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1 Introduction

For the open string it is a long established result that its effective theory on a fluxed

D-brane can be described by a noncommutative gauge theory. Whereas, for the closed

string the appearance of a similar relation to noncommutative geometry is still under

debate. In [1, 2], indications were presented that support the picture that for nongeometric

closed string backgrounds the coordinates do not commute, but give a noncommutative

structure [2] for the case of so-called Q-flux and a nonassociative structure [1, 2] for the

case of non-geometric R-flux (see also the previous work [3] and the reviews [4, 5]). This

nonassociativity for a constant R-flux background is captured by the commutation relations

[xi, xj ] =
il4s
3~

Rijkpk , [xi, pj ] = i~ δij

pk denotes the momentum and i, j, k = 1, . . . , D. More evidence for this result was delivered

following various alternative approaches [6–11].

The string theoretic framework for nongeometric fluxes is double field theory

(DFT) [12–15], an effective theory for the massless closed string modes that features mani-

fest O(D,D) symmetry and is a priori defined on a doubled space, where besides the usual

coordinates xi one introduces so-called winding coordinates x̃i. The latter can be consid-

ered as the canonical conjugate variables to the winding modes. For reviews of DFT please

consult [16–18]. As one of its peculiar features, DFT is only consistent if one introduces

a further constraint that reduces the degrees of freedom. For the fluctuations around a

given background, this has to be the strong-constraint ∂if∂̃
ig + ∂̃if∂ig = 0 for every pair

of fundamental objects f and g. This implies that eventually the quantities depend on half

of the coordinates.

It was pointed out in [19] that the nonassociative algebra above, presumes a violation of

the strong constraint. In other words, one only has such a non-trivial structure, if the strong

constraint between the background Rijk and fluctuations around it is violated. Since under

these circumstances the background and the fluctuations are treated differently, this also

presumes a background dependent version of DFT, similar to the one proposed in [20, 21].

However, we emphasize that the question about the correct form of the DFT constraints

is not completely settled yet.1

Once outside of Pandora’s box, such a nonassociative structure has gained some interest

also from the more formal noncommutative geometry point of view. In particular, in the

framework of deformation quantization, a nonassociative star-product was introduced that

realizes the above algebra [24–26]. Since it originates from the closed string, the expectation

is that it might be possible to define a gravity theory on such a background. Based on Hopf

algebra techniques, for the associative Moyal-Weyl star-product, a deformed formalism was

developed [27–29] that allows to generalize all the concepts from differential geometry, like

tensors, covariant derivative, torsion and curvature. The main idea is to introduce so-called

star-diffeomorphisms and deform the Leibniz rule in such a way that the star-product of

two star-tensors is again a star-tensor.

1An alternative proposal for a relation of DFT to a star-product in noncommutative geometry was

presented in [22, 23].
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Based on earlier work [24–26], this latter framework was generalized recently by Barnes,

Schenkel, Szabo [30–32] to so-called quasi-Hopf algebras, which are not any longer associa-

tive but whose associator is of a special form that, as an example, includes the constant

R-flux star-product. The (to our taste) very formal, categorial approach followed in [30–32]

led to the star-generalization of tensors, covariant derivative and curvature but stopped at

the point where usually a metric and its Levi-Civita connection is introduced. Moreover,

it is far from obvious whether all these structures have anything to do with string theory

or DFT, respectively. If they do, then from string theory/DFT perspective the following

issue needs to be resolved:

• At each order in α′ the string effective action is manifestly diffeomorphism invariant.

(Similarly, the DFT action is invariant under generalized diffeomorphisms.) There-

fore, one needs to understand how star-diffeomorphisms are related to these classical

symmetries.

One possible way to resolve it may be the following observation made in [19] and further

exploited in [33]. Since string theory is described on-shell by a two-dimensional conformal

field, it was argued that on-shell any sign of nonassociativity should better be absent. That

means that, using the equations of motion, the additional terms in the action resulting from

the star-product should be total derivatives. Moreover, in [6] the CFT for a constant metric

with a constant R-flux was constructed up to linear order in the R-flux. Via computing

correlation functions of tachyon vertex operators a linear contribution was found that could

be encoded in the nonassociative star-product from above. This means that comparing the

two formalisms is expected to be reliable only up to linear order in the R-flux.

In this paper, even though we will not be able to fully clarify the above mentioned issue,

as an intermediate step, we intend to provide a more pedestrian derivation of the structure

of a nonassociative differential geometry. Avoiding abstract techniques from quasi-Hopf

algebras, we investigate how a star-tensor calculus can be developed step by step. We

will work on the entire phase space and will be able to construct a covariant derivative,

the torsion and the curvature star-tensor. It is remarkable that this is still possible, even

though, due to the nonassociativity, one has to be very careful with the bracketing in all

of the expressions that appear in the course of the formal computations. However, when

it comes to the introduction of a star-metric, its inverse and a Levi-Civita connection, we

encounter a number of obstacles in the nonassociative case that were not present in the

only noncommutative but associative case.

Concretely, this paper is organized as follows: in section 2 we introduce the nonas-

sociative star-product for a non-vanishing R-flux and, after discussing some of its basis

structures, we carry out the first steps towards a star-tensor formalism. Here we restrict

to tensors only depending on configuration space. In section 3 we generalize some of these

concepts to a full phase-space dependence, before in section 4 we develop the full tensor

calculus. Section 5 is devoted to formulate the basic notions of a nonassociative differential

geometry, i.e. we introduce a covariant derivative and define its torsion and curvature. In

section 6 we move on and introduce a star-metric and discuss the appearing deviations

from the usual structure once one wants to introduce a Levi-Civita connection and an

Einstein-Hilbert action.
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2 Nonassociative star-product

In this section we provide some basic definitions and features of the nonassociative star-

product and introduce the concept of star-diffeomorphisms. The nonassociative star-

product is not completely generic in the sense that it does admit two important opera-

tors that control the way in which the product is noncommutative and nonassociative,

respectively. In this first warm-up section, for simplicity we restrict ourselves to star-

diffeomorphisms in configuration space M , i.e. those without an explicit momentum de-

pendence. The generalization to the full phase space M = T ∗M will be presented in

section 3. As mentioned in the introduction, we will refrain from using the rather abstract

Hopf algebra techniques from [24–26, 30–33], but try to build up the formalism step by step

in an explicit way. To complete the picture, a brief introduction into quasi-Hopf algebras

is presented in appendix A.

2.1 The universal R-matrix and the associator φ

In [24], a star-product was introduced that upon deformation quantization leads to the

nonassociative algebra presented in the introduction. It can be considered as a nonassocia-

tive generalization of the Moyal-Weyl star-product. Thus, throughout this paper we will

work with the star-product

f ? g := ·
[
F−1(f, g)

]
(2.1)

= ·
[
exp

(
1

2
i~(∂i ⊗ ∂̃ip − ∂̃ip ⊗ ∂i) +

il4s
12~

Rijk
(
pk∂i ⊗ ∂j − ∂j ⊗ pk∂i)

)
f ⊗ g

]
which was suggested to capture the presence of a totally antisymmetric Rijk-flux back-

ground in string theory. Note that in contrast to Moyal-Weyl, this star-product lives in the

full phase spaceM containing derivatives in the space directions ∂i and the momentum di-

rections ∂̃ip. We used the tensor product to indicate on which factor of f⊗g the derivatives

act with the dot in front eventually turning the tensor products into usual multiplications.

More explicitly, the star-product reads

f ? g = f · g +
1

2
i~
(
∂if ∂̃

i
pg − ∂̃ipf ∂ig

)
+
il4s
6~
Rijkpk ∂if ∂jg + . . . . (2.2)

The first part of the product leads to the Heisenberg commutation relations when insert-

ing f = xi and g = pi and the second part gives the non-trivial commutator between

the coordinates [
xi, xj

]
=
il4s
3~
Rijk pk. (2.3)

This product is nonassociative and violates the Jacobi identity. It was proposed in [26]

that, when higher tensors are multiplied, the partial derivatives have to be replaced by Lie

derivatives to guarantee compatibility with the exterior derivative. With f, g now higher

tensors, the star-product is defined as

f ? g = f · g +
1

2
i~
(
L∂if L∂̃ipg + L∂̃ipf L∂ig

)
+

1

2

(
il4s
6~
Rijk Lpk∂if L∂jg −

il4s
6~
Rijk L∂jf Lpk∂ig

)
. . . .

(2.4)

The non-trivial part is the Lpk∂if in the last line.
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The operator F−1 we defined in (2.1) is called the twist. As it is given by a phase its

inverse F can be read off by switching the sign in the exponent. Due to the antisymmetry

in the exponent a permutation of the arguments also inverts the twist

F−1 (f, g) = F(g, f). (2.5)

Using this we can deduce what happens to the star product under a permutation

f ? g = ·
[
F−1(f, g)

]
= ·
[
F(g, f)

]
= ·
[
F−1 FF︸︷︷︸

:=R

(g, f)
]

:=R(g) ?R(f).

(2.6)

Here we introduced the universal R-matrix R = F−2 whose inverse R = F2 captures the

extra factors appearing when one permutes scalars in the star-product. Therefore, it is a

representation of the permutation group on this algebra. The notation in the second line

of (2.6) means that first the R-matrix acts on g and f and afterwards the star-product is

carried out. To see what is happening here, we evaluate (2.6) for functions f, g ∈ C∞(M)

on configuration space and up to linear order in the R-flux. For f ? g we have

f ? g = fg +
il4s
6~
Rijkpk ∂if ∂jg + . . . (2.7)

and for R(g) ?R(f)

R(g) ?R(f) = g ? f − 2
il4s
6~
Rijkpk ∂ig ? ∂jf + . . .

