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1 Introduction

The LHC is about to restart operations at 13 TeV centre-of-mass energy, which will pre-

sumably be increased to 14 TeV within a few years. A total luminosity of 300 fb−1 will be

collected in the next runs, followed by a high-luminosity (HL-LHC) phase which should

eventually deliver 3 ab−1. While the current priority clearly lies on profiting from this

experimental program, some effort should also be devoted to the design of future colliders,

planning the investigation of the energy frontier on the time-scale of several decades. This

may well be premature: the next LHC run could radically change the situation by discov-

ering new particles, in which case the priority would be on characterising their properties

and nature. However an assessment of future colliders’ capabilities on the basis of the

current theoretical understanding and experimental status might still be a useful exercise.

Proposed future machines come in two main classes, lepton (e.g. ILC [1], CLIC [2, 3],

TLEP [4], also referred to as FCC-ee) and hadron (such as the FCC-hh [5]) colliders, which

will search for New Physics (NP) from complementary sides.1 Experimental programs at

lepton colliders are more suited for indirect searches, thanks to the high precision of the

measurements. Hadron colliders reach higher energies and are thus more effective for direct

searches of new particles. Indeed, it is not by chance that the best current indirect and

direct limits on NP mostly come, respectively, from LEP and LHC data. Because of this

complementarity, a comparison between the reach of lepton and hadron colliders on NP is

a delicate issue, which cannot be performed in absolute terms and on completely model-

independent grounds. Some theory bias is needed, in the form of one or several NP scenar-

ios, in order to display the reach of indirect and direct searches on the same parameter space.

Here we consider the Composite Higgs (CH) scenario in its minimal realisation [6–13].

1Here we will not consider the possibility of an electron-proton collider such as the FCC-he [5].
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Aside from being a well-motivated theoretical possibility, CH is the ideal framework

for our investigation since it predicts both indirect and direct effects which could both

be sizeable enough to be detected. Telling which strategy could be more effective to test

the CH idea is non-trivial and requires dedicated studies. Indirect effects, in the form of

corrections to SM couplings or new BSM vertices [14–23], unavoidably emerge due to the

pseudo-Nambu-Goldstone boson nature of the Higgs leading to deviations proportional to

ξ ≡ v2/f2 where f is the Goldstone boson Higgs decay constant and v the electroweak

symmetry breaking (EWSB) scale. Further corrections, but normally subdominant, come

from the virtual exchange of new heavy resonances mixing with the SM particles at tree

level, giving contributions of order m2
SM/m

2
NP. The latter resonances can also be produced

at high enough energies, giving rise to a number of possible direct signatures. The most

studied and promising ones are the production of spin-one EW-charged vectors [9, 24–33]

and of the coloured partners of the top quark (shortly referred to as top partners) [34–36].

The strongest indirect constraints on CH models currently come from electroweak

precision tests (EWPT), where CH models could have already shown up in the form of

oblique corrections or modifications of the Zbb̄ vertex [14, 19, 23]. Even restricting to

custodially symmetric cosets and to fermionic operator representations which implement

the so-called PLR protection symmetry for Zbb̄ [37], EWPT are still the dominant indirect

constraint on the CH scenario. In spite of this, and in spite of the fact that we will discuss

them in detail in section 4, we will not take EWPT and their possible improvements at

future colliders as a central pillar of our investigation. The reason is that we judge their

impact too model-dependent to be quantified in a robust way.2 Namely, as known in the

literature and reviewed in section 4, the EWPT observables are sensitive to a number of

effects which can only be computed within specific and complete models and therefore are

to a large extent unpredictable at the level of generality we aim to maintain here. Instead,

we decided to focus on indirect effects associated to the modification of the Higgs boson

couplings because they have the great virtue of being largely insensitive to many details

of the specific model and thus predictable in a fairly model-independent way.3 This is

particularly true for the trilinear Higgs coupling to EW gauge bosons which, at least for

models based on the minimal coset SO(5)/SO(4), is universally predicted to deviate from

the SM expectation by a relative correction kV =
√

1− ξ. We will thus take the sensitivity

to kV of future leptonic colliders as a good model-independent measure of their reach on

CH models, to be compared with direct searches at hadron colliders.

