
J
H
E
P
0
7
(
2
0
1
5
)
1
2
0

Published for SISSA by Springer

Received: April 22, 2015

Accepted: June 24, 2015

Published: July 22, 2015

Generalized ADE classification of topological

boundaries and anyon condensation

Ling-Yan Hunga and Yidun Wanb

aDepartment of Physics and Center for Field Theory and Particle Physics, Fudan University,

Shanghai 200433, China
bPerimeter Institute for Theoretical Physics,

Waterloo, ON N2L 2Y5, Canada

E-mail: jhung@perimeterinstitute.ca, ywan@perimeterinstitute.ca

Abstract: In this paper we would like to demonstrate how the known, physically-motivat-

ed rules of anyon condensation proposed by Bais et al. can be recovered by the mathematics

of twist-free commutative separable Frobenius algebra (CSFA). In some simple cases, those

physical rules are also sufficient conditions defining a twist-free CSFA. This allows us

to make use of the generalized ADE classification of CSFA’s and modular invariants to

classify anyon condensation, characterize the topological boundaries between topological

field theories and thus describe all gapped domain walls and gapped boundaries of a large

class of topological orders. In fact, this classification is equivalent to the classification we

proposed in ref. [1].

Keywords: Anyons, Topological Field Theories, Topological States of Matter

ArXiv ePrint: 1502.02026

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2015)120

mailto:jhung@perimeterinstitute.ca
mailto:ywan@perimeterinstitute.ca
http://arxiv.org/abs/1502.02026
http://dx.doi.org/10.1007/JHEP07(2015)120


J
H
E
P
0
7
(
2
0
1
5
)
1
2
0

Contents

1 Introduction 1

2 Bais-Slingerland anyon condensation = twist-free CSFA 3

3 Simple currents condensation versus modular invariance 8

4 Gapped domain walls and boundaries 11

5 Quantum double of a gauge theory 15

6 Conclusions 16

A Bais-Slingerland rules 17

B Twist-free commutative separable Frobenius algebra 18

C Modular data and ADE classification of su(2)k 19

D Some collected observations involving simple currents condensation 20

E Some thoughts on W matrices 22

E.1 Gapped domain wall and global symmetry 23

E.2 Modular invariance 24

E.3 Some equalities 25

E.4 Verlinde’s formula and commutativity 26

1 Introduction

It is growingly clear in the past decades that the physics of two-dimensional condensed

matter systems with intrinsic topological order in the extreme infrared limit is captured by

topological field theories. Our understanding in topological field theories, their connection

to conformal field theories, and anomalies in field theories thus find many natural realiza-

tions and applications in condensed matter, which in turn brings fresh perspectives and

understandings to these subjects. For the latest perspective regarding these connections

and summary of results, see Nayak [2] and Wen and Kong [3], and the references therein. It

is believed that two-dimensional bosonic topological orders are described by unitary mod-

ular tensor categories (UMTCs) [4, 5]. For each given topological order, it is important to

understand the properties of its boundaries and defects, or equivalently, topological bound-

ary conditions of the topological field theory that describes the order, which we will refer to

in what follows as gapped domain-walls (GDWs) separating different phases. Even within
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a single phase, potentially there could be transparent GDWs which are closely related to

global symmetries of the topologically ordered phase. If one of the two phases involved is

the vacuum, the GDW reduces to a gapped boundary (GB). A systematic understanding

and classification of GDWs therefore supplies extra physical information about a given

topological phase, and leads to a web of connections between phases. Refs. [6–8] have

offered classifications of the GBs of Abelian topological phases. Recently, the idea of anyon

condensation due to Bais et al. [9–11] has been applied to studying the GDWs between

two topological phases [10, 12, 13], and from which one could compute the ground state

degeneracy of phases with boundaries [1, 14]. Moreover it is known that classifying anyon

condensation is also connected to classifying symmetry-enriched topological phases [15, 16].

To make progress towards a systematic classification, it is important to unravel how the

physics of anyon condensation is connected to the mathematics. With such a goal in mind,

we are reporting various interesting progress:

1. We demonstrate explicitly that Bais-Slingerland rules of anyon condensation are im-

plied mathematically from the concept of twist-free CSFAs in a UMTC. This further

supports the correspondence between these concepts: anyon condensation, quantum

subgroup, vertex operator algebra embedding, modular invariants and GDWs.

2. We then work backwards, showing that for a large class of anyon condensation —

simple currents condensation — and for electric and magnetic condensation in the

quantum double of any finite gauge group G following from Bais’ and Slingerland’s

heuristic rules is in 1-1 correspondence with a modular invariant. A Bais-Slingerland

anyon condensation therefore defines a twist-free CSFA.

3. These imply that anyon condensation, and thus GDWs, are classified by the math-

ematics of twist-free CSFAs. Hence, they are also classified by the generalized

ADE Dynkin diagrams, also known as fusion graphs. These are known to classify

quantum subgroups and the modular invariants of rational conformal field theories

(RCFTs) [17–21].

4. A transparent GDW is uniquely characterized by the mass matrix m of a modular

invariant, whereas a generic GDW or a GB is uniquely characterized by the branching

matrix b of a vertex operator algebra (VOA) embedding.

Explicit examples will be used to illustrate the results listed above. Note that in a

recent work [14], GDWs are described by some matrix W satisfying a set of constraint

equations. Since the mass matrices and branching matrices m and b matrices [21] and

the W matrices are both describing modular invariants and in fact agree in every known

example, our study suggests that they are equivalent mathematically. The mathematical

techniques developed in the literature is promising to give us a systematic classification of

the W matrices.

To keep the physics as clear as possible in the main part of the paper, we present in the

appendix a review of Bais-Slingerland rules, a glossary for twist-free CSFA, su(2)k modular

data, and how we use the modular invariants of su(2)k to classify the GDWs and GBs of

the corresponding topological phases. Also in the appendix, we record our finding of some
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Parent topological phase C MTC C

Bais’ condensable set of anyons
twist-free CSFA A = ⊕m

i=0γi ∈ C
A = {γi|i = 0, . . . ,m,m < |C|, γ0 := 1C}

Self statistics θγi
= 1 Twist θA = idA

Intermediate phase T RepA, a tensor category

The condensates constitute the vacuum 1T ∈ T A = 1RepA

Anyon a may split into p parts in T: a →
∑p

j=1
aj Object a⊗A

∣

∣

RepA
= ⊕p

j=1Xj , Xj ∈ RepA is simple

Conservation of quantum dimension: da =
p
∑

j=1

daj
dimC a = dimC a⊗A

dimA
=

p
∑

j=1

dimC Xj
m∑

i=0

dimγi

=
p
∑

j=1

dimA Xj

Unconfined phase U Rep0 A, a braided tensor category

U contain the T anyons that are mutually local with A Rep0 A = {X∈ T|(A⊗A X)RXARAX = A⊗A X}

Table 1. Correspondence between Bais-Slingerland anyon condensation and twist-free CSFA. Some

notations and concepts are explained in more detail in the text below and appendices.

properties and implications of the W matrices. Note that throughout this paper, we may

abuse the language by calling a topologically ordered phase of matter a topological phase

and referring to a topological phase as a UMTC, or in the cases applicable as a quantum

group or an affine Lie algebra at certain level whose representation category is a UTMC

describing the topological phase. We may also loosely use anyons, (topological) sectors,

and (primary) fields interchangeably.

2 Bais-Slingerland anyon condensation = twist-free CSFA

Bais et al. have developed a set of consistent rules for anyon condensation that can break

a topological phase, described by a UMTC C, into a smaller (i.e., with fewer anyon types

and smaller total quantum dimension) topological phase described by a UMTC U. This

mechanism, though has not seen any counter-examples, is based on a set of ad hoc rules.

In this section, we shall give these rules a mathematical foundation by showing their equiv-

alence to what is known as a twist-free CSFA and the mathematical structures induced by

this algebra. We tabulate this equivalence as follows.

Table 1 exhibits the correspondence between Bais-Slingerland anyon condensation and

twist-free CSFA. The table is self-explanatory, supplemented by the glossaries we provide

in the appendix. In what follows, we would like to address the most crucial points in

this correspondence, with each point illustrated by an explicit example: the UMTC as the

representation category of the affine Lie algebra su(2)10 that is isomorphic to the quantum

group Uq(su(2)) with q = exp(iπ/6).