= gf +
il4s
6~
Rijkpk ∂ig ∂jf − 2

il4s
6~
Rijkpk ∂ig ∂jf + . . .

= fg +
il4s
6~
Rijkpk ∂if ∂jg + . . . .

(2.8)

The second important object is the associator φ which reorders the brackets in a

product of three functions

(f ? g) ? h = fφ ? (gφ ? hφ) := f ? (g ? h)|φ. (2.9)

The inverse associator φ similarly shifts brackets to the left. Again the associator is acting

on the functions first and then the star product is executed. The associator is central and

commutes with F and R. Therefore expressions like R(f)φ = R(fφ) are unambiguous.

Explicit calculation gives the phase factor

φ (f, g, h) = exp

(
l4s
6
RijkL∂i ⊗ L∂j ⊗ L∂k

)
(f ⊗ g ⊗ h) . (2.10)

Thus (2.9) can be expressed in more detail as

(f ? g) ? h = f ? (g ? h) +
∞∑
n=1

1

n!

(
l4s
6

)n
Ri1j1k1 . . . Rinjnkn (∂i1 . . . ∂inf) ?

((∂j1 . . . ∂jng) ? (∂k1 . . . ∂knh)) .

(2.11)
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For instance, for three functions f, g, h ∈ C∞(M) on configuration space, we find the

following terms up to second order in Rijk

(f ? g) ? h = f ? (g ? h)

+
l4s
6
Rijk ∂if ∂jg ∂kh

+
l4s
6

il4s
6~
RijkRabc pc (∂if ∂a∂jg ∂b∂kh+ cycl.)

+O(R3) .

(2.12)

The inverse associator φ is obtained by switching the sign in the exponent. Due to the

antisymmetry of Rijk also a permutation of the arguments inverts the twist. In this way

the R-matrix can invert the associator in our notation

fφ ?
(
gφ ? hφ

)
= fφ ?

(
R
(
hφ
)
?R

(
gφ
))

(2.13)

as we have φ(f, g, h) = φ(f, h, g).

Our nonassociative star-product is special in the sense that it admits the two operations

R and φ that capture the effect of noncommutativity and nonassociativity. As we will see in

section 2.3, precisely these two extra operations allow one to still write down a generalized

Leibniz rule for star-diffeomorphisms.

2.2 Derived tri-products

Clearly, in contrast to the star-product on the Moyal-Weyl plane, the most unconventional

aspect of this star-product is that it involves the momentum coordinates. In [6], the CFT

for a constant R-flux on a flat space allowed to extract information on a non-trivial tri-

product on configuration space. The relation between the star- and the tri-product was

suggested in [33].

Indeed, using the star-product (2.1), one can define so-called tri-products for functions

on configuration space via

f14f24 . . . 4fN = f1 ? (f2 ? (. . . (fN−1 ? fN ) . . .))
∣∣
p0=0

= ·

exp

− l4s
12

∑
1≤a<b<c≤N

Rijk ∂ai ⊗ ∂bj ⊗ ∂ck

 (f1 ⊗ . . .⊗ fN )

 . (2.14)

Note that after evaluating the nested star-product, one is restricting the result to the p0 = 0

leaf. This implies e.g. f14f2 = f1 f2. These tri-products have the peculiar property that

all R-flux dependent corrections become total derivatives so that the integral drastically

simplifies as ∫
ddx f14f24 . . . 4fN =

∫
ddx f1 f2 . . . fN . (2.15)

As proposed in [19], this fact can provide a way that nonassociativity of the underlying

space-time can trivialize in the action. In [33] they also argue that string theory might be re-

alized on the p0 = 0 leaf, while deviations from p0 = 0 correspond to membrane corrections.

– 6 –
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2.3 Scalars and the Leibniz rule

Following [27–29], in this section we take the first steps towards developing a star-tensor for-

malism. One defines a star-scalar as an object that transforms under a star-diffeomorphism,

ξ = ξi(x) ? ∂i with the star-Lie derivative

δξf = L?ξf := ξi ? ∂if . (2.16)

We will consider only diffeomorphisms in the space directions first and discuss momentum

diffeomorphisms with a full ξ = ξi?∂i+ξ̃i?∂̃
i
p later. Next one demands that the star-product

of two star-scalars should again be a star-scalar, i.e. we enforce

δξ(f ? g) = L?ξ(f ? g) = ξi ? ∂i(f ? g) = ξi ? (∂if ? g) + ξi ? (f ? ∂ig) . (2.17)

Here we used that the star product adds factors of the momentum but not of the coordinates

such that the derivative can be pulled through. We can use the R-matrix and the associator

to bring this into the form of a generalized Leibniz rule. In the first term an inverse

associator is enough while in the second term we find

ξi ? (f ? ∂ig) =
(
ξi ? f

)
? ∂ig|φ

=
(
R (f) ?R

(
ξi
))
? ∂ig|φ = R (f) ?

(
R
(
ξi
)
? ∂ig

)
|φ2 .

(2.18)

From the first to the second line the permutation of the arguments inverts the associator

similar to (2.13). From this we recognize

L?ξ (f ? g) =
(
L?
ξφ
fφ
)
? gφ +R

(
fφ

2
)
?
(
L?R(ξφ

2
)
gφ

2
)
. (2.19)

Now we can proceed by defining higher star-tensors.

Vectors and covectors. Next, we require that ωi = ∂if is a star-covector. The behavior

under star-diffeomorphisms can be deduced as

δξ(∂if) = ∂i(δξf) = ξj ? (∂j∂if) + (∂iξ
j) ? (∂jf) (2.20)

so that a covector ωi generically transforms as

δξωi = L?ξωi = ξj ? (∂jωi) + (∂iξ
j) ? ωj . (2.21)

Following the general logic, a star-vector vi is defined via

δξv
i = L?ξvi = ξj ? (∂jv

i)−R(vj) ?R(∂jξ
i) . (2.22)

This guarantees that f = vi?ωi transforms as a star-scalar. This gives rise to the definition

of the star-commutator of star-vectors

[v, w]? = vj ? (∂jw
i)−R(wj) ?R(∂jv

i) (2.23)

which is equal to the Lie-derivative. Clearly the commutator is manifestly R-antisymmetric

[v, w]? = −[R(v),R(w)]?. This commutator could also be defined by [ , ]? := [ , ] ◦ F−1

making its covariance obvious through the similarity to the definition of the star-product.

– 7 –
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Tensors. Next we define the star-tensor-product of e.g. two star-vectors as z = u ⊗? v
with zij = vi ? wj . Extending the Leibniz rule (2.19) to the tensor product,

L?ξ(v ⊗? w) =
(
L?
ξφ
vφ
)
⊗? wφ +R(uφ

2
)⊗?

(
L?R(ξφ2 )

wφ
2
)

(2.24)

one finds

L?ξzij = ξk ? (∂kz
ij)− (∂kξ

i) ? zkj − (∂kξ
j) ? zik . (2.25)

The generalization to higher tensors is straightforward.

Composition and closure. When two Lie-derivatives act on an object we face a brack-

eting ambiguity. The correct solution lies in the commutator of the Lie-derivative. The

closure property

[L?ξ ,L?η]? v = L?[ξ,η]? v (2.26)

is fulfilled if we define the commutator of two star-Lie-derivatives as[
L?ξ ,L?η

]
?
v := L?ξφ

(
L?ηφ v

φ
)
− L?R(ηφ)

(
L?R(ξφ) v

φ
)
. (2.27)

This matches a known Hopf algebra result. There the consistent composition • of operators

has the crucial property

(O •O′)(z) = Oφ
(
O′φ(zφ)

)
. (2.28)

This rule is very intuitive as the associator reorders the brackets in the usual way. This

composition operator obviously enters the commutator of the Lie-derivatives and as we will

see later also in the Riemann tensor. Thus the commutator is in general given by

[A,B] = A •B −R(B) • R(A) . (2.29)

2.4 Comment on star-scalars

Since we have defined the Leibniz rules such that the star-product of two star-scalars is

again a star-scalar, the question occurs whether an ordinary function f(x) ∈ C∞(M) on

configuration space is actually a star-scalar. To approach this question, let us consider the

Taylor expansion of such a function

f(x) =
∞∑

n1,...,nk=0

an1,...,nk x
n1
1 · . . . · x

nk
k . (2.30)

Taking into account that xi ? xi = xi · xi, we can define a corresponding star-Taylor

expansion as

f?(x) =
∞∑

n1,...,nk=0

an1,...,nk x
n1
1 ? (xn2

2 ? (. . . ? xnkk ) . . .) . (2.31)

Since the elementary, linear functions h(x) = xi are star-scalars by construction f?(x)

in (2.31) is a star-scalar, as well. Now we can define a subset of all star-scalars as F =

{f : f∗ = f}, i.e. the set of those star-scalars, where the star-multiplications in the Taylor

expansion act trivially.

– 8 –
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Let us show by induction that exp(qix
i) ∈ F with qi = const. Clearly, the linear

function g(x) = ~q · ~x ∈ F. Let us assume that hn(x) = (~q · ~x)n ∈ F. We need to show that

g(x) ? hn(x) = g(x)hn(x). Since g(x) is linear, the star-product simplifies to

g(x) ? hn(x) = g(x)hn(x) +Rijk ∂ig(x) ∂jhn(x) pk

= g(x)hn(x) +
(
Rijk qiqjpk

)
g(x)nhn−1(x)

= g(x)hn(x) .