Similar considerations underly our choice of the representative direct signatures. Top

partners are very sensitive probes of CH models because their mass directly controls the

generation of the Higgs potential and thus the level of fine-tuning required to achieve EWSB

and a light enough Higgs boson [48–53]. However their properties and their very existence

is, to some extent, model-dependent, and we therefore do not consider top partner signa-

tures but focus instead on EW vector resonances (see ref. [36] for a first assessment of the

2This is even more true for flavour constraints, which can be stronger than EWPT, but considerably

more model-dependent (see, e.g., refs. [19, 23, 38–46]).
3See ref. [47] for a discussion of the interplay between EWPT and Higgs coupling modifications in CH

models.
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reach on top partners at future colliders). The existence of the latter is very robust because

they are associated with the current operators of the SM group, which needs to be a global

symmetry of the composite sector eventually made local by the gauging of external sources.

In particular, we consider the particles associated with the SM SU(2)L currents, which form

a (3,1) triplet of the unbroken strong sector group SU(2)L× SU(2)R. We describe this vec-

tor triplet in Model B of ref. [31], a simplified model which depends on two parameters

only: the vector triplet mass mρ and its intrinsic coupling gρ controlling the interaction

with the SM fermions and the EW gauge bosons. The two parameters are related to ξ by

ξ =
g2
ρ

m2
ρ

v2 , (1.1)

from where the indirect reach on ξ is immediately compared with direct searches, which

set limits on the (mρ, ξ) or (mρ, gρ) planes.

The paper is organised as follows. In section 2 we outline a general procedure to extrap-

olate resonance bounds to different energies and integrated luminosities. In section 3 we

apply this procedure to 8 TeV LHC di-lepton and di-boson searches and discuss the results

for the direct versus indirect reach of the 14 TeV LHC and future colliders. In section 4

we provide a realistic assessment of EWPT constraints, including predictions for the im-

provements at ILC and TLEP, by taking the aforementioned model-dependent effects into

account. Finally in section 5 we report our conclusions. In the appendix we present a simple

check of the extrapolation procedure outlined in section 2 and discuss its range of validity.

Some of these results were presented by one of us in a preliminary version in ref. [54].

2 Limit extrapolation

Based on the 8 TeV LHC data, the ATLAS and CMS collaborations have performed a num-

ber of vector resonance searches in different final states, setting limits on the production

cross section times branching ratio as a function of the resonance mass mρ. We thus have

a set of [σ×BR](s0, L0;mρ) curves in the different search channels, obtained at a centre-

of-mass energy of
√
s0 = 8 TeV and with an integrated luminosity L0 ' 20 fb−1. We now

describe a strategy to extrapolate these limits to a different proton-proton collider of energy√
s and luminosity L, producing [σ×BR](s, L;mρ) curves. This procedure delivers exclusion

limits, obtained in the absence of any signal, which can however also be regarded as esti-

mates of the future colliders’ sensitivity at the level of approximation we are working here.

The basic idea underlying our extrapolation is that the limit is essentially driven by

the number B(s, L,mρ) of background events which are present, for a given collider con-

figuration, in a small window of partonic invariant mass squared ŝ (of fixed relative width

∆ŝ/ŝ� 1) centred around the resonance mass. Our assumption means that the upper

limit on the number of signal events at each mass point, from which the excluded [σ×BR]

is obtained at a given luminosity, is exclusively a function of the estimated number of back-

ground events from which the excluded signal is statistically extracted. Clearly this only

holds up to the signal acceptance and efficiency which we consider to be fairly independent

of the resonance mass and collider energy. Now we can define an “equivalent mass” mρ for
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each resonance mass m0
ρ on the 8 TeV exclusion plot, as the mass with the same number

of associated background events at the new collider energy and luminosity. Namely, we

obtain mρ by inverting the equation

B(s, L,mρ) = B(s0, L0,m
0
ρ) . (2.1)

For each given m0
ρ, the associated equivalent mass mρ is by definition the one characterised

by having the same number of background events in the search region. According to the

previous discussion, it therefore gives rise to the same limit on the number of signal events.

The excluded cross-section at the equivalent mass is thus obtained from the 8 TeV limit by

rescaling the integrated luminosity4

[σ×BR](s, L;mρ) =
L0

L
· [σ×BR](s0, L0;m0

ρ) . (2.2)

Extracting the equivalent mρ defined by eq. (2.1) and applying the equation above for each

value of m0
ρ, we can extrapolate the 8 TeV limits to any collider energy and integrated

luminosity.