What condenses? In Bais-Slingerland condensation, the condensable anyons are self-

bosons. In a topological phase C, such that the entire set A of condensable anyons can

condense together, this set should be be closed under fusion, in the sense that the fusion

of any two anyons in A must contain at least one anyon in A, and any anyon in A must

appear in the fusion product of two anyons in A. In fact, as can be easily shown, these

two conditions have a physical consequence: any two anyons in A, say a and b, have trivial

– 3 –



J
H
E
P
0
7
(
2
0
1
5
)
1
2
0

monodromy with respect to at least one fusion channel. Namely, ∃c ∈ a ⊗ b, such that,

M c
ab = θc/(θaθb) = 1. Here, θi is the self-statistical angle of anyon i, and M c

ab is the

monodromy, in other words the mutual statistical phase of a and b with respect to a given

fusion channel c ∈ a × b. This defines the notion that the anyons in A are mutually local

with respect to each other. Since A condenses to be the new vacuum, its self-monodromy

and self-fusion must commute. Consider the example of su(2)10. This topological phase

has 11 elementary anyons, labeled by integers from 0 to 10, where 1C := 0. The topological

properties of these anyons are listed in table 2 in the appendix. Recall that an anyon

a’s self-statistical angle θa and topological spin ha are related by θa = exp i2πha. Hence,

clearly, the anyon 6 with h6 = 1 is the only self-boson in the spectrum and meets the

criteria of Bais-Slingerland condensation.

The above properties of a condensable set A matches precisely the defining properties

of a twist-free CSFA. First, a CSFA A in a UTMC C is an object in C. This object is

generally nonsimple and take the form A = ⊕iγi, where γi’s are simple objects of C. Such

an algebra A must be closed under fusion, implying there exists a product (a projection):

A ⊗ A → A. This product is associative, and the commutativity requires this product to

commute with the self monodromy of A. Second, twist-free means θA = idA, which implies

θγi = 1, for all γi comprising the A = ⊕iγi. Third, a CSFA A is self-dual [20], i.e., being

viewed as an object in C, A is its own anti-object; while, on the other hand, to form a

well-defined new vacuum, Bais-Slingerland condensable set of anyons also must not have an

anti-anyon that is excluded from the set. Therefore, the condensable set A in a topological

phase described by a UMTC C indeed comprises a twist-free CSFA. Again in the example

of su(2)10, we have A = 0 ⊕ 6, which can be easily checked to be a twist-free CSFA. The

separability of a CSFA will be useful shortly in the following.

Conservation of quantum dimension. As explained in the appendix, a twist-free CSFA

of A ∈ C induces another category RepA, the category of modules over the algebra A.

The separability of the CSFA A ensures that RepA is semisimple, admitting the notions of

simple objects and non-simple objects as direct sums of simple objects. The commutativity

of A guarantees that RepA is a tensor category. The splitting of an anyon in a condensation

A can be understood in the categorical language as follows. Since A becomes the unit

object, i.e., the vacuum in RepA, an object in RepA is an object in C equipped with an

action by A. A convenient way of studying the objects in Rep A is via a map (a functor)

F : C → RepA, such that for a V ∈ C, F (V ) = A ⊗ V ∈ RepA. Note that V is not

necessarily simple in C, and A ⊗ V not necessarily simple in RepA. More interestingly,

even if V is a simple object in C, i.e., an elementary anyon, let us rename it as a := V , a⊗A

may still be non-simple in RepA. This happens typically when dima ≥ 2: for such a simple

C object a, if it appears p times in a ⊗ A, a ⊗ A will be a direct sum of p simple objects

in RepA if all multiplicities of in the splitting is unity. Namely, a ⊗ A|RepA = ⊕p
j=1Xj ,

where Xj ’s are simple in RepA. Keep in mind that each Xj here may appear in C as a

non-simple object. More generically, we have

p =
∑

j

(bja)
2, (2.1)
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where bja is the multiplicity of Xj . One can see that such a decomposition of a ⊗ A in

RepA corresponds precisely to the notion of a C anyon splitting into T anyons according to

Bais-Slingerland rules of anyon condensation (see appendix). This kind of decomposition

also manifests the conservation of quantum dimension in the Bais-Slingerland rules, as

presented in the 7-th row of table 1.

Let us go back to the example of su(2)10. This case has quite a few occurrences of

splitting but let us focus on only two of them to illustrate the point. The dimension of a

CSFA A is by definition dimA =
∑m

i=1 dγi , so we have in the current example dimA =

d0 + d6 = 3 +
√
3. This quantity bears the name quantum embedding index in Bais [11].

According to the Bais-Slingerland rules, the fusion 6⊗ 6 = 0⊕ 2⊕ 4⊕ 6⊕ 8 would require

the splitting 6 → 61 + 62, with d61 = 1 and d62 = 1 +
√
3. On the other hand, the fusion

rule 3⊗ 6 = 3 + 5 + 7 + 9 implies 3 → 31 + 32 with d31 =
√

2 +
√
3 and d32 =

√
2. On the

side of the algebra A, the quantum dimension of a RepA object in the form of a⊗A reads

dimA(a ⊗ A) := dimC(a ⊗ A)/ dimA = dimC(a) dimA/ dimA = dimC a. If dimC a < 2,

a⊗A must be a simple object in RepA. In the current case, e.g., F (2) = 2⊕ 4⊕ 6⊕ 8 and

F (9) = 3 ⊕ 5 ⊕ 9 are simple in RepA. In the language of twist-free CSFA, the splitting

of 6 is understood as F (6) = 6 ⊗ A = A ⊕ (2 ⊕ 4 ⊕ 6 ⊕ 8) = A ⊕ F (2), and that of 3 is

F (3) = F (9) + (3 ⊕ 7), where 3 ⊕ 7 is also simple in RepA but not of the form of F (V )

for any V ∈ su(2)10. We can verify that dimA(3 ⊕ 7) = (d3 + d7)/ dimA =
√
2. Then

one can explicitly check that dimA F (6) = d6 = dimA + dimA F (2) = 1 +
√
3, as well as

dimA F (3) = dimA F (9) + dimA(3⊕ 7) = d9 +
√
2 =

√

2 +
√
3+

√
2. As such we can make

the identifications A = 61, F (2) = 62, F (9) = 31, and 3⊕7 = 32. The identification A = 61
corroborates the argument according to the Bais-Slingerland rules that the condensate

6 does not completely condense but splits into two different portions of which only one

portion actually condenses.

According to the Bais-Slingerland rules, the fusion rules of RepA commute with the

splitting. This follows automatically from the tensorial property of the map F , i.e., F (V ⊗
W ) = F (V )⊗A F (W ), where ⊗A denotes the fusion in RepA [20].

A fact is that although the UMTC C we begin with is a braided tensor category, the

A-induced category RepA is in general not braided. To obtain a braided tensor category

from RepA, one would have to exclude those RepA objects that are mutually nonlocal with

respect to A. This procedure is shown in the last row of table 1. The so obtained braided

tensor category is denoted by Rep0A [20, 22]. If the CSFA A ∈ C under consideration is

twist-free, then Rep0A is also a UMTC. It is straightforward to see that such a Rep0A

is an unconfined phase U in the sense of Bais; however, for the converse statement, we

are not able to prove it in general rigorously except for the cases with simple-current

condensation in chiral topological phases and electric/magnetic condensation in a quantum

double of a finite gauge group G. The proof for these cases will be demonstrated in the

next section.

Back to the example of su(2)10, the Rep0A contains three simple objects, 1 := A|RepA,

σ := (3⊕ 7)RepA, and ψ = (4⊕ 10)RepA, with d1 = 1, dσ =
√
2, and dψ = 1. They satisfy

Ising type fusion rules. As a UMTC, in this case, Rep0A = so(5)1. It is a theorem [20]
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Figure 1. The E6 Dynkin diagram for the embedding su(2)10 ⊂ so(5)1. The nodes are labeled by

the simple objects in RepA, whereas the three end-nodes are the simple objects in Rep
0
A = so(5)1.

A similar figure also appears in ref. [20].

that the total quantum dimensions of C and Rep0A are related by

dimRep0A =
dimC

dimA
. (2.2)

This formula is easily checked in the current example.

In this example, one sees an interesting mathematical structure, namely, the embed-

ding su(2)10 ⊂ so(5)1, which is an instance of the VOA embedding in RCFTs. This embed-

ding also corresponds to the quantum subgroup relation Uexp iπ/6(su(2)) ⊃ Uexp iπ/2(so(5)).