(2.32)

Therefore, the tachyon vertex operators exp(~q ~x), from which features of the star-product

were derived in [6], are indeed star-scalars. This can be considered as a self-consistency

check. Now it is clear that every “sum” of such terms

f(x) =

∫
dkqf̂(q) eqix

i
(2.33)

is also a star-scalar. Therefore, every f(x) ∈ C∞(M) is a star-scalar as f(x) ∈ F.

3 The star-product on phase space

Since in the star-product (2.1) both the space coordinates and the momenta appear, it

actually is defined on the phase space M. Therefore the restriction to configuration space

from the previous section is not very natural. Moreover, also vectors should have com-

ponents along the full tangent space, including the momentum directions. As a splitting

into space and momentum components results in a lot of terms, we introduce a doubled

notation where XI = (pii~ , x
i) and

V = V I(X) ? ∂I = V i(x, p) ? ∂i + Ṽi(x, p) ? i~ ∂̃ip . (3.1)

Similar to double field theory, a sum over a capital index I = 1, . . . , 2D always runs over

an upper and a lower index. For revealing its full contents we will present most formulas

in both a doubled and in a split-into-components notation. In this section we will derive

several useful formulas that will be used in the next section for the construction of a

nonassociative differential geometry calculus.

3.1 Action on the basis

Recall that in the star-product (2.4) several Lie-derivaties appear which usually reduce to

partial derivaties for functions. More concretely we have

L∂i :=Pi ,

i~L∂̃ip := P̃ i ,

il4s
6~
Rijk Lpj∂k :=M i .

(3.2)

P and P̃ denote translations in space and momentum directions, while M induces so-

called Bobb-shifts in the momentum directions. Using these operators we can rewrite the

– 9 –
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star-product as

f ? g = ·
[
exp

(
1

2

(
Pµ ⊗ P̃µ − P̃µ ⊗ Pµ

)
+

1

2
(Mµ ⊗ Pµ − Pµ ⊗Mµ)

)
f ⊗ g

]
. (3.3)

In doubled notation we can merge the operators from (3.2) into

P I =
(
P̃ i, Pi

)
=
(
i~ L̃∂ip , L∂i

)
,

M I = −F IJKXJPK =

(
il4s
6~
LRijkpj∂k , 0

)
,

(3.4)

where F IJK has only one non-vanishing component F ijk = l4s
6R

ijk. The fact that these

operators contain Lie-derivatives implies a non-trivial action on the fundamental forms dxi,

dpi. Merging them into dXI = (dxi, dpii~ ) and using [L, d] = 0, one obtains

P I
(
dXJ

)
= 0 ,

M I
(
dXJ

)
= F IJKdXK or M i

(
dxj
)

=
l4s
6
Rijk

dpk
i~

.
(3.5)

By duality between tangent and cotangent space or by acting on δJ
I = ∂J ? dx

I = ∂j ?

dxi + i~ ∂jp ? dpi
i~ one has the relations

P I
(
∂J
)

= 0 ,

M I
(
∂J
)

= F IJK∂K or M i
(
i~ ∂̃jp

)
=
l4s
6
Rijk∂k .

(3.6)

Note that eI = ∂I is considered here as a basis of the tangent space. Let us make the

following three observation:

• Since the Pi act trivially onto any basis vector, the associator becomes the identity

when acting on a basis vector. We will refrain from writing brackets in an expression

like A ? B ? ∂I when both bracketings are equal.

• However, the M i and therefore the ?-product itself and the R-matrix act non-trivially

on the basis vector ∂̃p.

• Due to M(M(∂̃p)) = M(∂) = 0 the star-product terminates after the first order when

acting on any basis vector.

The main task in the following is to take this non-trivial action of M i into account when

developing the star-tensor calculus and a star-differential geometry. Since there are only

first order corrections, this is still feasible.

3.2 Star-commuting scalars and vectors with basis vectors

Let us now consider expressions like f(X) ? ∂I . For any arbitrary function f = f(x, p) we

trivially find2

f ? ∂i = f · ∂i ⇒ f ? ∂i − ∂i ? f = 0 , (3.7)

2Note that, in contrast to ∂if , the derivative in ∂i ? f = ei ? f is not meant to act on f .
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but an additional term arises when expanding the star-product (3.3) in

f ? i~ ∂̃ip = f · i~ ∂̃ip −
1

2
Pjf ·M j

(
i~ ∂̃ip

)
= f · i~ ∂̃ip +

l4s
12
Rijk∂jf ? ∂k . (3.8)

so that

f ? i~ ∂̃ip − i~ ∂̃ip ? f =
l4s
6
Rijk∂jf ? ∂k . (3.9)

In doubled notation this can be written as

f ? ∂I − ∂I ? f = F IJK∂Jf ? ∂K . (3.10)

By comparing (3.5) with (3.6) we see that the star-product acts in the same way on dxI

and ∂I . The relation (3.10) must therefore also hold for the basis forms

f ? dxI − dxI ? f = F IJK∂Jf ? dxK . (3.11)

From (3.10) we see that the two possibilities to form a vector, V I ? ∂I and ∂I ? V
I , are

not equivalent. As will be explained later we use the first convention. This has also

consequences for the right and left multiplication of a scalar and a vector. While for the

left multiplication one gets

f ?
(
V I ? ∂I

)
=
(
f ? V I

)
? ∂I , (3.12)

since the associator vanishes on basis vectors but the right multiplication gives an addi-

tional term (
V I ? ∂I

)
? f =

(
V I ? f

)
? ∂I − F IJK (VI ? ∂Jf) ? ∂K . (3.13)

The non-trivial action onto the basis vector also has consequences for the derivation

of the Leibniz rule. Recall that in (2.17) we were exchanging the order of a basis vector

ei = ∂i and a scalar. Therefore, using (3.10) we can derive the rule

∂I(f ? g) = ∂If ? g + f ? ∂Ig − F IJK∂Jf ? ∂Kg . (3.14)

The same formulas continue to hold more generally for the operators P I where the partial

derivatives are replaced by Lie-derivatives. The commutator with the Bopp-shifts is simply

[P I ,MJ ] = F IJK PK , (3.15)

reproducing the action on the basis vectors (3.6). With this commutator at hand one can

calculate the Leibniz rule for M I

M I(f ? g) = M If ? g + f ? M Ig + F IJK ∂Jf ? ∂Kg . (3.16)

Finally, the non-trivial star-commutators between the basis vectors and the scalars or

vectors have non-trivial consequences when an expression involves the action of the R-

matrix. Looking back one realizes that the structure of the additional terms arising from

– 11 –
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the action on the basis vectors can essentially be deduced immediately from the index

structure. For the R matrix acting on a scalar and a vector, one can derive the relation

R(f)⊗R(V I ? ∂I) = R(f)⊗R(V I) ? ∂I + F IJK R(∂If)⊗R(VJ) ? ∂K , (3.17)

and by iteration we find for the interchange of two vectors

R(V I ? ∂I)⊗R(UJ ? ∂J) = R(V I) ? ∂I ⊗R(UJ) ? ∂J

− FMNI R(VN ) ? ∂I ⊗R(∂MU
J) ? ∂J

+ FMNJ R(∂MV
I) ? ∂I ⊗R(UN ) ? ∂J

− FABIFMNJ R(∂MVB) ? ∂I ⊗R(∂AUN ) ? ∂J .

(3.18)

As we will see in section 4, even though this non-trivial action onto the basis vectors

will produce a lot of additional terms, they will nevertheless organize themselves perfectly

well so that the form of the star-tensor relations from section 2 remain the same.3

3.3 Star-pairing between vectors and forms

Let us move on and define a star-pairing between star-vectors and star-forms. Eventually,

this should result in a contraction of the components with a star-product in between, i.e.

V I ? ωI = V i ? ωi + Ṽi ? ω̃
i . (3.19)

First, let us define the product between the basis vectors and forms in the easiest way.

∂I ? dx
J = dxJ ? ∂I = δJI . (3.20)

In order to obtain the intuitive contraction (3.19) as a consequence of this basis vector

multiplication, we need the following convention for forms and vectors. In star-vectors the

basis vectors must be on the right and in forms they must be on the left

V = V I ? ∂I , ω = dxI ? ωI . (3.21)

Only then we indeed find

V ? ω = (V I ? ∂I) ? (dxJ ? ωJ) = V I ? δI
J ? ωJ = V I ? ωI . (3.22)

This convention for forms and vectors corresponds to the mathematical definition of

the contraction

〈 , 〉? : TM ⊗? T ∗M → R,
V ⊗? ω → 〈 , 〉 ◦ F−1(V, ω) = V I ? ωI

(3.23)

where the first entry is reserved for the vector and the second one for the form.

3Such a nice behavior was shown in [30, 31] for arbitrary quasi-Hopf algebras.

– 12 –



J
H
E
P
0
7
(
2
0
1
6
)
0
1
9

4 The star-tensor calculus

In this and the next section we will develop the basic notions of a nonassociative differential

geometry on the full twisted phase space. From a more mathematical perspective this was

already done in [31] for arbitrary quasi-Hopf algebras. The purpose here is to show rather

explicitly how this concretely works for the star-product (2.1). We first repeat the procedure

from section 2.3 and develop the notion of star-diffeomorphisms and its corresponding

tensors. Here we need to rely on the relations derived in the previous section.

