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1 Introduction

There are several known large classes of N = 1 superconformal field theories, which often

have some kind of geometric interpretation. A classical example is the class of theories

associated to dimer models [1–4], labelled by bi-partite graphs drawn on a torus and a

choice of rank N . These are quiver gauge theories with SU(N) gauge groups and bi-

fundamental matter, with a topology and choice of superpotential which is determined

by the bipartite graph. They are associated to a string theory setup involving N D3-

branes placed at the tip of a singular toric Calabi-Yau cone. The combinatorial rules for

associating quivers to bi-partite graphs can be extended to more general two-dimensional

geometries [5–7], possibly including boundaries, such as disks, or higher genus Riemann

surfaces. These constructions produce quiver gauge theories including both SU(N) gauge

groups and SU(N) flavor groups, again with bi-fundamental matter.

There is another natural way to produce large classes of N = 1 superconformal field

theories with a geometric origin, by a twisted compactification on a Riemann surface of

six-dimensional SCFTs. Such constructions generalize the derivation of class S of N = 2

4d SCFTs from the twisted compactifications of the six-dimensional (2, 0) SCFTs on a Rie-

mann surface decorated with punctures [8, 9]. The class S construction may produce both

standard gauge theories and strongly-interacting SCFTs which lack a known Lagrangian

description. Geometric manipulations of the Riemann surface lead to specific manipula-

tions of the associated SCFTs, which allow one to derive S-dualities relating in various

ways the standard gauge theories and the strongly interacting SCFTs. The class S con-

struction has an unexpected computational power, allowing for example to compute the

superconformal index of all the four-dimensional class S theories, even though they might

lack a Lagrangian description [10–13], and relate S4 partition functions to 2d CFTs [14, 15].

A straightforward extension of the class S construction to N = 1 gauge theories

involves alternative twisted compactifications of the (2, 0) SCFTs. The basic strongly-

interacting building blocks remain the same as for the N = 2 class S, but they are glued

together using N = 1 gauge multiplets rather than N = 2 ones [16–19].

In this paper we are interested in a more general extension, which involves the twisted

compactification of (1, 0) SCFTs. There is a rather large number of known (1, 0) SCFTs,

many of which can be built through F-theory constructions [20, 21]. In general, they have

tensor branches of vacua where they take the appearance of six-dimensional gauge theories,

coupled to matter fields which may themselves be irreducible SCFTs. A subset of the (1, 0)

SCFTs become standard gauge theories on their tensor branch and often admits a D-brane

engineering construction [22–24].

We focus here on the (1, 0) SCFTs T Nk associated to N M5 branes sitting at the tip of

an Ak−1 singularity of M-theory. These theories are somewhat well understood and have

several features in common with the (2, 0) theories. Furthermore, RG flows induced by

vevs on the Higgs branch of these theories allow one to reach many more (1, 0) SCFTs [25].

It should be possible to extend our analysis to D- and E-type singularities, but we will not

do so here.

– 2 –
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Our main result is the conjectural definition of a new large class Sk of N = 1 SCFTs

associated to the compactification of the 6d SCFTs T Nk on a Riemann surface with punc-

tures. It is important to observe that the reduced amount of supersymmetry should make

one very cautious in extending to N = 1 theories the intuition developed with N = 2

class S theories. With that concern in mind, in this paper we will follow a “bottom up”

approach: we focus at first on a set of conventional four-dimensional N = 1 theories which

play a “data collection” role analogous to the role of linear quiver gauge theories in class

S theories. By looking at the properties and S-dualities of these theories we find several

pieces of evidence connecting them to their six-dimensional avatars and to a larger con-

jectural set of N = 1 SCFTs labelled by punctured Riemann surfaces. In the process, we

learn new information about the six-dimensional SCFTs and their compactifications.

The basic set of “core” N = 1 gauge theories which are central to our analysis belongs

squarely to the family of bi-partite quivers: they correspond to bi-partite hexagonal graphs

drawn onto a cylinder. From that perspective, our work selects a subset of bi-partite

theories which enjoy a larger than usual set of S-dualities and subjects them to a variety

of manipulations to embed them into a larger family of non-bipartite N = 1 SCFTs.

The supersymmetric index plays an important role in our analysis. In particular, we

are able to recast the index of class Sk theories as a 2d TFT, built from wave-functions

which are eigenfunctions of novel difference operators, which generalize the elliptic RS

difference operators used in bootstrapping the index of class S theories. In principle, that

opens the possibility to compute the index of any N = 1 SCFT in the class Sk, even in the

absence of a Lagrangian description.