These relations are captured precisely by the Dynkin diagram of the E6 Lie algebra, shown

in figure 1. This figure is self-explaining. The simple objects in RepA correspond to the

simple roots of the E6 Lie algebra, whereas the simple ones in Rep0A label those sim-

ple roots at the ends of the three legs of the diagram. The tensor product between the

E6 simple roots describe the fusion rules of the RepA simple objects. This diagram also

characterizes a nondiagonal modular invariant of the su(2)10 RCFT, namely,

Z
su(2)10
E6

= |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2, (2.3)

which is called the E6 invariant of su(2)10. One sees that the confined objects due to the

condensation A = 0⊕ 6 are absent from the modular invariant (2.3). The relation between

the su(2)10 anyons and the so(5)1 ones is exactly captured by what is known as a branching

matrix bαa that maps the su(2)10 anyons a to the so(5)1 anyons α, which reads

b =







0 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 1 0 0 0 0

σ 0 0 0 1 0 0 0 1 0 0 0

ψ 0 0 0 0 1 0 0 0 0 0 1






. (2.4)

In general for an anyon condensation A that corresponds to a VOA embedding or quantum

subgroup structure, we have

α = ⊕abαaa , a ∈ C , α ∈ Rep0A , bαa ∈ Z≥0 . (2.5)

One can view that the gapped domain wall between the topological phases su(2)10 and

so(5)1 is characterized by either the E6 Dynkin diagram in figure 1 or by the branching

matrix (2.4). The branching matrix (2.5) commutes with the modular S and T matrices

– 6 –
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of the parent and child topological phases in the following sense [21, 23]

∑

β

Sαβbβa =
∑

b

bαbSba ,

∑

β

Tαβbβa =
∑

b

bαbTba ,
(2.6)

where (T )Sαβ and (T )Sab are respectively the (T )S matrices of Rep0A and C. This is

reasonable because the modular invariant induced by an anyon condensation A is indeed

a modular invariant partition function of the RCFT corresponding to the child phase.

In fact, anyon condensations in chiral topological phases described by representation

categories of su(2)k, or equivalently of Uexp i2π/(k+2)(su(2)) are fully classified by the Dynkin

diagrams of the ADE type. For an anyon condensation A in more general affine Lie algebra

or the equivalent quantum groups, the fusion rules of RepA simple objects give rise to fusion

graphs, which are referred to as generalized ADE Dynkin diagrams. Only the ADE types

can arise because the fusion graphs are always simply-laced for twist-free CSFAs [20]. A

list of this classification for all affine Lie algebras up to certain ranks and high levels can

be found in ref. [24]. Therefore, we can claim that the GDWs between chiral topological

phases that fall into this large family are fully classified by the generalized ADE Dynkin

Diagrams, as well as by the branching matrices of the corresponding vertex operator algebra

embedding.

One may notice that a parent phase always corresponds to a VOA smaller than what

its child phase corresponds to. The quick physical reason is, the condensation in the parent

phase reduces the spectrum or the Hilbert space of the parent topological phase by forcing

the condensates to be part of the new vacuum; however, on the side of the corresponding

RCFT, this would lead to more conserved currents that enlarge the symmetry, and hence

result in a larger VOA. A more mathematical account for this relation can be found in

ref. [11].

Recognizing the correspondence between anyon condensation and twist-free CSFAs

also hints at a more convenient way of finding the RepA simple objects and their fusion

rules for a condensation A. We present our simpler rules as follows.

1. For any a ∈ C whose da < 2, a⊗A must be simple in RepA.

2. For any a ∈ C, if a appears p ≥ 2 times in a ⊗ A, a ⊗ A must split into p simple

objects in RepA, each of which contains a copy of a in the case where all bia = 1.1

The two rules above combined can lead us to all the simple objects in RepA and can

be automated by programming. As long as all the simple objects in RepA are found,

their fusion rules can be nailed down easily. These rules are useful when we are dealing

with a topological phase that is not listed in any table of classification yet. Of particular

interest are non-chiral topological phases. One large family of non-chiral topological phases

consists of the (twisted) quantum double of a finite group, which will be discussed in the

1We note that is applicable only in the case that multiplicities bja = 1, which is the prevalent scenario.
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next section. Another large family is comprised of the doubles of chiral topological phases

described by quantum groups, namely Uq(g)× Uq(g).

A doubled topological phase C usually has a lot more condensable anyons than its chiral

component and thus more than one twist-free CSFAs, i.e., more than one ways of anyon

condensation. Typically, all the diagonal pairs of the anyons in the two chiral components

are self-bosons. An interesting subtlety often arises in a doubled phase. Namely, two

anyon condensations A and A′ maybe Morita-equivalent, A ∼ A′, in the sense that they

induce equivalence Rep0A ∼ Rep0A
′. We leave the definition of Morita-equivalence to the

references (see e.g. [12]). A quick example lies in the case with su(2)10 × su(2)10, where

A = 00̄ ⊕ 60̄ and A′ = 00̄ ⊕ 06̄. Another example, the simplest one, is the Z2 toric code

phase, where the two condensations A = 1 ⊕ e and A′ = 1 ⊕ m are Morita equivalent as

they both break the topological phase to the trivial phase.

The ADE classification not only includes the GDWs between two distinct topological

phases but also encompasses those GDWs between two copies of the same topological

phase. On the other hand, the ADE classification not only works in the chiral case but

also handles the nonchiral doubling of the chiral phases. But we shall leave the discussion

of these points and the subtleties therein to section 4.

3 Simple currents condensation versus modular invariance

We would like to demonstrate here that using the Bais-Slingerland rules, simple-current

condensations are in one-to-one correspondence with known modular invariants. To do so,

we need to collect various facts in the dual RCFT of the topological phase. In an RCFT,

each simple current is a primary that has a unique fusion product with any primary in

the spectrum of the RCFT. Most importantly, the simple currents in an RCFT all have

quantum dimension unity and form a cyclic group ZN under fusions, with N being the

order of the simple current ϕ0, such that all simple currents in the theory are merely the

fusion powers of ϕ0 up to order N . It can be shown [25] that the conformal dimension hm
of the simple current ϕm0 takes the following form.

hm = ζ
m(N −m)

2N
(mod Z) , (3.1)

where ζ is an integer defined modulo N for odd N and otherwise modulo 2N . These

conformal dimensions have been computed for all affine Lie algebras that have simple

currents [21] but we do not need their explicit values for our purposes here. Worth of note

is that for chiral CFTs, according to the formula above, a simple current may not have an

integer conformal dimension but those corresponding to anyon condensation should have

integer conformal dimensions. The simple currents in a RCFT act like permutations on

the spectrum of the theory, and thus divide the spectrum into different orbits by fusing

with the simple currents. On such an orbit, we arbitrarily choose a primary and denote it

by φi ≡ φi0 , then any other primary φin on the orbit is obtained by

φin = φi × ϕn0 , (3.2)

– 8 –
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where n = 1, . . . , N . Consequently, the conformal dimensions of φin and of φi are related

by the formula [25, 26]

hφin = hφi + ζ
n(N − n)

2N
− η

n

N
(mod Z) , (3.3)

for some integer η. Let us denote such an orbit by {φni }.
The idea is to arrange some of the orbits of simple currents as blocks comprising the

modular invariant. In an RCFT, if one simple current has an integer conformal dimension,

all simple currents generated should also have integer conformal dimensions. It is known

that an RCFT that has simple currents with integer conformal dimensions can possess the

following integer spin invariants.

Z =
∑

i

m0

mi

∣

∣

∣

∣

mi−1
∑

j=0

χ̃(i,j)

∣

∣

∣

∣

2

. (3.4)

Here, for a given i indexing a field φi, χ̃(i,j) is a convenient notation for the characters of

all the fields along the same orbit of field φi (see eq. (3.2)). The integers m0 and mi are

respectively the order of the simple current ϕ0 and the number of distinct primaries along

the orbit i. Each mi necessarily divides m0. If some mi = 1, the orbit contains fixed points

of fusing with some simple currents.

For example, consider the Wess-Zumino-Witten (WZW) model with the chiral algebra

su(2)8, which has nine primaries, 0, 1, 2, . . . , 8. Here, primary 8 has h8 = 1 and is the

only simple current in the theory. This simple current induces the following integer spin

invariant.

Zsu(2)8 = |χ0 + χ8|2 + |χ2 + χ6|2 + 2|χ4|2 (3.5)

= |χ̃(0,0) + χ̃(0,1)|2 + |χ̃(1,0) + χ̃(1,1)|2 + 2|χ̃(2,0)|2.

So in this case, we have m1 = 2 and m2 = 1 that implies the primary 4 is the fixed point

of fusing with the simple current 8.