4.1 Scalars

We define a star-scalar f = f(x, p) to be a quantity transforming under twisted diffeomor-

phisms generated by a vector ξ = ξI(X) ? ∂I = ξi(x, p) ? ∂i + ξ̃i(x, p) ? i~ ∂̃ip as

δξf = L?ξf = ξI ? ∂If = ξi ? ∂if + ξ̃i ? i~ ∂̃ipf . (4.1)

This definition is the reason for our choice of convention V I ? ∂I instead of ∂I ? V
I . We

demand the star-product of two scalars to be a star-scalar again. Switching the partial

derivatives through with (3.14) gives

L?ξ(f ? g) = ξI ? ∂I(f ? g)

= ξI ? (∂If ? g) + ξI ? (f ? ∂Ig)− F IJKξI ? (∂Jf ? ∂Kg) .
(4.2)

Utilizing the relation (3.17), this expression including the F IJK-correction term can be

compactly written as

L?ξ(f ? g) =
(
L?ξf

)
? g
∣∣
φ

+R(f) ?
(
L?R(ξ)

g
) ∣∣

φ2
. (4.3)

The Lie-derivative L∗ therefore still obeys the same Leibniz rule as in (2.19). The extra

terms arising from the non-trivial commutators with the basis vectors conspire in such

a way that the formal expression for the Leibniz rule does not change. This is quite a

remarkable feature.

4.2 Vectors and covectors

Guided by (2.23) we define the transformation of a vector V with the twisted commutator

δξV = L?ξV = [ξ, V ]? := [ , ] ◦ F−1 . (4.4)

This definition guarantees a covariant behavior under star multiplications and reads

L?ξV = ξ (V )−R (V )
(
R (ξ)

)
= ξI ? ∂IV

J ? ∂J −R (V )I ? ∂I

(
R (ξ)J

)
? ∂J .

(4.5)

In (3.18) we computed how theR-matrix acts on two vectors. Inserting this in the definition

of the commutator (4.5) gives in components

L?ξV I = ξJ ? ∂JV
I −R

(
V J
)
? ∂J

(
R
(
ξI
))

−R
(
∂MV

J
)
? ∂J

(
R (ξN )

)
FMNI .

(4.6)

Here, we did not pull the R-matrices out of the momentum derivatives as more terms

proportional to F IJK would arise.
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Next we verify the closure property of two star-Lie-derivatives acting on a star-scalar[
L?ξ ,L?η

]
?
f = ξ (η (f)) |φ −R (η)

(
R (ξ) (f)

)
|φ = L?[ξ,η]? . (4.7)

For this purpose we compute

(ξ • η) f = ξφ
(
ηφfφ

)
= ξI ? ∂I

(
ηJ ? ∂Jf

)
|φ

=
(
ξI ? ηJ

)
? ∂I∂Jf +

(
ξI ? ∂Iη

J
)
? ∂Jf

− F IJK
(
ξI ? ∂Jη

A
)
? ∂K∂Af

(4.8)

and (
Rη • Rξ

)
f =

(
ξJ ? ηI

)
? ∂J∂If +

(
R
(
ηI
)
? ∂IR

(
ξJ
))
? ∂Jf

+
(
FMNJR

(
∂Mη

I
)
? ∂IR (ξN )

)
? ∂Jf

+
(
FMNJξN ?

(
∂Mη

I
))
? ∂I∂Jf .

(4.9)

Adding both terms, remarkable cancellations occur that finally yield (4.7). Although intu-

itive it is tedious to verify the Leibniz rule

[U, [V,W ]?]? = [[U, V ]? ,W ]? |φ +
[
R (V ) , [R(U),W ]?

]
?
|φ2 (4.10)

that is nothing else than the star-Jacobi identify for three star-vectors. This relation can

be found more easily with Hopf algebra techniques as in [33].

Next we come to the definition of a star-covector ω = dxI ? ωI . Like in section 2, its

star-Lie-derivative can be deduced from the variation of the partial derivative of a star-

scalar. Before doing so we want to introduce a derivative operator ∂ that will become very

handy. Recall the product rule for the partial derivative (3.14)

∂I(f ? g) = ∂If ? g + f ? ∂Ig − FIJK∂Jf ? ∂Kg . (4.11)

Multiplying this relation by dxI and interchanging dxI with f using (3.11), one obtains

dxI ? ∂I(f ? g) = dxI ? ∂If ? g + dxI ? f ? ∂Ig − F IJKdxI ? ∂Jf ? ∂Kg
= dxI ? ∂If ? g + f ? dxI ? ∂Ig − F IJKdxK ? ∂Jf ? ∂Ig

− F IJKdxI ? ∂Jf ? ∂Kg
= dxI ? ∂If ? g + f ? dxI ? ∂Ig .

(4.12)

We observe that the correction terms have canceled and we are left with the usual Leib-

niz rule for the combination dxI ? ∂I . It is therefore suggestive to introduce the deriva-

tive operator

∂ := dxI ? ∂I . (4.13)

∂ raises the degree by one but since we do not assume antisymmetrization ∂ is not the

exterior derivative d. Using ∂, (4.12) turns into the usual Leibniz rule

∂(f ? g) = ∂f ? g + f ? ∂g . (4.14)
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Therefore ∂ commutes with the star-product and also the R-matrix. This will simplify

many computations from now on.

Let us come back to the variation of the partial derivative of a scalar. Having ∂ at

hand, we instead compute the variation of the one-form ∂f = dxI ? ∂If . Only the use of

∂ allows us to interchange δ?ξ with ∂ without producing extra terms. We get

δ?ξ∂f = ∂δ?ξf

= ∂(ξI ? ∂If) = ∂ξI ? ∂If + ξI ? ∂I∂f ,
(4.15)

from which we deduce for a form ω = dxI ? ωI

L∗ξω = ξI ? ∂Iω + ∂ξJ ? ωJ (4.16)

or in components

L∗ξωI = ξJ ? ∂JωI + ∂Iξ
J ? ωJ . (4.17)

We explicitly checked that the star-Lie-derivatives of vectors (4.6) and forms (4.17) are

compatible with the contraction. Therefore a contraction between a vector V and a form

ω indeed transforms as a scalar when computing

L∗ξ(V I ? ωI) = L∗ξV I ? ωI |φ +R(V I) ? L∗R(ξ)
ωI |φ2 . (4.18)

4.3 Tensor product

Let us now define and investigate the notion of a ?-tensor product in more detail. In order

for tensor products to behave covariantly under star-diffeomorphisms we define ⊗? :=

⊗ ◦ F−1 similar to the definition of the commutator and the star-product. Then the

Leibniz rule holds

L∗ξ(V ⊗?W ) = L∗ξV ⊗?W |φ +R(V )⊗? L∗R(ξ)
W |φ2 . (4.19)

To apply this rule to an arbitrary element for instance T ∈ TM ⊗? TM one might need

a split

T = Aα ⊗? Bα ∈ TM ⊗? TM (4.20)

with an internal summation over α and Aα = AIα ? ∂I ∈ TM and Bα = BαI ? ∂I ∈ TM .

The transpose of the above T is defined as T T = R(Bα) ⊗? R(Aα). When shifting the

basis vectors of A and B to the right with (3.10)

T = AIα ? ∂I ⊗? BαJ ? ∂J

=
(
AIα ? B

αJ − FMNJAαM ? ∂NB
αI
)
? (∂I ⊗? ∂J)

(4.21)

and using (3.18), we find that the transpose T T only interchanges the indices due to nice

cancellations

T T = R
(
BαI ? ∂I

)
⊗? R

(
AJα ? ∂J

)
=
(
AJα ? B

αI − FMNIAαM ? ∂NB
αJ
)
? (∂I ⊗? ∂J) .

(4.22)
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Therefore R-symmetric and R-antisymmetric tensors still correspond to symmetric and

antisymmetric matrices.

The contraction of tensor products is done by multiplying the forms and vectors stand-

ing next to each other with (3.20). Most easily this can be done by bringing the basis vectors

and forms to the middle as in (4.21) and eventually applying

〈∂I ⊗? ∂J , dxA ⊗? dxB〉? = δBI δ
A
J . (4.23)

For A⊗? B ∈ TM2 and ω ⊗? α ∈ T ∗M2 we get

〈A⊗? B , ω ⊗? α〉? = (AI ? BJ) ? (ωJ ? αI)− F IJK(AI ? ∂JB
M ) ? (ωM ? αK)

− F IJK(AI ? B
M ) ? (∂JωM ? αK) . (4.24)

With (4.21) and (4.22) and their analogue for forms one can show the transposition sym-

metry

〈A⊗? B , ω ⊗? α〉? = 〈R(B)⊗? R(A) , R(α)⊗? R(ω)〉? . (4.25)

The generalization to higher rank tensors is straightforward.

Antisymmetric p-forms ω ∈ ∧p?T ∗M are defined as usual. Of course, here one requires

R-antisymmetry and adjusts the star-wedge product to ∧? = ∧ ◦ F−1. Considering, for

instance, the star-wedge product of two one-forms one finds

ω ∧? α = ω ⊗? α−R(α)⊗? R(ω) (4.26)

which is clearly R-antisymmetric. From (4.25) we see that the star-wedge product projects

out the antisymmetric part

〈A⊗? B,ω ∧? α〉? = 〈A⊗? B,ω ⊗? α〉? − 〈R(B)⊗? R(A), ω ⊗? α〉? (4.27)

so that one could also define forms by the antisymmetry of their action onto vectors. The

exterior derivative is the antisymmetrized partial derivative d = ∂∧? = dxI ∧? ∂I . Inherited

from ∂ and (4.14) the exterior derivative d is invariant under the R-matrix or

d(ω ⊗? α) = dω ⊗? α+ ω ⊗? dα . (4.28)

This can also be explained from the fact that the star-exterior derivative is the usual

exterior derivative, as d = dxI ∧? ∂I = dxI ∧∂I . Since the star-product acts with usual Lie-

derivatives L satisfying [L, d] = 0, the exterior derivative commutes with the star-product

and therefore also with R. This was already observed in [28].

