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1 Introduction

Higher spin theories, see, e.g., [1, 2] and references therein, are of great interest because

they purportedly arise in the zero tension limit of string theory and for the special role

they play in many examples of AdS/CFT [3–6]; for AdS4/CFT3 dualities involving vector

models, see also [7–10] and for AdS3/CFT2 see, e.g., [11, 12]. However, they are also

interesting for intrinsic reasons. Some of their most intriguing features stem from the fact

that they describe gauge fields of all (even) spins and for the huge challenge it has been to

formulate a consistent interacting theory for such higher spin (HS) theories. Unfortunately,

the solution to this problem has turned out to be rather complicated.

The main method of construction is due to Vasiliev [1, 2] and works only in AdS

and related backgrounds. In space-time dimensions D ≥ 4 this method leads to rather

intricate interaction terms in the field equations (Vasiliev’s equations) which have so far

been constructed explicitly only for terms quadratic in the fields [13, 14] (see also [10, 15]

for some specific aspects of such terms). One problem is that there is a proliferation of

derivatives in the interaction terms, see, e.g., [16–18] and the more recent work in [14, 19–

21] and references therein, while, of course, the kinetic terms are quadratic in derivatives.

In general cubic vertices (in a Lagrangian) can be defined to contain at most s1 + s2 + s3

derivatives (where si are the three spins of the fields in the vertex) since terms with a

higher number of derivatives can be removed by field redefinitions. For four and higher

point vertices the phenomenon of derivative dressing, if it occurs as part of the Vasiliev

equations, will most likely lead to an unbounded number of derivatives which can no longer

be redefined away. Some recent papers have addressed the nature of the potential non-

localities that may arise from interaction terms with an unlimited number of derivatives and

suggested recipes for the elimination of non-local effects that could endanger the consistency

of these theories. One approach to actually compute (or define) these higher point vertices

in the Lagrangian is to deduce them from the CFT at the boundary of AdS. This may

rescue the situation as argued, and also demonstrated, for three and four point vertices

in [20]. For Vasiliev theories which are dual to free CFT, where any n-point function can in

principle be computed, this approach will hopefully provide a basis for an existence proof of

the bulk higher spin theory including a proper definition of the problematic vertices in AdS.

Another conceivable approach to getting a handle on the complicated structure of

higher derivative terms that dress up any given basic n-point vertex (defined to have the

minimal number of derivatives possible) may be to start with a conformal HS theory in the

same dimension as the AdS HS theory. The complications due to derivative dressing does

not exist in the conformal case since there is no dimensionful parameter. Then, provided

one can find a conformal HS theory that in an AdS background gives rise to a Vasiliev

type HS theory, one could perhaps gain a better understanding of the structure of the

multi-derivative terms and maybe even the intricacies involved in the construction of the

Vasiliev equations and finding a Lagrangian formulation.

A different reason for studying three-dimensional conformal theories containing gauge

fields of all spins s = 2, 3, . . . was indicated by Giombi et al. in [22]. There the authors

wanted to compute the free energy in the Vasiliev AdS4 and compare it to the corresponding
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result in the boundary CFT3. A relatively easy way to perform this AdS/CFT check is to

compute the free energies with the two possible boundary conditions and then subtract the

results from each other. In order to make sense of this calculation one needs to argue that

dynamics on the boundary arises for all spins when tuning the boundary conditions for

the corresponding higher spin gauge fields in the bulk from Dirichlet to Neumann.1 At the

parity invariant A and B points of the Vasiliev theory the dynamical CFT3 on the boundary

involve parity invariant induced actions while in between these A and B points parity is

broken which is related to the presence of a spin one Chern-Simons term on the boundary.

In this situation probably also gauge fields in the bulk with spins two and higher can be

assigned mixed boundary conditions again leading to Chern-Simons-like kinetic terms for

all higher spins on the boundary, see, e.g., [24–26] and references therein.2 For spin one

the Chern-Simons phenomenon was discussed by Witten in [30] whose arguments were

subsequently used in the case of spin two in [31, 32]. These boundary CFT3 theories with

Chern-Simons terms are probably of the same kind as the ones we study in this paper.

The first investigations of their non-linear structure and interactions with scalar fields were

conducted in [33, 34]. The present work is a direct continuation of these latter papers.

Historically, pure (i.e., without matter fields3) three-dimensional conformal HS the-

ory was analyzed at the linear level in [35] where the representation theory needed for

the elimination of the auxiliary fields was explained. At the non-linear level, in [36] the

authors expanded (super)Chern-Simons theory in terms of the HS component fields and

computed the cubic interaction terms with their explicit coefficients from the star product.

Note, however, that in this last work the auxiliary fields (both Stückelberg and dependent

ones) were retained hiding all four and higher point vertices as well as making, e.g., a

comparison to the metric formulation impossible. This latter aspect is discussed in some

detail for spin 3 in later sections of this paper. One of the main goals of this paper is to

perform the elimination of the auxiliary fields in full detail and derive the resulting spin 3

Cotton equation.

In D = 2 + 1 HS theories are very special. Here the infinite tower of spin states can

be truncated down to some finite maximum value of the spin.4 The resulting theories are

Chern-Simons gauge theories based on a finite dimensional HS algebra sl(N,R)⊕ sl(N,R),

generalizing the Lie algebra of the AdS3 isometry group sl(2,R)⊕ sl(2,R), and contain all

spins from 2 to N . These theories are rather easily written out in full detail (at least for

small N ≥ 2) and many of their intriguing properties have been discussed in the literature,

see, e.g., [40, 41].

1See also [23] for comments concerning the possibility to use unconventional boundary conditions for

bulk gauge fields of spin ≥ 3 in AdS HS theory related to interacting HS Chern-Simons theories in the

boundary. Similar issues are also discussed in earlier work, e.g., in [8].
2In fact, the spin one boundary condition may be tied to the spin two and higher ones in highly super-

symmetric cases as indicated by the topologically gauged CFT3 constructed in [27–29] which connect the

spin one and two Chern-Simons terms.
3Spins s < 2.
4If the Vasiliev construction is based on the HS algebra hs(µ) [23, 37] all spins are in general required

for consistency. If, however, µ = N , an integer, the generators for spins s ≥ N + 1 form an ideal and the

corresponding fields can be truncated away [38], see also, e.g., [39].
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In this paper we continue, in the spirit of [33], the study of conformal HS theories in

2 + 1 dimensions. The HS algebra is then related to the conformal algebra appropriate for

2 + 1 dimensions, namely so(3, 2), which means that, as in higher dimensions, fields with

all spins s = 2, 3, 4, . . . (or just the even ones) must be considered together. However, these

theories are in some sense much simpler than the ones based on the Vasiliev construction

of HS theories in higher dimensional AdSD≥4. As mentioned above, one reason for this is

that the infinite tail of higher derivative terms that can be added to any given current in

AdS does not exist in conformal HS theories since there is no dimensionful parameter that

can be used to compensate the dimension of the extra derivatives.

Higher order derivative terms appear also in conformal HS theories but then the num-

ber of derivatives is unique given the field content of the kinetic or interaction term in

question. E.g., in D = 2 + 1 dimensions a spin s kinetic term is of order 2s− 1 in deriva-

tives. Note, however, that in any given spin s field equation terms with an unlimited

number of derivatives will always appear but only in terms where the sum of the spins of

the fields grows beyond all limits. These features become clear if one considers the Chern-

Simons version of the theory where the fundamental spin s frame field has dimension Ls−2.

If one Taylor expands the star product in the Chern-Simons HS gauge theory Lagrangian,

as done in [36], there is of course just one derivative appearing in the answer (in the ki-

netic terms and none in the cubic terms). But the theory then contains huge numbers of

auxiliary fields, both dependent and Stückelberg ones. The multi-derivative properties of

the theory then arise as a consequence of eliminating these extra fields [33, 35] but the

key point is that the derivatives will now appear in the theory in a controlled way. As

mentioned above, this leads to spin s kinetic terms with 2s − 1 derivatives. As another

example, consider an A3 term from the original Chern-Simons Lagrangian. It will contain

three spin si dimensionless one-form cascade5 fields ω̃si(si − 1, si − 1) from the expansion6

of the gauge fields Asi (such that the tensor product of the three spins contains a singlet)

and hence no derivatives. However, after elimination of the auxiliary fields, ω̃si is expressed

in terms of si − 1 derivatives acting on the spin si frame field. The number of derivatives

in such a cubic term is then s1 + s2 + s3 − 3. In the process of deriving these terms there

will also appear terms, coming from commutators of covariant derivatives, with more than

three frame fields but the same number s1 + s2 + s3 − 3 of derivatives.7

It is the purpose of this paper to continue the study in [33, 34] of the effects of elimi-

nating the extra fields and in particular to derive the complete non-linear Cotton equation

for the spin 3 frame field coupled to that of spin 2, the usual dreibein. These results have

been obtained by means of a computer algebra system8 and their extensive nature (over

1000 terms in the frame formulation) makes them unsuitable for presentation in the body

of this text. The non-linear Cotton equation in the frame field and metric formulation is

5The highest rank fields at each spin level, to be defined more precisely in section 3.
6For three examples see eqs. (2.16), (3.1) and (5.2).
7The reason for this is that we use exclusively derivatives which are spin 2 Lorentz covariant and hence

a commutator generates a spin 2 Ricci tensor which also has two derivatives.
8A Mathematica based tensor algebra system developed for this purpose, using xPerm [42] for tensor

canonicalization.
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instead included in the appended files 9,10 in the form of unrefined output (see section 4.3

for details). We hope to give it in a more useful form elsewhere [43].

Finally, a somewhat different motivation for this work comes from the intriguing

electric-magnetic duality properties discussed in [44] and the role played by higher spin

Cotton tensors in that context.

This paper is organized as follows. In section two we give some basic formulae explain-

ing the structure of the HS algebra, the generators, the gauge field and the Chern-Simons

theory. We also discuss the truncation of the full HS theory used in the rest of this paper

and give a review of the spin 2 case. In section three we turn to the main subject of the pa-

per namely the spin 3/spin 2 subsystem. There we introduce the gauge choice and discuss

the cascade equations that finally makes it possible to obtain the spin three Cotton equa-

tion whose structure is explained in section four. In that section also the linearized version

and its relation to the metric formulation is clarified. Section 5 contains a first analysis

of the cascade structure of the linearized spin four sector thereby paving the way for a

more thorough investigation of this sector in the future. Some conclusions are collected in

section 6. Conventions and other useful information can be found in the appendix.

2 Preliminaries

The three-dimensional conformal group is SO(3, 2) and its Lie algebra consists of the gen-

erators corresponding to translations, Pa, Lorentz transformations, Ma, dilatations, D, to-

gether with the special conformal transformations, Ka. The Lorentz subalgebra is sl(2,R)

whose generators can be chosen as (see appendix A for index conventions etc)

T11 =

(
0 1

0 0

)
, T12 =

(
−1

2 0

0 1
2

)
, T22 =

(
0 0

1 0

)
, (2.1)

which can be compactly expressed as (Tαβ)γ δ = δγ(αεβ)δ.

For the purpose of extending this to higher spins a convenient realization of these

algebras is in terms of operators which are bilinear in a pair of Spin(2, 1) ∼= SL(2,R)

spinor variables qα and pα as will be described below. The generalization to higher spins

is well-known and can be found in, e.g., [35, 36]. Functions (of the symbols) of these

operators are then multiplied by means of a star product. In this paper, however, we are

mostly concerned with the classical approximation of the star product where qα and pα are

classical phase space variables. Consequently, we will use a Poisson bracket instead of the

star product commutator.

2.1 Poisson bracket realization of so(3,2)

By multiplying the above generators (Tαβ)γ δ = δγ(αεβ)δ by coordinates qγ and their conju-

gate momenta pδ we get

Tαβ = q(αpβ), (2.2)

9H. Linander and B.E.W. Nilsson, Spin 3 Cotton equation (frame formulation), see ancillary files of this

paper in arXiv:1602.01682.
10H. Linander and B.E.W. Nilsson, Spin 3 Cotton equation (metric formulation), see ancillary files of this

paper in arXiv:1602.01682.
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where we used the fact that the spinor indices on qα and pα can be raised and lowered

from the left by εαβ and its inverse εαβ , respectively. Using the Poisson bracket

{f, g}PB =
∂f

∂qα
∂g

∂pα
− ∂g

∂qα
∂f

∂pα
, (2.3)

one finds the same commutation relations as obtained using the matrix realization in (2.1).

With the help of the three-dimensional gamma matrices11 γa the generators Tαβ correspond

in the vector representation to

Ma = −1

2
(γa)α

β(qαpβ), (2.4)

which satisfy the familiar commutation relations (ε012 = 1 and γabc = εabc1){
Ma, M b

}
PB

= εabcM
c. (2.5)

The rest of the generators for the conformal algebra so(3, 2) are then realised as follows12

D = −1

2
q · p, P a = −1

2
(γa)αβ q

αqβ , Ka = −1

2
(γa)αβ pαpβ . (2.6)

Together they satisfy the commutation relations of the conformal algebra, where the re-

maining non-zero Poisson brackets are given by{
Ma, P b

}
PB

= εabcP
c,

{
Ma, Kb

}
PB

= εabcK
c, (2.7)

and

{D, P a}PB = P a, {D, Ka}PB = −Ka,
{
P a, Kb

}
PB

= −2εabcM
c − 2ηabD. (2.8)

These operators belong to the spin j = 1 sector of the HS algebra while, as will be clear

below, the corresponding gauge fields are part of the spin s = 2 sector, i.e., the ordinary

conformal gravity sector.

There is now a natural extension of this algebra to all integer spins where the gener-

ators are taken to be general even degree polynomials in qα and pβ . One of the virtues of

this realization is that the generators in irreducible representations of the Lorentz group

are easily written down and the HS algebra rather straightforwardly computed, not only

classically in terms of the Poisson bracket [35] but also quantum mechanically in terms of

multi-commutators or from expanding the star product commutator [36]. In this paper we

will only use the classical variables which corresponds to a single commutator approxima-

tion of the star product.

11A convenient choice of real matrices (γa)α
β is γ0 = iσ2 := ε, γ1 = σ1, γ2 = σ3. For further conventions

see appendix A.
12Our convention is q ·p = qαpα. The spinor indices on the γ-matrices are raised and lowered from the left

for the first index while for the second it is done from the right. Thus, e.g., (γa)α
βpβ = (γa)αβp

β which also

defines γ-matrices with both indices down and similarly for two upper ones using qα(γa)α
β = −qα(γa)αβ .
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2.2 The so(3,2) higher spin algebra

In terms of the real commuting SL(2,R) spinors qα and pα the generators of the higher

spin algebra are given by

G(nq, np, c)
α1...αnq+np−2c =

(
−1

2

)nq+np
2

q(α1 · · · qαnq−cpαnq−c+1 · · · pαnp+nq−2c)(q · p)c, (2.9)

where nq + np is a non-negative even integer for the HS theory we are interested in here.

Note that a generator is uniquely specified by the number of p’s and q’s present and how

many of them are contracted. Since the only non-zero scalar product is q · p we have that

c ≤ min(nq, np). Note that the generators are totally traceless due to the antisymmetry of

the SL(2,R) metric εab and thus belong to irreducible representations of sl(2,R).