In the example above, one sees that some original primaries of the CFT under con-

sideration are absent from the corresponding integral spin invariants, namely the fields

1, 7, 3, 5 in the su(2)8 case. Such absence of fields generally occurs in eq. (3.4). Now let us

make the connection to anyon condensation.

Claim 1. The simple currents are the condensates. The fields that are absent from the

integer spin invariants of a chiral RCFT are precisely those fields that have nontrivial

mutual statistics with the simple currents, and thus confined in the soup of condensates in

the framework of Bais. It can be explicitly shown that the fields that are not present in the

modular invariants possess conformal dimensions that differ from that of the condensates

by non-integers.

Let us show that these confined fields necessarily decouple from the combination of

simple currents under S transformation. The S matrix transforms the chiral characters as

χa

(

− 1

τ

)

=
∑

b

Sabχb(τ) ,

– 9 –
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where τ is the conformal parameter. We call the absent fields the non-local fields with

respect to the simple currents. To show that the non-local fields decouple from the combi-

nation of simple currents, namely from
∑N

n χϕn
0
amounts to showing that they are absent

from
∑m0

j χ̃(0,j)(−1/τ) expressed in terms of the χa(τ)’s.

N
∑

n=1

χϕn
0
(−1/τ) =

N
∑

n=1

∑

a

Sϕn
0 a
χa

=
∑

a

N
∑

n=1

Sϕn
0 a
χa

=
∑

a

N
∑

n=1

∑

b

1

D
N
b
ϕn
0 a

θb
θϕn

0
θa

dbχa ,

where N
c
ab is the fusion coefficient, i.e., the multiplicity of c in the fusion of a and b,

D =
√
∑

a d
2
a is the total quantum dimension of the chiral RCFT, and again θa = exp i2πha

is the self statistics of the primary field a. For a simple current ϕn0 , ϕ
n
0 × a has a unique

outcome, say, b, and N
b
ϕn
0 a

≡ 1. We thus can conveniently write ϕn0 × a = an. And since

dϕn
0
≡ 1, dan = da. Besides, we are dealing with the simple currents ϕn0 with integer

conformal dimensions. Hence, the above becomes

N
∑

n=1

χϕn
0
(−1/τ) =

∑

a

N
∑

n=1

exp
[

i2π(han − ha)
]da
D

χa

=
∑

φi

N
∑

n=1

exp
[

i2π(hφin − hφi)
]dφi
D

χφi ,

where we changed the notation to our standard CFT notation of fields, used in particular

in eq. (3.3). The second sum
∑N

n=1 in the above becomes the sum over the fields in the

orbit {φni }. Using eq. (3.3), we have

N
∑

n=1

χϕn
0
=

∑

φi

N
∑

n=1

exp

[

− i2π

(

n

N
η mod Z

)]

dφi
D

χφi

=
∑

φi

N
∑

n=1

δη mod N,0
dφi
D

χφi , (3.6)

where the sum
∑N

n=1 is effectively over the representations of ZN , which naturally leads to

the delta function in the second equality. If η 6= 0 mod N for some field φi, according to

eq. (3.3), the fields on the orbit of φi have conformal dimensions different from that of φi by

a non-integer. Hence, the above equations manifest that the characters χφi of such fields φi
— in fact of the entire orbit {φni } — are absent from

∑N
n=1 χϕn

0
. Note that exp

[

− i2π
(ηn
N

mod Z
)]

dφi/D is precisely the matrix element Sϕn
0φin

. In addition, for primaries a that

appear in the modular invariant, m0/mi is exactly the multiplicity — the number of times

a splits into a given anyon in the condensed phase. Together this verifies claim 1.
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The above analysis holds for all unitary RCFTs and the corresponding topological

phases as far as simple currents are concerned. This correspondence in turn implies that a

child phase has smaller total quantum dimension than its parent phase, which is a special

case of formula (2.2).

For topological phases described by the representation categories of su(2)k, simple

current condensation can occur only for k = 4l, l ∈ Z≥0. Such condensation and the

corresponding child phases and GDWs are classified by the D2l+2 series of Dynkin diagrams

and the associated branching matrices.

As a remark, the result derived above actually does not rely on whether the simple

currents have integer conformal dimensions. This is so because in the ratio θφin/(θϕn
0
θφi),

the conformal dimension in eq. (3.1) always cancel out the second term on the r.h.s. of

eq. (3.3), we would still obtain eq. (3.6). Nevertheless, in such cases, the simple currents

themselves would also decouple from the identity field. As a consequence, the modular

invariant so constructed is not an integer spin invariant but merely an automorphism

(permutation) invariant.

Another remark2 is that in general, there exists modular invariants that do not cor-

respond to Frobenius algebras. Such a modular invariant is thus unphysical, in the sense

that it does not describe the torus partition function of a consistent full CFT. Neverthe-

less, all modular invariants due to simple currents are in fact physical. This is seen by

associating a Frobenius algebra with each subset of simple currents that corresponds to a

modular invariant [27]. Ref. [27] also worked out the representation theory of these alge-

bras. This enabled the proof of various conjectures, e.g., concerning the modular S-matrix

and boundary conditions, which have been made in ref. [26].

4 Gapped domain walls and boundaries

As pointed out in the end of section 2, the generalized ADE classification encompasses

the GDWs between distinct topological phases, GDWs between two copies of the same

topological phase, and GBs in one framework. To convey the idea clearly, instead of trying

to be most general, let us restrict to the case of su(2)k, which has been thoroughly studied

and understood, and whose classifying fusion graphs are truly the Dynkin diagrams of

ordinary Lie algebras. We list the su(2)k ADE classification of modular invariants and

their correspondence to anyon condensation in table 3 in the appendix.

In not only su(2)k but also in other affine Lie algebras, non-simple currents are very

rare. In particular in su(2)k, non-simple current condensation only occurs at k = 10 and

k = 28. For su(2)k, simple currents only occur in cases where k is a multiple of 4, and all

simple current condensation in such cases are classified by the Dk/2+2 Dynkin diagrams.

Note that when k = 16, there is an exceptional modular invariant of su(2)16 characterized

by the E7 Dynkin diagram. Nevertheless, this E7 modular invariant does not correspond

to any new kind of anyon condensation because it is merely obtained from the D10 modular

invariant of su(2)16 by permutation, namely, by exchanging the 2⊕ 4 and one copy of the

8 in the D10 invariant. In fact, these two modular invariants differ only by an integer

2Thanks to Jürgen Fuchs for pointing this out to us.
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— nine — so, they should give rise to the same RCFT with the chiral algebra in which

su(2)16 is embedded. This is consistent with the conjecture that according to the Bais-

Slingerland rules, an anyon condensation in a parent topological phase yields a unique child

phase. Besides, mathematically, the Frobenius algebra A = 0 ⊕ 8 ⊕ 16 that leads to this

E7 invariant is not commutative nor twist-free [20, 21], which does not directly correspond

to anyon condensation in the chiral picture. As such, anyon condensation can serve as a

criteria for judging whether a modular invariant is truly exceptional or not. Nevertheless,

in the non-chiral picture, anyon condensation corresponding to the E7 invariant can be

understood likewise after our discourse on the non-chiral anyon condensation as follows.

Simple current or non-simple current condensation in chiral topological phases always

gives rise to a GDW between the parent (larger) topological phase and the child (smaller)

topological phase. Note that in chiral cases, a child phase can never be trivial (and we

shall get back to this point shortly). This wall can be thought of as a machinery that

determines what anyons of the parent phase can enter the child phase and what they will

become in the child phase. As brought up in section 2, this machinery can be described

by the branching matrix (2.5) of the corresponding VOA embedding. The matrix elements

of the branching matrix possesses some additional interesting properties beyond what is

described previously. Firstly,

mab =
∑

α

bαabαb , (4.1)

which is the very mass matrix for the modular invariant due to the corresponding anyon

condensation. Take su(2)4 as a simple example, according to table 3, the condensation 0⊕4

takes the topological phase to one that corresponds to the RCFT su(3)1. The branching

matrix here is

bαa =







1 0 0 0 1

0 0 1 0 0

0 0 1 0 0






. (4.2)

According to eq. (4.1), we obtain

mab =















1 0 0 0 1

0 0 0 0 0

0 0 2 0 0

0 0 0 0 0

1 0 0 0 1















, (4.3)

which yields exactly the D4 modular invariant of su(2)4 in table 3. Secondly, and more

fascinatingly,
∑

a

bαabβa = n1+mαβ , n ∈ Z≥0 . (4.4)

