ ≡ Fµνu
ν , the magnetic field as B ≡ −1

2ε
µαβuµFαβ for d = 2,

and Bµ ≡ 1
2ε
µναβuνFαβ for d = 3. In 1+1 dimensions, we define the “magnetic field” as

B ≡ 1
2ε
µνFµν , so that Fµν = −Bεµν . The Levi-Civita tensor is εµναβ = εµναβ/

√
−g, with

ε0123 = 1, and similarly in other dimensions. Both Eµ and Bµ are spacelike and orthogonal

to uµ. We have the following decomposition of the field strength:

d = 1 : Fµν = uµEν − uνEµ ,

d = 2 : Fµν = uµEν − uνEµ − εµνρuρB ,

d = 3 : Fµν = uµEν − uνEµ − εµνρσuρBσ .

1There is a gravitational analogue of the polarization tensor which involves varying the generating

functional with respect to the connection coefficients. The energy-momentum tensor then takes the form

analogous to eq. (2.14) below. See section 5 of ref. [10].
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The electric polarization vector pα and the magnetization vector mα (for d=3) are

defined by rewriting the integrand in (2.5) as 1
2M

µνδFµν = pαδEα + mαδBα. For d=2,

the variation is 1
2M

µνδFµν = pαδEα + mδB, which defines the magnetization m. The

decomposition of the polarization tensor into the electric and magnetic parts is then

d = 1 : Mµν = mεµν , (2.6a)

d = 2 : Mµν = pµuν − pνuµ − εµνρuρm, (2.6b)

d = 3 : Mµν = pµuν − pνuµ − εµνρσuρmσ , (2.6c)

where pµ ≡ uλM
λµ, mµ ≡ 1

2ε
µναβuνMαβ (for d = 3), and m ≡ −1

2ε
µαβuµMαβ (for d = 2).

Both pα and mα are transverse to uα.

2.3 Equilibrium relations

The equilibrium definitions (2.1) together with £V (. . . ) = 0 give

∂λT = −Taλ , ∂λµ = Eλ − µaλ , (2.7)

where aµ ≡ uλ∇λuµ is the acceleration vector, uµa
µ = 0. These relations imply that

T∂λ(µ/T ) − Eλ vanishes in equilibrium. In other words, a system subject to an external

electric field will develop a gradient of µ/T in order to compensate the applied field and

ensure that the equilibrium is maintained.

This has implication for derivative counting. For “weak” electric fields Eλ ∼ O(∂), the

gradients of T and µ are O(∂) as well. For “strong” electric fields Eλ ∼ O(1), there will

be an O(1) gradient of µ/T . How exactly this gradient is achieved depends on the nature

of the microscopic degrees of freedom. Given that the chemical potential determines the

number of charge carriers, we take “strong” electric fields to mean that both E and ∂µ are

O(1), while ∂T is still O(∂), so that ∂µ
µ �

∂T
T . In the generating functional, the derivatives

of the chemical potential may then be traded for the electric field.

Similarly, the derivative of the velocity can be decomposed in equilibrium as

d = 1 : ∇µuν = −uµaν , (2.8a)

d = 2 : ∇µuν = −uµaν −
1

2
εµνα u

αΩ , (2.8b)

d = 3 : ∇µuν = −uµaν −
1

2
εµναβ u

αΩβ , (2.8c)

The vorticity is Ω ≡ −εµνλuµ∇νuλ for d = 2, and Ωµ ≡ εµναβuν∇αuβ for d = 3. This

velocity decomposition implies that both the expansion ∇µuµ and the shear tensor σµν ≡
(∆µα∆νβ+∆να∆µβ− 2

d∆µν∆αβ)∇αuβ (where ∆µν = gµν+uµuν is the transverse projector)

vanish in equilibrium. This is as it should be: out of equilibrium, the expansion would

contribute to dissipation through bulk viscosity, and the shear tensor would contribute to

dissipation through shear viscosity.
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Combined with the electromagnetic “Bianchi identity” εµναβ∇νFαβ = 0 in 3+1 dimen-

sions, the velocity decomposition (2.8) implies

∇·B = B·a− E·Ω ,

uµε
µνρσ∇ρEσ = uµε

µνρσEρaσ .

These are the covariant versions of the familiar flat-space equilibrium relations ∇·B = 0

and ∇×E = 0. More generally, for the electric field in equilibrium we have

d = 2 : εµαβ∇αEβ = εµαβEαaβ , (2.9a)

d = 3 : εµνρσ∇ρEσ = εµνρσEρaσ , (2.9b)

as a consequence of £VEα = 0 and Eαu
α = 0.

2.4 Polarization ambiguities

The electromagnetic Bianchi identity also implies that there is an ambiguity in the defini-

tion of the polarization tensor: in 3+1 dimensions, one can always add to the generating

functional an identically vanishing term W∅ = 1
2

∫√
−g Cµ εµναβ∇νFαβ , where Cµ can be

a function of the field strength and its derivatives. Such a term shifts the polarization

tensor by

Mαβ →Mαβ + εαβµν∇µCν . (2.10)

The polarization vectors correspondingly shift as

pµ → pµ − εµνρσuν∇ρCσ , (2.11a)

mµ → mµ −∇µ(C·u)− (C·u)aµ . (2.11b)

In 2+1 dimensions, we can add an identically vanishing term W∅ = 1
2

∫√
−g Cεµαβ∇µFαβ ,

where again C can be a function of the field strength and its derivatives. The polarization

tensor then shifts by

Mαβ →Mαβ − εαβµ∇µC . (2.12)

The electric polarization vector correspondingly changes as

pµ → pµ + εµνρuν∇ρC , (2.13)

while the magnetic polarization m remains unchanged.

The variational derivatives of W∅ with respect to both gµν and Aµ vanish. As a result,

the energy-momentum tensor and the current (both bulk and boundary) are not affected

by such unphysical shifts.