The tensor presentation of these generators is then

G(nq, np, c)
a1...aN = (−1)

⌊
np−c

2

⌋(
−1

2

)nq+np
2

×

× (γa1)α1α2 · · · (γaN )α2N−1α2N q
(α1 · · · qαnq−cpαnq−c+1 · · · pα2N )(q · p)c, (2.10)

whereN =
nq+np

2 −c and the vector indices a1 . . . aN are in the same irrep (that is symmetric

and traceless which means that the label c is redundant) as the 2N spinor indices.

For spin 2 the generators are organized as

Ga(2, 0) = P a = −1

2
(γa)αβq

αqβ ,

Ga(1, 1) = Ma = −1

2
(γa)α

βqαpβ ,

G(1, 1) = D = −1

2
q · p,

Ga(0, 2) = Ka = −1

2
(γa)αβpαpα, (2.11)

and generate, as already mentioned, the algebra of SO(3, 2), the conformal group in three

dimensions.

The spin 3 generators are

Gab(4, 0) = P ab =
1

4
(γa)αβ(γb)γδq

αqβqγqδ,

Gab(3, 1) = P̃ ab =
1

4
(γa)αβ(γb)γδq

(αqβqγpδ),

Ga(3, 1) = P̃ a =
1

4
(γa)αβq

αqβ(q · p),

Gab(2, 2) = M̃ab = − 1

4
(γa)αβ(γb)γδq

(αqβpγpδ),

Ga(2, 2) = M̃a =
1

4
(γa)αβq

αpβ(q · p),

G(2, 2) = D̃ =
1

4
(q · p)2, (2.12)
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Gab(1, 3) = K̃ab = − 1

4
(γa)αβ(γb)γδq

(αpβpγpδ),

Ga(1, 3) = K̃a = − 1

4
(γa)αβp

αpβ(q · p),

Gab(0, 4) = K̃ab =
1

4
(γa)αβ(γb)γδp

αpβpγpδ,

where the minus signs come from raising the indices on all the pα spinors. The higher spin

algebra commutation relations can now easily be computed using the Poisson bracket. The

result is gathered in appendix B.2.

Before we continue with the analysis of the system for specific values of the spin (spin

4 is the subject of section 5) we should explain what kind of approximations/truncations

we are implementing. The Chern-Simons theory used in this paper is based on the HS

algebra expressed in terms of generators that are Weyl ordered even polynomials of the

operators qα, pα. One can then either compute the commutators of these or consider their

symbols (where qα, pα are classical numbers) and use the Moyal star product commutator

associated with ordinary even polynomial functions of the classical qα, pα. Letting j ≥ 1

denote the spin13 of the generators G(j), the structure of the star product commutators are

[G(j), G(j′)]∗ = G(j + j′ − 1) +G(j + j′ − 3) + . . .+G(1), (2.13)

if j and j′ are both either even or odd, while

[G(j), G(j′)]∗ = G(j + j′ − 1) +G(j + j′ − 3) + . . .+G(2), (2.14)

if one of j and j′ is even and the other one odd. It is important to note, however, that

the series of terms on the r.h.s.s are cut off when the order of the commutator (given by n

in G(j + j′ − n) in the above formulae14) exceeds the smallest value of j and j′. For most

pairs of generators G(nq, np) the r.h.s.s have even fewer terms. For example G(0), which

is a c-number and if added becomes a central element of the HS algebra, does not occur

on the r.h.s. of (2.14). If one wants to introduce vector fields into this theory it has to be

done by extending the spin sum to A = Σ∞s=1As but this will not be done in this paper. In

fact, if introduced they would not interact with any of the other fields in A [35]. We also

see that the commutator between two operators in the set G(2) gives G(3) from which we

conclude that all values of j will be required to close the algebra. However, from the above

commutator relations it also follows that the HS algebra can be consistently truncated to

consist of only odd spin generators (or even spin fields in the field theory).

Once the generators of the HS algebra are defined the next step is to gauge it, that is to

introduce one gauge field for each generator. These fields will thus have spins s = j+1. This

setup will be described more carefully in later sections. The approximation (or inconsistent

truncation) we will adopt in this paper is defined by restricting ourselves to only the

first term on the commutator r.h.s. above (or, which is the same, using classical variables

and Poisson brackets) and setting to zero all fields, as well as dropping their entire field

13Note that spin j is here related to the number of qαs and pαs by j = 1
2
(nq + np) although the actual

irrep associated with some of the generators have some lower spin value (if factors of qαpα occur).
14See (5.1) which encodes the corresponding interactions among the fields As.
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equations, with spin s = j + 1 ≥ 4 in the spin 3 analysis in the following two sections and

the same for s = j + 1 ≥ 5 in the spin 4 analysis in section 5.

For these gauge fields, which are divided into spin s sectors with s = j + 1, we find,

for instance, that the spin 4 Cotton equation has interaction terms formed from any two

fields with spins s = j + 1 and s′ = j′ + 1 such that s + s′ − 2(n + 1) = 4, i.e., s + s′ =

(2n+ 1) + 5 = 6, 8, . . . where 2n+ 1 (for n ≥ 0) is the order of the multi-commutator in the

expansion of the star product commutator.15 These features are of course exactly the ones

studied in [36]. The case most relevant in this paper is the one involving spin 2 and spin 3.

Then we find that the bilinear interaction terms in the spin 3 Cotton equation contains all

terms where the spins of the two fields satisfy s+ s′ = (2n+ 1) + 4 = 5, 7, . . . with 2n+ 1

equal to the order of the commutator. The single commutator case (n = 0) analysed in

this paper therefore has only one interaction term containing fields with spin 2 and 3. All

equations we will encounter are hence linear in the spin 3 fields. (This is also the case for

the spin 2 covariant tensor fields at this stage but after the elimination of the auxiliary

spin 3 fields the situation changes drastically as shown in the next section.) In this sense

the spin 4 Cotton equation is more interesting since then, in addition to the terms linear in

the spin 4 field, there are also terms with no spin 4 fields but with two spin 3 fields. In the

truncated even spin case one has to go to the spin 6 Cotton equation for this to happen.

The restriction to terms in the field equations and transformation rules that arise from

single commutators corresponds to expanding the Moyal commutator and keeping only the

first term. Note, however, that it is only when using a star product that a consistent HS

theory is obtained as demonstrated, e.g., in [33] where the Poisson bracket field equations

were shown to be incompatible with a Lagrangian formulation. This may be a manifestation

of problems associated with constructing a non-degenerate bilinear form for the HS Poisson

algebra used here.

2.3 Conformal higher spin Chern-Simons theory

Three-dimensional conformal gravity can now be obtained from a gauge theory with gauge

group SO(2, 3). In fact the spin 2 gravitational Chern-Simons-like action is equivalent to

the gauge theory Chern-Simons action [45]

S =

∫
M

tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.15)

if one identifies the SO(2, 3) gauge (one-form) potential with the gravitational fields as

follows

A = eaP
a + ωaM

a + bD + faK
a. (2.16)

Here ea is the dreibein, ωa the spin connection while b and fa are (auxiliary) gauge fields

for dilatations and special conformal transformations. By giving qα and pα dimensions

L−
1
2 and L

1
2 , respectively, the one-form A is dimensionless, a fact that continues to hold

also when we let it be valued in the entire HS algebra below.

15We will here not be precise about the relation between the star product commutator and the Poisson

bracket since it will not be needed (it would require the insertion of an i in a number of definitions).
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In the Chern-Simons formulation of conformal gravity invariance under translation and

local Lorentz transformations follows from gauge invariance [45] of the action (2.15) under

the transformations

δA = dΛ + [A,Λ] , (2.17)

where the gauge parameter Λ is an algebra valued zero form. For conformal gravity the

gauge parameter has the form

Λ = Λa(2, 0)Pa + Λa(1, 1)Ma + Λ(1, 1)D + Λa(0, 2)Ka, (2.18)

where the Λa(2, 0) component generates local translations and the two (1, 1) components lo-

cal Lorentz transformations, Λa(1, 1), and dilatations, Λ(1, 1). The last component Λa(0, 2)

is related to special conformal transformations and contains enough freedom to set the one-

form Stückelberg field b to zero, thus leaving the dreibein, spin connection and the Schouten

tensor fa in the theory. Further details of the spin 2 system are given in the review in the

next subsection.

To include fields of higher spin we now simply let the one-form gauge field A take

values in the entire HS algebra defined above, i.e.,

A =

∞∑
s=2

As =

∞∑
s=2

∑
nq ,np≥0

nq+np=2(s−1)

∑
irreps(a)

A(a)
s (nq, np)G

(a)(nq, np), (2.19)

where the sum has been broken up into two parts showing clearly the spin s sector and the

irrep content (a) of the terms. Note that the sum over the irreps (a) (where (a) := a1 . . . ar
for some integer r ≤ s− 1) takes care of the fact that given the content of q’s and p’s the

spin may vary as seen from the list of spin 3 generators in (2.12). The Chern-Simons action

in (2.15) can then be generalized, using the star product, to the higher spin algebra and

the equations of motion stemming from it are

F = dA+A ∧A = 0, (2.20)

i.e., the connection A is flat. This equation can be studied by regarding its irreducible

components separately after expanding it in the same way as for A above. In the first step

these are given by the different (q, p) components of Fs, denoted as F
(a)
s (nq, np) (the index

s is usually not written out). For example the component F a(2, 0) = 0 is the zero torsion

condition for the spin 2 connection ωa and F a(0, 2) = 0 is the Cotton equation.

The HS gauge parameter is generalized in a similar fashion into spin s sectors:

Λ =
∞∑
s=2

Λs =
∞∑
s=2

∑
nq ,np≥0

nq+np=2(s−1)

∑
irreps(a)

Λ(a)
s (nq, np)G

(a)(nq, np). (2.21)

The details of the spin 3 and spin 4 sectors are given in the following sections but as a

warm-up we now turn to a review of the spin 2 case.
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2.4 The conformal pure spin 2 system

The spin 2 part of the higher spin algebra generates the familiar objects of conformal

gravity in the first order formalism. For the convenience of the reader we review here some

aspects of the spin 2 system relevant for the coming discussions of the spin 3 and 4 systems.

Further details of the spin 2 construction can be found in [33, 45].

Thus we consider the spin 2 sector defined by A given in (2.16). Then taking the spin

2 content of the gauge parameter Λ to be16

Λ
spin 2

= Λa
(2,0)

P a + Λa
(1,1)

Ma + Λ
(1,1)

D + Λa
(0,2)

Ka, (2.22)

the gauge transformations (2.17) in this sector read

δe a
µ = Dµ Λa

(2,0)

− ε ac
µ Λc

(1,1)

− e a
µ Λ

(1,1)

+ bµ Λa

(2,0)

,

δω a
µ = Dµ Λa

(1,1)

+ 2ε ac
µ Λc

(0,2)

− 2εabcfµb Λc
(2,0)

,

δbµ = Dµ Λ
(1,1)

− 2eµ
a Λa

(0,2)

+ 2f a
µ Λa

(2,0)

,

δf a
µ = Dµ Λa

(0,2)

− bµ Λa

(0,2)

+ εabcfµb Λc
(1,1)

+ f a
µ Λ

(1,1)

,

where Dµ is the Lorentz covariant derivative containing the spin 2 connection ωµ
a, i.e.,

Dea = dea + εabcω
bec. We have also used the spin 2 dreibein to convert a flat index to a

curved one on some of the epsilon tensors.

These transformation rules provide a natural interpretation for the gauge parameters,

i.e., Λa(2, 0) parametrizes local translations and Λa(1, 1) local Lorentz transformations

while the remaining parameters Λ(1, 1) and Λa(0, 2) correspond to scaling transformations

and special conformal transformations. Looking at the transformation for bµ, we note that

it is possible to solve for Λa(0, 2) provided the dreibein field eµ
a is declared to be invertible.

The subtleties17 associated with this statement will not concern us in this paper. This

means that we can use the special conformal transformations to gauge bµ to zero and in

this gauge we find the familiar formulation of conformal gravity in terms of the dreibein

and spin connection as explained below. Fields that can be gauged to zero this way will

generally be called Stückelberg fields. Another subtlety related to the interpretation of

this system as three-dimensional conformal gravity concerns the diffeomorphisms which

are manifest symmetries of the Chern-Simons theory. As shown in [45], diffeomorphisms

can on-shell be identified with a particular linear combination of field dependent gauge

transformations. In the next section we will discuss this further in connection with the

spin 3 sector.

16The notation is designed such that the components of the parameter Λ and field strength F , but not

the fields in A, need to be accompanied by (nq, np) (written either under or after the quantity in question).

This is the case also for spin 3 and 4 treated in later sections.
17For a discussion on this issue, see [46, 47].
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Fµν
(a)(nq, np) = 0 so(1, 2) irreps. Solution

Fµν
a(2, 0) = 0 555⊕ 333⊕ 111 ωµ

a(eµ
a)

Fµν
a(1, 1) = 0 555⊕ 333⊕ 111 fµ

a(ωµ
a)

Fµν(1, 1) = 0 333 Constraint

Fµν
a(0, 2) = 0 555⊕ 333⊕ 111 Cotton eq.

Table 1. The role of the spin 2 component equations of F = 0.

Turning to the equations of motion we find that the component equations of F = 0

for the spin 2 sector of A take the form

F a
(2,0)

= 0⇒ D[µe
a

ν] + b[µe
a

ν] = 0,

F a
(1,1)

= 0⇒ 1

2
R a
µν + 2ε ab

[µ fν]b = 0,

F
(1,1)

= 0⇒ D[µbν] + 2f[µν] = 0,

F a
(0,2)

= 0⇒ D[µf
a

ν] − b[µf
a

ν] = 0,

where we have used the definition of the once dualized Riemann tensor Rµν
a in ap-

pendix A.2. Thus we see that in the gauge bµ = 0 the first equation reduces to the

zero torsion condition, the second says that fµ
a is related to the Schouten tensor

fµν =
1

2
Sµν =

1

2

(
Rµν −

1

4
gµν R

)
, (2.23)

the third is a constraint saying that fµν is symmetric (which is obviously true here) and,

finally, the last equation becomes, after dualization, the Cotton equation

Cµν := εµ
ρσDρfσν = 0, (2.24)

solutions of which are conformally flat space-times. This tensor is in the irrep 5, i.e.,

it is symmetric and traceless (trivially). It is also divergence free on both indices. Its

transformation properties are discussed below.

The content of the component equations of F = 0 can be summarized as in table 1.

There is a pattern emerging here where some of the equations F (a)(nq, np) = 0 can

be used to solve for A(nq − 1, np + 1). Using this solution, the last equation, the Cotton

equation, is then turned into a third order differential equation for the only independent

frame field eµ
a. As will be clear in the following sections, apart from a few new features,

this continues to hold also for higher spins which was first demonstrated at the linear level

in [35]. In the next two sections we analyze the spin 3 case in detail.

We end this section with a brief analysis of the spin 2 symmetries. Imposing the

Stückelberg gauge bµ = 0 implies (from the equation δbµ = 0) that

Λµ(0, 2) =
1

2
∂µΛ(1, 1) + fµ

aΛa(2, 0), (2.25)
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which then should be inserted into the transformation rules for the other fields given above.

We can now check the spin 2 scale invariance of the Cotton tensor:

δΛ(1,1)(D[µfν]
a) = εabc(δω[µ

b)fν]
c + D[µδfν]

a = (D[µfν]
a)Λ(1, 1) + f[µν]∂

aΛ(1, 1), (2.26)

where we used the definitions of the covariant derivative DV a = dV a + εabcω
bV c and the

following relation to the Schouten tensor Rµν
ab = 8e[µ

[afν]
b] (recall that fµν = 1

2Sµν). Thus

we see that D[µfν]
a transforms into itself under scalings since f[µν] = 0, or F (1, 1) = 0.