Here, 1 is the identity matrix of the commensurate dimension, and mαβ is the mass matrix

producing a permutation invariant of the RCFT corresponding to the child phase. Again
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for su(2)4, we have

∑

a∈su(2)4

bαabβa =







2 0 0

0 1 1

0 1 1






= 13 +







1 0 0

0 0 1

0 1 0







= 13 +m
su(3)1
αβ ,

(4.5)

where n = 1 in this case. This mass matrix m
su(3)1
αβ gives rise to a permutation invariant

of su(3)1, namely Zsu(3)1 = |χ0|2 + χ3χ̄3̄ + χ̄3̄χ3, where 0, 3, and 3̄ are respectively the

scalar, vector and conjugate vector representations of su(3). This has an interesting and

important physical interpretation. In our previous work [15, 28] applying the idea of

anyon condensation to construct symmetry-enriched topological (SET) phases, we found

that the confined anyons due to the condensation in a parent phase C can generate global

symmetry group actions on the unconfined phase U by braiding with the unconfined anyons,

and we could work out the explicit representation of such a global symmetry group. Such

group actions are usually permutations of certain unconfined anyons in U and/or symmetry

fractionalization of certain unconfined anyons. In our previous work, it was rather involved

to solve for the mapping between the Hilbert space basis of a C and that of a T to extract

the global symmetry actions. It takes further work to classify such symmetry-enriched

phases.

Now, however, we are invited to interpret the matrix m
su(3)1
αβ in eq. (4.5) and in general

the mαβ in eq. (4.4) as precisely the global symmetry actions on the unconfined phase U

if the confined anyons are indeed able to generate nontrivial permutation actions on the

U. A case in which the confined anyons cannot generate nontrivial symmetry actions on

the unconfined phase is our main example su(2)10: using the branching matrix (2.4) and

eq. (4.4), one can easily find that m
so(5)1
αβ = 213. This is reasonable because physically, it is

impossible to mix the fermion ψ, whose dψ = 1, with the anyon σ, whose dσ =
√
2. Since the

representation category of so(5)1 is the sibling of the Ising topological phase, there cannot

exist nontrivial global symmetry actions on the Ising phase except the global symmetry

fractionalization on σ and ψ we predicted in ref. [15]. A branching matrix however is

not able to tell us the possible global symmetry fractionalization of the unconfined anyons.

This is because the global symmetry fractionalization is intrinsic to a topological phase [29].

Therefore, a complete classification of symmetry-enriched topological phases looks nigh and

deserve our future work.

As mentioned above, in a chiral topological phase, no anyon condensation can com-

pletely break the phase to a trivial phase, i.e., Rep0A being trivial. This is because

dimA < dimC strictly holds for any chiral C and formula (2.2). In a nonchiral phase as

the double C × C of a chiral phase C, all the diagonal pairs aā of the elementary anyons

a ∈ C are self and mutual bosons, and they form a twist-free CSFA ADiag = ⊕aaā. Clearly,

dimADiag =
∑

a

daā =
∑

a

dadā =
∑

a

d2a = dimC× C , (4.6)

which, by formula (2.2), implies that dimRep0ADiag = 1, resulting in a trivial unconfined

phase. This observation leads us to interpret the diagonal invariants, namely the Ak+1
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series in table 3, as modular invariants also due to anyon condensation, and such anyon

condensation is of the type ADiag in the doubled topological phases C × C. This interpre-

tation is physically equivalent to completely gapping the boundaries of C × C on an open

surface. To fully gap the boundary modes of a doubled phase C × C, one has to write

down the potential terms of sufficiently many independent boundary fields that can be

simultaneously pinned to certain vacuum expectation values. The set of such boundary

fields comprises what is known as a Lagrangian algebra [1, 12, 13, 30]. Other independent

boundary fields absent from this subalgebra are nonlocal with respect to at least one ele-

ment of the subalgebra and thus will be confined if the Lagrangian algebra is condensed. A

twist-free CSFA ADiag is precisely a Lagrangian algebra. A completely gapped boundary

is dubbed a GB.

As explained previously, anyon condensation induces a modular invariant of the RCFT

corresponding to the unconfined phase surviving the condensation. And here in the case

of doubled phases, an anyon condensation ADiag results in a trivial phase, so the induced

modular invariant should contain only terms corresponding to the condensed anyons, which

is precisely one in the form of the Ak+1 series in table 3. This is consistent with the

modular invariants due to anyon condensation in chiral topological phases. As such, our

interpretation bears no ambiguity or confusion. The discussion above can be generalized to

modular tensor categories as representation categories of other affine Lie algebras or VOAs

than just su(2)k. Therefore, it is justified to claim that the diagonal modular invariants of

the chiral RCFTs corresponding to a chiral phases C classify certain GBs of the doubled

topological phases C× C.

What remains now in table 3 is theD2l+1 series of permutation invariants, which are not

diagonal but do not appear to be induced by any anyon condensation in the corresponding

chiral topological phases. Nevertheless, by an argument similar to that about the diagonal

invariants, the D2l+1 series can also be understood as due to anyon condensation in the

doubled phase su(2)k×su(2)k, for k = 4l−2, and such anyon condensation is characterized

by the twist-free CSFA

Aperm =
2l−1
⊕

n=0

(2n, 2n)⊕ (2l − 1, 2l − 1)
2l−3
⊕

n=1

(n, 4l − 2− n)⊕ (4l − 2− n, n̄) , (4.7)

where each pair (m, n̄) denotes an anyon corresponding to the direct product of the chiral

sector m and anti-chiral sector n̄. In fact, the permutation condensation Aperm is also a

Lagrangian algebra that can completely destroy the doubled phase or gap all the boundary

modes. Here is the reason. First, a pair of anyon or fields that can be permuted must

have the same quantum dimension and topological spins differ by merely an integer, such

as the pair of n and 4l − 2− n in su(2)k, as in eq. (4.7). Second, a permutation invariant

or the corresponding Aperm contain all the elementary fields/anyons. Hence, one sees from

eq. (4.7) and even more generally,

dimAperm = dimC× C , (4.8)

indicating a trivial Rep0Aperm or unconfined phase.

– 14 –



J
H
E
P
0
7
(
2
0
1
5
)
1
2
0

Therefore, ADiag and Aperm both correspond to the GBs of doubled topological phases

C× C on open surfaces. In particular, for C representation categories of affine Lie algebras

gk, or direct products of these algebras, the GBs are fully classified by ADiag and Aperm, or

the corresponding modular invariants. The branching matrices in such cases are obtained

as in the chiral case.

5 Quantum double of a gauge theory

In the special case where the topological phase is describable by a quantum double with

group G, which are examples of lattice gauge theories, there are well known Lagrangian

algebra, corresponding to condensation of all electric charges or all magnetic charges, that

are guaranteed to lead to a gapped boundary separating the phase from the trivial vacuum.

In those cases, it is possible to derive commutativity relation from our knowledge of the

S matrix in these models and well known relations satisfied by representations of groups.

To begin with, let us recall the form of the S matrix for the quantum double of a finite

gauge group G,

S(A,µ) (B,ν) =
1

|G|
∑

g∈CA, h∈CB , [g,h]=1

χZA(h)µχZ
B (g)ν , (5.1)

where CA, CB denote the conjugacy classes of G, ZA, ZB the corresponding centralizers,

and µ, ν the representations of ZA, ZB respectively.

Consider then the “electric” Lagrangian algebra corresponding to the condensing all

the pure electric charges, which are guaranteed to behave like self-bosons.

In this case, Bais-Slingerland rules map the condensed anyons all to the vacuum, and

what are not condensed are confined. This map can be described by a matrix analogous

to the branching matrix (2.5). Let us again take this b matrix notation to emphasize the

generality and universality of anyon condensation. Note however that in the current case,

the b matrix is simply a single-row matrix, and let us write it as b1(A,µ). According to

Bais-Slingerland rules, the nonvanishing components of b are b1(e,µ) = dµ, the dimension

of the representation µ of G, where (e, µ) denotes a pure electric charge, with e ∈ G the

identity element. All dyons and magnetic charges carrying non-trivial labels of conjugacy

classes are confined and do not appear in b.

Now let us check for commutativity:

∑

µ

b1(e,µ)S(e,µ)(B,ν) =
1

|G|
∑

µ

dµ
∑

h∈CB

χGµ (h)χ
ZB

ν (e)

=
dν |CB|
|G|

∑

µ

dµχ
|G|
µ (h)

=
dν |CB|
|G| δeh|G|

= b1(B,ν) , (5.2)
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where we have made use of properties of characters of any finite group in the second

equality. Amazingly, the commutativity condition is well aware of group representation

theory.