Before describing the procedure in detail, it is worth warning the reader that our

assumptions are rather strong and not necessarily very accurate. In particular the fact

that the limit is driven by the background around the peak is only strictly true if the

search is performed as a counting experiment of the events falling into a window around

the resonance mass. However, this is not what is done at the LHC at 8 TeV and will be done

at future colliders. Shape analyses are performed to improve the reach and, a priori, the

cross-section limits depend on background and signal kinematical distributions in a non-

trivial way. However, we make the reasonable assumption that the final result is actually

not far from the one obtainable with a cut-and-count strategy, which we expect to be the

case within a factor of a few on the [σ×BR] reach. In the simple case of di-lepton searches,

such as those of refs. [55, 56], we verified that this is actually true within a factor of two for a

window of relative size ∆ŝ/ŝ = 40% and for narrow resonances, but larger corrections might

arise in other cases.5 The limits presented here should thus be regarded as O(1) estimates.

However they are accurate enough for the current stage of future colliders studies.

In order to determine the equivalent mass defined in eq. (2.1) we proceed as follows.

The number of background events is given by

B(s, L,mρ) ∝ L ·
∑
{i,j}

∫
dŝ

1

ŝ

dLij
dŝ

(
√
ŝ;
√
s) [ŝσ̂ij (ŝ)] , (2.3)

where the integral is performed in the window ŝ ∈ [ŝ − ∆ŝ/2, ŝ + ∆ŝ/2] according to

our assumption. In the equation, dLij/dŝ denotes the parton luminosity of each partonic

channel i, j which we sum over, defined as

dLij
dŝ

(
√
ŝ;
√
s) =

1

s

∫ 1

ŝ/s

dy

y
fi (y; ŝ) fj

(
ŝ

y s
; ŝ

)
, (2.4)

4Notice that the acceptance times efficiency factor, which enters in the relation between the number of

excluded signal events and the excluded cross-section, cancels because we assumed it to be constant.
5For a detailed discussion of the validity of the narrow width approximation, used here, and the choice

of parameters, see ref. [31].

– 4 –



J
H
E
P
0
7
(
2
0
1
5
)
1
0
0

Figure 1. Sketch of the procedure used to extrapolate bounds to different collider configurations.

The three panels show the parton luminosities at 8 (upper), 14 (lower left) and 100 TeV (lower

right) as a function of the partonic centre of mass energy.

in terms of the parton distribution functions fi(x ,Q
2) evaluated at the factorisation scale

Q2 = ŝ. The parton luminosity depends both on the collider centre-of-mass energy
√
s and

on the partonic one
√
ŝ. The cross-section of the partonic reactions contributing to the

background are denoted by σ̂ij in eq. (2.3). Since they describe SM processes at energies

much above the SM masses, they show a scale-invariant behaviour at tree-level, i.e.

[ŝσ̂ij (ŝ)] ' cij , (2.5)

where cij are process-dependent constants. In our assumption, the background is restricted

to a narrow window ∆ŝ� ŝ so that the parton luminosities are nearly constant in the

integration region (see ref. [31] for a detailed discussion) and our background prediction

becomes

B(s, L,mρ) ∝
∆ŝ

ŝ
· L ·

∑
{i,j}

cij
dLij
dŝ

(mρ;
√
s) . (2.6)

By equating the backgrounds as prescribed by eq. (2.1) the relative width ∆ŝ/ŝ and the

other pre-factors cancel and we obtain∑
{i,j}

cij
dLij
dŝ

(mρ;
√
s) =

L0

L

∑
{i,j}

cij
dLij
dŝ

(m0
ρ;
√
s0) . (2.7)

The extrapolation procedure is depicted in figure 1. For each search channel we first

have to identify the relevant background processes with the associated parton luminosities.

The simplest case is a background dominated by a single partonic initial state where the

sum drops in eq. (2.7), but also the case of a mixed background composition is easy to
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deal with. In the first case the relevant parton luminosity is the one of the dominant

background process, in the second one what matters is a linear combination of the parton

luminosities in the different channels with coefficients cij (possibly normalised to unity).

At each mass m0
ρ we first identify the relevant parton luminosity function at the 8 TeV

LHC, read its value at
√
ŝ = m0

ρ and rescale it by the luminosity ratio L0/L. We then

take the parton luminosity at the new collider energy
√
s, e.g. 14 or 100 TeV as depicted

in the figure, and evaluate the mass where it equals the rescaled 8 TeV value previously

determined. According to eq. (2.7) this delivers the equivalent mass mρ associated with

m0
ρ, where the cross-section limit is provided by eq. (2.2).