The scale invariant quantity is therefore (see, e.g., [48]) D[µfν]
aeaρ since the dreibein scales

with weight −1. The standard Cotton tensor is defined as Cµν = εµ
ρσD[ρfσ]

aeνa and hence

has scaling dimension −2 (as does the metric).

One may also go to the metric gauge, i.e., impose a Lorentz gauge such that the

dreibein is parametrized by a symmetric tensor, the metric gµν . Thus we demand the

antisymmetric part of the variation of the dreibein be zero which implies that the Lorentz

parameters are given by

Λµ(1, 1) = −1

2
εµ
νρDνΛρ(2, 0). (2.27)

One can then check that the antisymmetric part f[µν] is not generated by any of the

remaining transformations (translations and dilatations).

Finally, one may wonder what happens if the spin 3 Cotton tensor is used instead of

the spin 2 one. The spin 3 Cotton tensor is very complicated (see the next two sections) so

let us here consider just one single term in it, namely D[µfν]
ab (with fν

ab defined in (3.1)

below) which has spin 2 scaling weight equal to +2. Hence, there seems to exist two spin

2 scaling invariants

(D[µfν]
ab)eρab, (D[µfν]

ab)eρaeσb, (2.28)

where eρab is the spin 3 frame field defined in (3.1) below. Imposing that these two ex-

pressions be also spin 3 scaling18 invariant will (most likely) generate the complete spin

3 Lagrangian (the part [µνρ]) and Cotton equation, respectively. In particular, we know

that the spin 3 Cotton equation has more than a thousand terms (if its spin 3 content is

expressed in terms of just the spin 3 frame field). This and other aspects of the spin 3

sector will be explained in detail in the next two sections.

3 The spin 3 sector

The spin 3 content of the connection is given by the expansion

A
spin 3

= eabP
ab + ẽabP̃

ab + ẽaP̃
a + ω̃abM̃

ab + ω̃aM̃
a + b̃D̃+ f̃abK̃

ab + f̃aK̃
a + fabK

ab, (3.1)

where we have suppressed the (nq, np) since the notation is unambiguous (compare to Λ3

below). The one-form fields with two flat indices ab (in the irrep 5) will be called cascade

fields since at the end they will all be determined in a stepwise manner in terms of the frame

field eab. The remaining are called auxiliary and are either Stückelberg and/or dependent

18See section 3.1.
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(if they can be solved for in terms of cascade fields). If a field is both Stückelberg and

dependent the corresponding field equation will become a constraint, i.e., an equation that

can be reduced to a relation involving only spin 2 covariant derivatives on the spin 3 frame

field and factors of the spin 2 Schouten tensor. Constraints can also arise directly from

field equations which can not be used to solve for any field. The full situation for the spin

3 system is summarized by tables 2 and 3 below (and for spin 4 in table 5). Note that

there is a certain amount of arbitrariness in this procedure, a fact that we will have reason

to comment upon later.

Clearly the pattern from spin 2 is repeated but becomes here quite a bit more involved.

However, no extra difficulties apart from a vastly bigger volume of computations present

themselves. We have therefore developed a Mathematica package to be able to perform

these calculations. The conclusion is that the degrees of freedom that remain after gauge

fixing can be solved for in terms of the frame field eab, the spin 3 analogue of the spin

2 dreibein. Again, the last component of the zero field strength condition F ab(0, 4) = 0

becomes the Cotton equation now a fifth order differential equation for the independent

degrees of freedom eµ
ab. This conclusion was reached before for the linearized version

of the theory in [35] by analyzing the representation content. In [33] this was carried out

explicitly and there it was also made clear that this could be done for the non-linear system

involving the spin 2 and spin 3 fields. Here we continue in the analysis of this last paper

and solve the full non-linear version of the system.

3.1 The gauge choice

The spin 3 content of the gauge parameter Λ is

Λ
spin 3

= Λab
(4,0)

P ab + Λab
(3,1)

P̃ ab + Λa
(3,1)

P̃ a + Λab
(2,2)

M̃ab + Λa
(2,2)

M̃a

+ Λ
(2,2)

D̃ + Λab
(1,3)

K̃ab + Λa
(1,3)

K̃a + Λab
(0,4)

Kab. (3.2)

The resulting gauge transformations (2.17) for the spin 3 fields are given in appendix C.2.

As in the spin 2 case one can set some fields (Stückelberg) to zero by utilizing the symmetries

whose transformation rules contain a shift term.19 In the spin 3 case these are all the

symmetries except the generalized translations (Λab(4, 0)). Leaving also Lorentz (Λab(3, 1))

and dilatations (Λa(3, 1)) symmetries intact one gauge choice for the remaining symmetries

is given in table 2.20 The Λab(3, 1) and Λa(3, 1) parameters are spin 3 generalizations of

(spin 2) Lorentz and scale parameters (with one index less). This interpretation stems from

the fact they can be used to make the spin 3 frame field eµ
ab both symmetric (Lorentz)

19Terms that only contain a gauge parameter and the spin 2 dreibein.
20From the spin 3 case summarized in the table 2 it seems to be the generators in the (maximal) parabolic

subalgebra that is used for this purpose. However, although the spin 3 generators in question do satisfy

np ≤ nq and hence are part of the maximal parabolic subalgebra of the entire HS algebra it is only for

spin 3 that the Stückelberg symmetries used in the table coincide with these. For spin 2 the Stückelberg

ones satisfy np < nq while for any spin above 3 the Stückelberg ones extend beyond the maximal parabolic

subalgebra and thus do not form a subalgebra. There could, however, exist other reasons for being interested

in restricting the Stückelberg gauges to the HS parabolic subalgebra.

– 14 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
4

Λ(a)(nq, np) so(1, 2) irrep. Interpretation/Gauge

Λab(4, 0) 555 Translations (transl3)

Λab(3, 1) 555 Lorentz (Lorentz3)

Λa(3, 1) 333 Scale (scale3)

Λab(2, 2) 555
 ẽµ

a = 0Λa(2, 2) 333

Λ(2, 2) 111

Λab(1, 3) 555
}

ω̃µ
a = eµ

aω̂
Λa(1, 3) 333

Λab(0, 4) 555 f̃µ
a = εµ

abf̂b + eµ
af̂

Table 2. The spin 3 gauge parameters and the Stückelberg gauges used in the text.

and traceless (scale) resulting in a metric like field h̃µνρ.
21 In a similar fashion it seems

natural to view the parameters Λab(4, 0) as generalized spin 3 translations. If this means

that one can also define spin 3 “diffeomorphisms” is not clear since they do not have a

natural action on the coordinates xµ used to parametrize the spacetime manifold on which

the theory is defined. This will be discussed further in section 3.5 below. These spin 3

transformations will be referred to in what follows as transl3, Lorentz3 and scale3 as

indicated in table 2.

In table 2 we see that all three of the Λ(a)(2, 2) components are used to set ẽµ
a ∈ 555⊕333⊕111

to zero while Λa(1, 3) and Λ(1, 3) are used to gauge away the 555 and 333 of ω̃µ
a. Finally

Λab(0, 4) is used to set the 555 of f̃µ
a to zero. Thus we see that the pattern that was

present in the spin 2 case where the parameter Λ(nq, np) is used to gauge away parts of

A(nq + 1, np − 1) repeats itself here. That this Stückelberg phenomenon is possible stems

from the algebra in the following way.

For the gauge field A(nq, np), its gauge transformation contains terms from dΛ +

[A,Λ] proportional to G(nq, np). In particular a gauge transformation will contain a term

proportional to the dreibein ea if there is a generator X such that [P a,X ] is proportional

to G(nq, np). Since the commutator lowers both of the q- and p-degrees by one

[G(nq, np), G(mq,mp)] ∝ G(nq +mq − 1, np +mp − 1), (3.3)

it follows that [P a,X (q, p)] ∝ G(q + 1, p − 1). Assuming invertibility of the dreibein and

a non-zero commutator this means that Λ(nq, np) can be used to gauge away parts of

A(nq + 1, np − 1).22

21We save the notation hµνρ (without tilde) for the metric with a non-zero trace.
22Note that in the star product version of the theory there are no new sources of this phenomenon coming

from the multi-commutators.
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When implementing a partial gauge choice the remaining gauge transformations will

be modified. This can be seen for example when the transformation Λ(2, 2) is used to set

ẽa to zero, which implies that the parameters Λ(2, 2) are solved for in terms of Λ(3, 1) and

Λ(4, 0) (see appending C.2). This in turn enters into the transformation for ẽab which now

gets modified. Actually this phenomena never enters calculations when one is working with

expressions solely in terms of the fundamental eab since we are leaving the transformations

Λ(3, 1) and Λ(4, 0) ungauged. One may nevertheless wonder about the compatibility of the

transformations. It turns out that this works out as it must, that is the transformation of

the substituted fields in terms of eab exactly correspond to the modified gauge transforma-

tions of the unsubstituted fields. This again provides a nice way to check the validity of

the computer based calculations.

3.2 Zero field strength equations

The spin 3 content of A (see eq. (3.1)) in F = 0 gives a system that has many similar-

ities with the spin 2 case. The component equations are given in appendix C.1. After

implementing the gauge choice discussed above the spin 3 components of F take the fol-

lowing form

F ab
µν (4, 0) = D[µe

ab
ν] + ε

c(a
[µ ẽ

b)
ν] c, (3.4)

F ab
µν (3, 1) = D[µẽ

ab
ν] − 2ε

c(a
[µ ω̃

b)
ν] c − 4εcd(afc[µ e

b)
ν] d, (3.5)

F a
µν (3, 1) = −2e a

[µ b̃ν] +
3

2
ε a
µν ω̂ + ω̃ a

[µν] + 6f b[µ e
a

ν] b, (3.6)

F ab
µν (2, 2) = D[µω̃

ab
ν] +

(
e

(a
[µ ε

b)
ν] cf̂

c − trace
)

+ 3ε
c(a

[µ f̃
b)

ν] c + 3εcd(afc[µ ẽ
b)

ν] d, (3.7)

F a
µν (2, 2) = −e a

[µ Dν]ω̂ − 3ε a
µν f̂ − 3e a

[µ f̂ν] + 3f̃ a
[µν] + 3f b[µ ẽ

a
ν] b, (3.8)

Fµν (2, 2) = D[µb̃ν] −
8

3
εµνaf̂

a, (3.9)

F ab
µν (1, 3) = D[µf̃

ab
ν] − 4ε

c(a
[µ f

b)
ν] c − e

(a
[µ ω̂f

b)
ν] − 2εcd(afc[µ ω̃

b)
ν] d, (3.10)

F a
µν (1, 3) = −e a

[µ Dν]f̂ − ε ba
[µ Dν]f̂b + 2fa[µ b̃ν] + 6f a

[µ ν]

+
3

2
ε ba
[µ fν]b ω̂ + f b[µ ω̃

a
ν] b, (3.11)

F ab
µν (0, 4) = D[µf

ab
ν] −

(
e

(a
[µ f

b)
ν] f̂ − trace

)
− ε (a

[µ|c| f
b)
ν] f̂

c + εcd(afc[µ f̃
b)

ν] d . (3.12)

where the fields from the spin two sector, eµ
a(2, 0) and ωµ

a(1, 1), have been used, re-

spectively, to convert flat indices to curved ones and construct the covariant derivative

D = d+ ω(1, 1), while the Schouten tensor fµ
a(0, 2) = 1

2(Rµ
a − 1

4eµ
aR) appears explicitly.

The above equations are written in the spin 2 gauge bµ(1, 1) = 0 (see appendix C for

the full equations prior to implementing any gauge choices). Concerning the spin 3 gauge

choice one could have set to zero b̃µ(2, 2) instead of the vector part23 of ω̃µ
a(2, 2) as done

23This would mean keeping ω̃µ
a = εµ

abω̂b + eµ
aω̂ instead of just the last term.
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F (nq, np) = 0 so(1, 2) Solution Constraints

F ab(4, 0) = 0 777⊕ 555⊕ 333 ẽabµ
(
eabµ
)

F ab(3, 1) = 0 777⊕ 555⊕ 333 ω̃abµ
(
ẽabµ
)

F a(3, 1) = 0 555⊕ 333⊕ 111 bµ, ω̂ C1(555)

F ab(2, 2) = 0 777⊕ 555⊕ 333 f̃abµ
(
ω̃abµ
)

F a(2, 2) = 0 555⊕ 333⊕ 111 f̂a, f̂ C2(555)

F (2, 2) = 0 333 C3(333)

F ab(1, 3) = 0 777⊕ 555⊕ 333 fab
(
f̃ab
)

F a(1, 3) = 0 555⊕ 333⊕ 111 C4(555),C5(333),C6(111)

F ab(0, 4) = 0 777⊕ 555⊕ 333 Cotton eq.

Table 3. Representation content of the spin 3 equations of motion and the solution cascade. The

F = 0 in the underlined representations are not used in solving for any of the fields and hence

become constraints Ci (i = 1, . . . , 6). The Stückelberg fields have been set to zero here.

here. The reason we have opted for the latter possibility is that it simplifies the equation

F ab(3, 1) = 0.24 The corresponding term in F ab(2, 2) = 0 is present (the f̂ -term) which

will generate some extra terms when solving the above equations in the next subsection

(related to the occurrence of the operator Ô in (4.8) below). This will have consequences

in section 4 when we compare the frame field formulation to the metric one.

The representation content of this system is summarized in table 3.

From table 3 we see that there is a set of solutions arising from solving all but the last

of the zero field strength equations in the repr 5, i.e., F ab(nq, np) = 0, nq > 0, which we

will refer to as the cascade:

fµ
ab → f̃µ

ab → ω̃µ
ab → ẽµ

ab → eµ
ab. (3.13)

Here the arrows indicate that the solution gives the field to the left of the arrow as a

function, containing one derivative, of the field to the right of the arrow plus some non-

linear terms involving other spin 3 fields further down the cascade multiplied by the spin 2

Schouten tensor(s). The explicit solution is presented in full detail in the next subsection.

We also see from table 3 that the rest of the fields in A3 not set to zero by the gauge choice

can also solved for in terms of cascade fields (not indicated in table 3). The remaining

components of F = 0 can not be used to solve for any fields and will thus become a subset

of the constraints as discussed further below. The remaining constraints arise from the

24It is curious to note that in the full star product theory only b̃µ(2, 2) is associated to an operator,

namely D̃(2, 2), that is non-vanishing when sandwiched between the vacua |0〉q and p〈0|. Therefore setting

b̃µ(s− 1, s− 1) to zero for all spins might in general be a more convenient gauge choice.
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components of F = 0 that allows one to solve for a Stückelberg field which is then gauged

to zero. The structure of the whole set of equations in F = 0 described here for spin 3 is

generic and arise for all values of s. It is basically just a result of counting irreps as was

explained (in the linearized setting) by Pope and Townsend in [35].

In the next subsection we present the full solution to the spin 3 component equations.

With the solution at hand we can then turn to the two remaining issues: verification of the

constraints in subsection 3.4 and the structure of the spin 3 Cotton equation in section 4.

3.3 The solution

It is now a trivial, but somewhat tedious, matter to solve the non-linear spin 2 covariant spin

3 component equations (except, of course, the Cotton equation Fµν
ab(0, 4) = 0) of F3 = 0

given in the previous subsection. The procedure for doing this should be clear from table 3.