2.5 Bound charges and bound currents

For matter whose degrees of freedom carry gauge charges, it is conventional to separate

the charge into the “free charge” and “bound charge” components. In the grand canonical

ensemble, the chemical potential µ describes the coupling of the system to a reservoir

– 7 –
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of “free charges”. Demanding local charge neutrality for free charges in the bulk would

amount to demanding ∂F/∂µ = 0. Doing so would eliminate the contribution of free

charges to polarization. One may refer to µ-dependent contributions as coming from “free

charges”, and µ-independent contributions as coming from “bound charges”, though such

a separation is somewhat artificial. We will not impose ∂F/∂µ = 0, and will keep the

contribution to polarization from both free charges and bound charges.

The current Jµ admits a simple expression in terms of the polarization tensor to any

order in the derivative expansion. Indeed, the free energy density F can be written as

F = S(0) + Sλµν(1) ∇λFµν + Sλσµν(2) ∇λ∇σFµν + . . . ,

where the coefficients S(n) do not contain derivatives of the electromagnetic field strength.

The derivative of the chemical potential can be traded for the electric field according

to (2.7), hence we can take S(n) = S(n)(T, µ, Fαβ , . . . ) where dots denote the arguments

which do not depend on the gauge field. The polarization tensor can be easily found in

terms of S(n) through integration by parts. It is then clear that the current extracted from

the generating functional according to (2.3) is

Jα = ρuα −∇λMλα , (2.14)

to any order in the derivative expansion, where ρ ≡ ∂F/∂µ. The first term in the right-

hand side is the standard equilibrium current in the absence of polarization: to leading

order in the derivative expansion the free energy density F is just the pressure P , and

ρ = ∂P/∂µ is the density of “free charges”. The second term in the right-hand side is

a total derivative of an anti-symmetric tensor. It therefore does not contribute to the

conservation equation ∇µJµ = 0, and can be interpreted in terms of “bound” charges and

“bound” currents. It is clear from the expression (2.14) that the unphysical polarization

shifts (2.10) and (2.12) do not affect the current.

The current can be decomposed with respect to the velocity uµ as

Jµ = Nuµ + J µ , (2.15)

where N ≡ −uµJµ is the charge density, and the spatial current Jµ ≡ ∆µλJ
λ is transverse

to uµ. For the polarization tensor of the form (2.6), the definitions (2.1) together with

£V (. . . ) = 0 lead to the following equilibrium expressions for the charge density:

d = 2 : N = ρ−∇µ pµ + pµaµ −mΩ , (2.16a)

d = 3 : N = ρ−∇µ pµ + pµaµ −mµΩµ . (2.16b)

Consider the charge density in d = 3 spatial dimensions. The second term in the right-hand

side is the familiar electrostatic bound charge density, which in flat space reduces to −∇·p.

The third term is the bound charge density induced by gravity: in the static Newtonian

gravitational field it becomes p·∇ϕ, where ϕ is the gravitational potential. The last term

is the bound charge density induced in magnetized matter which is rotating. For a system

– 8 –
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undergoing rotation with small (meaning |ω|R � 1, where R is the size of the system)

angular velocity ω, the last term in the right-hand side becomes −2m·ω.

Similarly, the definitions (2.1) together with £V = 0 lead to the following equilibrium

expressions for the spatial current:

d = 2 : J µ = εµνρuν∇ρm+ εµνρuνaρm, (2.17a)

d = 3 : J µ = εµνρσuν∇ρmσ + εµνρσuνaρmσ . (2.17b)

Consider the current density in d = 3 spatial dimensions. The first term in the right-hand

side is the familiar bound current, which in flat space reduces to ∇×m. The second term is

the bound current induced by the gravitational field: in the static Newtonian gravitational

field it reduces to (∇ϕ)×m, where ϕ is the gravitational potential.

We emphasize that the above expressions for bound charges and bound currents are

simply a consequence of thermal equilibrium. Equations (2.16), (2.17) do not assume

any particular microscopic model of matter, and moreover they hold to any order in the

derivative expansion.

2.6 Derivative expansion

We close this section with a comment on the derivative expansion of the free energy. As

a schematic example, consider the functional W [a, g] which depends on two sources a(x)

and g(x) which both vary slowly in space. Assuming locality, the derivative expansion is

W [a, g] =

∫
P0(a, g) +

∫
P1(a, g) a′(x) +

∫
P2(a, g) g′(x)

+

∫
P3(a, g) a′′(x) +

∫
P4(a, g) g′′(x) +

∫
P5(a, g) a′(x)g′(x)

+

∫
P6(a, g) a′(x)2 +

∫
P7(a, g) g′(x)2 +O(∂3) ,

and the boundary terms are implied.

Suppose now that a changes much faster than g, such that |a′(x)/a(x)| � |g′(x)/g(x)|.
Naively, one may think that the terms containing the derivatives of a(x) are more important

than those with derivatives of g(x), and there is a separate derivative counting associated

with a(x) and g(x). This is not in general so: for example, integrating the P2 term by

parts gives rise to
∫

(∂P2/∂a) g(x)a′(x), which may be of the same order as the P1 term. It

is possible to count the derivatives of g differently from the derivatives of a if the “cross”

terms (∂P2/∂a) are in some sense small. For example, we could introduce two counting

parameters ε and γ � ε and count the derivatives as a′ ∼ ε, g′ ∼ γ, while ∂P2/∂a, ∂P4/∂a,

∂P5/∂a, ∂P7/∂a are of order γ/ε.

Physically, a will be the external gauge potential Aµ, and g the external metric gµν . By

“strong” electromagnetic fields we will mean the fields such that this derivative counting

is valid, i.e. electromagnetism is more important than gravity. For such “strong” fields, by

the leading order in the derivative expansion we will mean: i) setting γ to zero, ii) isolating

terms polynomial in a′(x), and iii) summing those terms into a single function P (a, g, a′).

– 9 –
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3 Leading order in the derivative expansion

3.1 Weak electromagnetic fields

Let us start with “weak” electromagnetic fields. For the sources with Aµ ∼ O(1), gµν ∼
O(1), there are only two gauge and diffeomorphism invariants at leading order in the

derivative expansion in the bulk: T and µ. On the boundary, there is an extra invariant

un ≡ uµnµ. The static generating functional to leading order in the derivative expansion

is then

W [g,A] =

∫
M
dd+1x

√
−g P (T, µ) +

∫
∂M

ddx
√
γ L(T, µ, un) .