The extrapolated limits could be obtained by applying the described procedure for each

value of m0
ρ covered in the 8 TeV exclusion plot. However, we alter the procedure slightly

due to the following subtlety. The 8 TeV exclusion plots extend over a finite mass range

with the lowest mass point (m0
ρ)min determined by the sensitivity of the specific analysis.

The equivalent mass associated to this minimal (m0
ρ)min is the lowest one which we would

obtain by the extrapolation with a fixed integrated luminosity and would therefore set

the lowest mass point in the extrapolated curve. The starting point of the extrapolated

plot would therefore become arbitrary depending on the considered integrated luminosity.

Furthermore, the lowest equivalent (mρ)min mass obtained from (m0
ρ)min grows with the

luminosity of the new collider, so that the exclusion limit starts at a higher mass for higher

luminosity. This would lead to the paradoxical situation where some mass points could

be excluded only with a smaller amount of collected data. Moreover, mass-points which

were too low to be relevant for the 8 TeV search might end up in a relevant signal region

after extrapolation. We solve this problem by smoothly raising the integrated luminosity

of the new collider up to the desired total L, drawing the extrapolated limits by taking

the strongest at each mass. Above the value of (mρ)min the strongest bound comes from

the highest integrated luminosity L, while below that it comes from a lower luminosity.

The low-mass limit is thus conservative and not optimal, as it would be obtainable with

a smaller set of data. This is verified explicitly in the appendix, where a validation of the

extrapolation procedure is presented in the case of di-lepton resonance searches.

3 Results

Figure 2 shows the current 8 TeV LHC limits with 20 fb−1 (95% CL expected exclusions)

on σ × BR, used as inputs, and the extrapolated bounds at the 14 TeV LHC and the

100 TeV FCC with integrated luminosities of 300 fb−1 and 3 ab−1 and 1 ab−1 and 10 ab−1,

respectively. For definiteness, we restrict our attention to the CMS search for opposite sign

di-leptons in ref. [56] and for fully leptonic WZ in ref. [57]. We verified that the corre-

sponding ATLAS results in refs. [55] and [58] yield similar limits. Searches for other final

states could be considered as well but would not change the picture qualitatively.6 Notice

that the di-lepton and WZ channels are respectively sensitive to the electrically neutral

and charged components of the triplet. The limits in the neutral and charged channels are

easily compared since the properties of the two states (namely masses, production rates and

6See refs. [31] and [59] for a complete list of 8 TeV heavy vector searches.

– 6 –



J
H
E
P
0
7
(
2
0
1
5
)
1
0
0

0 2 4 6 8
10-7

10-6

10-5

10-4

10-3

10-2

10-1

mρ [TeV]

σ(pp
→ρ)

x
B
R

[p
b
]

σ (pp→ρ) BR (ρ→ll) σ (pp→ρ) BR (ρ→WZ)
LHC

HL-LHC

LHC8

LHC

HL-LHC

LHC8

0 10 20 30 40
10-7

10-6

10-5

10-4

10-3

10-2

10-1

mρ [TeV]

σ(pp
→ρ)

x
B
R

[p
b
]

σ (pp→ρ) BR (ρ→ll) σ (pp→ρ) BR (ρ→WZ)

FCC-1 ab
-1

FCC-10 ab
-1

FCC-1 ab
-1

FCC-10 ab
-1

Figure 2. Bounds on σ × BR from LHC at 8 TeV (LHC8) with 20 fb−1 (solid) and corresponding

extrapolations to LHC at 14 TeV with 300 fb−1 (solid) (LHC) and 3 ab−1 (dashed) (HL-LHC) in

the left panel and to FCC at 100 TeV with 1 ab−1 (solid) and 10 ab−1 (dashed) in the right panel.

The two analyses of refs. [56] (CMS di-leptons, orange) and [57] (CMS fully leptonic di-bosons,

blue) are considered.

Branching Ratios) are tightly related in a model-independent way as we studied in ref. [31].

Furthermore notice, that considering a leptonic and bosonic channel ensures an appropriate

coverage of the model parameter space: the di-lepton channel dominates for small coupling

gρ while di-bosons become relevant at large gρ, where the leptonic BR deteriorates.