Alternatively, another set of well known Lagrangian algebra is the “magnetic” conden-

sate, in which all the pure magnetic charges characterized by a conjugacy class and the

trivial representation condenses all at once.

In which case, the non-zero components of the b matrix is given by b1(A,1) = 1 (i.e.

only one linear combination of the |CA| members of the conjugacy class can take part in

the condensation). The commutativity condition is then reduced to

∑

A

b1(A,1)S(A,1)(B,ν) =
1

|G|
∑

A

∑

h∈CB ,g∈ZB&g∈CA

χZ
B

ν (g)

=
1

|G|
∑

h∈CB

∑

g∈ZB

χZ
B

ν (g)

=
1

|G| |C
B||ZB|δν1

= δν1 ≡ b1,(B,1) (5.3)

Again the results following from Bais-Slingerland rules again implies commutativity of the

b matrix with the S matrix.

6 Conclusions

For a possible systematic classification of the anyon condensation and thus topological

boundaries which we refer to as GBs and GDWs, it is crucial to have a rigorous math-

ematical definition of these physical phenomena, and these have been proposed notably

in refs. [12, 13, 31]. The construction however is very different from those in refs. [9–11],

which is motivated by purely physical consideration. In this paper, we fill the gap by

recovering every important ingredient in refs. [9–11] making use of the properties of twist-

free CSFAs in a UMTC, strengthening the connection between the mathematics and the

physical intuition, and thus allowing for the existing classification, namely a generalized

ADE classification, of the twist-free CSFAs to be a direct classification of possible GBs

and GDWs in many known phases. We also explore how far one can recover the data of

a twist-free CSFA, notably a modular invariant, starting from the Bais-Slingerland rules.

We find that at least for simple currents condensation and electric/magnetic condensates

in any quantum doubles of a group G they are in 1-1 correspondence. We also connect

these results with the novel proposal of [14] that gives a very simple set of rules to classify

the same objects. It is an on-going programme, both of physical and mathematical interest

to find the minimal set of data to identify GBs and GDWs.

Anyon condensation appears to be related to gauging the generalized global symmetry

recently proposed by Gaiotto et al. [32]. We shall report our investigation in this respect

elsewhere.
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A Bais-Slingerland rules

Here we recapitulate Bais-Slingerland rules of anyon condensation as how we understand

them.

1. Anyon condensation of a topological phase C selects a set of self and mutually local

anyons {γ} as a subset of all the elementary anyons (i.e., simple objects) of C. Note

that this set always includes the trivial anyon or vacuum 1.

2. If an anyon a of C is a (meta) fixed point of m condensed anyon γi, i = 1, . . . ,m,

namely a appears again in the fusion product a × γi, ∀i, a will split into m species

(not necessarily all different) in the condensed phase:

a →
m
∑

i=1

niaai , (A.1)

where nia ∈ Z≥0 is the multiplicity of species ai. Clearly,
∑m

i=1 n
i
a = m. Note that a

condensate γ may also split.

3. The above splitting preserves quantum dimension:

da =
m
∑

i=1

dai . (A.2)

4. Splitting and fusion commute:
(

∑

i

niaai

)

×
(

∑

j

njbbj

)

=
∑

c,k

N c
abn

k
c ck . (A.3)

5. If two anyons a and b are related by fusing with a condensate γ, i.e., a = b× γ, they

should be identified as a single species in the condensed phase. Note that more than

two anyons can be identified, and such identification may be restricted to the split

components.

6. If the anyons being identified have the topological spins different by merely integers,

the anyon species as the identification of them would inherit their topological spin

modulo the integers and is an unconfined anyon in the condensed phase. Otherwise,

the identification leads to a confined anyon in the condensed phase.
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7. The condensed phase including both confined and unconfined anyons is called the T

phase, whereas that consists of unconfined anyons only is called the U phase. It is

conjectured that if the original phase is a UMTC, U is also a UMTC.

The above rules can be easily and systematically applied for simple currents condensa-

tion; however, for nonsimple currents condensation, their application is rather invovled, in

particular the rule 2 of splitting and rule 5 of identification are mingled together, which

requires careful case by case study.

B Twist-free commutative separable Frobenius algebra

The concept of twist-free commutative separable Frobenius algebra (CSFA) of a UMTC

C has been employed to classify the quantum subgroups of quantum groups, whose rep-

resentation categories are UMTCs, as well as the embeddings of vertex operator algebras,

whose representation categories are also (not necessarily unitary) MTCs [20]. Despite the

complexity of the mathematics involved, we shall give a brief account of this concept in

physical terms. We refer the reader to refs. [13, 20, 21] for more systematic discussions on

twist-free CSFAs.

Frobenius algebra. Note that a Frobenius algebra is not only an algebra but also a coal-

gebra; however, we shall not need its coalgebra aspect for our purposes. Hence, in

this appendix and throughout the paper, we treat a Frobenius algebra as only an

associative algebra. A Frobenius algebra A is an object in C. In general A is not a

simple object but a direct sum of simple objects. For a topological phase described

by C, the simple objects are the distinct elementary anyon types. This object A is

an algebra because it is equipped with a product µ : A ⊗ A → A and an inclusion

ιA : 1C →֒ A, where 1C is the unit object or vacuum of C, such that 1C is also the

unit of A. The unit is also required to be unique, namely dimHomC(1C, A) = 1.

Such uniqueness is called haploid in mathematics. The product µ is associative and

commute with the braiding of A. The former is the associativity. The latter means

µ ◦RAA = µ, where RAA is the R matrix of A in C. This commutativity is physically

sound because A is going to become the new vacuum when it condenses. Let us for-

mally write A = 1 ⊕ Υ, where Υ collectively denotes the direct sum of other simple

objects of C that may appear in A. The algebra object A is self-dual, also termed

rigidity of A in Kirillov [20]. That is, there exists a non-degenerate map from A⊗A

to 1C. In other words, viewed as an object of C, A is the anti-object of itself. Clearly,

this is physically consistent with that A is going to be the new vacuum.

Representation category RepA. A CSFA A induces a representation category RepA over

A. In order that the representations over A are semisimple, A is required to be

separable. This allows a well-defined tnotion of simple objects in RepA and the

nonsimple objects as direct sums of the simple ones. This is a key notion for anyons

in topological phases to be well-defined. The category RepA is a tensor category if

A is twist-free, i.e., θA = idA, where θA can be understood as the self-statistics of A
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Sectors a da ha

0 1 0

1
√

2 +
√
3 1/16

2 1 +
√
3 1/6

3
√
2 +

√

2 +
√
3 5/16

4 2 +
√
3 1/2

5 2
√

2 +
√
3 35/48

6 2 +
√
3 1

7
√
2 +

√

2 +
√
3 21/16

8 1 +
√
3 5/3

9
√

2 +
√
3 33/16

10 1 5/2

Table 2. su(2)10 topological sectors, quantum dimensions, and topological spins.

as an object in C. A trivial example of a twist-free CSFA is A = 1C in any C, which

is called transparent.

The category RepA in general is not a braided tensory category; however, it has a

subcategory that is braided. This subcategory is denoted by Rep0A and consists

of the objects in RepA whose fusion with A commutes with its braiding with A.

Formally we can write this as

Rep0A = {X ∈ T|(A⊗A X)RXARAX = A⊗A X} , (B.1)

where the fusion ⊗A is defined with respect to A. We leave the detail of this definition

to the references. This is shown in refs. [20, 22].

We note that the definitions of a twist-free CSFA in ref. [20] and ref. [21] are not

identical but as discussed in ref. [13], they are equivalent.

C Modular data and ADE classification of su(2)k

We first tabulate in table 2 some of the topological data of su(2)10 we extensively used in

the main text.

Table 2 and that of more general chiral algebras su(2)k can be obtained using several

formulae. Although we only considered k = 10 and k = 8 in our examples, for completeness

we consider general k ∈ Z in this appendix. These formulae can be found in other references

too, e.g., refs. [21, 33].

An affine Lie algebra su(2)k has k distinct topological sectors, 0, 1, . . . , k, where 0 is

the trivial or vacuum sector. The fusion algebra of these sectors reads

a× b = cab + (cab + 2) + · · ·+min{a+ b, 2k − a− b} , (C.1)

where cab = |a − b|. The multiplicity N c
ab = 1 if |a − b| ≤ c ≤ min{a + b, 2k − a − b},

a + b + c = 0 (mod 2), and a + b + c ≤ 2k; otherwise, N c
ab = 0. A sector a has quantum
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dimension and topological spin respectively

da =
sin

(

a+1
k+2π

)

sin π
k+2

,

ha =
a(a+ 2)

4(k + 2)
.