The definitions (2.3) give

Tµν = Pgµν + (Ts+ µρ)uµuν ,

Jµ = ρuµ ,

where s = ∂P/∂T is the bulk entropy density, ρ = ∂P/∂µ is the bulk charge density.

These are the standard expressions for the energy-momentum tensor and the current in a

relativistic perfect fluid. The boundary energy-momentum tensor and the current are

T abs = Lγab + (Tss + µρs)u
aub ,

Jas = ρsu
a ,

and the other boundary terms are Πa
s = (Tss + µρs)unu

a, Πs = 1
2 (Tss + µρs)u

2
n + εsun,

and Js = ρsun, where we have defined ss ≡ ∂L/∂T , ρs ≡ ∂L/∂µ, εs ≡ ∂L/∂un. Again,

these describe a perfect fluid on the boundary with pressure L. At leading order in the

derivative expansion, both Kµ
s and Kµν

s vanish.

3.2 Strong electromagnetic fields

Let us now consider “strong” electromagnetic fields, such that Fµν ∼ O(1) and gµν ∼ O(1)

in the derivative expansion. To leading order, the static generating functional is

W [g,A] =

∫
M
dd+1x

√
−g P (T, µ, Fαβ) +

∫
∂M

ddx
√
γ L(T, µ, Fαβ , nα) . (3.1)

The dependence on Fαβ includes the dependence on electric and magnetic fields, and for

the boundary part also on their normal components.2

2When d+1 is odd, there may be Chern-Simons terms in P . The Chern-Simons term is not gauge

invariant on the boundary, so in this case L must contain an anomalous piece, whose gauge variation exactly

cancels the gauge variation of the Chern-Simons term. In the application to the quantum Hall effect, the

anomalous boundary piece comes from the massless 1+1 dimensional chiral modes on the boundary [12].

Upon integrating out the massless boundary modes, L will in general become a non-local function of the

electric and magnetic fields. If the dynamics of the boundary modes can be described classically, they may

be treated directly within the generating functional, similar to what is done in ref. [13] for superfluids.

In what follows, we will ignore the massless boundary modes, and will only explore the consequences of

short-distance correlations on the boundary.
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The bulk current is given by (2.14), with the polarization tensor Mµν = 2∂P/∂Fµν .

In what follows we will express Mµν in terms of electric and magnetic susceptibilities.

In order to find the energy-momentum tensor, we need to be more specific about the

dependence of P and L on the metric. Gauge and diffeomorphism invariance requires

that P = P (s(0)) is a function of scalars s(0), which are made out of the electromagnetic

field strength (we will use the term “scalar” for both scalars and pseudo-scalars). The

superscript signifies that we are working to leading order in the derivative expansion.

The number of scalars s(0) depends on the dimension. To leading order in the derivative

expansion, we choose to work with the following independent scalars:

d = 1 : s(0) = {T, µ, B} , (3.2a)

d = 2 : s(0) =
{
T, µ, B, E2

}
, (3.2b)

d = 3 : s(0) =
{
T, µ, B2, E·B, E2

}
. (3.2c)

Let us express the bulk energy-momentum tensor using the decomposition with respect to

the velocity uµ, as is often done in relativistic fluid dynamics,

Tµν = Euµuν + P∆µν +Qµuν +Qνuµ + T µν . (3.3)

Here E ≡ uµuνT
µν is the energy density, P ≡ 1

d∆µνT
µν is the pressure, the momen-

tum density Qµ ≡ −∆µαuβT
αβ is transverse to uµ, and T µν ≡ 1

2(∆µα∆νβ + ∆να∆µβ −
2
d∆µν∆αβ)Tαβ is transverse to uµ, symmetric, and traceless. Given P as a function of the

above scalars, the energy-momentum tensor can be read off from the definition (2.3).

For d = 1, we have P = P (T, µ,B). This gives the following energy-momentum tensor:

E = − P + Ts+ µρ+mB , (3.4a)

P = P −mB , (3.4b)

Qµ = 0 , (3.4c)

T µν = 0 . (3.4d)

Here the “magnetization” density m ≡ ∂P/∂B determines the polarization tensor as

Mµν = mεµν . (3.5)

For d = 2, P = P (T, µ,B,E2). This gives the following energy-momentum tensor:

E = − P + Ts+ µρ+ χEE
2 , (3.6a)

P = P −mB − 1

2
χEE

2 , (3.6b)

Qµ = mεµρσEρ uσ , (3.6c)

T µν = − χE

(
EµEν − 1

2
∆µνE2

)
. (3.6d)
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Here again s = ∂P/∂T is the entropy density, ρ = ∂P/∂µ is the charge density, m =

∂P/∂B is the magnetization density, and χE ≡ 2∂P/∂E2 is the electric susceptibility.

They determine the polarization tensor as

Mµν = −muλε
λµν + χE (Eµuν − Eνuµ) . (3.7)

The dependence P = P (T, µ,B,E2) implies that the electric polarization vector is pµ =

χEE
µ, and the polarization tensor (3.7) coincides with the general expression (2.6), as

it should.

For d = 3, P = P (T, µ,B2, E·B,E2). This gives the following energy-momentum

tensor:

E = − P + Ts+ µρ+ χEEE
2 + χEB E·B , (3.8a)

P = P − 2

3
χBBB

2 − 1

3
χEEE

2 − χEB E·B , (3.8b)

Qµ = − χBBS
µ , (3.8c)

T µν = − χEE

(
EµEν − 1

3
∆µνE2

)
+ χBB

(
BµBν − 1

3
∆µνB2

)
. (3.8d)

Here again s = ∂P/∂T , ρ = ∂P/∂µ are the entropy and charge densities, Sµ =

εµρσλuρEσBλ is the Poynting vector, χEE ≡ 2∂P/∂E2 is the electric susceptibility,

χEB ≡ ∂P/∂(E·B) is the electro-magnetic susceptibility, χBB ≡ 2∂P/∂B2 is the magnetic

susceptibility. They determine the polarization tensor as

Mµν = χEE(Eµuν − Eνuµ) + χBBε
µναβBαuβ − χEBG

µν , (3.9)

where Gµν = 1
2ε
µναβFαβ is the dual field strength. The dependence P =

P (T, µ,B2, E·B,E2), implies that the polarization vectors are

pµ = χEEE
µ + χEBB

µ ,

mµ = χBEE
µ + χBBB

µ .