The limits in figure 2 show a number of expected features. First, they approach con-

stants at large masses, corresponding to the cross-section limit set by zero background

events. These horizontal asymptotes could safely be extended to infinite masses provided

that the background decreases monotonically. However the limits above the high-mass

endpoint of the curves obtained by the extrapolation are not relevant since our signal

cross-section is never large enough at such high masses. We also notice that a luminosity

upgrade by a factor of ten (from 300 fb−1 to 3 ab−1 at the LHC or from 1 ab−1 to 10 ab−1

at the FCC) correctly improves the cross-section reach by one order of magnitude in the

high mass region while the relative improvement reduces to around three when going to

lower masses and entering the region where background becomes considerable. This feature

disappears at even lower masses, where the two luminosity curves start to coincide. This is

due to the fact that our extrapolation procedure at low masses is unreliable as we described

above and will detail in the appendix. Finally, we observe that the 14 TeV LHC limits at

relatively low masses are weaker than the corresponding 8 TeV ones and a similar situa-

tion is encountered in the comparison between the FCC and the LHC. This is due to the

much larger background expected at a collider of higher energy at low masses. However the

growth of the signal cross-section will overcompensate this effect and the higher energy col-

lider eventually leads to stronger limits in the entire relevant mass range as we show below.

The bounds on σ × BR shown in figure 2 can be translated into 95% CL allowed and

excluded regions in the parameter space of our simplified model. The results are shown in

figures 3 and 4 in the (mρ, gρ) and (mρ, ξ) planes. The left panels of the two figures depict

the region relevant for the LHC, while the right panels show the full reach of the FCC at

100 TeV. The viable region of the CH parameter space constrains gρ to be stronger than

– 7 –
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Figure 3. Comparison of direct and indirect searches in the (mρ, gρ) plane. Left panel: region

up to mρ = 10 TeV showing the relevance of LHC direct searches at 8 TeV with 20 fb−1 (LHC8),

14 TeV with 300 fb−1 (LHC) and 3 ab−1 (HL-LHC); right plot: region up to mρ = 40 TeV showing

the comparison between the LHC and FCC reach with 1 and 10 ab−1. Indirect measurements at

the LHC, HL-LHC, ILC at 500 GeV with 500 fb−1 and TLEP at 350 GeV with 2.6 ab−1 are shown.

the SM couplings but still within the perturbative regime, 1 ≤ gρ ≤ 4π, and ξ ≤ 1. The

regions which violate these conditions are theoretically excluded and coloured in grey in

the plots. The color convention which we adopt in both figures is as follows. Violet shaded

regions are excluded by direct searches at different collider configurations, starting from

the LHC at 8 TeV and 20 fb−1 (darkest), the high luminosity LHC at 14 TeV with 3 ab−1

(medium dark) and the FCC with 10 ab−1 (lightest). The violet dashed lines represent the

14 TeV LHC with 300 fb−1 in the left plots and the FCC with 1 ab−1 in the right ones.

The shape of the limits in figure 3 is easily understood by simple physical considera-

tions [31]. Due to partial compositeness the coupling to fermions scales as 1/gρ and thus

the Drell-Yan production cross section, which is by far the dominant channel, decreases

as 1/g2
ρ in the large-coupling limit. In a somewhat counterintuitive way, the resonance

becomes effectively weakly-coupled at large gρ and this is why the mass-reach deteriorates.

The presence of a kink in the limits originates from the superposition of the di-lepton and

di-boson searches we considered which, as already mentioned, is more sensitive to weak

and strong gρ, respectively. This is due to the fact that, while the coupling to fermions

decreases, the one to (longitudinal) gauge bosons increases like gρ and the di-boson BR

rapidly becomes dominant.

The global message which emerges from these pictures is rather simple and expected.

An increase of the collider energy improves the mass reach dramatically, and in particular

only the 100 TeV FCC can access the multi-TeV region. An increase in luminosity, instead,

has a marginal effect on the mass reach but considerably extends the sensitivity in the

– 8 –
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Figure 4. Comparison of direct and indirect searches in the (mρ, ξ) plane. Left panel: region

up to mρ = 10 TeV showing the relevance of LHC direct searches at 8 TeV with 20 fb−1 (LHC8),

14 TeV with 300 fb−1 (LHC) and 3 ab−1 (HL-LHC); right plot: region up to mρ = 40 TeV showing

the comparison between the LHC and FCC reach with 1 and 10 ab−1. Indirect measurements at

the LHC, HL-LHC, ILC at 500 GeV with 500 fb−1 and TLEP at 350 GeV with 2.6 ab−1 are shown.

large gρ (i.e., small rate) direction. In particular we see that the impact of the high lumi-

nosity extension of the LHC is considerable given that largish values of the gρ coupling are

perfectly plausible in the CH scenario (see the Conclusions for a more detailed discussion).