(C.2)

The R matrix elements read

Rab
c = ic−a−bq

1
8
[c(c+2)−a(a+2)−b(b+2)] . (C.3)

The F symbols are matrices:

[

F ab
cd

]e

f
= ia+b+c+d

√

dedf
dadd

[a+ 1]q[d+ 1]q
{c e a
b f d

}∗
, (C.4)

where the 6j symbols

{c e a
b f d

}

= ∆(c, e, a)∆(e, c, d)∆(e, b, d)∆(c, d, f)

×
∑

z

{

(−1)z[z + 1]q!
[

z − c+e+a
2

]

q
!
[

z − a+b+f
2

]

q
!
[

z − e+b+d
2

]

q
!

× 1
[

z − c+d+f
2

]

q
!
[ c+e+b+f

2 − z
]

q
!

× 1
[

c+a+b+d
2 − z

]

q
!
[ e+a+f+d

2 − z
]

q
!

}

are defined with

∆(a, b, c) =

√

√

√

√

[

−a+b+c
2

]

q
!
[

a−b+c
2

]

q
!
[

a+b−c
2

]

q
!

[

a+b+c
2 + 1

]

q
!

,

which is invariant under permutation of its variables, and the q-numbers and q-factorials

[n]q =
qn/2 − q−n/2

q1/2 − q−1/2
, [n]q! =

n
∏

m=1

[m]q .

By definition [0]q! ≡ 1. Note that the sum over z appeared in the expression of the 6j sym-

bols is carried from max{ c+e+a2 , a+b+f2 , e+b+d2 , c+d+f2 } to min{ c+e+b+f2 , c+a+b+d2 , e+a+f+d2 }.
Now we tabulate the ADE classification of su(2)k modular invariants as follows.

D Some collected observations involving simple currents condensation

Consider for simplicity chiral topological phases C. For simple current condensation, the

Bais-Slingerland rules can easily lead to precise consequences. Since a simple current is

a self-boson, if it condenses, then all the simple currents generated by fusion with the

condensed simple current in the same phase will condense too. Hence, all the condensates
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Anyon condensation Series Level k Modular invariants

GBs

No condensation in the chiral case

Ak+1 any
k∑

n=0

|χn|2or diagonal condensation A = ⊕k
n=0nn̄

in the nonchiral pair su(2)k × su(2)k

GDWs
Simple current condensation

D2l+2 4l
2l−2∑

n=0

|χn+χ4l−n|
2 + 2|χ2l|

2

A = 0⊕ k

GBs

No condensation in the chiral case

D2l+1 4l−2
or condensation A=

2l−1⊕

n=0

(2n, 2n)⊕ (2l−1, 2l−1)
2l−1∑

n=0

|χ2n|2 + |χ2l−1|
2

2l−3⊕

n=1

(n, 4l−2−n)⊕ (4l−2−n, n̄) +
2l−3∑

n=1

(χnχ̄4l−2−n + χ4l−2−nχ̄n)

in the nonchiral pair su(2)k × su(2)k

GDWs
Non-simple current condensation

E6 10 |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2
A = 0⊕ 6

GDWs Permutation of the D10 invariant of su(2)16 E7 16
|χ0+χ16|2+|χ4+χ12|2+|χ6+χ10|2+|χ8|2

+χ8(χ̄2+χ̄14)+(χ2+χ14)χ̄8

GDWs
Non-simple + simple current condensation

E8 28 |χ0+χ10+χ18+χ28|2+|χ6+χ12+χ16+χ22|2
A = 0⊕ 10⊕ 18⊕ 28

Table 3. The ADE classification of su(2)k modular invariants and their correspondence with anyon

condensation. The branching matrix in each case can be easily read off from the table. In the table,

we assume n ∈ Z.

form a closed set under fusion; if fusion is taken as a group multiplication, this closed set

can be identified with a cyclic group Z|c0|, where as defined above |c0| is the order of the

unit simple current c0 of the phase. In more general cases where a topological phase is the

direct product of, say, m topological phases, the simple currents form the Abelian group

ZN1
×ZN2

×· · ·×ZNm . If a is a fixed point of fusing with some cp0, with 1 ≤ p ≤ |c0|−1 an

integer, then there are seemingly two cases. First, if |c0|/p = q ∈ Z, then a is also a fixed

point of fusing with the simple currents cp0, c
2p
0 , . . . , c

(q−1)p
0 . Second, if p > 1 and |c0|/p /∈ Z,

then a is a fixed point of all the simple currents in the phase; hence, this case is equivalent

to the case where a is a fixed point of c0. Therefore, both cases can be merged into one

where |c0|/p ∈ Z is assumed, which obviously includes the possibility of p = 1.

By unitary, i.e., a topological sector and its anti-sector have a unique way of fusing

into the vacuum, it can be easily shown that as long as a is a fixed point of a simple current

condensate cp0, it must split as

a →
∑

i

nai ai , (D.1)

where ai’s are the sectors (possibly confined) in the broken phase, and nai is the multiplicity

of ai in this splitting. The quantum dimensions are conserved as

da =
∑

nai dai . (D.2)

And hai = ha for all i.

On the other hand, two sectors (including the sectors obtained by splitting some sectors

of A), a and b should be identified as a single sector in the broken phase if a × cmp0 = b

for any integer 1 ≤ m ≤ q − 1 because they become indistinguishable in the presence of
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the new vacuum. An interesting consequence is, if hb − ha /∈ Z, the resultant sector that

identifies a and b ought to be confined in the broken phase. This is consistent to the fact

that if a sector has non-trivial monodromy with a condensate, it has to pull a string, whose

energy is proportional to its length, when it moves around in the new vacuum and thus

is confined. To be precise, we let γ = cmp0 for some integer m such that a × γ = b. The

monodromy between a and γ reads

Maγ =
SaγS11

Sa1Sγ1
=

∑

b

N b
aγ

θbdb
θaθγda

=
θb
θa

= ei2π(hb−ha). (D.3)

Here, use is made of Sa1 = da/D, S11 = Sγ1 = 1/D, Saγ =
∑

bN
b
aγθbdb/(θaθγD), dγ = 1,

and a×γ = b that implies that N b
aγ = 1 and da = db. Clearly, Maγ is non-trivial if and only

if hb − ha /∈ Z. The above equation immediately implies that if a× γ = a, Maγ = 1. That

is, a fixed point of a simple current condensate, despite splitting, yield only unconfined

sectors in the broken phase.

One can also see that two unconfined sectors can never fuse to a confined sector. This

is because physically, a distant observer is not able to distinguish the system containing two

sectors from the one containing the fusion product of the two sectors; were the two sectors

unconfined, i.e., were they mutually local with respect to the vacuum, there would be no

way for their fusion product to have nontrivial monodromy with the vacuum. Therefore,

the unconfined sectors in the broken phase are closed under fusion and comprise a well-

defined topological phase on their own. We call this unconfined phase U. As quantum

groups or UMTCs, we have U ⊂ C.

Consider the follwing example. The topological phase C is characterized by the quan-

tum group Uq(su(2)) with q = exp(iπ/3). The corresponding CFT has the chiral algebra

su(2)4. This phase C has five topological sectors, 0, 1, 2, 3, and 4. The only simple current

in this spectrum is sector 4. The fusion with sector 4 has a single fixed point, which is

sector 2, as 2 × 4 = 2. Hence, if sector 4 condenses, sector 2 would have to split. Since

d2 = 2, it splits into two and only two pieces, say, 21 and 22, which inherit the topological

spin of sector 2, namely, h21 = h22 = h2 = 1/3.

E Some thoughts on W matrices

In a recent work, Lan et al. [14] proposes the idea of using what they call a W matrix,

whose entries are natural numbers, to characterize the GDWs between any two topological

phases and the GBs of any topological phases. They offer a set of consistency conditions

of a W matrix. If for two topological phases, the set of conditions bear no solution of W ,

there does not exist a GDW between these two phases. If a topological phase cannot have

a GB, there is no solution of W either. We leave the details of these consistency conditions

to the cited paper. As mentioned in the main body of the paper, there is a relation between

anyon condensation and W matrices. For example, a branching matrix and a mass matrix

may be regarded as W matrices too. In all the examples we have studied, we have found a

one-to-one correspondence between an anyon condensation and a W matrix. At present it

is still unclear whether these W matrices are in 1-1 correspondence with a CSFA. In this
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appendix, however, we report some of our findings of the W matrices. We would like to

dwell on the implications of commutativity between a W matrix and the modular S and

T matrices of the two topological phases on the two sides of the GDW. This is the same

commutativity as that in eq. (2.6), with the b matrix which is in fact a W matrix.