The magneto-electric susceptibility χBE is equal to the electro-magnetic susceptibility χEB,

and the polarization tensor (3.9) coincides with the general expression (2.6), as it should.

So far we have presented Tµν in terms of the decomposition (3.3) with respect to

the velocity uµ, whose coefficients E , P, Qµ, and T µν are expressed in terms of the

electric and magnetic fields, and the susceptibilities. The same energy-momentum ten-

sors (3.4), (3.6), (3.8) can be equivalently expressed in terms of the polarization tensor

Mµν = 2∂P/∂Fµν as

Tµν = Pgµν + (Ts+ µρ)uµuν + TµνEM , (3.10a)

where

TµνEM = MµαgαβF
βν + uµuα

(
MαβF

βν − FαβMβν
)

(3.10b)

is the “electromagnetic correction” to the perfect fluid form. Note that P , s, and ρ

in (3.10a) are functions of the electric and magnetic fields. The tensor (3.10b) is sym-

metric; if we set the external electric field to zero (in two or three spatial dimensions),
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then TµνEM reduces to its first term, and is still symmetric. Note that ∇µTµνEM does not equal

F νλ(−∇νMνλ).

The above expression for TµνEM was first derived by W. Israel [14], for a free gas of

polarized relativistic particles. We emphasize that one does not need to assume any partic-

ular microscopic model of matter in order to arrive at the above energy-momentum tensor:

expression (3.10) is a direct consequence of gauge and diffeomorphism invariance of the

theory, to leading order in the derivative expansion.

We now turn to the boundary energy-momentum tensor and the current which fol-

low from the generating functional (3.1). The boundary current may be expressed in

terms of the boundary polarization tensor mµν ≡ 2∂L/∂Fµν (keeping T , µ, and nµ

fixed). Upon integrating by parts on the boundary, the definition (2.3) gives the following

boundary currents:

Jas = Ma + (ρsu
a −∇bmba) , (3.11)

Here Ma is the boundary current arising from integrating the variation of P (T, µ, Fαβ) by

parts, eµaMa = nλM
λµ. As one can see from the polarization tensor (2.6), in flat space in

3+1 dimensions the boundary current nλM
λµ reduces to a vector whose time component

(surface charge density) is p·n, while the spatial part (surface bound current) is m×n.

These are the familiar expressions from electro- and magneto-statics. The other term

in the boundary current, (ρsu
a − ∇bmba), arises due to the presence of charged degrees

of freedom on the boundary described by L, and mimics the bulk current (2.14), with

ρs ≡ ∂L/∂µ. The other boundary currents, Js = ρsun, and Kµ
s = nλm

λµ, emerge from L

as well.

At leading order in the derivative expansion, the only contribution to the boundary

energy-momentum tensor arises from the surface tension term in (3.1). In 2+1 dimensions,

L = L(T, µ, un, B,E
2, En), where un ≡ uµnµ, En ≡ Eµnµ. At leading order Kµν

s vanishes,

and the definition (2.3) gives

T abs =
(
Tss + µρs −msB + αs,EE

2 + χn,EEn
)
uaub

+ (L−msB)γab +ms(u
aSb + ubSa)− αs,EE

aEb .

Here Sa = eαaPαµε
µρσEρuσ, and the coefficients are ss ≡ ∂L/∂T , ρs ≡ ∂L/∂µ, ms ≡ ∂L/∂B,

εs ≡ ∂L/∂un, αs,E ≡ 2∂L/∂E2, χn,E ≡ ∂L/∂En. The boundary energy-momentum tensor

in 3+1 dimensions looks similar, and we won’t write it down explicitly.

4 Next order in the derivative expansion

We now proceed to the next (first) order in the derivative expansion, taking into account

O(∂) terms in the generating functional (2.2). We will take the surface tension L to be

constant for simplicity, and will focus on the bulk contributions to thermodynamics. The

free energy density at first order in the derivative expansion is

F = P (s(0)) +
∑
n

Mn(s(0)) s(1)
n , (4.1)
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where P is the leading-order pressure. For weak electromagnetic fields, the leading order

scalars are s(0) = {T, µ}, while for strong electromagnetic fields s(0) are given by eq. (3.2).

The functions Mn(s(0)) parametrize the thermodynamic response at first order, and are

determined by the microscopic theory. The gauge- and diffeomorphism-invariant scalars

s(1)
n depend on T , uµ, µ, and the sources Aµ, gµν . The number of such first-order scalars

depends on the dimension, and on whether the external electromagnetic fields are weak or

strong. We will enumerate the scalars s(1)
n in what follows.

The bulk current is still given by the general expression (2.14). At first order, the free

energy density (4.1) may be equivalently rewritten as

F = P (s(0)) + P ′(s(0), s(1)) +
1

2
Sλµν(s(0))∇λFµν , (4.2)

where P ′ is O(∂), but contains no derivatives of Fαβ , while the last term parametrizes the

static response to inhomogeneous electromagnetic fields. The polarization tensor is then

Mαβ = 2
∂P

∂Fαβ
+ 2

∂P ′

∂Fαβ
+
∂Sλµν

∂Fαβ
∇λFµν −∇λSλαβ . (4.3)

The equilibrium relation ∂λµ = Eλ + O(∂) now implies that for strong electric fields the

leading-order polarization tensor may receive contributions from subleading terms in the

generating functional

Mαβ = 2
∂P

∂Fαβ
− Eλ

∂Sλαβ

∂µ
+O(∂) .

The second term in the right-hand side describes a contribution of free charges to polariza-

tion. We will assume for simplicity that the effects of free charges are less important than

those of bound charges, in the sense that ∂Mn/∂µ ∼ O(∂). (Alternatively, the effects of

the free charges may be lumped into the leading-order free energy, but in this case isolating

their contribution becomes less straightforward.) The boundary currents are

Jas = Ma −∇bSba , (4.4a)

Kµ
s = nλnαS

λαµ , (4.4b)

where Maeµa = nλM
λµ as before, and eµaeνbS

ab = nλS
λαβPµαP νβ . Equation (4.4a) shows that

for strong electromagnetic fields beyond the leading order in the derivative expansion, the

surface current is not determined solely by the bulk bound current any more, even in the

absence of charged degrees of freedom on the boundary. Similarly, the energy-momentum

tensor will differ from the simple form (3.10) beyond leading order.