Just as in the spin 2 case there is a solution cascade where one uses F (nq, np) = 0 to solve

for parts of A(nq − 1, np + 1) giving it as a sum of terms with a spin 2 covariant derivative

acting on parts of A(nq, np) plus some non-linear terms involving both the covariant tensor

fµ
a(0, 2) from the spin 2 sector and spin 3 fields further down in the cascade. This pattern

arises for exactly the same reason as in the case of the gauge transformations.

The solution reads

ẽ ab
µ = ε cd

µ Dce
ab
d − 2εcd(aDce

b)
d µ − trace, (3.14)

ω̃ ab
µ = −1

2
ε cd
µ Dcẽ

ab
d + εcd(aDcẽ

b)
d µ − 2fabe c

cµ + 2f cµ e
ab
c − 2f c

c e
ab
µ + 2f c(ae b)

µ c

− 2f cµ e
(ab)

c + 2f c(aeb)cµ − trace, (3.15)

b̃µ = −1

9
DaDae

b
bµ −

1

18
DaDµe

b
ba +

1

9
DaDbeabµ +

1

18
DaDbeµab +

1

3
fabeabµ

− 4

3
f a
µ e b

ba −
1

3
f a
a e b

bµ +
4

3
fabeµab, (3.16)

ω̂ =
2

3
εabcf d

a ebcd, (3.17)

f̂µ = −1

3
Dµω̂ +

1

2
f̃ a
aµ −

1

2
f a
µ ẽ b

ba +
1

2
fabẽµab, (3.18)

f̂ = −2

3
fabD[ae

c
c]b , (3.19)

f̃ ab
µ =

1

3
ε cd
µ Dcω̃

ab
d − 1

48
e (a
µ ε|cdm|Dcω̃

b)
d m −

2

3
εcd(aDcω̃

b)
d µ +

1

16
e (a
µ Db)ω̂

− fabẽ c
cµ + f cµ ẽ

ab
c +

1

16
e (a
µ f b)cẽ d

dc −
1

16
e (a
µ f |cd|ẽ

b)
d c +

1

16
e (a
µ f |c|c ẽ

b)d
d

− f c
c ẽ

ab
µ + f c(aẽ b)

µ c − f cµ ẽ(ab)
c −

1

16
e (a
µ f |cd|ẽ

b)
cd + f c(aẽb)cµ − trace, (3.20)

f ab
µ = −1

4
ε cd
µ Dcf̃

ab
d +

1

2
εcd(aDcf̃

b)
d µ −

1

2
ε c(a
µ ω̂f b)c −

1

2
fabω̃ c

cµ +
1

2
f cµ ω̃

ab
c

− 1

2
f c
c ω̃

ab
µ +

1

2
f c(aω̃ b)

µ c −
1

2
f cµ ω̃

(ab)
c +

1

2
f c(aω̃b)cµ − trace. (3.21)

By inspecting these equations we see that all the fields appearing in the spin 3 sector can

be expressed in terms of the basic field in this sector, the frame field eµ
ab. Returning to
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C1 F a(3, 1)|555 = 0

C2 F a(2, 2)|555 = 0

C3 F (2, 2)|333 = 0

C4,C5,C6 F a(1, 3)|5,3,15,3,15,3,1 = 0

Table 4. Constraints from the remaining equations in table 3.

the spin 3 Cotton equation F ab(0, 4) = 0 given in the previous subsection we can see why

substituting the solution into it will result in a tremendously complicated equation. We

will return to this equation in section 4.

3.4 Constraints

From the representation content (see, e.g., table 3) of the equations of motion F3 = 0 it

is clear, as explained above, that some of the equations become constraints on the system.

These constraints are collected in table 4.

One expects that given the cascading solution of fab and the other dependent fields

in terms of eab these constraints are all identities. This is indeed the case as will now

be shown. The further down one looks in the list of constraints the more of the solution

cascade needs to be used and hence more work needs to be done to verify the equation. In

the linear case, some of the constraints were checked in [33]. As a non-linear example we

look a bit closer at C5.

This constraint consists of the 333 of Fµν
a(1, 3) (here written with its form indices).

Contracting it with a dreibein picks out the 333 which reads

(C5)ν = eµaFµν
a(1, 3) = 3faν

a + 2b̃[νfa]
a + fν[aω̃b]

ab − 1

2
εν
abDaf̂b −Dν f̂ . (3.22)

As explained above, substituting the spin 3 solution cascade fµ
ab → f̃µ

ab → ω̃µ
ab →

ẽµ
ab → eµ

ab results in a rather big expression but now only in terms of the spin 3 frame

field eµ
ab and the spin 2 Schouten tensor fµ

a.

Since every step in the substitution involves terms which introduce one more derivative

and terms that don’t, there exists terms with zero, two or four derivatives. At this point

the expression consists of different contractions from the set{
fµ
afν

beρ
cd,DµDνfρ

aeσ
bc, fµ

aDνDρeσ
bc,Dµfν

aDρeσ
bc,DµDνDρDσeτ

bc
}
. (3.23)

Let us start by considering the terms of highest order in derivatives in this list. It turns out

that the terms containing symmetrized or contracted derivatives drop out. This feature

was seen for the first four constraints already in [33] where they were shown to be identities

at the linear level. At the non-linear level, working with covariant derivatives, this fact can

be established by choosing a fixed lexicographic ordering of the derivatives. Then collecting

all terms results in a complete cancellation of terms with four derivatives. Thus the C5
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constraint can be rewritten as lower order terms together with spin 2 curvature tensors

which in turn can be related to the Schouten tensor by fµ
a = 1

2

(
Rµ

a − 1
4eµ

aR
)
. Repeating

the lexicographic step for the terms with two derivatives acting on the same field/tensor

these can also seen to vanish. So in the end all terms are different contractions of just two

kinds of structures, namely {
fµ
afν

beρ
cd,Dµfν

aDρeσ
bc
}
. (3.24)

Finally the spin 2 Cotton equation together with the Bianchi identity Dafµ
a = Dµfa

a can

be used to show that the remaining terms indeed sum up to zero.

These calculations quickly becomes unwieldy and so have been mostly carried out with

the help of a computer algebra system.25 In particular in the last step where the many

possible contractions ensues the use of Schouten type identities (i.e., “cycling of indices”)

it has been very helpful to verify the status of the expression by explicit index calculations.

In fact, since the constraints are expected to be identities they provide an excellent

testing ground when developing the Mathematica techniques for dealing with this system

of equations. The main purpose for doing this is of course to apply them to the spin 3

Cotton equation which at the non-linear level contains more than a thousand terms.

3.5 Spin 3 “metric” and “diffeomorphisms”?

The formalism used in this paper to construct a conformal HS theory in 2 + 1 dimensions

starts from a HS algebra based on so(3, 2), which is then gauged by introducing a one-form

gauge potential A valued in the HS algebra. Using this gauge field one can then as usual

write down the Chern-Simons Lagrangian. A HS theory constructed in this way has of

course both the gauge symmetry of the HS algebra and the diffeomorphism invariance of

the (topological) Chern-Simons gauge theory. For the pure spin 2 system (based on the

ordinary so(3, 2) algebra) it is standard to define diffeomorphisms in terms of the so(3, 2)

gauge symmetries in order to avoid having two infinitesimal symmetries that act in an

identical manner on the fields. This is done as follows [45]

δxµ = ξµ(x) : δdiff2(ξµ) = δΛ̂a(2,0) + δΛ̂a(1,1) + δΛ̂(1,1) + δΛ̂a(0,2) mod(F = 0), (3.25)

where δdiff2(ξµ) denotes an ordinary infinitesimal coordinate transformation (in 2 + 1 di-

mensions) and the Λ parameters are given by the field dependent expressions

Λ̂a(2, 0) = ξµeµ
a, Λ̂a(1, 1) = ξµωµ

a, Λ̂(1, 1) = ξµbµ, Λ̂a(0, 2) = ξµfµ
a. (3.26)

That is, on-shell linear coordinate transformations can be identified as a field dependent

combination of translations (Λa(2, 0)), Lorentz (Λa(1, 1)), dilatation (Λ(1, 1)) and special

conformal transformations (Λa(0, 2)). In verifying that this combination of so(3, 2) sym-

metries gives exactly linearized diffeomorphisms one has to impose the whole set of so(3, 2)

field strengths components equal to zero. This kind of procedure also works for other

25There are many excellent tensor algebra systems today however the somewhat specialized nature of this

problem made a custom solution in Mathematica together with the index canonicalization code xPerm [42]

the approach of choice.
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Chern-Simons gravity (i.e., spin 2) systems which are not conformal, e.g., when the cos-

mological constant is either positive, zero or negative. These conclusions are not affected

by the gauge choice bµ = 0 imposed in the spin 2 sector. One should, however, be aware of

the fact that non-linearly this identification of diffeomorphisms as a combination of gauge

symmetries seems to meet with considerable problems.26

The natural question to ask is then if the same kind of combination of spin 3 trans-

formations can be given a concrete geometric interpretation similarly to that in the spin 2

case. I.e., can
m+n=4∑
m,n

δΛ̂(m,n) , (3.27)

with spin 3 field dependent parameters Λ̂ab(4, 0) = ξµeµ
ab(4, 0), etc, be related to any kind

of coordinate transformation? The answer is that the result we reviewed above for spin

2 must generalize to the whole HS algebra. Thus by imposing the HS equations F = 0

the identification between diffeomorphisms and translations in the HS gauge algebra works

also for the HS fields with spin s > 2. However, if one is asking for the effect of these HS

spin gauge symmetries on the dreibein the answer seems to be “no” but issues that may

be connected to this and indicate a different answer have been discussed in the literature,

see, e.g., [40], where spin 3 transformations do affect the metric and are used to eliminate

physical singularities in the geometry (as defined by the spin 2 metric).

In fact, the complete effect of all higher spin translation transformations on the spin

2 dreibein can be determined using the star product and is given by the terms containing

Λ
a1...as−1
s (2s, 0) in the following expression

δHSeµ
a = DµΛa(2, 0) +

∞∑
s=3

∑
nq ,np≥0

∑
n′q ,n

′
p≥0

Ca,(b),(c)s (nq, np;n
′
q, n
′
p)A

(b)
s (nq, np)Λ

(c)
s (n′q, n

′
p),

(3.28)

where the coefficients C
a,(b),(c)
s (nq, np;n

′
q, n
′
p) 6= 0 when nq+np = n′q+n′p (i.e., s = s′ which

has already been implemented in the sums) and (nq+n′q, np+n′p) = (2, 0)+(2m+1, 2m+1)

where 2m + 1 (m ≥ 0) is the order of the multi-commutator used to get the answer.

Note, however, that the HS translation parameters may also arise from some of the other

parameters after gauge fixing.27 The total HS variation of the spin 2 dreibein is thus very

complicated and it is not clear what it is trying to tell us.28

In this context one should note that in Chern-Simons theories giving a HS theory with

spins 2, . . ., N in AdS3 it is possible to define a HS invariant metric by using the trace

in the HS algebra sl(N,R) ⊕ sl(N,R). Thus, by defining the invariant metric by ĝµν =

Tr(eµeν) [49], where eµ is the frame field constructed by summing over all “translation”

operator valued fields in the sl(N,R) ⊕ sl(N,R) theory, one can design HS frame fields

that generate drastic changes in the geometry depending on whether it is described by

26One of the authors (BEWN) thanks M. Duff for discussions concerning this issue.
27This is only true in the non-linear theory as will be clear in the next section.
28However, as is clear from the results in the next section, any gauge fixing of the dreibein beyond the

standard spin 2 ones could lead to simplifications of the spin 3 and higher Cotton equations.
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gµν = eµ
aeν

bηab or ĝµν = Tr(eµeν). For examples, see [40]. The issue of defining the metric

and its spin 3 analogue from the sl(3,R) ⊕ sl(3,R) frame fields is afflicted by some really

hard problems as can be seen in recent work [40, 41].

The problem of how to define a non-degenerate HS frame field in general in AdS3

was addressed in [50] and a criterion defined which was later used in [51] to discriminate

between various background solutions. Interestingly enough, among the possible Lifshitz

and Schroedinger solutions with dynamical exponent z checked in [51] only the latter with

z = 2 was found to pass the test. This coincides with the result of [52] where solutions of

the topologically gauged CFT3 spin 2 Cotton and Klein-Gordon equations are discussed.

In our conformal case there is no dimensionful parameter so the above definition does

not exist (in the unbroken theory).29 Instead one may consider expressions like

ĝµν = Tr(e(µfν)), (3.29)

where one sum over frame fields has been replaced (for each spin) by a dual field with

maximal number of p instead of q operators.30 In the star product theory the trace is defined

by Tr(φ(q, p)) = φ(0, 0) [36, 38], which gives the proper reason why the usual definition

does not make sense: Tr(eµeν) = 0. The definition ĝµν = Tr(e(µfν)) gives a “metric” with

dimension L−2 and thus seems not to be correct. However, for the conformal theory in

an Einstein background this definition could nevertheless produce a sensible metric since

one could then replace the spin 2 Schouten tensor fµ
a by 1

4Λeµ
a and drop the cosmological

constant dependent factor. This may then at the end give a metric definition similar to

the one used in the sl(N,R) ⊕ sl(N,R) type HS theories mentioned above although it is

not clear how to deal with the terms with spin larger than two.

4 The spin 3 Cotton equation

In this section we analyze the spin 2 covariant spin 3 Cotton equation F ab(0, 4) = 0 from

various perspectives. As should be clear from the previous discussions in this paper, writing

out this equation in full detail in terms of the basic frame field eµ
ab(4, 0) at the non-linear

(in spin 2 fields) level is doable (as a computer output9) but hardly very useful for the

presentation or calculations by hand. Therefore, this will not be done here but we hope to

remedy this in a future publication. At the moment, the strategy will instead be to provide

a simplified but to some extent implicit presentation of the spin 3 Cotton equation. This

way we may analyze it in different ways as we now explain.

In the first subsection below we discuss the linearized version aiming at connecting

our results to previous ones in the literature. Since most of these are in the “metric”

formulation we will be forced to define exactly the relation between the spin 3 frame field

and the “metric”.

The second subsection is then devoted to a discussion of the symmetry properties of

the various fields that appear in expansion of A3 after they have been expressed in terms

29Recall that the dimension of the spin s frame field eµ
a1...as−1 is Ls−2.

30In the spin 2 sector this dual field is the Schouten tensor field fµ = fµ
a(0, 2)Ka(0, 2).
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of the frame field eµ
ab. In particular we compare the linearized case to the fully non-linear

situation since this has implications for the transition to the metric formulation.

Finally, in the last subsection we turn to the full non-linear spin 3 Cotton equation

and present the exact equation in a form that can be written out in a compact way.

This is achieved by splitting it up into two parts. The first part is obtained by repeating

the cascading procedure of the first subsection but now using covariant instead of partial

derivatives in the various operators defined there. The second part contains then the

remaining terms which all involve the spin 2 Schouten (or Ricci) tensor. Presenting this

latter set of terms would be easier since the cascading has a smaller number of steps than

the first part of the Cotton equation. However, we will not present any of these parts in

detail but hope to return to this issue in the future. Combining the results obtained in

this section it will be obvious how to extract the fully non-linear spin 3 Cotton equation

in the metric formulation. This (together with the frame field result9) is one of the main

results of this paper and is presented here as an output from our computer algebra aided

computations10.