Let us now turn to the indirect constraints from the measurement of the Higgs coupling

to vector bosons. The 1 σ (68% CL) error on ξ (i.e., twice the one on kV ' 1 − ξ/2)

obtainable for different collider options, as extracted from currently available literature,

are summarised in table 1. Twice those values, which in the assumption of gaussian

statistics corresponds to the 95% CL limits on ξ, are reported in figures 3 and 4 as black

dashed curves, with the excluded region sitting above the lines. In the (mρ, ξ) plane,

the limits simply corresponds to horizontal lines and translate into straight lines with

varying inclination in the (mρ, gρ) plane. In particular, we show the LHC reach with

300 fb−1 and 3 ab−1, obtained from single Higgs production, corresponding to ξ > 0.13 and

ξ > 0.08 respectively, and the expected reach of the ILC and TLEP at
√
s = 500 GeV and√

s = 350 GeV corresponding to ξ > 0.01 and ξ > 0.004. Note that CLIC with 2 ab−1 is

expected to have a sensitivity comparable to TLEP.

We can now appreciate the complementarity of direct and indirect searches in exploring

the parameter space of the CH scenario: direct searches are more effective for small gρ
while indirect measurements win in the large coupling region. At the LHC with 300 fb−1

direct searches will completely cover the region accessible by indirect measurements at

the same collider for gρ . 4.5 and it is only for gρ > gρ
max = 4.5 that the latter will

explore novel territory. Since direct and indirect constraints benefit similarly from the

luminosity improvement, the gmax
ρ threshold remains unchanged at the HL-LHC. As far as

– 9 –
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Collider Energy Luminosity ξ [1σ] References

LHC 14 TeV 300 fb−1 6.6− 11.4× 10−2 [60–62]

LHC 14 TeV 3 ab−1 4− 10× 10−2 [60–62]

ILC 250 GeV 250 fb−1

4.8–7.8×10−3 [1, 62]
+ 500 GeV 500 fb−1

CLIC 350 GeV 500 fb−1

2.2 ×10−3 [62, 63]+ 1.4 TeV 1.5 ab−1

+ 3.0 TeV 2 ab−1

TLEP 240 GeV 10 ab−1

2×10−3 [62]
+ 350 GeV 2.6 ab−1

Table 1. Summary of the reach on ξ (see the text for the definition) for various collider options.

future machines are concerned, gmax
ρ ' 4.5 in the comparison between the 10 ab−1 FCC

and TLEP and gmax
ρ ' 6 for FCC versus ILC. On the other hand direct searches become

ineffective at large coupling, not only because of the reduction of the production cross-

section as explained above but also for the following reason. An effect, which is not taken

into account in our analysis, is that the resonances become broad for large gρ because their

coupling to longitudinal vector bosons and Higgs grows, increasing the intrinsic width as

g2
ρ. Broad resonances are harder to see and since a narrow resonance has been assumed in

our analysis we expect the actual limits to be even weaker than ours in the large coupling

regime. One can get an idea of where finite width effects should start to become relevant and

our estimates might fail by looking at the fine red dotted curves which are shown in all plots.

Above this bound the total resonance width exceeds 20% of the mass and our bounds are

not reliable anymore (see ref. [31] for a more quantitative assessment of the width effects).

4 EWPT reassessment

As mentioned in the Introduction, EWPT, and in particular the oblique parameters Ŝ and

T̂ , set some of the strongest constraints on CH models. However, as we stressed before,

they suffer from an unavoidable model dependence, so that incalculable UV contributions

can substantially relax these constraints [19]. We believe that presenting the corresponding

exclusion contours in the previous plots without taking into account any possible UV con-

tribution would lead to a wrong and too pessimistic conclusion. Therefore we parametrize

the new physics contributions to Ŝ and T̂ as

∆Ŝ =
g2

96π2
ξ log

(
Λ

mh

)
+
m2
W

m2
ρ

+ α
g2

16π2
ξ ,

∆T̂ = − 3g′ 2

32π2
ξ log

(
Λ

mh

)
+ β

3y2
t

16π2
ξ ,

(4.1)
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Figure 5. Constraints from EWPT in the (mρ, ξ) plane in the regions relevant for the LHC at

14 TeV (left) and FCC at 100 TeV (right). The different dashings correspond to different hypotheses

on α and β in eq. (4.1): solid for α = β = 0 and dashed for δχ2 < 5. The red curve represent the

current constraints while green and blue are projections for the ILC and TLEP respectively.