4.1 Weak electromagnetic fields

For weak electromagnetic fields with Aµ ∼ O(1), gµν ∼ O(1), we have the following non-

vanishing scalars at order O(∂) in the derivative expansion:

d = 1 : s(1) = {B, Ω} , (4.5a)

d = 2 : s(1) = {B, Ω} , (4.5b)

d = 3 : s(1) = {} . (4.5c)
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In d = 1, we define the vorticity as Ω ≡ εµν∇µuν = εµνaµuν . In d = 3, both the magnetic

field and the vorticity are vectors, and there are no scalars at order O(∂).

Focussing on d = 2, the equilibrium generating functional is given by eq. (2.2), with

the free energy density

F(T, µ,B,Ω) = P +MBB +MΩΩ

where P , MB, MΩ are functions of T and µ. Note that both B and Ω are pseudo-

scalars, hence we are describing thermodynamics of a microscopic system which intrin-

sically violates parity. The bulk current is given by (2.14), with the polarization tensor

Mαβ = −MB uµε
µαβ . The boundary current is Jas = Ma, where Maeµa = −MB ε

µαβuαnβ .

The bulk energy-momentum tensor can be expressed as a general decomposition (3.3),

whose coefficients are

P = P ,

E = −F + T
∂F
∂T

+ µ
∂F
∂µ
−MΩΩ ,

Qµ = g1 ε
µαβuαaβ + g2ε

µαβuαEβ ,

T µν = 0 ,

where g1 ≡ (2MΩ − T ∂MΩ
∂T − µ

∂MΩ
∂µ ), g2 ≡ (−MB + ∂MΩ

∂µ ), see ref. [9, 15]. The boundary

energy-momentum tensor can be expressed in terms of the vector `µ ≡MΩ ε
µαβnαuβ which

is tangent to the boundary,

T abs = Lγab + `aub + `bua , (4.6)

where again `aeµa = MΩ ε
µαβnαuβ , and we have assumed that the surface tension L is

constant. The other boundary momentum currents are Πa
s = un`

a, and Πs = 0. The

vector `a (the energy-momentum analogue of the boundary magnetization current) is the

density of momentum flowing along the boundary in equilibrium, as is generically expected

to happen in a parity-violating system. To sum up, the boundary current is determined

by the magnetization MB, while the boundary momentum is determined by MΩ.

4.2 Strong electromagnetic fields: 1+1 dimensions

Now let us turn to strong electromagnetic fields, with Fµν ∼ O(1), gµν ∼ O(1). In 1+1

dimensions, there are only two independent scalars in equilibrium at O(∂) in the derivative

expansion, which may be taken to be

s(1)
n = {εµν∇µuν , εµνuν∂µB} .

The equilibrium generating functional is given by eq. (2.2), with the free energy density

F = P +M1ε
µν∇µuν +M2 ε

µνuν∂µB ,

where P , M1, M2 are functions of T , µ, andB. The polarization tensor is given by (2.6), and

the magnetization m is a combination of the thermodynamic derivatives of M1, M2, and the

scalars s(1)
n . The boundary currents are given by eq. (4.4), where Sλµν = M2ε

µνελσuσ. The

energy-momentum tensor may be derived in a straightforward way from the definition (2.3).
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n 1 2 3 4 5 6 7 8

s(1)
n Eµ∂µ( B

T 2 ) Eµ∂µ(E
2

T 4 ) vµ∂µ( B
T 2 ) vµ∂µ(E

2

T 4 ) ∇µEµ Eµ∂µT vµ∂µT ελµνuλ∂νuµ

C + − + − − − − +

P − + + − + + − −

T − + − + + + + −

W 3 3 3 3 3 n/a n/a 1

Table 1. Independent O(∂) invariants in 2+1 dimensions. The first row in the table is the number

of the invariant, and the second row says what the invariant is. The rows labeled C, P, T indicate

the eigenvalue of the invariant under charge conjugation, parity, and time reversal, respectively.

Parity in 2+1 dimensions is defined as a reflection of one of the spatial coordinates. The row

labeled W shows the weight w of the invariant under a local rescaling of the metric; the invariants

which do not transform homogeneously are marked as “n/a”.

4.3 Strong electromagnetic fields: 2+1 dimensions

In two spatial dimensions, there is a large number of O(∂) scalars. However, equilibrium

relations such as (2.7), (2.8) reduce the number of independent non-zero invariants to just

eight. One choice of the independent invariants is listed in table 1, where vµ ≡ εµαβEαuβ .

The table indicates how the invariants transform under charge conjugation, parity,

and time reversal. The table also indicates the weight of the invariants under a Weyl

rescaling of the metric, gµν → g̃µν = e−2ϕgµν , where ϕ satisfies V µ∂µϕ = 0. A quantity

Φ transforms homogeneously with weight w under the Weyl rescaling if Φ → Φ̃ = ewϕΦ.

For a review of Weyl rescaling in relativistic hydrodynamics, see ref. [3]. Temperature T ,

chemical potential µ, velocity uµ, and the electric field Eµ all have w = 1. The factors of

T 2 and T 4 in the first four invariants in table 1 are inserted in order to ensure that the

invariant has a well-defined weight. For the scalars which transform homogeneously, their

weight w coincides with their mass dimension. The invariants s(1)

6 and s(1)

7 do not transform

homogeneously and can not appear in a conformally invariant generating functional.

The first five invariants are in general already non-zero in flat space. For the static

Newtonian gravitational field with potential ϕ, we have s(1)

6 ∼ Ei∂iϕ, s(1)

7 ∼ εijEi∂jϕ. The

last invariant is the vorticity, s(1)

8 = Ω, which is non-zero if the system is rotating. The

equilibrium generating functional is then given by eq. (2.2), with the free energy density

F = P (T, µ,B,E2) +
8∑

n=1

Mn(T, µ,B,E2) s(1)
n .