4.4 Comment on O(D,D) metric

Since we are using a doubled formalism with doubled coordinates XI = (pi, xi) and doubled

vector fields V I = (V i, Ṽi), one might wonder what the relation to DFT is. The main

difference is that we are not dealing here with an O(D,D) covariant formalism. This is

reflected in the fact that instead of generalized diffeomorphisms like in DFT we are dealing

with only double dimensional ordinary (star-)diffeomorphisms. One could be tempted to

define an O(D,D) metric between two vectors via

V I ? WI = V i ? W̃i + Ṽi ? W
i . (4.29)

However, this is not a (star-)scalar under (star-)diffeomorphisms.
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5 Nonassociative differential geometry

In this section we continue developing the basic notions of a nonassociative differential

geometry. We will discuss star-connections, its torsion and curvature tensors.

5.1 Covariant derivatives

The next step is to define a covariant derivative. As we will see, in the nonassociative case

there exist two consistent notions of a covariant derivative, where one acts from the left

and the other one from the right.

First, we compute the anomalous variation ∆?
ξ := δ?ξ − L?ξ of the derivative ∂ω of a

star-covector4

∆?
ξ ∂ω = ∂∂ξJ ? ωJ . (5.1)

As usual we introduce a Christoffel-symbol Γ which we can always write as

Γ = dxI ? dxJ ? ΓIJ
K ? ∂K (5.2)

by commuting the basis forms and vectors through with (3.10) and (3.11). Now we can

form the operator ∇ = ∂ − Γ where Γ acts with a star-contraction. Dealing with a non-

commutative star-product we can either let ∇ act from the left or from the right to form

the covariant derivative. Due to (4.14) this corresponds to the ambiguity from which side

we want to multiply Γ

−→
∇ω = ∇(ω) = ∂ω − Γ ? ω

or
←−
∇ω = (ω)∇ = ∂ω − ω ? Γ .

(5.3)

For
−→
∇ the star-contraction in the second term is especially simple giving ΓK ? ωK while

for
←−
∇ we need an R-matrix. Moreover the right-linearity of

−→
∇ is reminiscent of the right-

linearity of ω = dxI ?ωI . Nonetheless both covariant derivatives are completely consistent.

Computing the anomalous variations ∆?
ξ := δ?ξ −L?ξ of the second terms, we find that both

choices correctly compensate the anomalous term in (5.1) if ∆?
ξΓ = ∂∂ξ

∆?
ξ(Γ ? ω) = ∆?

ξΓ ? ω = ∂∂ξ ? ω ,

∆ξ(ω ? Γ) = R(ω) ?∆R(ξ)Γ = R(ω) ? ∂∂R(ξ)

= R(ω) ?R(∂∂ξ) = ∂∂ξ ? ω .

(5.4)

In the second line we used that the R-matrix commutes with ∂ according to (4.14).

Let us mention that from a more axiomatic viewpoint both choices are meaningful.

Indeed, in mathematics one defines the covariant derivative as a map T ∗M → T ∗M⊗?T ∗M
obeying the Leibniz rule

∇(ω ⊗? α) = ∇ω ⊗? α|φ +R(ω) ?R(∇)α|φ2 . (5.5)

4Here, ∂ means the one-form defined in (4.13).
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Taking into account that ∇f = ∂f for scalars, for
−→
∇ we deduce

−→
∇ω = ∇(dxI ? ωI) = ∇(dxI) ? ωI |φ +R(dxI) ?R(∂)ωI

= ∂ω − Γ ? ω ,
(5.6)

while for
←−
∇ we find

←−
∇ω = (dxI ? ωI)∇ = (dxI)R(∇) ?R(ωI) + dxI ? ∂ωI

= ∂ω − ω ? Γ .
(5.7)

So far we defined a covariant derivative acting on covectors. The same procedure can be

repeated for vectors without obstructions. We find

∆?
ξ ∂V = −R(V ) ? ∂∂R(ξ) . (5.8)

Along the lines of (5.4), the anomalous transformation R(V )?∂∂R(ξ) = ∂∂ξ ?V can again

be compensated by
←−
∇ and

−→
∇ by only changing the overall sign in front of Γ. This is also

consistent with the more axiomatic viewpoint. Therefore, we again have two consistent

covariant derivatives
−→
∇V = ∇(V ) = ∂V + Γ ? V

and
←−
∇V = (V )∇ = ∂V + V ? Γ .

(5.9)

In contrast to covectors, where
−→
∇ω was especially simple, now

←−
∇V becomes simple. Since

the basis vectors of V and Γ are next to each other, the contraction in the second term

simply gives V I ?ΓI . In addition, the left-linearity of vectors is similar to the left-linearity

of
←−
∇ .

All this suggests that expressions simplify if we use
−→
∇ for covectors and

←−
∇ for vectors.

This convention is compatible with the contraction if, similar to ∂, the covariant derivative

acts without an R-matrix on products5

←−
∇V ? ω|φ + V ?

−→
∇ω|φ2 = ∂(V ? ω) + (V ? Γ) ? ω|φ − V ? (Γ ? ω)|φ2

= ∂(V ? ω) .
(5.10)

Directional covariant derivative. At last we define the directional covariant derivative

of a vector Y = Y I ? ∂I simply by multiplication with the directional vector X = XI ? ∂I .

We can multiply X either from the left or from the right onto
←−
∇ or

−→
∇ and therefore have

in total four different conventions. Two choices place X and Y next to each other while

the other two separate X and Y by a Γ. To define a star-torsion we will soon see that we

better place X and Y together.

To make the contraction in the second term as easy as possible, we define the directional

derivative along X of a vector Y as

∇XY :=
←−
∇−→
X
Y : = X ?

←−
∇Y |φ = X ? ∂Y + (X ⊗? Y ) ? Γ

= X ? ∂Y + 〈X ⊗? Y , Γ〉?
(5.11)

5Using the same convention for the covariant derivative on covectors and vectors, compatibility with the

contraction is also satisfied, but now explicit R-matrices appear
−→
∇(V ? ω) =

−→
∇V ? ω|φ +R(V ) ? (R(

−→
∇)ω)|φ2 = ∂(V ? ω) ,

←−
∇(V ? ω) = V ? ω

←−
∇|φ + VR(

←−
∇) ?R(ω)|

φ
2 = ∂(V ? ω) .
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where the associator was inserted for convenience. Spelling out the contraction between

X ⊗? Y and Γ according to (4.21) reveals a correction term

∇XY = XI ? ∂IY
J ? ∂J + (XI ? Y J) ? ΓIJ

K ? ∂K

− FMNJ(XM ? ∂NY
I) ? ΓIJ

K ? ∂K .
(5.12)

Recalling (4.22) we find

∇R(Y )R(X) = R(Y )I ? ∂IR(X)J ? ∂J + (XJ ? Y I) ? ΓIJ
K ? ∂K

− FMNI(XM ? ∂NY
J) ? ΓIJ

K ? ∂K .
(5.13)

This is very useful when computing the torsion in the next paragraph.

As a comment, please note that, in the noncommutative though still associative frame-

work of [28], the convention ∇XY =
←−
∇−→
X
Y is used, as well.6

5.2 Torsion

We define the star-torsion two-form as usual as the antisymmetrized covariant derivative−→
∇∧? of the frame dxI . As we are in a holonomic frame we find

TK =
−→
∇∧?dxK = ΓK = (dxI ∧? dxJ) ? ΓIJ

K . (5.14)

Setting this to zero means

Γ[IJ ]
K = 0 . (5.15)

We now want to reproduce the same result from an analogue of the familiar definition

T = ∇XY −∇YX − [X,Y ] with an appropriate insertion of R matrices. Note that here,

for the directional covariant derivative, we used the convention (5.11). We contract TK

with vectors X and Y and apply (4.27) to turn the ∧? into an antisymmetrization of X

and Y

T (X,Y ) := 〈X ⊗? Y , TK ? ∂K〉?
= 〈X ⊗? Y , dxI ∧? dxJ ? ΓIJ

K ? ∂K〉?
= 〈X ⊗? Y −R(Y )⊗? R(X) , dxI ⊗? dxJ ? ΓIJ

K ? ∂K〉? .
(5.16)

In the second line we identify the Γ terms from the covariant derivative (5.11). By adding

and subtracting the missing terms X ? ∂Y = X(Y ) we can reproduce the torsion via

T (X,Y ) = ∇XY −∇R(Y )R(X)− [X,Y ]? . (5.17)

At this point we need a convention where X and Y are next to each other, as otherwise X

and Y would be separated by Γ. An explicit computation of the torsion by inserting (5.12)

and (5.13) gives

T (X,Y ) = (XI ? Y J + F IMNXM ? ∂NY
J) ? (ΓIJ − ΓJI) . (5.18)

The torsion tensor for basis vectors comes out as

〈T (∂I , ∂J), dxK〉? = ΓIJ
K − ΓJI

K . (5.19)
6In [28] they demand ∇X(f ? Y ) = R(f) ?∇R(X)Y , which is only possible if X and Y are placed next

to each other. Also in equation 5.4 of [28], the left action
←−
∇ is used.
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5.3 Riemann and Ricci tensor

In an analogous manner we can proceed to derive a star-generalization of the Riemann

curvature. The curvature two-form can be defined as the exterior covariant derivative of

the connection Γ = dxK ⊗? dxI ?ΓKI
L ? ∂L which we consider as a matrix-valued one form

ΓK
L := dxI ? ΓKI

L

RK
L = ∇∧? ΓK

L = dΓK
L − ΓK

P ∧? ΓP
L . (5.20)

We can contract the matrix indices with basis vectors and write

R = dxK ? RK
L ? ∂L = dΓ− Γ ∧? Γ , (5.21)

where d is meant to act on the one form part of Γ. Using (5.21), tensoriality of R can

be readily checked using the anomalous transformation ∆?
ξΓ = ∂∂ξ, the nilpotency of d in

d∂ξ = ddξ = 0 and the R-antisymmetry (4.26) of ∧?.
As the curvature R contains three basis one-forms, we can contract it with three vectors

R(X,Y, Z) : = 〈(X ⊗? Y )⊗? Z , R〉?
= 〈(X ⊗? Y )φ , (ZKφ ? RK

Lφ ? ∂L)〉? .
(5.22)

Similar to the torsion, one expects this to match the alternative definition

R(X,Y, Z) = −
((
∇X • ∇Y

)
Z −

(
∇R(Y ) • ∇R(X)

)
Z −∇[X,Y ]?Z

)
. (5.23)

The minus sign in this definition is just a convention needed to match both definitions.