E.1 Gapped domain wall and global symmetry

The commutativity between theW matrix that characterizes a gapped domain wall between

two phases and the S matrices of the two phases implies that the W matrix may be

intimately related to global symmetries. In particular, when the two phases separated by

a GDW are the same phase, the wall, associated with which the W matrix is a square

matrix, can be thought of as implementing a global symmetry on the phase. Here the

commutativity reads

WSB = SBW . (E.1)

This is plausible because the W matrix serves as an endomorphism on the set of topological

sectors. This is precisely what a global symmetry does on a topological phase, and the

symmetry should also commute with the physical observables of the phase.

On the other hand, a parent phase A can not only produce a child phase B by its anyon

condensation but also generate a global symmetry on phase B by the braiding between B’s

sectors and the confined sectors of A due to the condensation. Since the generated global

symmetry is explicitly represented on B’s sectors, from such a symmetry representation,

we can obtain a gapped domain wall W between two copies of B.

Let us consider the example where phase A is the Ising × Ising and B the Z2 toric

code. We know that by condensing the ψψ̄ sector, A breaks into B. The generated global

symmetry is Z2 represented by the 2 × 2 identity matrix I2 and the Pauli σx matrix [28].

The identity I2 acts on the trivial sector 1 and the fermion ǫ of the Z2 toric code, whereas

σx acts on the subspace as the direct sum e ⊕m. If we order B’s sectors as 1, e,m, ǫ, we

can reorganize the I2 and σx into a 4 × 4 matrix, which represents an endomorphism on

B, namely

W =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











.

This is exactly the nontrivial gapped domain wall between two copies of Z2 toric code found

in ref. [14]. One can easily check the commutativity between this W and the S matrix of

Z2 toric code.

As another example, we know the chiral topological phase SU(2)8, via condensing its

sector 8, can break into the Fibo× Fibo phase and generate a Z2 symmetry on the latter.

It turns out that this Z2 symmetry is also represented by the W matrix above. Moreover,

this W matrix indeed commutes with the S matrix of the Fibo× Fibo phase, we can thus

infer that this W characterizes a gapped domain wall between two copies of the Fibo×Fibo

phase. As such, we need not to solve the commutativity equation for W but simply obtain

the result using anyon condensation.
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The discussion above again hints that aW matrix between two phases A and B encodes

in an intricate way the information of the confined sectors due to the breaking of A into

B, although apparently W has only zero entries corresponding to the confined sectors.

Furthermore, write the commutation (E.1) explicitly as

∑

b

WabSbc =
∑

d

SadWdc , (E.2)

and let a = 1 in herein, we get

1 = S1c =
∑

b

δ1bSbc =
∑

d

S1dWdc =
∑

d

Wdc , ∀c . (E.3)

Here, use is made of W1b = δ1b, which is true because there is no anyon condensation in

this case. Since W ’s entries are all non-negative integers, we can conclude that in this case

each row and and each column of any W in this case contains one and only one nonzero

value, which is unity. This is consistent to the fact that a gapped domain wall between the

same phases must not mediate any splitting or identification of the topological sectors and

that the wall implements a global symmetry. This appears to put a strong constraint on

how a global symmetry group on a topological phase may act on, or in other words, may

be represented on, the spectrum of the phase. One may find the resemblance between such

seemingly existing constraint on global symmetries and our discussion below eq. (4.4).

E.2 Modular invariance

Commutativity of W with the modular matrices implies modular invariance. The SA,B

corresponds to S matrices of the two phases connected by a gapless domain wall defined

by W . Consider having

Z(τ) =
∑

a,i

WaiZaZ̄i (E.4)

Under modular transformation

Z(−1/τ) =
∑

a,b,i,j

WiaSabZbZ̄kS
†
ki

=
∑

b,i,k

SikWkbZbZ̄kS
†
ki

=
∑

b,k

WkbZbZ̄k = Z(τ) , (E.5)

where we have made use of
∑

a

WiaSab =
∑

k

SikWkb , (E.6)

and that we have assumed the unitarity of Sab and Sij .

For invariance under T transformation, we have

Z(τ + 1) =
∑

a,b

Wia exp
(

2πi(ha − hi)
)

ZaZ̄i , (E.7)
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which implies invariance for

θa = θi , (E.8)

which is indeed the case.

E.3 Some equalities

Using the explicit expression for the S matrix

Sab =
1

D

∑

c

N c
ab

θcdc
θaθb

, (E.9)

commutativity also implies

1

DA

∑

c,a

WiaN
c
ab

θcdc
θaθb

=
1

DB

∑

j,k

Nk
ijWjb

θkdk
θiθj

(E.10)

Now, consider the special case b = 1, then we have

1

DA

∑

c,a

Wiaδa,c
θcdc
θa

=
1

DB

∑

j,k

Nk
ijWj1

θkdk
θi

, (E.11)

where we have made use of the fact that θb = θ1 = 1 = θj for Wj1 non vanishing. Then we

end up with
1

DB

∑

j,k

Nk
ijWj1

θkdk
θi

=
1

DA

∑

a

Wiada . (E.12)

Choose also i = 1. We have then

1

DB

∑

j

Wj1dj =
1

DA

∑

a

W1ada . (E.13)

Now we make the input that phase B is condensing to phase A. We implicitly assume

that DB > DA, and that W1a = δ1a. Then we are left with

DB

DA
=

∑

j

Wj1dj . (E.14)

This can be easily checked to be the case in all our cases of anyon condensation.

Moreover, this can be compared with and equation obtained in ref. [11],

DB

DT
=

DT

DA
, (E.15)

which we can combine with the above to get

D2
T = D2

A

∑

j

Wj1dj , (E.16)

whereDT is the quantum dimension of the phase including confined particles. In particular,

when we have DA = 1,

D2
T =

∑

j

Wj1dj . (E.17)
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For more general values of the indices i, b, there is still some simplification we can do

1

DA

∑

c,a

WiaN
c
abθcdc =

1

DB

∑

j,k

Nk
ijWjbθkdk , (E.18)

using the fact that the only non-vanishing contribution has θa = θi and θj = θb, which can

be taken out of the sum and be canceled between the two sides. A challenge is to derive

this from anyon condensation.

There are also various inequalities satisfied by the W matrix, if we make use of the

fact that DB > DA and there is conservation of quantum dimension when we split anyons,

which are representations of phase B into anyons of phase A.

Since we have conservation of quantum dimensions, we expect that in the decompo-

sition

i → a⊕ b⊕ · · · , di = Wiada +Wibdb + · · · (E.19)

Some of these anyons after the decomposition will be confined, and invisible to W .

Therefore, we must have

di ≥
∑

a

Wiada . (E.20)

E.4 Verlinde’s formula and commutativity

It appears that at the level of the commutativity formula it already knows about Verlinde’s

formula.

Let us first review Verlinde’s formula and some of its implications:

N c
ab =

∑

x

SaxSbxSc̄x
S1x

. (E.21)

Now, using also the expression for S in (E.9), this give a non-linear constraint on the fusion

rules and relates also the fusion with quantum dimensions and spins.

In particular, we focus on taking a = c = 1. In this case, N1
1b = δ1b holds for a UMTC.

Substituting this into Verlinde’s formula, we end up with

δ1b =
1

D

∑

x

dxSxb . (E.22)

Note that the above relation is already very similar to the commutativity formula

except we have

W1b =
∑

x

W1xSxb . (E.23)

Now consider however taking the above formula, multiply it by db and sum over b as

well. Then we have on the left hand side

∑

b

W1bdb = DB , (E.24)
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where again we take phase B to have quantum dimension DB and condense to the trivial

phase A with DA = 1. This equation is a special case of eq. (E.14). The right hand side

however gives
∑

x

∑

b

W1xSxbdb =
∑

x

W1xδx1DB = DB , (E.25)

where we have made use of the special case Verlinde formula (E.22) in the first equality

and W11 = 1 in the second equality. Therefore, commutativity is implicitly requiring

consistency with Verlinde’s formula, even though a priori it is not obvious that we input

this into the definition of things.
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