4.1 Linearized theory and connection to the “metric” formulation

One of the goals of this subsection will be to verify that our expressions possess the ex-

pected symmetry properties connected to the remaining unfixed gauge parameters. These

symmetries, together with the spin 3 Ricci, Schouten and Cotton tensors, were discussed

in detail some time ago by Damour and Deser [53] (for some more recent discussions, see

Bergshoeff et al. [54, 55] and Henneaux et al. [44]) but then in the linearized “metric”

formulation.31 We therefore end this subsection by giving the precise connection between

the spin 3 frame field that appear here and the “metric” of these previous references and in

the process we show that the “metric” formulation of the linearized tensors above as well

as the spin 3 Cotton equation derived in [53] are reproduced by our formalism.

The set of cascade equations we are dealing with here is

ẽµ
ab|lin = εµ

νρ∂νeρ
ab − 2

(
ενρ(a∂νeρµ

b) − 1

3
ηabενρc∂νeρµc

)
, (4.1)

ω̃µ
ab|lin = −1

2

(
εµ
νρ∂ν ẽρ

ab|lin − 2

(
ενρ(a∂ν ẽρµ

b)|lin −
1

3
ηabενρc∂ν ẽρµc|lin

))
, (4.2)

f̃µ
ab|lin =

1

3

(
εµ
νρ∂ν ω̃ρ

ab|lin − 2

(
ενρ(a∂ν ω̃ρµ

b)|lin −
1

3
ηabενρc∂ν ω̃ρµc|lin

))
(4.3)

− 1

48

(
ενρceµ

(a∂ν ω̃ρc
b)|lin −

1

3
ηabενρc∂ν ω̃ρcµ|lin

)
, (4.4)

fµ
ab|lin = −1

4

(
εµ
νρ∂ν f̃ρ

ab|lin − 2

(
ενρ(a∂ν f̃ρµ

b)|lin −
1

3
ηabενρc∂ν f̃ρµc|lin

))
, (4.5)

which is the linearized version of the corresponding equations in (3.15) to (3.21) in the sense

that the spin 2 metric has been set equal to the Minkowski one. The expressions we obtain

31Linearized unfolded equations for HS fields in AdS3 were classified in [56] where also the conformal

systems were discussed.
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this way are the proper ones for comparison to the results of [53, 54] and [44]. The linearized

Cotton equation F ab(0, 4)|lin = 0 after dualization in the frame field formulation reads

Cµ
ab|lin := εµ

ρσ∂ρfσ
ab|lin = 0, (4.6)

where fµ
ab|lin should be expressed in terms of the frame field eµ

ab by means of the above

cascade equations.

To express this equation in an as simple form as possible we now introduce three

different operators constructed from one epsilon tensor and one partial derivative (which

will become spin 2 covariant in the next subsection) mapping from the space of frame

tensors (that is tensors like eµ
ab) to itself. These operators, which do not commute, are

denoted O, Ô, /ε and are defined by the cascade equations above as follows:

O : eµ
ab → ẽµ

ab|lin = (Oe)µab, (4.7)

Ô : ω̃µ
ab|lin → f̃µ

ab|lin =
1

3
(Oω̃|lin)µ

ab +
1

3
(Ôω̃|lin)µ

ab, (4.8)

and finally

/ε : (/ε)µ
ν := εµ

ρν∂ρ , (4.9)

acting as follows on the frame field tensors

(/εe)µ
ab = (/ε)µ

νeν
ab = εµ

ρν∂ρeν
ab. (4.10)

Note that the last operator appears both in the linearized Cotton equation acting on fµ
ab

and in the first term of the operator O.

With the notation introduced above we can now easily use the cascade equations to

express the field fµ
ab|lin in terms of the basic frame field eµ

ab. The linearized Cotton

equation then takes the simple form

Cµ
ab(e)|lin := (/εf(e)|lin)µ

ab =
1

4!
/ε(O4e+OÔO2e)µ

ab = 0. (4.11)

Later when we turn the spin 3 Cotton equation into an equation for the spin 3 metric

hµνρ we need to address the following questions: is the spin 3 Cotton tensor defined as

Cµνρ(h)|lin := (/εf(h)|lin)µνρ, (4.12)

i) symmetric in all three indices, ii) traceless on any pair of indices, iii) divergence free on

all indices as expected? Note that if the first question can be answered in the affirmative

the other two properties follow since this tensor is by definition symmetric and traceless in

the last two indices and divergence free on the first one due to its relation to the frame field

formulation. The reason we raise these questions is that in previous metric formulations,

see [53, 54], these properties are known to be automatically true [44]. We also need to

answer these questions for the full non-linear Cotton tensor. This will be done later in

this section.

At this point, however, we are still in the frame field formulation and since all three

operators O, Ô, /ε defined above map the space of tensors which are symmetric and traceless
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in the last two indices into itself also the Cotton tensor will belong to this space of tensors.

This is in fact true also with the spin 2 covariantized operators used in the next subsection

as well as for the full non-linear theory. This follows directly from the cascade equations.

We note that the Cotton tensor Cµ
ab(e) is also trivially divergence free on the first index a

fact that continues to hold in the non-linear spin 2 covariant case due to the gauge theory

Bianchi identity.32 We will continue this discussion after we have converted the Cotton

equation into its metric form.

In order to get a feeling for what kind of expressions that will occur we give here the

linearized cascade field ω̃µ
ab|lin = −1

2(O2e)µ
ab explicitly:

ω̃µ
ab|lin = −1

2

(
−�eµ

ab + ∂µ∂
νeν

ab − 4

3
eµ

(a∂ν∂ρe
|νρ|b) +

4

3
eµ

(a�eν
b)ν + 2∂(a∂νeµ

b)ν

+2�e(ab)
µ − 2∂ν∂(aeν

b)
µ − 2∂ν∂(aeb)νµ + 2∂a∂beνµ

ν − 2∂µ∂
νe(ab)

ν

+
4

3
eµ

(a∂ν∂ρe
b)νρ − 4

3
eµ

(a∂b)∂νeρ
νρ

+
16

9
ηab(∂ν∂ρe

νρ
µ −�eνµ

ν) +
10

9
ηab(−∂ν∂ρeµνρ + ∂µ∂νeρ

νρ)

)
. (4.13)

It is trivial to check that the expression on the right hand side is traceless in ab as it must.

One may also verify that it is transl3 invariant under33

δeµ
ab|lin = ∂µΛab(4, 0), (4.14)

but, as expected, not scale3 invariant. That δω̃µ
ab|lin depends on Λa(3, 1) can be seen

from the linearized version of the transformation rules in appendix C.2 (obtained by setting

fµ
a(0, 2) = 0). By inspecting these equations (which involve only the transformation

rules for fields in irrep a) we see that all the parameters that are solved for at this stage

become, schematically, equal to ∂Λa(nq, np) for some nq, np. Thus the sequence Λa(1, 3)→
∂Λa(2, 2) → ∂∂Λa(3, 1) tells us that there is always a potential dependence of the spin 3

scale parameter as soon as any of these parameters appear in the transformation rules in

appendix C.2. Whether or not the corresponding symmetries are actually present must,

however, be checked explicitly in each case.

The first linearized cascade field that is scale3 invariant is, in fact, the Cotton tensor34

which we have verified using our Mathematica package, i.e., fµ
ab(0, 4)|lin expressed in terms

of eµ
ab(4, 0) is not invariant. This is in accord with a theorem proved for the linear metric

theory in [53]. For some more recent work discussing this point, see [44, 54]. In the frame

field formulation this is true also for the non-linear theory analyzed in this paper since the

Cotton equation is just a component of the zero field strength equation (but we have also

verified it explicitly using Mathematica). Note, however, that this conclusion, as will be

clear from the discussion in the last subsection, also holds for the metric formulation which

follows from our derivation of it from the frame field theory.

32One should note, however, that the Bianchi identity DF ab(0, 4) = 0 after the elimination of the auxiliary

fields is only satisfied modulo the solution of the spin 2 cascade equations.
33This is trivially true also for ẽµ

ab|lin.
34Strictly speaking the Cotton tensor is not a cascade field since it is not one of the fields in A3.
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Turning to the next cascade field f̃µ
ab(1, 3)|lin we saw in subsection 3.3 that there is an

extra derivative term in its relation to ω̃µ
ab(2, 2)|lin which is not there in the other cascade

relations. As we will now argue this is related to the form of the Schouten tensor defined

in [54] (see also [44]). In the notation of [54] the linearized Schouten tensor, written in

terms of their spin 3 “metric”, or Fronsdal field, hµνρ, is

Sµνρ(h)|lin = Gµνρ(h)|lin −
3

4
η(µνGρ)(h)|lin, (4.15)

where the spin 3 “Einstein” tensor35

Gµνρ|lin := −1

6
(/ε)µ

a(/ε)ν
b(/ε)ρ

chabc, (4.16)

now written in terms of our definition of (/ε)µ
a in (4.9). Here we have also defined the trace

ηνρGµνρ|lin := Gµ|lin which gives that ηνρSµνρ|lin = −1
4Gµ|lin.

From this definition of the Einstein tensor we see that it is automatically symmetric and

divergence free as well as transl3 invariant since (/ε)µ
a(/ε)ν

b(/ε)ρ
c∂(aΛbc) := 0. This is true

even if the parameter Λab had contained a trace which could play the role of a longitudinal

scale3 transformation. This is interesting since the Einstein tensor is not invariant under

general scale3 transformations. There is in fact a two-derivative expression, the “Ricci”

tensor, that is also transl3 invariant but only for trace-free parameters as noticed already

in [53]. Its relation to ω̃µ
ab|lin is analyzed below.

Following the linearized analysis of [54] the scale3 invariant Cotton tensor36 can now

be constructed in two different ways from the Einstein tensor. One is, dropping the |lin on

the linearized quantities in the remainder of this subsection,

Cµνρ =
1

2
�Gµνρ −

3

8
(η(µν�− ∂(µ∂ν)Gρ)σ

σ, (4.17)

which is totally symmetric, but this is imposed by hand. A second, perhaps more conve-

nient, way to write the Cotton tensor is in terms of the spin 3 Schouten tensor in (4.15) as

Cµνρ := (/ε)µ
σ(/ε)ν

τSστρ, (4.18)

which is, as noted in [44], automatically symmetric and hence also trace and divergence

free on all indices. This last way to write the Cotton tensor is, as we will see below, more

directly related to the frame field formulation and the cascade equations in our gauge.

This fact becomes clear if one notices that the cascade field f̃µ
ab in the metric formulation

can be made to correspond to the Schouten tensor. Utilizing this fact we will towards

the end of this subsection provide an exact relation between the frame field eµ
ab and the

“metric” hµνρ.

In [53] the spin 3 Schouten tensor is defined in analogy with the spin 2 case, namely

as the part (in any dimension) of the Riemann tensor left over when subtracting the Weyl

35Note that although there are three /ε operators they do not act as in the cascade field Fµ
ab where they

come from O and thus appear as /ε3 acting only on the curved index of eµ
ab!

36For the precise statement about spin 2 scale invariance see the discussion at the very end of section 2.
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tensor. Of course, in three dimensions and for any spin, the Weyl tensor is zero (as shown in

appendix A for spin 2 but this proof can be applied also to higher spins) and the Riemann

tensor is given entirely in terms of the Schouten tensor. The relation in three dimensions

for spin 3 is given in [53] (with their conventions but writing out the antisymmetrizations

explicitly)

Rµνρ,αβγ = ∂µ∂ν∂ρhαβγ |[µα],[νβ],[ργ] =
1

3
(Sµναγηρβ |[αρ],[γβ] + · · · ), (4.19)

where the “Schouten tensor”

Sµναβ := Rµναβ −
1

16
Rµ(νηαβ)|[µν]. (4.20)

Here the authors of [53] have used the definitions Rµναβ = ∂[µRν]αβ and Rµν = ∂[µRν]α
α

in terms of the “Ricci” tensor

Rµνρ := �hµνρ − ∂α∂(µhνρ)α + ∂(µ∂νhρ)α
α. (4.21)

Using the connection to the frame field formulation established below we will be able to

conclude that this Ricci tensor is closely related to the metric form of the cascade field

ω̃µ
ab, both of which are transl3 invariant for trace-free parameters only.

Using the above definitions quoted from the previous works [53] and [54] we can now

nail down the connection between our basic frame field and the “metric”. Let us first define

a completely symmetric field hµνρ by its relation to the frame field eµ
ab (traceless in ab)

as follows

eµ
ab = hµ

ab + c eµ
(ahb) − 1

3
(c+ 1)hµη

ab, (4.22)

where the trace hµν
ν := hµ. Hence, requiring just tracelessness in ab of the r.h.s. in this

relation leaves a free parameter c. Using this equation one can check that the linearized

Cotton tensor in the frame field formulation as given in (4.11) produces precisely the Cotton

tensor of ref. [54] quoted above. The free parameter c is thus not determined at this stage

which is not surprising in view of the fact that the Cotton tensor is scale3 invariant. We

thus expect that an identification between some other fields in the metric and frame field

formulations will be required to determine c.

For the simple relation hµνρ := e(µνρ) to be true we need actually c = 1
2 and then

eµ
ab = hµ

ab +
1

2
(eµ

(ahb) − hµηab). (4.23)

Indeed, the value c = 1
2 is obtained by identifying the linearized and symmetrized three

derivative cascade field f̃µ
ab with the Schouten tensor in (4.15), namely the one constructed

in terms of the “metric” hµνρ in [53] and [54]. Note that neither the Schouten tensor

nor the (by hand) symmetrized cascade field f̃µ
ab is trace free (in all index pairs) and

the identification works also for these irreducible trace parts.37 In order to get a better

understanding of the connection between the frame field and the metric, we conduct in

37In [33] the cascade field fµ
ab was given the name “Schouten tensor” which in view of the present

discussion is more appropriately associated to f̃µ
ab.

– 27 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
4

the next subsection a more thorough discussion of the implementation of the spin 3 metric

gauge using Lorentz3. This will include a more general comparison of linear as well as

non-linear properties of the relevant symmetries.

4.2 Symmetries: linear vs. non-linear

We will here discuss how the different cascade fields behave under the various spin 3

symmetries and to what extent this affects the implementation of various gauges, the main

one being the metric gauge. In doing so it will also be interesting to compare the linearized

to the full non-linear results. Why this is so will be clear below.

As a first step we would like to gauge fix the spin 3 frame field eµ
ab (containing irreps

7⊕5⊕3) to the corresponding “metric” hµνρ , which is totally symmetric in all three indices

and has a non-zero trace. This can be accomplished using the spin 3 Lorentz symmetry

Lorentz3 with parameter Λab(3, 1) and is easily done by setting δeµ
ab|5 = 0. In fact,

dropping the spin 2 transformation terms and implementing the spin 2 gauge bµ = 0 (see

appendix C) in

δeµ
ab(4, 0) = DµΛab(4, 0) + εµ

d(aΛb)d(3, 1)− eµ(aΛb)(3, 1), (4.24)

we can solve for Λab(3, 1). Inserting this solution back into the equation for δeµ
ab just

projects it down to the sum of irreps 7 ⊕ 3. This has immediate implications for how to

use the relation eµab = hµab + 1
2(ηµ(ahb) − hµηab) when deriving the transformation rules

for the spin 3 metric hµab. Explicitly, the solution for the Lorentz3 parameters is at the

linearized level

Λab(3, 1) = −2

3
εµν(a∂µΛν

b)(4, 0). (4.25)

Thus we see that when compensating the transl3 by a Lorentz transformation with this

parameter the result is (neglecting here also the scale3 part of the transformation)

δeabc = ∂aΛbc(4, 0) + εad(bΛc)
d(3, 1) = ∂(aΛbc)(4, 0) +

1

3
(ηa(b∂

dΛc)d(4, 0)− ηbc∂dΛad(4, 0)).