where the first terms represent the IR contributions due to the Higgs coupling modifica-

tions [11], the second term in ∆Ŝ comes from tree-level exchange of vector resonances and

the last terms parametrize short distance effects. The scale Λ in eq. (4.1) represents the

scale of new physics, which we set to Λ = 4πf . We could instead use mρ to parametrize

this scale, however, here we have the situation in mind where mρ could be lighter than the

typical resonances scale, or the cut-off scale, and our choice maximises the NP effect, lead-

ing to a more conservative bound. Moreover, being the sensitivity to this scale logarithmic,

the final result only has a mild sensitivity on this choice. The coefficients α and β are of

order one and could have either sign [19]. In the literature, a constant positive contribution

to ∆T̂ has often been assumed to relax the constraints from EWPT [53, 64]. However, the

finite UV contributions of the form of the last terms in eq. (4.1) arising from loops of heavy

fermionic resonances always depend on ξ, significantly changing the EW fit compared to a

constant contribution. In order to show realistic constraints from EWPT, we define a χ2

as a function of ξ,mρ, α, β, i.e. χ2(ξ,mρ, α, β), and compute 95% CL exclusion contours in

the (mρ, ξ) plane marginalising over α and β. In order to control the level of cancellation

in the χ2 due to the contribution of the UV terms, we define the parameter

δχ2 =
χ2(ξ,mρ, α = 0, β = 0)

χ2(ξ,mρ, α, β)
. (4.2)

In figure 5 we show contours for α = β = 0 and δχ2 < 5, which corresponds to a mild

20% cancellation. The marginalisation over α and β is performed by scanning over them

in a logarithmically symmetric interval (1/3, 3) for each point in the (mρ, ξ) plane. The

– 11 –
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dependence on the chosen interval is very mild once the constraints on δχ2 are imposed.7

For comparison with the future reach on Higgs couplings and direct resonance production,

we show the constraints from EWPT with currently available data [65] together with the

expectation at the ILC [66] and TLEP [67]. While currently masses below ∼ 4.5 TeV are

excluded for weak coupling (small ξ in the plot) at α = β = 0, this bound will move to

∼ 6.5 TeV and ∼ 10.5 TeV at the ILC and TLEP respectively. For large values of gρ (large

ξ in the plot), the bounds become more stringent. For now, at α = β = 0, EWPT exclude

ξ-values above a few percent independently of mρ. While ILC only brings an improvement

of a factor of two or three, TLEP is expected to reach a few per mille in ξ. All these

bounds relax significantly when adding a non-vanishing UV contribution α, β 6= 0 even

for small values of δχ2 , i.e. for not so un-natural cancellations in ∆Ŝ and ∆T̂ induced

by the UV contributions. In particular, vector masses down to ∼ 2 − 3 TeV can still be

allowed for ξ in the percent region, corresponding to gρ couplings of order one. Moreover,

the aforementioned few percent limit on ξ, independently of mρ, gets relaxed roughly to

10 − 15%. Finally notice that the expected relaxed constraint at ILC excludes larger mρ

values (up to ∼ 6.5 TeV) than present bounds at α = β = 0 for small values of gρ, while

giving a comparable constraint on ξ. Only TLEP will be able to push the relaxed bound

below the strict current bound, still improving the limit on ξ by only a factor of two. This

gives an idea of the strong impact that UV contributions can give to the EWPT constraints

and of their model dependence. We believe that the relaxed bounds that we show in figure 5

represent a more realistic picture of the status of EWPT in CH models.

5 Conclusions

We studied the complementarity of direct and indirect searches for the exploration of the

CH scenario at the LHC and future colliders, by taking vector triplet production as a

representative direct signature and Higgs coupling modifications as representative indirect

constraints. The result, reported in section 3, is that the relative discriminating power of

the two search strategies crucially depends on the strength of the resonance coupling gρ: a

weak coupling favours direct searches while strong coupling prefers indirect measurements.