In order to evaluate (5.23), we need to clarify the meaning of the composition • for the

directional covariant derivatives.

Having a closer look at (5.11), one realizes that ∇XY consists actually of two consec-

utive operations: First the action of
←−
∇ = ∂ + Γ from the right and second the contraction

with X from the left, denoted in the following by iX . Next, we apply an associator to

bracket X and Y together. Following this prescription, we can write

∇XY : = (iX (Y ))
←−
∇ = iφX

(
Y φ←−∇φ

)
= iX∂Y + iφX

(
Y φ ? Γφ

)
= X ? ∂Y + (X ⊗? Y ) ? Γ .

(5.24)

The composition • in (5.23) must then be understood as the composition of both the left

and right acting operators

(∇X • ∇Y )Z = [(iX • iY ) (Z)]
(←−
∇ •
←−
∇
)
. (5.25)

In appendix B, we show explicitly the equivalency of (5.22) and (5.23), when we evaluate

these four operations in the appropriate order.

To compute the components of the star-Riemann tensor, we need to shift all basis

vectors in (5.22) into the middle with (3.11) and (3.10)

R = dxK⊗?dxI ∧? dxJ

?
[
∂IΓKJ

L − ΓKI
P ? ΓPJ

L − FIAB∂AΓKJ
P ? ΓPB

L
]
? ∂L

(5.26)
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and

(X ⊗? Y )⊗? Z =
[
(XJ ? Y I) ? ZK (5.27)

− FABJXφ
A ? ∂B(Y Iφ ? ZKφ)− FABI ? (XJ ? YA) ? ∂BZ

K

− FABJFCDIXφ
A ? ∂B(Y φ

C ? ∂DZ
Kφ)

]
? ∂J ⊗? ∂I ⊗? ∂K .

We denoted the indices in such a way that R(X,Y, Z) can be directly read off by star-

multiplying the [. . . ] brackets from (5.26) and (5.27). The components of the star-curvature

thus contain a correction term proportional to the R-flux

RIJK
L := 〈R(∂I , ∂J , ∂K), dxL〉?

= 2 ∂[IΓKJ ]
L − 2 ΓK[I

M ? ΓMJ ]
L − 2F[I

AB ∂AΓKJ ]
M ? ΓMB

L .
(5.28)

For a torsion-free connection, one can directly check that the first Bianchi identity

RIJK
L +RKIJ

L +RJKI
L = 0 (5.29)

is still satisfied. The second Bianchi-identity receives a correction that, at leading order in

the flux F , is related to the associator of three connections

1

2
∇[IRJK]M

N =
[ (

Γ[IM
A ? ΓJA

B
)
? ΓK]B

N − Γ[IM
A ?
(
ΓJA

B ? ΓK]B
N
) ]

+O(F ) . (5.30)

Notice that we need to use the convention
−→
∇ for covectors and

←−
∇ for vectors to cancel the

terms of the form ∼ ∂Γ ? Γ and ∼ Γ ? ∂Γ. As usual, the Ricci tensor is the trace of the

Riemann tensor

Ric(Y,Z) := 〈R(∂I , Y, Z), dxI〉? . (5.31)

6 Features of a star-metric

In gravity the fundamental field is not a connection but a metric G ∈ T ∗M ⊗T ∗M that al-

lows to measure distances on the manifold. Given a metric one then defines the Levi-Civita

connection to be the torision-free connection that warrants a covariantly constant metric.

In this section we will see that the generalization of this procedure to the nonassociative

case appears to be less straightforward. Since so far we did not find a fully satisfying res-

olution of the encountered obstacles, this section should be understood as a first approach

to this problem. In most parts of this section, we restrict our considerations to star-tensors

which depend only on configuration space.

Before we move on, let us recall that in differential geometry the metric is used in two

ways. First it provides a scalar product between two vectors from the tangent space, i.e.

(v, w)g = gijv
iwj . (6.1)

Second it is considered to be a duality map G : TM → T ∗M that allows to lower indices

G(v)j = gijv
j . (6.2)

The scalar product in (6.1) is then identical to (v, w)G = 〈v,G(w)〉. Moreover, the inverse

metric can be used to raise indices and of course one has

G−1
(
G(v)

)
= v , gij

(
gjkv

k
)

= vi . (6.3)
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6.1 Metric

We introduce a star-metric G as an R-symmetric element in T ∗M⊗? T ∗M, i.e. it satisfies

G(X,Y ) = G(R(Y ),R(X)) (6.4)

with

G(X,Y ) := 〈X ⊗? Y , (dxI ⊗? dxJ) ? gIJ〉? . (6.5)

Recalling (4.21) and (4.22) one obtains

0 = G(X,Y )−G(R(Y ),R(X))

= (XI ? Y J + F IMNXM ? ∂NY
J) ? (gIJ − gJI)

(6.6)

so that g must be symmetric in the usual sense gIJ = gJI . Turning this around, every

symmetric tensor gives rise to a star-metric.

R-symmetric scalar product. The first definition of the scalar product is

(V,W )g? := 〈(V ⊗?W ), g〉? . (6.7)

With (4.25) the R-symmetry of g translates into the R symmetry between the vectors

〈(V ⊗?W ), g〉? = 〈R(W )⊗? R(V ), g〉? . (6.8)

For the easiest example where v = v ? ∂i and w = w ? ∂i, this scalar product is

(v, w)g? := (vi ? wj) ? gij . (6.9)

The metric as a star-duality map. Similar to the usual case, we can also interprete

the metric g as the duality map G : TM g−→ T ∗M acting through G(W ) = 〈W, g〉? ∈ T ∗M.

Let us again only consider the easiest example v = v?∂i and w = w?∂i. When we compute

〈v,G(w)〉? one finds

(v, w)G = vi ? (wj ? gij) (6.10)

which is not the same as the star-scalar product (6.9). In fact the two are related by

applying an associator

(v, w)g? = (v, w)G |φ . (6.11)

As a consequence of the appearing associator, (v, w)G is not R-symmetric.

A second deviation from the usual case appears when one considers the inverse of

the star-duality map G−1 : T ∗M g−1?

−−−→ TM, which should satisfy G−1
(
G(v)

)
= v for all

v ∈ TM. In components this reads(
vk ? gkj

)
? (g−1?)ji = vi (6.12)

and deviates from the usual case in the sense that, due to nonassociativity, an inverse

satisfying

gij ? (g−1?)jk = δi
k (6.13)

does not satisfy (6.12). In the noncommutative but associative case, a construction of a

general star-inverse in the sense of (6.13) was provided in [27, 33].
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6.2 The star-inverse

It is clear that in order to proceed along the usual lines, one needs a star-inverse of the

metric. Recall that the inverse of the metric appears explicitly in the Levi-Civita connection

and in the definition of the Ricci-scalar. In general it is unclear whether a solution to (6.13)

exists. However, as emphasized in the introduction, from the string theory viewpoint, it

is actually only up to linear order in Rijk that the star-product is really trustable. Recall

that when the nonassociative product was derived in [6], it was done for a flat metric with

a constant R-flux, which is only a solution of the string equations of motion up to linear

order in R. In this section, we therefore consider first the construction of the inverse of

a scalar and second the construction of an inverse of the star-metric up to linear order in

the R-flux.

Star inverse of a scalar. Let us consider the simpler question of constructing the star-

inverse f−1? of a scalar f , which has to satisfy

f−1? ? (f ? g) = g , ∀g . (6.14)

We sort this equation according to the derivatives acting on g. At zeroth order in derivatives

of g the star-product between f and g becomes a usual multiplication

f ? g = fg + ∂Ig · . . . . (6.15)

When carrying out the remaining star-product in (6.14), since all derivatives act only on

f , we find at zeroth order in derivatives of g

f−1? ? (f ? g) = (f−1? ? f) · g + ∂Ig . . . . (6.16)

Since this must be equal to g, we conclude that f−1? has to satisfy

f−1? ? f = 1 . (6.17)

For general g this is a contradiction to (6.14) unless the associator of f−1? and f trivializes,

i.e. φ(f−1?, f, · ) = 1. Of course, we do not expect that this is a generic situation.7 However,

there exist certain scalars for which the star-inverse can be identified. Consider e.g. the

exponentials f(x) = exp(i~q ~x) from section 2.4. As one can easily show, in this case the

?-inverse is simply f−1?(x) = exp(−i~q ~x). Indeed this scalar satisfies

φ(f−1?, f, . ) = 1 , f−1? ? f = f−1? · f = 1 . (6.18)

As a matter of fact one can show that, for a map h ∈ C∞(M), the star-inverse of h(~x) =

h(~q ~x) is h−1? = 1/h(~q ~x).