There are eight scalar functions Mn, in addition to pressure, which specify the thermody-

namic response at first order. For a system whose microscopic dynamics is PT-invariant,

the coefficients M3, M4, and M7 must vanish, in order for the generating functional to be

PT-invariant (none of the leading-order invariants are PT-odd). For a system whose mi-

croscopic dynamics is conformally invariant, the generating functional must be conformally

invariant as well, hence the coefficients M6 and M7 must vanish.
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While eight might seem like a large number, if one were to naively write down the

constitutive relations directly for Tµν and Mµν in terms of all available O(∂) scalars,

vectors, and tensors, doing so would involve introducing many more than eight unknown

O(1) scalar functions, even in equilibrium. The generating functional, on the other hand,

allows one to obtain the simplest expressions for the equilibrium quantities without over-

counting the parameters.

At leading order in the derivative expansion, the electric polarization vector pλ was

simply proportional to the external electric field. At first order, electric polarization can

also be induced by the gradients of T , B, and E2. One finds

pλ = χEE
λ + γ1∇λT + γ2∇λB + γ3∇λE2 + ελρσuρ

(
γ4 ∂σT + γ5 ∂σB + γ6 ∂σE

2
)
. (4.7)

The susceptibility here is a function of the parameters Mn of the generating functional,

χE = 2
∂P

∂E2
+ 2

8∑
n=1

∂Mn

∂E2
s(1)
n −

∂M5

∂µ
− 2

T 4
∇λ
(
M2E

λ +M4ε
λαβEαuβ

)
,

and the other coefficients are as follows:

γ1 = M6 −
∂M5

∂T
− µ

T

∂M5

∂µ
− 2M1B

T 3
− 4M2E

2

T 5
,

γ2 =
M1

T 2
− ∂M5

∂B
, γ3 =

M2

T 4
− ∂M5

∂E2
,

γ4 = M7 −
2M3B

T 3
− 4M4E

2

T 5
, γ5 =

M3

T 2
, γ6 =

M4

T 4
.

The magnetization is

m =
∂P

∂B
+

8∑
n=1

∂Mn

∂B
s(1)
n −

1

T 2
∇λ
(
M1E

λ +M3ε
λαβEαuβ

)
.

The above m and pµ give the polarization tensor according to eq. (2.6b), and thus determine

the O(∂2) contributions to equilibrium bound charges and bound currents, following (2.14).

Finally, we note that the polarization ambiguities of section 2.4 allow one to simplify

the polarization vector pλ: adding to the free energy the W∅ term with ∂C/∂T = −γ4,
∂C/∂B = −γ5, ∂C/∂E2 = −γ6 eliminates the γ4, γ5, γ6 contributions in (4.7), and adds

the term ∂C/∂µ ελαβuαEβ .

The energy-momentum tensor can be read off from the definition (2.3), however the

general expressions are rather cumbersome, involving thermodynamic derivatives of all

eight Mn’s. It is easy to derive the energy-momentum tensor when the external electric

field vanishes (in a certain set of coordinates), in which case Tµν is only determined by P

and M8 (the electric polarization vector is still determined by M1, M3, M5, M6, and M7).

In the hydrodynamic-like decomposition (3.3), the components of the energy-momentum
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tensor are

E = −F + T
∂F
∂T

+ µ
∂F
∂µ
−MΩΩ , (4.8a)

P = F −B∂F
∂B
−MΩΩ , (4.8b)

Qµ = g1 ε
µρσuρaσ +

∂MΩ

∂B
εµρσuρ∂σB , (4.8c)

T µν = 0 , (4.8d)

where we have defined MΩ ≡M8 and g1 ≡ (2MΩ − T ∂MΩ
∂T − µ

∂MΩ
∂µ ), to mimic the notation

in section 4.1, and F = P (T, µ,B) + MΩ(T, µ,B)Ω after we have set the electric field to

zero. Even in flat space and without external electric fields, there is an equilibrium energy

flux, caused by the inhomogeneous magnetic field. The magnetization m, which determines

the spatial bound current according to eq. (2.17), simplifies to m = ∂P/∂B + Ω ∂MΩ/∂B.

There is a surface momentum `a flowing along the boundary in equilibrium, completely

analogous to the expression in section 4.1,

T abs = Lγab + `aub + `bua , (4.9)

where `aeµa = MΩ(T, µ,B) εµαβnαuβ may now depend on the external magnetic field. The

other boundary momentum currents are Πa
s = un`

a, and Πs = 0, as before. The energy-

momentum tensors (4.8), (4.9) will receive extra contributions proportional to the external

electric field when the latter is non-zero.

4.4 Strong electromagnetic fields: 3+1 dimensions

In 3+1 dimensions, there is again a large number of O(∂) scalars, but many are not

independent due to equilibrium constraints such as (2.7), (2.8). I counted twenty-one

independent non-zero invariants. One choice is listed in table 2, where Sµ = εµρσλuρEσBλ
is the Poynting vector, aµ = −∂µT/T is the acceleration, and Ωµ = εµναβuν∇αuβ is the

vorticity. The notation in the table is the same as in the 2+1 dimensional case. The linear

combinations in s(1)

8 , s(1)

9 , and s(1)

10 are taken so that the invariant has a well-defined weight

under Weyl rescaling.

The first fifteen invariants are in general non-zero already in flat space. The equilibrium

generating functional is given by eq. (2.2), with the free energy density

F = P (T, µ,E2, B2, E·B) +
21∑
n=1

Mn(T, µ,E2, B2, E·B) s(1)
n . (4.10)

There are twenty-one scalar functions Mn, in addition to pressure, which specify the ther-

modynamic response at first order. For a system whose microscopic dynamics is PT-

invariant, the coefficients M9, . . . ,M15, M18, and M21 must vanish, in order for the gen-

erating functional to be PT-invariant (none of the leading-order invariants are PT-odd).