(4.26)

Using now the transformation rule δhabc = ∂(aΛbc)(4, 0) (and hence δha = 2
3∂

bΛab(4, 0)) we

find, as expected, that

δeabc = δhabc +
1

2
(ηa(bδhc) − δhaηbc). (4.27)

Having established the relation between the frame field and the metric in the spin 3

sector we can check how the cascade fields as functions of the metric behave under various

symmetries. First we consider ẽµ
ab(e)|lin. This cascade field is manifestly invariant under

transl3 while as a function of the metric (ẽµ
ab(h)|lin) it is not. In fact, this is obvious

already for (/εe)µ
ab, which is transl3 invariant, while (/ε(δh))µ

ab 6= 0.

Turning to the next cascade field, ω̃µ
ab|lin, let’s consider it too as a function of the

metric. The symmetrized expression then reads

ω̃(abc)(h)|lin = −1

2
(�habc− 3∂(a∂

µhbc)µ + 3∂(a∂bhc)+
1

3
η(ab(2∂

µ∂νhc)µν − 2�hc)− ∂c)∂µhµ)),

(4.28)
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where the first three terms are the ones used by Damour and Deser in [53] in their definition

of the “Ricci” tensor given in eq. (4.21) above.38 This set of terms is separately invariant

under linearized transl3 transformations, as are the remaining terms.

One should perhaps note in this context that in the frame formulation ω̃µ
ab(e)|lin is

of course transl3 invariant since this is true already for ẽµ
ab(e)|lin.39 However, this is no

longer true for ẽµ
ab if it is written in terms of the “metric” habc as already mentioned above.

The logic here is that for a transl3 invariant cascade field expressed in terms of the frame

field eµ
ab to stay invariant when the Lorentz3 invariance is used to turn the frame field

into the “metric” it must itself be Lorentz3 invariant: this is true for ω̃µ
ab(e)|lin but not

for ẽµ
ab(e)|lin (see appendix C). It is interesting to note here that at the non-linear level

ω̃µ
ab(e) is no longer invariant under the spin 3 Λ̃ab(3, 1) Lorentz transformations and hence

δtransl3ω̃µ
ab(h) 6= 0 as we have also verified by an explicit Mathematica calculation.

A similar discussion for the scale3 transformations gives a completely different result.

In fact, from appendix C we have, dropping the spin 2 parameters,

δẽµ
ab = DµΛab(3, 1)− 2εµ

d(aΛb)d(2, 2)− eµ(aΛb)(2, 2)− 4εcd(afµcΛ
b)
d(4, 0), (4.29)

and

δω̃µ
ab = DµΛab(2, 2) + 3εµ

d(aΛb)d(1, 3)− eµ(aΛb)(1, 3) + 3εcd(afµcΛ
b)
d(3, 1) + fµ

(aΛb)(3, 1).

(4.30)

Then using the gauge condition δẽµ
a(3, 1) = 0 we can solve for some of the gauge parameters

that appear on the r.h.s. of the last two equations above:

Λab(2, 2) = D(aΛb)(3, 1) + 6f (a
cΛ

b)c(4, 0)− trace, (4.31)

and

Λa(2, 2) = −1

3
εabcDbΛc(3, 1)− 2εabcfbdΛc

d(4, 0). (4.32)

From these expressions we conclude that linearly ω̃µ
ab(e) transforms under scale3 but not

under either transl3 or Lorentz3. At the non-linear level all three transformations affect

ω̃µ
ab(e). We now turn to a more systematic discussion of the non-linear properties of the

spin 3 system and in particular the non-linear properties of the Cotton equation.

In addition to the results quoted above for the Λ(a)(2, 2), the Stückelberg gauges lead

to the following spin 3 parameter relations

Λab(0, 4) =
1

6

(
D(aΛb)(1, 3) + f (a

cΛ
b)c(2, 2) +

3

2
εcd(af b)cΛd(2, 2) + 2fabΛ(2, 2)− trace

)
,

(4.33)

Λab(1, 3) =
1

3
(D(aΛb)(2, 2) + 3f (a

cΛ
b)c(3, 1)− 3εcd(af b)cΛd(3, 1)− trace), (4.34)

38Note the different normalization of symmetry brackets as compared to [53] (see eq. (4.21)).
39Note that since (in our spin 3 guage) ω̃µ

ab(e)|lin comes from squaring O = /ε− 2 /E there are (at least)

four expressions bilinear in derivatives that are separately invariant. Here we use the fact that given the

operators O and /ε defined above this equation defines /E. This follows directly from the fact that already the

first order expressions (/εe)µ
ab and ( /Ee)µ

ab appearing in ẽµ
ab as a function of eµ

ab are transl3 invariant.
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Λa(1, 3) =
1

6
(εaµνDµΛν(2, 2) + 3εaµνfµ

aΛνa(3, 1) + 3fabΛb(3, 1)− 3fb
bΛa(3, 1), (4.35)

and

Λ(2, 2) =
1

6
DµΛµ(3, 1) + fabΛ

ab(4, 0). (4.36)

One observation that can be made in relation to these expressions is that at the linear level

(i.e., setting eµ
a = δaµ) only parameters with one index appear on the r.h.s. s and hence they

are all determined by the dilatation parameter Λa(3, 1). Hence the only dependence of the

transformation rules for the cascade fields on the spin 3 translations and Lorentz symmetries

come from the explicit dependence in the transformation rules (see appendix C).

We conclude that at the linear level the metric gauge can be imposed without affecting

the translation invariance for the cascade fields ω̃ab, f̃ab and fab but not for ẽab. In the

case of scale3 invariance the first quantity that can be gauge fixed is the Cotton tensor

as is clear already at linear level.

This should be compared to the completely different situation that is at hand at the

non-linear level. Here the above expressions show that new dependencies of δ(cascade)

on all parameters Λab(4, 0), Λab(3, 1) and Λa(3, 1) are induced after implementing the

Stückelberg gauges. Thus the first non-linear quantity to be invariant under all symmetries

is the Cotton tensor since it is a component of the field strength F3. This probably means

that the task to construct a non-linear theory starting from the linear metric formulation

is more complicated than what one might have anticipated.

4.3 The non-linear Cotton equation

We have now come to a point where the full non-linear structure of the spin 3 Cotton equa-

tion, covariantly coupled to spin 2, can be discussed and explained. We emphasize again

that we only deal with the terms in this equation which originate from single commutators

(i.e., the first term) in the expansion of the star product or, which in this particular case

has the same effect, setting all fields with s ≥ 4 to zero.40

In terms of the HS gauge system the (two-form) spin 3 Cotton equation is

F ab(0, 4) = 0, (4.37)

which reads, after dualizing and using the HS algebra but before any substitutions from

the cascade solution have been done,

( /Ef)µ
ab + εµ

c(afc
b)f̂ −

(
fabf̂µ −

1

3
ηabff̂µ

)
+

(
δ(a
µ f

b)cf̂c −
1

3
ηabfµ

cf̂c

)
− fµcf̃ (ab)

c + f c(af̃c
b)
µ + δ(a

µ ff̃c
b)c − ff̃ (ab)

µ − δ(a
µ fdef̃

|de|b) − fµ(af̃c
b)c = 0, (4.38)

where /E is the spin 2 covariantized version of /ε defined in the first subsection (where also

its action on any tensor of the type eµ
ab(4, 0) was given). In the above Cotton equation

we have also defined f := fa
a(0, 2). Substituting the cascade solution into this Cotton

40The corresponding statement is not true for the spin 4 and higher Cotton equations.
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equation to express it in terms of only the frame field eµ
ab gives rise to an equation far too

big to write out in detail here. The equation will therefore be presented in an exact but

unrefined form of the appended raw output9 from our Mathematica program. This version

is not processed beyond basic canonicalization and collection of explicit index symmetries,

i.e. keeping the structure from the cascade solution.41

One way to present the complete Cotton equation is, as mentioned in the beginning of

this section, as the sum of two parts one containing all terms with five explicit derivatives

and one containing all terms with one or two spin 2 Schouten tensors (and thus less than five

explicit derivatives).42 The first part was discussed at the linearized level in the previous

subsection and can be taken from there by replacing the linearized operators O and Ô by

their spin 2 covariantized analogues which we denote D and D̂. Since O and Ô do not

commute (recall their action on eµ
ab type tensors) there is no ordering problem associated

with this procedure as there generally is when trying to Lorentz2 covariantize expressions

written in terms of partial derivatives.

As an illustration of this procedure we present the cascade field ω̃µ
ab this way:

ω̃µ
ab = ω̃µ

ab(D) + ω̃µ
ab(f), (4.39)

where the two-derivative part is

ω̃µ
ab(D) = −1

2
(D2 e)µ

ab, (4.40)

which when linearized reduces to the expression in eq. (4.13), while the no-derivative part

reads (here just the f(spin 2)e(spin 3) part of the solution for ω̃µ
ab given in section 3.3)

ω̃µ
ab(f) = 2(2f[µ

νeν]
ab + f c(aeµc

b) − fµνe(ab)
ν + f c(aeb)cµ − f (ab)ecµ

c)

− 4

3
ηab(f[µ

ced]
d
c − f[c

ded]
c
µ), (4.41)

where we have also implemented the fact that the spin 2 Schouten tensor fµν(0, 2) is

symmetric. Recalling the linearized expression in (4.13) one realizes that even in this

trivial case it would be quite tedious to compute the first part ω̃µ
ab(D) = −1

2(D2 e)µ
ab

explicitly. However, if this is done one gets further contributions to ω̃µ
ab(f) but their

precise form depends on how one chooses to define the (non-zero) two-derivative term.

This is of course true for all non-linear expressions considered in this paper.

We now turn to the expression for the full non-linear Cotton tensor. Written as the

sum of the two terms as explained above it reads

Cµ
ab = Cµ

ab(D) + Cµ
ab(f), (4.42)

where the first term

Cµ
ab(D) =

1

4!
/E(D4e+DD̂D2e)µ

ab, (4.43)

41Although other, in some sense more simplified, forms have been useful in the process of verifying

its properties, this is still one of the most compact expressions. For example, performing the explicit

commutators in footnote 9 tends to increase the total number of terms (after canonicalization).
42As mentioned previously, all terms have five derivatives if we also count the two inside the spin 2

Schouten tensor.
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whose explicit form is best obtained using the computer while the second one splits natu-

rally into

Cµ
ab(f) = Cµ

ab(f,D3) + Cµ
ab(f2, D), (4.44)

where the notation on the r.h.s. (the comma) indicates that the derivatives can also act

on the spin two Schouten tensor f . These latter two parts of the spin 3 Cotton equation

are also too complicated to be given here (however, see footnote 9). We hope to present a

more manageable expression for the this spin 3 Cotton equation elsewhere [43].

Apart from this we should also check that the necessary symmetries are present. The

transl3 and scale3 transformations are checked using our Mathematica based system and

both are found to work as expected: all terms with derivatives on the gauge parameters

cancel and the remaining terms appear in the following form

δF (0, 4) = [F (1, 1),Λ(0, 4)] + [F (0, 2),Λ(1, 3)], (4.45)

where both Λab(0, 4), Λab(1, 3) and Λa(1, 3) can at the non-linear level be related to

Λab(4, 0), Λab(3, 1) and Λab(3, 1) by cascading (as explained previously in this section).

This then implies that invariance under all three (including Lorentz3) of these symme-

tries arise only modulo the spin 2 Cotton equation F (0, 2) = 0. Note that also F (1, 1)

appears in δF (0, 4) above but F (1, 1) = 0 has been solved and will therefore not arise in

the computation of δF (0, 4).

Thus due to these Lorentz3 properties, the metric formulation of the spin 3 Cotton

equation is obtained by simply inserting (4.23) into the frame field Cotton equation. It can

be checked (using Mathematica) that the spin 3 Cotton tensor is totally symmetric and

hence traceless and divergencefree in all indices as expected. This answers the questions

i)–iii) posed in subsection 4.1.

Perhaps surprisingly, we find that the invariance under transl3 does not arise until

one reaches the Cotton equation in the cascade while for the scale3 invariance this is a

well-known fact already from the linearized analysis. In other words, the fact that there

exists a linearized expression with two partial derivatives acting on the spin 3 metric that is

invariant under transl3 (true also for the frame field formulation above) does not continue

to hold at the full non-linear level. It is not clear to us if this could have been foreseen

without consulting the Chern-Simons formulation. This property continues to be true when

considering the next field in the cascade f̃µ
ab corresponding to the Schouten tensor which

may be even more surprising.

5 Aspects of the spin 4 sector

The theory based on the star product was constructed by Fradkin and Linetsky some time

ago in [36] where also the supersymmetric version was considered. In that paper the bosonic

theory analyzed here was written out with all spins from two to infinity appearing explicitly

in a Lagrangian including all kinetic and cubic interaction terms. However, their results

come directly from the Chern-Simons gauge theory and appears in [36] in the version with

the auxiliary fields, i.e., before the elimination of the Stückelberg and the dependent fields
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that we have performed in this paper. The higher order interaction terms can thus not

be read off from their form of the Lagrangian. The structure of the cubic terms in this

Lagrangian, with the rather complicated coefficients, corresponds to computing the HS

multicommutators for the quadratic terms in the field equations or, alternatively, deducing

them by Taylor expanding the star product. In writing out the Chern-Simons Lagrangian

for all spins also a formula for the trace in the HS algebra is needed, see [36].

The expanded version of the theory in [36] thus provides an explicit form of the La-

grangian. However, if one is interested in the general structure of interaction terms be-

tween three or more frame fields with given spins one has to eliminate all auxiliary fields,

Stückelberg as well as dependent ones, in order to reduce the field content down to just

the basic spin s ≥ 2 frame fields eµ
a1...as−1 . Unfortunately, at the non-linear level this is

an arduous task which quickly makes the use of computer methods unavoidable. This is

amply demonstrated already by the spin 3 equations discussed above in this paper.

So far in this paper we have focused on the spin 2 - spin 3 subsystem to develop

techniques (in particular for the computer) and a better understanding of the general

structure. The complete HS theory with all integer spins s ≥ 2 is, however, reducible

in the sense that it can be consistently truncated to contain only the even spins. This

follows directly from the algebra which has the property that two generators both with

odd or even spins (multi)commute, in either case, to generators with odd spin while a pair

of generators, one with even and one with odd spin, has (multi)commutators that contain

only odd spins. For the frame fields themselves (with spin s(field) = j(generator)+1 due to

the one-form index) this translates into the result stated in section 2.2 for the consistency

of the even spin truncation.