7Nonassociative algebras satisfying φ(f, f, · ) = φ( · , f, f) = 1 are called alternative. See [34] for a recent

discussion in the context of nonassociative star-products. As can be seen from (2.12), for general momentum

our star-product is not alternative.
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Star-inverse of the metric. Let us now come back to the metric gij(x) and from now

on proceed in linear order in the R-flux. At this order, we try to find solutions to

gij ? g
?−1jk
R = δki + O(R2) , g?−1ijL ? gjk = δki + O(R2) (6.19)

where we distinguished between a right- and a left-inverse. Remarkably, up to linear order,

one can explicitly solve these equations

g?−1ijR = gij − il4s
6~
Rabc pc g

im ∂agmn ∂bg
nj +

l4s
12
Rabc ∂ag

im ∂bgmn ∂cg
nj ,

g?−1ijL = gij − il4s
6~
Rabc pc ∂ag

im ∂bgmn g
nj − l4s

12
Rabc ∂ag

im ∂bgmn ∂cg
nj .

(6.20)

For these star-inverse metrics we observe:

• They are not symmetric any longer. For their symmetric parts one finds g
?−1(ij)
L/R = gij

and the antisymmetric parts are given by the linear corrections in (6.20).

• The star-inverses are momentum dependent, even if the original star-metric was not.

• Taking into account (2.12), one realizes that the left- and the right-inverse differ by

an associator.

The latter point is explicitly reflected by expressing (6.20) as

g?−1ijR = 2gij − gim ? (gmn ? g
nj) ,

g?−1ijL = 2gij − (gim ? gmn) ? gnj .
(6.21)

In this form the inverses are very similar to the inverse metric on the Moyal-Weyl-Plane

in [27]. However, this inverse does not satisfy (6.12), as

(
vk ? gkj

)
? (g−1?R )ji = vi +

l4s
6
Rabc ∂av

k ∂bgkj ∂cg
ji +O(R2) , (6.22)

where the second term is in general not vanishing as φ(gij , g
jk, . ) 6= 1. As a consequence,

the existence of these star-inverse metrics does not allow us to solve equations involving

the metric.

6.3 Comments on Levi-Civita connection

In this final section we discuss the consequences of the previous discussion on the con-

struction of a star-Levi-Civita connection. The latter is a torsion-free, metric compatible

connection, i.e ∇g = 0. In this section, we do not restrict to the space-time components of

the star-metric but also consider the momentum components.

In this general case, the condition for the star-inverse of the metric reads

δ = g ? g?−1

= dxI ⊗? dxJ ? gIJ ? g?−1AB ? ∂A ⊗? ∂B

= dxI ?
(
gIJ ? (g?−1)JB + FA

MN∂M
(
gIN ? (g?−1)AB

))
? ∂B ,

(6.23)
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where the additional term is there to compensate the shift of the basis vector and no

obstacle in finding an inverse. To embed the space-time dynamics into the phase space we

make the ansatz8

g = dxi ⊗? dxj ? gij(x) +
dpi
i~
⊗?

dpi
i~

? ηij . (6.24)

From (6.23) we see that we need a compensating term for the shift of basis vectors giving

g?−1R = g?−1ijR ? ∂i ⊗? ∂j + ηij ? i~∂̃ip ⊗? i~∂̃jp

− l4s
6
Ramngbi ? ηaj ? ∂mgbn ? ∂i ⊗? ∂̃jp .

(6.25)

Vanishing torsion implies Γ[IJ ]
K = 0 so that, proceeding in the usual way, we arrive at the

relation

(dxI ⊗? dxJ ⊗? dxK) ?
[
∂IgJK + ∂JgIK − ∂KgIJ

]
= (dxI ⊗? dxJ) ? 2 ΓIJ

L ? dxK ? gLK

= 2 Γ ? g , (6.26)

that needs to solved for Γ. However, due to the appearing associator in (6.22), this is not

solved by Γ = (
∑
∂g) ? g?−1R , where

∑
∂g = (∂IgJK + ∂JgIK − ∂KgIJ).

We observe that for the Levi-Civita connection, the obstruction arising from (6.22)

could in principle be cured by reordering the brackets in the Levi-Civita connection by

hand, i.e. by defining its covariant derivative on a covector as

∇LCω = ∂ω −
((∑

∂g
)
◦ g?−1L

)
(ω) = ∂ω −

(∑
∂g
)
? (g?−1L ? ω) . (6.27)

Note that this is just an ad-hoc measure that is not consistent with the • -composition in-

troduced in (2.28), which involved an extra application of the associator. Most importantly,

as pointed out in [26], when using the ◦ composition, one is in general not considering the

connection Γ as an independent object.9

Since this implies a major deviation from the structure introduced so far, the precise

justification of such a definition of the connection is beyond the scope of this paper. Nev-

ertheless, we would like to finish our analysis with some comments about the remaining

step of defining a star-Einstein Hilbert action.

Final consideration on Einstein-Hilbert action. For defining an Einstein-Hilbert

action (up to linear order in R), one needs a measure µ that should transform as a star-

scalar density under star-diffeomorphisms

δξµ = ξI ? ∂Iµ+ (∂Iξ
I) ? µ . (6.28)

In this case the Einstein-Hilbert action

S =

∫
ddx ddp

(
µ ? Ric

)
(6.29)

8Considering the metric instead of the vielbein as the fundamental field is also motivated by string

theory, where the star-product appears between the vertex operators and therefore between the fluctuations

of the metric.
9If this would be possible, then (A ◦ B) ? 1 = A ? (B ? 1) = A ∗ B, so that (A ◦ B) = A ? B, implying

(A ? B) ? C = (A ◦B) ? C = A ? (B ? C). This is not satisfied in the nonassociative case [26].
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is star-diffeomorphism invariant as

δξS =

∫
ddx ddp ∂I

(
ξI ? (µ ? Ric)

)
. (6.30)

We make the usual choice µ =
√
g and, in the spirit of the comment in section 2.4, consider

it as an elementary object that only depends on x.

Since we have the aforementioned bracketing issue in the Levi-Civita connection, in

the following we will make some general comments while being agnostic about the it. Now

we consider the embedding (6.24) and restrict the action to configuration space via

S =

∫
ddx ddp

√
g ? Ric ? δ(p) . (6.31)

Following the discussion in section 2.2, the δ(p) embeds the configuration space into the

phase space as the p0 = 0 leaf.10 Let us now analyze the linear terms in Rabc. Two terms

in the Ricci scalar have the formal structure

S1 =

∫
ddx
√
g ? g−1 ? ∂Γ =

∫
ddx
√
g ? g−1 ? ∂(∂g ? g−1) . (6.32)

where we neither specify the bracketing nor the order and leave it also open whether the

left or the right inverse of the metric appears.

In the spirit of the comment from the introduction we want to know whether there

exists the possibility that the linear R-flux correction is a total derivative(so that the

nonassociativity does not leave any trace in the action). There are two sources of linear

terms in the R-flux:

1. They can appear from the star-product between the objects that only depend on the

coordinates x, i.e. {gij ,
√
g, (g∗−1L/R)(ij)}.

2. The star-inverse has a linear correction (g∗−1L/R)[ij] that depends linearly on Rabc and

also on the momentum coordinates p.

Terms from category 1 are becoming total derivatives once they are bracketed in the nested

way of eq. (2.14). Terms of category 2 can be trivially absent if (g∗−1L/R)[ij] is coupled to

symmetrized indices (ij). Moreover, we observe that∫
ddx

(
g∗−1L

)[ij]
? ψij

∣∣
p0=0

=

∫
ddxRabc ∂ag

im ∂bgmn ∂c(g
njψij)

=

∫
ddx ∂c

(
Rabc ∂ag

im ∂bgmn g
nj ψij

) (6.33)

so that the linear R-correction for a left-placed g∗−1L gives a total derivative. Similarly, for

a right-placed g∗−1R one finds∫
ddx ψij ?

(
g∗−1R

)[ij]∣∣
p0=0

=

∫
ddx ∂c

(
Rabc ψij g

im ∂agmn ∂bg
nj
)
. (6.34)

10One could also carry out the momentum integral without the δ(p), as p enters only through the star-

product and therefore linearly. Taking into account that
∫
Rd d

dp pµ = 0 one is confined to the p0 = 0

leaf, anyway.
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Since in (6.32) there appear only two g∗−1 factors, there exist an order/bracketing that

only gives total derivatives at linear order in Rabc.

The remaining terms in the Ricci-scalar are of the schematic form

S2 =

∫
ddx
√
g ? g−1 ? Γ ? Γ =

∫
ddx
√
g ? g−1 ? ∂g ? g−1 ? ∂g ? g−1 . (6.35)

Here we have three factors of g∗−1 so that one of them cannot be placed entirely to the

left or to the right. A more detailed look at the index structure reveals that some of these

terms are not trivially vanishing (i.e. coupling to a symmetrized pair of indices).

Thus, we conclude that, irrespective of the bracketing/ordering, there is no obvious

reason why these corrections linear in Rabc should give a total derivative. This could

only happen via some cancellations of terms, which however depends on the details of the

ordering/bracketing. If linear effects remain, these will be of sixth order in derivatives and

are expected to break the usual diffeomorphism symmetry. This makes it questionable

whether they have anything to do with string theory.

From the string theory perspective, we recall from [6] that the tri-product was derived

for tachyon vertex operators only, while already the definition of a graviton vertex operator

in a linear R-flux background was not achieved in a straightforward manner. Therefore,

one might be sceptical about the simple appearance of the tri-product between metric

factors in the first place. In view of [6], another possibility could be that the metric itself

(and not only its star-inverse) receives some order R-corrections. Of course, all this is very

speculative so that we stop here.