For a system whose microscopic dynamics is conformally invariant, the generating func-

tional must be conformally invariant as well, hence the coefficients M16, M17, and M18

must vanish.
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n 1 2 3 4 5 6 7

s(1)
n Eµ∂µ(B

2

T 4 ) Eµ∂µ(E
2

T 4 ) Eµ∂µ(E·B
T 4 ) Bµ∂µ(B

2

T 4 ) Bµ∂µ(E
2

T 4 ) Bµ∂µ(E·B
T 4 ) ∇µ(TEµ)

C − − − − − − −

P + + − − − + +

T + + − − − + +

W 3 3 3 3 3 3 4

n 8 9 10

s(1)
n BµBν∇µEν−B2E·a+3(E·B)B·a SµBν∇µEν+2(E·B)S·a EµSν∇µBν+(E·B)S·a

C − + +

P + − −

T + + +

W 7 9 9

n 11 12 13 14 15

s(1)
n Sµ∂µ(B

2

T 4 ) Sµ∂µ(E
2

T 4 ) Sµ∂µ(E·B
T 4 ) ∇µ(S

µ

T ) εµνρσuµBν∇ρBσ
C + + + + +

P + + − + −

T − − + − +

W 5 5 5 4 5

n 16 17 18 19 20 21

s(1)
n E·a B·a S·a E·Ω B·Ω S·Ω

C − − + − − +

P + − + − + −

T + − − − + +

W n/a n/a n/a 3 3 5

Table 2. Independent O(∂) invariants in 3+1 dimensions.
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Analogously to what happens in 2+1 dimensions, polarization may be induced by the

gradients of the applied fields. The electric polarization vector which follows from the free

energy is

pλ = χEEE
λ + χEBB

λ + χEΩΩλ + χESS
λ

+ γ1∇λT + γ2∇λB2 + γ3∇λE2 + γ4∇λ(E·B)

+ γ5X
λα∂αT + γ6X

λα∂αB
2 + γ7X

λα∂αE
2 + γ8X

λα∂α(E·B) + γ9X
λαΩα

+ γ10∆
λ
ρS

α∇αBρ + γ11∆
λ
ρS

α∇ρBα + γ12∆
λ
ρB

α∇αBρ

+ γ13X
λρBσ∇ρEσ + γ14X

λρEσ∇σBρ , (4.11)

where Xαβ ≡ εαβρσuρBσ. The susceptibility coefficients χEE etc and γk are determined

by thermodynamic derivatives of the coefficients Mn, and can be easily read off from the

free energy density (4.10). However, as explained in section 2.4, polarization vectors only

make sense up to certain redefinitions. For example, by choosing the arbitrary vector Cµ
in (2.11) appropriately, one can eliminate χEΩ, and trade χES, γ5, γ6, γ7, γ8 in favor of a

single contribution proportional to ελνρσuν∇ρBσ. The coefficients χEE and χEB suffer from

similar ambiguities.

The magnetic polarization vector which follows from the free energy is

mλ = χBBB
λ + χBEE

λ + χBΩΩλ + χBSS
λ

+ δ1∇λT + δ2∇λB2 + δ3∇λE2 + δ4∇λ(E·B)

+ δ5Y
λα∂αT + δ6Y

λα∂αB
2 + δ7Y

λα∂αE
2 + δ8Y

λα∂α(E·B) + δ9Y
λαΩα

+ δ10∆
λ
ρB

µ∇ρEµ + δ11∆
λ
ρB

µ∇µEρ + δ12Y
λρBσ∇ρEσ + δ13Y

λρEσ∇σBρ
+ δ14∆

λ
ρS

µ∇µEρ + δ15∆
λ
ρE

µ∇µSρ + δ16ε
λµρσuµ∇ρBσ

+ δ17X
λα∂αT + δ18X

λα∂αB
2 + δ19X

λα∂αE
2 + δ20X

λα∂α(E·B) , (4.12)

where Y αβ ≡ εαβρσuρEσ. The susceptibility coefficients χBB etc and δk can be easily read

off from the free energy density (4.10). The ambiguities (2.11) also affect the magnetic

polarization: adding to the free energy the W∅ term with Cµ = Cuµ shifts χBE → χBE +

∂C/∂µ (in addition to shifting δ1, δ2, δ3, δ4).

While the polarization vectors are ambiguous, the energy-momentum tensor and the

current are not. As an example, consider the M21 term in the free energy. It gives rise

to polarization vectors pµ = M21ε
µνρσuνBρΩσ and mµ = −M21ε

µνρσuνEρΩσ which do not

suffer from polarization ambiguities. Such contributions to pµ and mµ only come from M21,

and therefore the magneto-vortical response of the surface charge density is correlated with

the electro-vortical response of the surface current. The corresponding boundary current is

Jµs =
(
M21nαε

αβρσuβBρΩσ

)
uµ +M21 (ΩnE

µ − EnΩµ) ,

where Ωn ≡ Ω·n, En ≡ E·n, and we have assumed un = 0.

As another example, let us set the electric field to zero (in a certain set of coordinates),

while keeping the magnetic field non-zero. The equilibrium bulk energy-momentum ten-

sor is then determined by only four functions M4, M15, M17, and M20, in addition to
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the leading-order pressure P = P (T, µ,B2). The correction to the leading-order energy-

momentum tensor (3.8) is straightforward to derive, and we will not write it down explic-

itly. Both E , P, and T µν will receive derivative corrections, proportional to ∂µT , ∇µBν ,

and Ωµ. In addition, the magneto-vortical term M20 will give rise to equilibrium energy

currents Qµ proportional to εµνρσuνBρaσ, and εµνρσuνBρ∂σB
2 . There is also a non-

vanishing boundary energy-momentum tensor Tαβs , defined by (2.3). In the decomposition

Tαβs = Esuαuβ + Ps ∆αβ + (Qαs uβ +Qβs uα) + T αβs as in (3.3) we have

Es = −B·n
(
M17 + 4M4B

2/T 4
)
, (4.13a)

Ps = − 4

3
B·nM4B

2/T 4 , (4.13b)

Qαs = M20 nρBµuν ε
ρµνα , (4.13c)

T αβs = 2B·nM4/T
4

(
BαBβ − 1

3
∆αβB2

)
+M15nρuµBν

(
ερµναBβ + ερµνβBα

)
. (4.13d)

Here nµ is the unit normal vector the boundary as before, and we have omitted the surface

tension L. One can see that in addition to the standard surface tension, even a uniform

magnetic field generates energy density, pressure, energy current, and spatial stress on

the boundary.