As a first step towards addressing the more intricate aspects of the theory of (only)

even spins we here analyze the structure of the component content of the equations F4 = 0

for spin 4 to extract the constraints and the cascade equations, now setting all fields with

spins higher than four to zero. Again we follow closely the procedure outlined in [35]. As

we will see some understanding gained in the study of the spin 3 case can be immediately

taken over to the spin 4 case. For instance, the feature that in the star product theory the

spin two field equation picks up interactions terms with two spin 4 fields from the third

order commutator is true also for two spin 3 fields but in this latter case these terms are

neglected in the single commutator analysis carried out in this paper. The star product

features of the interaction terms can, on the other hand, be read off from the following list

of low spin star product commutators (for spin s fields As valued in the spin j = s−1 part

of the HS star algebra)

[A2, A2]∗ = A2,

[A2, A3]∗ = A3,

[A3, A3]∗ = A4 +A2,

[A2, A4]∗ = A4,

[A3, A4]∗ = A5 +A3,

[A4, A4]∗ = A6 +A4 +A2,

[A2, A5]∗ = A5 , (5.1)
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where the first column of terms on the r.h.s. s come from single commutators (or Poisson

brackets in this paper), the second column from third order commutators, etc, in the

expansion of the star product commutator. Here we have not included the abelian vector

field A1 which takes values in the central charge element G(0, 0) which is independent of

the operators qα and pα.

The expansion of the spin 4 gauge one-form potential reads

A4 = eabc(6, 0)Pabc(6, 0)

+ẽabc(5, 1)P̃abc(5, 1) + ẽab(5, 1)P̃ab(5, 1)

+ẽabc(4, 2)P̃abc(4, 2) + ẽab(4, 2)P̃ab(4, 2) + ẽa(4, 2)P̃a(4, 2)

+ω̃abc(3, 3)M̃abc(3, 3) + ω̃ab(3, 3)M̃ab(3, 3) + ω̃a(3, 3)M̃a(3, 3)b̃(3, 3)D̃(3, 3) +

+f̃abc(2, 4)K̃abc(2, 4) + f̃ab(2, 4)K̃ab(2, 4) + f̃a(2, 4)K̃a(2, 4)

+f̃abc(1, 5)K̃abc(1, 5) + f̃ab(1, 5)K̃ab(1, 5)

+fabc(0, 6)Kabc(0, 6), (5.2)

where we now keep the (nq, np) notation for both fields and generators in order to avoid

cluttering the symbols for these quantities with more things than tildes.43 Some of the fields

in A4 with less than three flat indices are Stückelberg and can be gauged away. However,

as seen before in this paper this gauging fixing procedure is not unique and we choose here

to eliminate fields in the manner indicated in table 5 by the left pointing arrows. From

table 5 we can also conclude that the following 13 equations actually constitute constraints

(from lines having either both left and right arrows or having no arrows):

F abcµν (5, 1)|7 = 0, F abµν(4, 2)|7 = 0, F aµν(4, 2)|5 = 0, F aµν(3, 3)|7 = 0, F aµν(3, 3)|5 = 0,

F aµν(3, 3)|3 = 0, F abµν(2, 4)|7 = 0, F aµν(2, 4)|5 = 0, F aµν(2, 4)|3 = 0, F aµν(2, 4)|1 = 0,

F abµν(1, 5)|7 = 0, F abµν(1, 5)|5 = 0, F abµν(1, 5)|3 = 0.

(5.3)

As for the lower spins discussed in previous sections of this paper, there are gauge

symmetries not being utilized at the point of the analysis defined by table 5: for spin 4

these are

Λabc(6, 0), Λabc(5, 1), Λab(5, 1), (5.4)

which as usual correspond to the spin 4 versions of the “translation”, “Lorentz” and “scale”

transformations, respectively. After the elimination of the auxiliary fields, these transfor-

mations act on the only remaining independent field in the theory, the frame field eµ
abc(6, 0),

which is in the representation 9⊕7⊕5, in the expected fashion. This frame field can thus

be gauge fixed, using Λabc(5, 1), to a totally symmetric spin 4 “metric” field hµνρσ con-

taining just the irreps 9 and 5. If needed this procedure can be continued using Λab(5, 1)

to obtain a traceless “metric” field in the irrep 9. The field hµνρσ here called “metric”

is just the spin 4 Fronsdal field defined to be totally symmetric and “double trace-free”

corresponding to the Young tableau with four symmetrized boxes and the singlet removed

43We still use tilde to indicate that the flat indices are irreps when this is not automatic.
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Frame field: eµ
abc(6, 0)

F abcµν (6, 0) = 0
solve−→ ẽµ

abc(5, 1)

ẽµ
ab(5, 1) = 0 ←− Λabc(4, 2),Λab(4, 2),Λa(4, 2)

F abcµν (5, 1) = 0
solve−→ ẽµ

abc(4, 2)

F abµν(5, 1) = 0
solve−→ ẽµ

ab(4, 2) ←− Λabc(3, 3)

ẽµ
a(4, 2) = 0 ←− Λab(3, 3),Λa(3, 3),Λ(3, 3)

F abcµν (4, 2) = 0
solve−→ ω̃µ

abc(3, 3)

F abµν(4, 2) = 0
solve−→ ω̃µ

ab(3, 3) ←− Λabc(2, 4)

F aµν(4, 2) = 0
solve−→ ω̃µ

a(3, 3) ←− Λab(2, 4)

b̃µ(3, 3) = 0 ←− Λa(2, 4)

F abcµν (3, 3) = 0
solve−→ f̃µ

abc(2, 4)

F abµν(3, 3) = 0
solve−→ f̃µ

ab(2, 4) ←− Λabc(1, 5)

F aµν(3, 3) = 0
solve−→ f̃µ

a(2, 4) ←− Λab(1, 5)

Fµν(3, 3) = 0 nothing to solve for

F abcµν (2, 4) = 0
solve−→ f̃µ

abc(1, 5)

F abµν(2, 4) = 0
solve−→ f̃µ

ab(1, 5) ←− Λabc(0, 6)

F aµν(2, 4) = 0 nothing to solve for

F abcµν (1, 5) = 0
solve−→ fµ

abc(0, 6)

F abµν(1, 5) = 0 nothing to solve for

F abcµν (0, 6) = 0 −→ Cotton equation.

Table 5. Spin 4 system. The table indicates which field is expressed in terms of other fields by

solving a specific F = 0 component equation. It is also shown how, in this particular gauge, the

gauge parameters are used to set to zero some or all irreps in the field components of A4.

giving the representation content 14 = 9⊕ 5. The free conformal field theory of this spin

4 “metric” was also studied in [55], and more recently in [44] as part of a more general HS

analysis including the linearized Cotton tensor.

6 Conclusions

The main objective of this paper has been to perform a non-linear analysis of the 2+1

dimensional conformal higher spin (HS) system defined in terms of a Chern-Simons theory

based on the HS version SO(3, 2). This includes a derivation of the non-linear spin 3

Cotton equation so this work can be considered as a direct continuation of [33, 34] where

the procedure was laid out and some initial results presented. As explained in these papers

the crucial step is to solve the cascade equations and insert the solution back into the spin

3 Cotton equation. It turns out that the computations that could be done by hand at the
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linear level (see [33, 34]) quickly become unmanageable and we have therefore been forced

to develop computer methods to deal with these equations.

The true structure of the interactions between the spin 2 and 3 frame fields does not

reveal itself until all auxiliary fields have been eliminated. At the level of the Chern-

Simons theory with all the auxiliary fields present there are of course only cubic terms in

the Lagrangian, see, e.g., [36]. Higher order interactions arise when the Stückelberg and

dependent fields are eliminated as indicated by the analysis at the linear level in [35]. These

interactions are therefore not directly tied to the HS algebra.

In order to carry out the computations and to get exact non-linear results we have found

it necessary to restrict the theory to the first term in expansion of the star commutator and

set all fields with spin 4 and higher to zero. In this truncation scheme the spin 3 Cotton

equations still contains more than 103 terms (in the unrefined form given in footnote 9

there are 1302 terms).

Another goal of this paper was to derive the metric formulation from the theory ex-

pressed in terms of the frame field. As discussed in the main text it is straightforward to go

to the metric formulation for the spin 3 (or any spin in fact) Cotton equation by imposing

a Lorentz gauge (here sometimes called the metric gauge). This is possible, as discussed

after eq. (4.28), since this equation is Lorentz3 invariant on-shell. At the linear level this

step can also be taken for some of the cascade fields which can then be compared to vari-

ous tensor fields in the metric formulation already defined in the literature. In the spin 3

Stückelberg gauge employed in this paper (see table 2) the Schouten tensor Sµνρ(h) defined

in (4.15) can be shown to be precisely our linearized cascade field f̃µ
ab(e) after converting

the flat indices to curved ones and replacing the spin 3 frame field by the corresponding

Fronsdal field using (4.23), i.e.,

eµ
ab = hµ

ab +
1

2
(eµ

(ahb) − hµηab). (6.1)

The same statement is true also for the linearized spin 3 Cotton equation in terms of (4.18)

and Fµν
ab(0, 4)(h)|lin = 0 after dualization.

Using the metric definition (4.23) we have also derived the exact non-linear metric

form of the Schouten tensor and the Cotton equation which we believe have not appeared

previously in the literature. Unfortunately, the spin 3 Cotton equation, in either the frame

field or metric formulation, is too complicated to be presented explicitly. We hope to come

back to this issue in a future publication. The full non-linear, but not completely refined,

spin 3 Cotton equation in the frame field and metric formulations are given in the appended

files, see footnote 9 and 10, respectively.

To extract information about this theory in AdS3 one could try to couple it to scalar

fields as in [34]. The hope would then be that giving a VEV to some of these scalars the con-

formal symmetry will be spontaneously broken and the theory develop an AdS3 background

solution. The prototypes here are the CFTs with six or eight supersymmetries coupled to

superconformal Chern-Simons gravity [27–29] where this is known to happen [28, 52]. How-

ever, if similar phenomena can occur in the conformal HS theories coupled to scalars is far

from clear. Of course, even without scalar fields one can just expand the conformal theory
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around a fixed AdS3 background and try to gain some information about the structure

of the higher derivative terms in the AdS3 of the theory. Hopefully this may give some

hints how to understand the problematic issues of derivative dressing and locality that are

known to be present in some HS theories based on the Vasiliev construction.

In this paper we have also analyzed the linearized version of the spin 4 sector. For any

spin we expect there to be a natural definition of the Schouten tensor in terms of the spin

s frame field analogues to the one in terms of the metric given in [44]. Schematically we

have for the Schouten and Cotton tensors

S(h) = ∂sh, C(h) = ∂2s−1h, (6.2)

which correspond in the frame formulation to, respectively, the first cascade field after the

“spin connection” ω̃(s− 1, s− 1)(e) = ∂s−1e and the last component of the field strength

F , i.e.,

f̃µ
a1...as−2(s− 2, s) = ∂se, F (0, 2s− 2) = ∂2s−1e. (6.3)

Note, however, that the special form of the Schouten tensor used in previous works,

i.e. (4.15), is also obtained in this paper but seems to be specific to the Stückelberg gauge

used here. In, for instance, a gauge with the dilatation gauge fields bµ set to zero the

relation to the standard metric Schouten tensor will be altered. The Cotton equation, on

the other hand, is of course not affected by choosing different gauges.
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A Conventions

Tangent (flat) space indices are denoted by lower case Latin a, b, · · · while for curved

space-time indices we use the second half of the lower case Greek alphabet µ, ν, · · · . The

Lorentzian metric ηab = diag(−1,+1,+1). The tangent space epsilon tensor is defined

by ε012 = 1.

Spinor indices for the real SL(2,R) spinors use the first half of the lower case Greek

alphabet α, β, · · · . They are raised and lowered from the left by the antisymmetric εαβ and

εαβ , respectively, obeying εαβε
βγ = δα

γ . The first (second) spinor index on gamma matrices

(γa)α
β is raised and lowered from the left (right) which implies that (γa)α

βpβ = (γa)αβp
β

but (note the minus sign) pα(γa)α
β = −pα(γa)αβ which also define the symmetric gamma

matrices with two upper or lower indices.

Sometimes we use the short hand q ·p = qαpα. The three dimensional gamma matrices

connecting the spin and vector representation are chosen as

(γa)α
β : γ0 = iσ2 , γ1 = σ1 , γ2 = σ3 , (A.1)

γ0γ1γ2 = 1, γabc = εabc1 . (A.2)
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A.1 Fierz identities

When calculating the commutation relations for the higher spin algebra some useful Fierz

identities are

(γa)(αβ(γa)γ)
δ = 0 , (A.3)

(γ[a)αβ(γb])γδ = εabc(γ
c)(α

(γδ
δ)
β) , (A.4)

(γ[a)(αβ(γb])γ)
δ = − 1

2
εabc(γ

c)(αβδ
δ
γ) , (A.5)

(γa)αβ(γa)
γδ = 2δ

(γδ)
αβ = 2(γa)(α

(γ(γa)β)
δ) , (A.6)

(γa)(α
(γ(γb)β)

δ) = ηabδ
(γδ)
αβ − (γ

(a
αβ(γb))γδ , (A.7)

(γa)(α(γ(γb)β)δ) = ηab
1

2
(εαγεβδ + εαδεβγ)− γ(a

αβγ
b)
γδ . (A.8)

A.2 Spin 2 curvature conventions

Here we summarize the conventions used in relating the usual Riemann tensor, Ricci tensor

etc to the dualized Riemann tensor obtained from the dualized spin connection ωµ
a used

in section 2.

The Riemann tensor (and spin connection) is (right-)dualized as follows

R∗µν
a =

1

2
Rµν

bcεbc
a, (A.9)

which is in this paper written without the asterisk. This tensor can be dualized a second

time giving exactly the Einstein tensor

∗R∗µ
a =

1

4
εµ
ρσRρσ

bcεbc
a = Rµ

a − 1

2
eµ
aR. (A.10)

The relation between the Riemann tensor and the Schouten tensor Sµ
a is in 2+1

dimensions

Rµν
ab = 4δ

[a
[µSν]

b], (A.11)

where the Schouten tensor is here defined in terms of the Ricci tensor by

Sµ
a = Rµ

a − 1

4
eµ
aR. (A.12)

The fact the Weyl tensor is zero in 2 + 1 dimensions is most easily shown by evaluating the

expression on the l.h.s. of the equation

δabcd[µνρσ]Wcd
ρσ = 0. (A.13)

The tracelessness of the Weyl tensor then just means that the l.h.s. is equal to 1
6Wµν

ab.

B Relevant parts of the HS algebra

The commutators involving the generators in the spin 2 and 3 sectors used in this paper

are tabulated below.
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B.1 The spin 2 Poisson algebra

The algebra generated by the spin 2 generators P a(2, 0), Ma(1, 1), D(1, 1) and Ka(0, 2) is

[Ma,M b] = εabcM
c,

[Ma, P b] = εabcP
c,

[Ma,Kb] = εabcK
c,

[P a,Kb] = −2εabcM
c − 2ηabD,

[D,P a] = P a,

[D,Ka] = −Ka, (B.1)

where we have simplified the notation by dropping the (nq, np).