7 Conclusions

In this paper, in a step by step procedure we have (re-)derived the salient structure of a

nonassociative differential geometry that is based on the nonassociative star-product arising

for the closed string moving in a constant nongeometric R-flux background. Remarkably,

even without associativity is was possible to generalize the notions of diffeomorphisms,

tensors, covariant derivatives, torsion and curvature. This was possible, as mathematically

one is dealing with still a special way of how associativity is broken, namely that its

information is encoded in an R-matrix and an associator φ. Such a structure, namely the

differential geometry associated to a quasi-Hopf algebra, was recently developed from a very

mathematical and abstract point of view in [30–32]. In an attempt to make these results

more accessible to physicists, we tried to motivate and clarify the appearing structure for

our concrete R-flux example from a bottom up perspective.

As in [30–32], the gravity theory could be well developed up to the point where a metric

and its Levi-Civita connection are introduced. We argued that due to the nonassociativity,

the star-metric generically does not satisfy the usual relations for pulling up and down

indices. Up to linear order in the flux, left/right-inverses of the metric could be identified

that however were not symmetric and did not allow a calculus, where equations could be

solved. Of course, it could well be that we are missing a resolution of all these problems but

it could also indicate that there is something seriously wrong about introducing a metric

on such spaces.
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At the end we were pointing out that maybe one needs to define the action of the Levi-

Civita connection in a different way that employs the ◦ -composition introduced in [26].

Whether this major deviation from the structure introduced before leads to a consistent

nonassociative gravity theory remains to be seen. Finally, we were commenting on the

construction of a star-Einstein-Hilbert action and generally discussed whether it could be

possible that, up to first order in the R-flux, all effects of nonassociativity disappear after

restricting to the p0 = 0 leaf. Of course this discussion only becomes truly relevant after

the issue about the definition of the star-Levi-Civita connection has been resolved.

Let us close by mentioning again that, at the momentary state of affairs, it is an

open question whether such a nonassociative gravity theory based on the concept of star-

diffeomorphisms has really anything to do with string or double field theory, but it is

certainly a viable and interesting possibility that deserves further studies in mathema-

tical physics.
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A Hopf algebra approach

Above we derived an adjusted Leibniz rule to make the star-product behave covariantly.

Mathematically this can be captured by Hopf algebras. We did not want to present our

results in the abstract language of Hopf algebras for readability. Thus instead of being

mathematically precise we will only give a short introduction into the topic to understand

how the twisted Leibniz rule appears naturally in the context of Hopf algebras. Important

for us are now only the multiplication µ and the coproduct ∆ of the Hopf algebra. As usual

the multiplication takes two objects and multiplies them to one. The comultiplication does

the opposite. It takes one object and gives out two. Therefore

µ : H ⊗H → H ,

∆ : H → H ⊗H .
(A.1)

The Hopf algebra we are interested in is the universal enveloping algebra of the diffeomor-

phisms. It consists of what is usually denoted by δξ, thus the differential operator that

becomes the actual transformation when acting on for instance a scalar δξφ = ξµ∂µφ. The

multiplication is the usual one while the coproduct is

∆(δξ) = δξ ⊗ 1 + 1⊗ δξ . (A.2)

Now it is clear that we should interpret the comultiplication ∆ as the Leibniz rule for

differentiation. For instance when acting on the product of two scalars we have

δξ(φψ) = (δξφ)ψ + φ (δξψ) = µ
(
δξφ⊗ ψ + φ⊗ δξψ

)
= µ ◦∆(δξ)(φ⊗ ψ) . (A.3)

The left side can also be written as δξ µ(φ ⊗ ψ) which can be compared with the right

side to

δξµ = µ ◦∆(δξ) . (A.4)
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We will now deform our product with a twist F as above (2.1) to

µ?(f ⊗ g) := µ ◦ F−1 = f ? g (A.5)

and demand the product to be compatible with the coproduct. A short calculation gives a

twisted Leibniz rule

δξ(φ ? ψ) = δξ
(
µ ◦ F−1(φ⊗ ψ)

)
= µ ◦∆(δξ) ◦ F−1(φ⊗ ψ)

= µ ◦ F−1 ◦ F ◦∆(δξ) ◦ F−1(φ⊗ ψ)

: = µ? ◦∆?(δξ)(φ⊗ ψ)

(A.6)

where the new coproduct ∆?(δξ) := F∆(δξ)F−1 dictates the twisted Leibniz rule. As one

can show these twisted objects still satisfy the axioms of a Hopf algebra or a generalization

called quasi-Hopf algebra. So far we only used the generators ∂µ for which we can calculate

∆?(∂µ) = ∆(∂µ). In contrast to this we get

∆?(∂̃
µ
p ) = ∆(∂̃µp ) +

il4s
6~
Rµνρ(∂ν ⊗ ∂ρ) (A.7)

and therefore the additional terms in the Leibniz rule as in (3.14).

B Computing the Riemann tensor

In this appendix we provide the details on the evaluation of

−R(X,Y, Z) = (∇X • ∇Y )Z − (∇R(Y ) • ∇R(X))Z −∇[X,Y ]?Z . (B.1)

As discussed in the main text after (5.23), we need to interpret the • as a composition of

left and right actions of the directional covariant derivative

(∇X • ∇Y )Z = [(iX • iY ) (Z)]
(←−
∇ •
←−
∇
)
. (B.2)

Recall that in ∇XY first
←−
∇ is carried out and afterwards X acts as a contraction denoted

by iX . In addition, we have to respect the order of ∇X and ∇Y . Indicating the order by

a subscript, we have altogether

(∇X • ∇Y )Z =
[(
iX(4) • iY (2)

)
(Z)
] (←−
∇(1) •

←−
∇(3)

)
. (B.3)

We apply the first covariant derivative by bringing Z and
←−
∇(1) together. The scalar product

between Z and the first matrix index of Γ is carried out directly Z ?Γ = ZM ?ΓM followed

by bringing iY together with Z. Thus, the computation proceeds as[
(iX(4) • iY (2))(Z)

] (←−
∇(1) •

←−
∇(3)

)
=
(
iX(4) • iY (2)

)φ [
Zφ
(←−
∇(1) •

←−
∇(3)

)φ]
=
(
iX(4) • iY (2)

)φ [
∂Zφ
←−
∇φ

(3)

]
+
(
iX(4) • iY (2)

)φ [
ZMφ ?

(
ΓM
←−
∇(3)

)φ]
=
[
iφX(4)

(
Y φ ? ∂Zφ

)]←−
∇(3) +

([
iφX(4)

(
Y φ ? ZMφ

)]φ
? ΓφM

)
←−
∇φ

(3) .

(B.4)
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Next, the second covariant derivative
←−
∇(3) and afterwards iX are applied

= iφφ
′

X(4)

[(
Y φ ? ∂Zφ

)
φ′←−∇φ′

(3)

]
+ iφφ

′

X(4)

[(
Y φ ? ZKφ

)
φ′ ?

(
ΓK
←−
∇(3)

)
φ′
]

= Xφ ? ∂
(
Y φ ? ∂Zφ

)
+
[
Xφ ?

(
Y φ ? ∂ZKφ

)]
? ΓK

+Xφφ′ ? ∂
[(
Y φ ? ZKφ

)
φ′ ? Γφ

′

K

]
+
[
(X ? Y ) ? ZK

]
?
(
ΓK

P ? ΓP
)
.

(B.5)

In this formula we placed the brackets and the derivative ∂ in such a way that they reflect,

which objects have to be contracted with each other. For instance in the first term of (B.5),

the derivative is contracted with X. After applying the Leibniz rule for ∂(Y φ ? ∂Zφ), this

contraction must be kept in mind.

When computing the other terms in (B.1), one realizes that the first term in (B.5)

is canceled partly by (∇R(Y ) • ∇R(X))Z and partly by ∇[X,Y ]?Z. The other term from

∇[X,Y ]?Z cancels the X ? ∂Y ? Z ? Γ part in the third term of (B.5). The remaining two

terms which have to cancel in (B.5) arise from the second and third term and are both of

the form X?Y ?∂Z ?Γ. In one term ∂ is contracted with Y and in the other ∂ is contracted

with X. These terms cancel crosswise against similar terms appearing in (∇R(Y )•∇R(X))Z.

After all these cancellations, the Riemann-tensor (B.1) simplifies to

−R(X,Y, Z) =
(
(X ? Y ) ? ZM

)
? ∂ΓM +

(
(X ? Y ) ? ZM

)
? (ΓM

P ? ΓP )

−X ↔R Y .
(B.6)

Recalling the discussion after (B.5), in the first term of (B.6), X is contracted with ∂. This

is in contrast to the rule that always a vector is contracted with the nearest neighboring

form.11 To bring this into the usual notation, we switch the first term with its R-permuted

term and find with (4.21) and (4.22)

−R(X,Y, Z) =−
(
(X ? Y ) ? ZM

)
? ∂ΓM +

(
(X ? Y ) ? ZM

)
? (ΓM

P ? ΓP )

−X ↔R Y .
(B.7)

Now the notation matches the one in (5.22), where the vector Y is contracted with the

form ∂ (see also (5.26) and (5.27)). By utilizing (4.25) to transfer the antisymmetrization

on the vector side towards the form side, we indeed find

−R(X,Y, Z) =
(
(X ? Y ) ? ZK

)
?
(
− dΓK + ΓK

P ∧? ΓP
)
. (B.8)

This matches the definition of the star-Riemann curvature as the exterior covariant deriva-

tive of the connection Γ in (5.22).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

11Notice that the contraction in the second term ∼ Γ ? Γ comes out correctly according to this rule.
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[16] G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class.

Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

[17] D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566

(2014) 1 [arXiv:1306.2643] [INSPIRE].
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