5 Summary

Let us summarize. We have presented the equilibrium free energy of isotropic relativistic

matter, in the regime when external electromagnetic fields are more important than exter-

nal gravitational fields. From a technical point of view, this amounts to generalizing the

analysis of ref. [9] by i) performing a partial summation of electromagnetic contributions,

and ii) by taking into account surface terms in the generating functional. From a physi-

cal point of view, this amounts to describing the effects of polarization. The equilibrium

electric current can be expressed in terms of the polarization tensor Mµν to all orders,

Jα = ρuα − ∇λMλα . The charge density and the spatial current are given by eqs. (2.16)

and (2.17). In 3+1 dimensions in flat space3 they reduce to

n = ρ−∇·p− p·∇T/T − 2m·ω , (5.1)

j = ∇×m + m×∇T/T , (5.2)

where p is the electric polarization vector, m is the magnetic polarization vector, and ω is

the angular velocity. These expressions generalize the familiar n = ρ−∇·p and j = ∇×m

3In our construction, the temperature gradient was induced by the external metric δgµν , say T = T0+δTg,

where T0 is constant and the arbitrary static δTg is induced by δgµν . This gives a contribution to the

equilibrium charge density δng = −p·∇δTg/T0. If in addition we couple the system to an external heat

bath with temperature δTB = −δTg, the overall temperature becomes constant, hence there must be a

contribution −p·∇δTB/T0, cancelling −p·∇δTg/T0. This shows that even in flat space with δTg = 0 there

is a contribution to the charge density δnB = −p·∇T/T , provided equilibrium is maintained.
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in electro- and magneto-statics. At leading order in the derivative expansion, the surface

current is Jµs = nλM
λµ, which says that the surface charge density is p·n, and the surface

spatial current is m×n.

The notion of polarization is ambiguous when the external fields vary in space. This

is because polarization is defined as a response to electric and magnetic fields, which are

not fundamental quantities, but are rather derived from the vector potential Aµ. In par-

ticular, the electro-vortical susceptibility χEΩ is unphysical, as well as the magneto-electric

susceptibility χBE in the presence of free charges. Nevertheless, most O(∂) contributions

to polarization are not affected by this ambiguity and may be derived from the equilib-

rium free energy, as described in section 4. For example, in a parity-violating system,

there is a contribution to the electric polarization vector p ∝ B×ω, and the contribution

to the magnetic polarization vector m ∝ E × ω which do not suffer from this ambigu-

ity. The corresponding surface charge density σs = cn·(B × ω) and the surface current

js = c (E(ω·n)− ω(E·n)) are determined by the same coefficient c = 2M21.

When the external fields are non-uniform, the boundary charge and spatial current

are no longer determined by polarization. This is not surprising: while the polarization

vectors are ambiguous, the charge and the current are not. At first order in the derivative

expansion the boundary current is

Jµs = nλM
λµ −∇λ

(
nαP

λ
ρ P

µ
σ S

αρσ
)
, (5.3)

where P λρ = δλρ − nλnρ, and Sαρσ is defined by (4.2). For the generating functional (4.10)

in 3+1 dimensions, there are 15 contributions to Sαρσ. As an example, consider the effect

of the M2 term for non-rotating matter at constant temperature in flat space. For the

boundary with vanishing extrinsic curvature (∇µnν = 0), the surface charge density is

σs = p·n− 2

T 4
∂a(M2E

aEn) ,

where En is the normal component of the electric field. This describes the response of the

boundary charge density to the changes of the external electric field along the boundary.

The equilibrium energy-momentum tensor to leading order takes a simple form (3.10)

which we repeat here:

Tµν = Pgµν + (Ts+ µρ)uµuν + TµνEM , (5.4a)

with

TµνEM = MµαgαβF
βν + uµuα

(
MαβF

βν − FαβMβν
)
. (5.4b)

This expression is model-independent, and is a leading-order consequence of gauge in-

variance, diffeomorphism invariance, and locality (on scales longer than the screening

length). Beyond the leading order in derivatives, the form of the equilibrium Tµν is

more complicated.

Equilibrium µ-independent contributions to the current Jα are usually referred to

as “bound charges” and “bound currents”. There exist analogous contributions to the

equilibrium Tαβ , which one may similarly christen “bound energy”, “bound pressure”,
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“bound momentum”, and “bound stress”. Just like bound charges and bound currents,

these live both in the bulk and on the surface. For matter subject to external magnetic

field (and no electric field), there will be bulk energy currents Q ∝ B×∇T , Q ∝ B×∇B2.

The boundary energy current Qs = χBΩ B×n is determined by the same susceptibility χBΩ

which fixes the response of magnetization to rotation, m = χBBB + 2χBΩω +O(∂T, ∂B).

Finally, our discussion so far was restricted to the state of global equilibrium, i.e. to

thermodynamics. It is straightforward to extend it to hydrodynamics of polarized relativis-

tic matter, if one assumes that the external electromagnetic and gravitational fields are not

dynamical. In order to do so, one promotes uµ and T to dynamical variables, and postulates

the hydrodynamic equations in the form ∇µTµν = F νλJλ, ∇µJµ = 0, with the leading-

order energy-momentum tensor given by eq. (5.4). Beyond the leading order, the energy-

momentum tensor becomes much more involved as discussed in section 4, plus the extra

transport coefficients such as viscosity make their way into the hydrodynamic equations.

If the electromagnetic fields are dynamical, the conservation equations for Tµν and Jµ

need to be supplemented by the evolution equations for the electromagnetic fields. These

are usually taken to be Maxwell’s equations, ∇νFµν = Jµ. Substituting the equilibrium

current (2.14) gives

∇ν (Fµν −Mµν) = ρuµ , (5.5)

which is the standard covariant form of Maxwell’s equations in matter, see e.g. [16]. In the

right-hand side of (5.5), ρ is the density of free charges, while the effects of polarization are

in the left-hand side. In the framework of (5.5), the derivative expansion in hydrodynamics

can be implemented through the derivative expansion for Mµν , however eq. (5.5) itself will

receive corrections, e.g. due to the electrical conductivity. We plan to return to the study

of hydrodynamics of polarized relativistic matter in the future.
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