The threshold values of gρ which set the boundary between the two regions are quantified

in a comparison between different leptonic and hadronic collider options. The results

indicate complementarity and do not allow us to draw a sharp conclusion on which strategy

would be more effective because we do not have clear indications on the expected coupling

strength. Even when dealing with a strongly-interacting microscopic theory the effective

resonance coupling may well be weak for a large number of colours of the underlying

strong interactions. Furthermore weakly coupled CH models are easily constructed as

extra-dimensional holographic theories. Based on phenomenological considerations, two

contradictory arguments could be made in favour of a strong or weak effective coupling. If

7We checked that the cancellation defined through the parameter δχ2 gives comparable results as the

cancellation defined in terms of the number of points satisfying the 95% CL bound over the number of

points that do not satisfy it (or, in other words, the number of points falling within the 95% CL ellipse in

the (Ŝ,T̂ ) plane over the number of points falling outside).
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we assume the level of fine-tuning in the theory to be exclusively controlled by ξ = v2/f2,

i.e. by how much the Higgs VEV is reduced with respect to the generic expectation v ∼ f
by adjusting the parameters in the Higgs potential, we would prefer f as small as possible

and gρ large to make the resonance scale gρf avoid EWPT constraints. This was the

pattern we originally had in mind for CH theories. However it was subsequently realised,

also because the Higgs boson turned out to be light, that the tuning also depends on the

resonance scale mρ = gρf , pushing us back to the small gρ region. Actually, the tuning is

not directly controlled by the mass of the vector resonance mρ, but instead by the one of

the top partners mΨ. However there is no reason to expect a large gap between the two

scales and only a mild accidental numerical separation seems tolerable. Given a value of

mΨ/f = gΨ ∼ 2 for a light enough Higgs with moderate fine-tuning, it would be surprising

to have gρ much above 4 or 5. Composite Higgs models implementing the Twin Higgs

protection [68] for the Higgs potential might further change our expectations since in this

case the tuning is disentangled from the resonance scale and the large gρ regime is favoured

again. Indirect searches are thus the most effective in the Twin Composite Higgs scenarios,

at least in comparison with the direct heavy vector signatures we considered here. Better

direct tests of the Twin CH most likely exist and need to be studied for a robust assessment.

At the technical level, we estimated the reach of direct searches by extrapolating

the current 8 TeV limits based on luminosity rescaling as described in section 2. This is

meant to be a first estimate of the reach of future colliders, to be validated with detailed

simulations. In the case of the FCC, the lack of detailed information on the detectors

which might be employed clearly prevents a more detailed assessment for the time being.

Conversely, the study of signals like the one we discussed here will itself contribute to

the design of the detector. As far as indirect searches are concerned, we considered Higgs

coupling modifications and, in section 4, the impact of current and future EWPT. Other

indirect signatures should be added, among which precision measurements at lepton

colliders other than the oblique S and T corrections and possible precision studies at

hadron colliders. Clearly, hadron colliders are intrinsically less precise, but they produce

hard reactions where the effects of Higgs compositeness might be enhanced. These

consideration might apply, for example, to the WW scattering process.
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Figure 6. Bounds on σ × BR from LHC at 8 TeV with 20 fb−1 (LHC8)(thick, solid) and extrap-

olations to LHC at 14 TeV with 300 fb−1 (LHC) and 3 ab−1 (HL-LHC) and to FCC at 100 TeV

with 1 ab−1 and 10 ab−1 (dark blue, dotted). Light blue lines represent the corresponding bounds

obtained from a cut-and-count analysis.

A A simple check of the extrapolation procedure

We validated our extrapolation procedure described in section 2 against a simple cut-and-

count analysis for di-lepton searches. The cut-and-count analysis is based on a di-lepton

background simulation performed with MadGraph5 [69] in the relevant invariant mass

regions for an 8, 14 and 100 TeV collider. Counting events within an invariant mass window

of ±10%
√
ŝ allows us to extract an exclusion limit on σ×BR for each collider and luminosity

configuration based solely on the background estimate. In parallel, we extrapolated the

8 TeV bound so obtained to higher energies and luminosities with the procedure outlined in

section 2. Exclusion limits from both methods are shown in figure 6. The thick solid blue

curve depicts the 8 TeV bound obtained from the cut-and-count analysis which has been

used for extrapolation, shown by the dotted blue lines. Thin lines in light blue represent

cut-and-count limits for larger energies and luminosities. As can be seen, there is a perfect

agreement at high masses. Of course, this is due to the fact that we use the same cut-

and-count analysis for each collider configuration. More statistically refined analyses from

the experimental collaborations could affect our conclusions. Here, however, it serves as a

proof of principle. Since there is no background in the high mass region, the limit scales

linearly with the integrated luminosity. The scaling changes smoothly to the square root

of the luminosity in the intermediate mass range where the background dominates. The

extrapolation procedure fails for very low masses. As discussed at the end of section 2, this

is due to the fact that the 8 TeV bound starts at a certain lowest mass. The extrapolated

low mass region is obtained from this lowest mass point and particularly small integrated

luminosities which is not a reliable bound, as can be seen.
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