B.2 The spin 2–spin 3 Poisson brackets

The commutators below contain one generator from each of the spin 2 and spin 3 sec-

tors [33]:

[P a(2, 0), P̃ bc(3, 1)] = εa(b
dP

c)d(4, 0),

[P a(2, 0), P̃ b(3, 1)] = −P ab(4, 0),

[P a(2, 0), M̃ bc(2, 2)] = −2εa(b
dP̃

c)d(3, 1)− (ηa(bP̃ c)(3, 1)− 1

3
ηbcP̃ a(3, 1)),

[P a(2, 0), M̃ b(2, 2)] = −P̃ ab(3, 1) +
3

2
εabcP̃

c(3, 1),

[P a(2, 0), D̃(2, 2)] = −2P̃ a(3, 1),

[P a(2, 0), K̃bc(1, 3)] = 3εa(b
dM̃

c)d(2, 2)− 3(ηa(bM̃ c)(2, 2)− 1

3
ηbcM̃a(2, 2)),

[P a(2, 0), K̃b(1, 3)] = −M̃ab(2, 2)− 3εabcM̃
c(2, 2)− 8

3
ηabD̃(2, 2),

[P a(2, 0), Kbc(0, 4)] = −4εa(b
dK̃

c)d(1, 3)− 6(ηa(bK̃c)(1, 3)− 1

3
ηbcK̃a(1, 3)),

[Ma(1, 1), P bc(4, 0)] = 2εa(b
dP

c)d(4, 0),

[Ma(1, 1), P̃ bc(3, 1) = 2εa(b
dP̃

c)d(3, 1),

[Ma(1, 1), P̃ b(3, 1)] = εabcP̃
c(3, 1),

[Ma(1, 1), M̃ bc(2, 2)] = 2εa(b
dM̃

c)d(2, 2),

[Ma(1, 1), M̃ b(2, 2)] = εabcM̃
c(2, 2),

[Ma(1, 1), K̃bc(1, 3) = 2εa(b
dK̃

c)d(1, 3),

[Ma(1, 1), K̃b(1, 3) = εabcK̃
c(1, 3),

[Ma(1, 1), Kbc(0, 4) = 2εa(b
dK

c)d(0, 4),

[D(1, 1), P bc(4, 0)] = 2P bc(4, 0),

[D(1, 1), P̃ bc(3, 1)] = P̃ bc(3, 1),

[D(1, 1), P̃ b(3, 1)] = P̃ b(3, 1),

[D(1, 1), K̃bc(1, 3)] = −K̃bc(1, 3),
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[D(1, 1), K̃b(1, 3)] = −K̃b(1, 3)

[D(1, 1), Kbc(0, 4)] = −2Kbc(0, 4),

[Ka(0, 2), P bc(4, 0) = −4εa(b
dP̃

c)d(3, 1) + 6(ηa(bP̃ c)(3, 1)− 1

3
ηbcP̃ a(3, 1)),

[Ka(0, 2), P̃ bc(3, 1)] = 3εa(b
dM̃

c)d(2, 2) + 3(ηa(bM̃ c)(2, 2)− 1

3
ηbcM̃a(2, 2)),

[Ka(0, 2), P̃ b(3, 1)] = M̃ab(2, 2)− 3εabcM̃
c(2, 2) +

8

3
ηabD̃(2, 2),

[Ka(0, 2), M̃ bc(2, 2)] = −2εa(b
dK̃

c)d(1, 3) + (ηa(bK̃c)(1, 3)− 1

3
ηbcK̃a(1, 3)),

[Ka(0, 2), M̃ b(2, 2)] = K̃ab(1, 3) +
3

2
εabcK̃

c(1, 3),

[Ka(0, 2), D̃(2, 2)] = 2K̃a(1, 3),

[Ka(0, 2), K̃bc(1, 3)] = εa(b
dK

c)d(0, 4),

[Ka(0, 2), K̃b(1, 3)] = Kab(0, 4). (B.2)

C Some basic spin 3 equations

C.1 F3 = 0

The full spin 3 equations of motion in differential form notation without any gauge choice

are given by (with D = d+ ω̃(1, 1) and where tr denotes the trace),

F ab(4, 0) = Deab(4, 0) + ec ∧ ẽd(a(3, 1)εb)cd −
(
e(a ∧ ẽb)(3, 1)− trace

)
= 0 , (C.1)

F ab(3, 1) = Dẽab(3, 1)− 2ec ∧ ω̃d(a(2, 2)εb)cd −
(
e(a ∧ ω̃b)(2, 2)− trace

)
− 4f c ∧ ed(a(4, 0)εb)cd = 0 , (C.2)

F a(3, 1) = Dẽa(3, 1)− eb ∧ ω̃ba(2, 2) +
3

2
εabce

b ∧ ω̃c(2, 2)− 2ea ∧ b̃(2, 2)

+ 6fb ∧ eba(4, 0) = 0 , (C.3)

F ab(2, 2) = Dω̃ab(2, 2) + 3ec ∧ f̃d(a(1, 3)εcd
b) + 3f c ∧ ẽd(a(3, 1)εcd

b)

−
(
e(a ∧ f̃ b)(1, 3)− trace

)
+ (f (a ∧ ẽb)(3, 1)− trace) = 0 , (C.4)

F a(2, 2) = Dω̃a(2, 2)− 3eb ∧ f̃ ba(1, 3)− 3εabce
b ∧ f̃ c(1, 3) + 3fb ∧ ẽba(3, 1)

− 3εabcf
b ∧ ẽc(3, 1) = 0 , (C.5)

F (2, 2) = db̃(2, 2)− 8

3
ea ∧ f̃a(1, 3) +

8

3
fa ∧ ẽa(3, 1) = 0 , (C.6)

F ab(1, 3) = Df̃ab(1, 3)− 4ec ∧ fd(a(0, 4)εb)cd +
(
f (a ∧ ω̃b)(2, 2)− trace

)
− 2f c ∧ ω̃d(a(2, 2)εb)cd = 0 , (C.7)

F a(1, 3) = Df̃a(1, 3)− 6eb ∧ f ba(0, 4) + fb ∧ ω̃ba(2, 2) +
3

2
f b ∧ ω̃c(2, 2)εbc

a

+ 2fa ∧ b̃(2, 2) = 0 , (C.8)

F ab(0, 4) = Dfab(0, 4) + f c ∧ f̃d(a(1, 3)εb)cd +
(
f (a ∧ f̃ b)(1, 3)− trace

)
= 0 . (C.9)
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C.2 δA3 = (dΛ + [A,Λ])|3
Here we give the explicit form of the gauge transformations in the spin 3 sector. They read,

using only single commutators and before implementing any gauge choices, as follows

δe ab
µ

(4,0)

= DµΛab

(4,0)

+ 2ε(a|cd|e b)
µ c Λd

(1,1)

− 2e ab
µ Λ

(1,1)

+ ε(a|cd|ẽ b)
µ c Λd

(2,0)

+ ẽ (a
µ Λb)

(2,0)

− ε(a|d|µΛ
b)
d

(3,1)

− e (a
µ Λb)

(3,1)

+ 2bµΛab

(4,0)

, (C.10)

δ ẽ a
µ

(3,1)

= Dµ Λa

(3,1)

− 6e ab
µ Λb

(0,2)

+ εabcẽµb Λc
(1,1)

− ẽ a
µ Λ

(1,1)

+ ω̃ ab
µ Λb

(2,0)

+
3

2
εabcω̃µb Λc

(2,0)

+ 2b̃µ Λa

(2,0)

− Λaµ
(2,2)

− 3

2
εacµ Λc

(2,2)

− 2e a
µ Λ

(2,2)

+ bµ Λa

(3,1)

+ 6f b
µ Λab

(4,0)

, (C.11)

δẽ ab
µ

(3,1)

= DµΛab

(3,1)

− 4ε(a|cd|e b)
µ c Λd

(0,2)

+ 2ε(a|cd|ẽ b)
µ c Λd

(1,1)

− ẽ ab
µ Λ

(1,1)

− 2ε(a|cd|ω̃ b)
µ c Λd

(2,0)

+ ω̃ (a
µ Λb)

(2,0)

+ 2ε(a|d|µΛ
b)
d

(2,2)

− e (a
µ Λb)

(2,2)

+ bµΛab

(3,1)

− 4ε(a|cd|fµcΛ
b)
d

(4,0)

, (C.12)

δ b̃µ
(2,2)

= Dµ Λ
(2,2)

− 8

3
ẽ a
µ Λa

(0,2)

− 8

3
Λµ
(1,3)

+
8

3
f̃ a
µ Λa

(2,0)

+
8

3
f a
µ Λa

(3,1)

, (C.13)

δω̃ a
µ

(2,2)

= Dµ Λa

(2,2)

− 3ẽ ab
µ Λb

(0,2)

− 3εabcẽµb Λc
(0,2)

+ εabcω̃µb Λc
(1,1)

− 3Λaµ
(1,3)

+ 3εacµ Λc
(1,3)

+ 3f̃ ab
µ Λb

(2,0)

− 3εabcf̃µb Λc
(2,0)

+ 3f b
µ Λab

(3,1)

− 3εabcfµb Λc
(3,1)

, (C.14)

δω̃ ab
µ

(2,2)

= DµΛab

(2,2)

+ 3ε(a|cd|ẽ b)
µ c Λd

(0,2)

− ẽ (a
µ Λb)

(0,2)

+ 2ε(a|cd|ω̃ b)
µ c Λd

(1,1)

− 3ε(a|d|µΛ
b)
d

(1,3)

− e (a
µ Λb)

(1,3)

+ 3ε(a|cd|f̃ b)
µ c Λd

(2,0)

+ f̃ (a
µ Λb)

(2,0)

+ 3ε(a|cd|fµcΛ
b)
d

(3,1)

+ f (a
µ Λb)

(3,1)

, (C.15)

δf̃ a
µ

(1,3)

= Dµ Λa

(1,3)

− ω̃ ab
µ Λb

(0,2)

+
3

2
εabcω̃µb Λc

(0,2)

− 2b̃µ Λa

(0,2)

− 6Λaµ
(0,4)

+ εabcf̃µb Λc
(1,1)

+ f̃ a
µ Λ

(1,1)

− bµ Λa

(1,3)

+ 6f ab
µ Λb

(2,0)

+ f b
µ Λab

(2,2)

+
3

2
εabcfµb Λc

(2,2)

+ 2f a
µ Λ

(2,2)

, (C.16)

δf̃ ab
µ

(1,3)

= DµΛab

(1,3)

− 2ε(a|cd|ω̃ b)
µ c Λd

(0,2)

− ω̃ (a
µ Λb)

(0,2)

+ 4ε(a|d|µΛ
b)
d

(0,4)

+ 2ε(a|cd|f̃ b)
µ c Λd

(1,1)

+ f̃ ab
µ Λ

(1,1)

− bµΛab

(1,3)

− 4ε(a|cd|f b)
µ c Λd

(2,0)

− 2ε(a|cd|fµcΛ
b)
d

(2,2)

+ f (a
µ Λb)

(2,2)

, (C.17)

δf ab
µ

(0,4)

= DµΛab

(0,4)

+ ε(a|cd|f̃ b)
µ c Λd

(0,2)

− f̃ (a
µ Λb)

(0,2)

− 2bµΛab

(0,4)

+ 2ε(a|cd|f b)
µ c Λd

(1,1)

+ 2f ab
µ Λ

(1,1)

+ ε(a|cd|fµcΛ
b)
d

(1,3)

+ f (a
µ Λb)

(1,3)

. (C.18)

By looking at, e.g., δẽµ
a and the three terms involving Λab(2, 2),Λa(2, 2),Λ(2, 2) on the sec-

ond line we conclude that we can set ẽµ
a = 0 (at least infinitesimally) as a choice of gauge.

This involves solving for these three parameters in terms of, in particular, DµΛa(3, 1).

Considerations like this is used in, e.g., section 4.

– 41 –



J
H
E
P
0
7
(
2
0
1
6
)
0
2
4

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.A. Vasiliev, Higher spin gauge theories: star product and AdS space, hep-th/9910096

[INSPIRE].

[2] M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),

Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

[3] B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl.

Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].

[4] E. Witten, Spacetime reconstruction, talk given at John Schwarz 60th birthday symposium,

http://theory.caltech.edu/jhs60/witten/1.html (2001).

[5] A. Mikhailov, Notes on higher spin symmetries, hep-th/0201019 [INSPIRE].

[6] E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002)

303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

[7] I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B

550 (2002) 213 [hep-th/0210114] [INSPIRE].

[8] R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS4, JHEP 06

(2003) 011 [hep-th/0304217] [INSPIRE].

[9] E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic

scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

[10] S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions,

JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

[11] M.R. Gaberdiel and R. Gopakumar, Higher spins & strings, JHEP 11 (2014) 044

[arXiv:1406.6103] [INSPIRE].

[12] M.R. Gaberdiel and R. Gopakumar, String theory as a higher spin theory,

arXiv:1512.07237 [INSPIRE].

[13] E. Sezgin and P. Sundell, Analysis of higher spin field equations in four-dimensions, JHEP

07 (2002) 055 [hep-th/0205132] [INSPIRE].

[14] N. Boulanger, P. Kessel, E.D. Skvortsov and M. Taronna, Higher spin interactions in

four-dimensions: Vasiliev versus Fronsdal, J. Phys. A 49 (2016) 095402 [arXiv:1508.04139]

[INSPIRE].

[15] N. Boulanger, S. Leclercq and P. Sundell, On the uniqueness of minimal coupling in

higher-spin gauge theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [INSPIRE].

[16] R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl.

Phys. B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

[17] I.L. Buchbinder, A. Fotopoulos, A.C. Petkou and M. Tsulaia, Constructing the cubic

interaction vertex of higher spin gauge fields, Phys. Rev. D 74 (2006) 105018

[hep-th/0609082] [INSPIRE].

– 42 –

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-th/9910096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910096
http://dx.doi.org/10.1016/S0370-2693(03)00872-4
http://arxiv.org/abs/hep-th/0304049
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304049
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://arxiv.org/abs/hep-th/0103247
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.Proc.Suppl.,102,113%22
http://theory.caltech.edu/jhs60/witten/1.html
http://arxiv.org/abs/hep-th/0201019
http://inspirehep.net/search?p=find+EPRINT+hep-th/0201019
http://dx.doi.org/10.1016/S0550-3213(02)00739-3
http://dx.doi.org/10.1016/S0550-3213(02)00739-3
http://arxiv.org/abs/hep-th/0205131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205131
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://arxiv.org/abs/hep-th/0210114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
http://dx.doi.org/10.1088/1126-6708/2003/06/011
http://dx.doi.org/10.1088/1126-6708/2003/06/011
http://arxiv.org/abs/hep-th/0304217
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304217
http://dx.doi.org/10.1088/1126-6708/2005/07/044
http://arxiv.org/abs/hep-th/0305040
http://inspirehep.net/search?p=find+EPRINT+hep-th/0305040
http://dx.doi.org/10.1007/JHEP09(2010)115
http://arxiv.org/abs/0912.3462
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3462
http://dx.doi.org/10.1007/JHEP11(2014)044
http://arxiv.org/abs/1406.6103
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.6103
http://arxiv.org/abs/1512.07237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.07237
http://dx.doi.org/10.1088/1126-6708/2002/07/055
http://dx.doi.org/10.1088/1126-6708/2002/07/055
http://arxiv.org/abs/hep-th/0205132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205132
http://dx.doi.org/10.1088/1751-8113/49/9/095402
http://arxiv.org/abs/1508.04139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04139
http://dx.doi.org/10.1088/1126-6708/2008/08/056
http://arxiv.org/abs/0805.2764
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2764
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.002
http://dx.doi.org/10.1016/j.nuclphysb.2006.10.002
http://arxiv.org/abs/hep-th/0512342
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512342
http://dx.doi.org/10.1103/PhysRevD.74.105018
http://arxiv.org/abs/hep-th/0609082
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609082


J
H
E
P
0
7
(
2
0
1
6
)
0
2
4

[18] X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two

barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys. 84 (2012) 987

[arXiv:1007.0435] [INSPIRE].
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