This paper is organized as follows. In section 2 we motivate our choice of “core” gauge

theories by some general considerations on brane constructions. In section 3 we discuss

our basic theories and dualities and set the stage for building the class Sk models. In

particular we introduce the the notions of theories corresponding to punctured Riemann

surfaces and the basic punctures, maximal and minimal ones. This and following sections

will be divided into two parts with the first part detailing general physical arguments

and the second part, the index avatar, giving quantitative evidence and details using the

supersymmetric index for the particular example of class S2 A1 theories. Next, in section 4

we analyze RG flows starting from the basic models triggered by vacuum expectation

values for baryonic operators. Such RG flows lead to theories in the IR which naturally

correspond to surfaces with one of the minimal punctures removed. However, unlike the

class S case here the removal of a minimal puncture leads to new theory and to the notion

of discrete charge labels attached to the Riemann surface. We will also start encountering

new strongly coupled theories belonging to our putative classes of models. In section 5

we discuss closing maximal punctures by giving vacuum expectation values to certain

mesonic operators. Such vevs lead to more general punctures and we in particular will

be interested in closing maximal punctures down to minimal ones. One of the outcomes

of this analysis will be a derivation of Argyres-Seiberg like duality frames for our basic

duality and yet more irreducible strongly coupled SCFTs. In section 6 we will discuss

how to introduce surface defects into our theories by triggering flows with space-time

dependent vevs. This construction will give us certain difference operators which we expect
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Figure 1. The brane configuration which engineers the core N = 1 gauge theories. We draw

a setup with N = 4 D4 branes (or kN = 16 fractional D4 branes) sitting at the locus of a Z4

singularity, intersected by 5 NS5 branes. The D4 branes in each segment between consecutive NS5

branes engineer the four necklaces of SU(N) gauge groups. The 4-4 strings across the NS5 branes

engineer the five sets of zig-zag chiral multiplets between the necklaces. The semi-infinite D4 branes

can be either associated to the two necklaces of flavor groups or to five-dimensional necklace gauge

theories coupled to the four-dimensional quiver theory.

to characterize completely the wave-functions and the 2d TFT structure of the index. We

will explicitly derive the difference operators for A1 theories of class S2. In section 7 we

go back to the higher-dimensional perspective: we study the interplay between class Sk
theories and the five-dimensional gauge theories which arise from circle compactifications

of the T Nk theories. We will finish in section 8 with an outlook of possible further research

directions. Several appendices complement the text with further technical details.

2 The Zk orbifold of N = 2 linear quivers

The analysis of class S theories was greatly facilitated by the existence of a core set of

class S N = 2 SCFTs which admit both a Lagrangian description and a six-dimensional

engineering construction: linear quiver gauge theories of unitary groups. These are theories

which can be engineered by configurations of D-branes in IIA string theory, which are then

lifted to M-theory to make contact with compactifications of the AN−1 (2, 0) SCFT onto

a cylinder geometry.

It is thus natural to seek for some class of N = 1 SCFTs which admit a similar brane

engineering construction in IIA and may be lifted to M-theory to a cylinder compactification

of the T Nk (1, 0) SCFTs. The latter arises on the world-volume of N M5 branes in the

presence of an Ak−1 singularity. We will thus take the standard NS5-D4 brane system used

to engineer N = 2 linear quivers in [26] and super-impose it to an Ak−1 singularity in IIA

string theory. More precisely, the D4 branes extend along directions 01234, the NS5 branes

along directions 012356 and the Zk orbifold action rotates in opposite directions the 56 and

78 planes. See figure 1.
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Figure 2. The necklace quiver NN,k in five dimensions. It is a Zk orbifold of the maximally super-

symmetric YM, with k SU(N) nodes. Notice that each link here represents a full bi-fundamental

hypermultiplet and each node a full SU(N) vector multiplet. There is U(1) global symmetry asso-

ciated with each link, rotating the bifundamental hypermultiplets. There is also a U(1) symmetry,

the instanton symmetry, associated with each gauge group node.

As the degrees of freedom of the original N = 2 gauge theory entirely arise from open

strings, we can apply a standard orbifold construction to arrive at our candidate N = 1

theories [27]. The analysis implicitly assumes that appropriate B-fields have been turned

on so that the orbifold singularity admits a perturbative description. We will come back

to this point momentarily.

The orbifold procedure can be implemented in a straightforward way at the level of

the gauge theory. Schematically, the orbifold group is embedded both into the global

symmetries which correspond to the rotations of the internal space-time directions and

into the gauge group, and all fields charged non-trivially under the orbifold action are

thrown away.

We can focus at first on the D4 branes. In the absence of NS5 branes, they will

support a five-dimensional N = 1 gauge theory described by a necklace quiver, the result

of orbifolding N = 2 5d SYM. The Zk group acts with charges 0, 1,−1 respectively on

the real scalar associated to the 9 direction and on the complex scalars associated to the

56 and 78 directions. The embedding of Zk in the gauge group splits the gauge fields

and the neutral real scalar into k separate blocks of vector multiplets, while the complex

scalar fields with charge ±1 under the embedding of Zk in the global symmetry will give

bi-fundamental hypermultiplets between consecutive nodes of the 5d quiver. See figure 2.

The six-dimensional (1, 0) SCFT T Nk , compactified on a circle, is expected to give a

UV completion of precisely such necklace quiver theory with gauge group SU(N) at each

node. We will review the properties of such five-dimensional theory in a later section. For

now we only need to observe that it has a U(1)2k global symmetry, which is an Abelian

remnant of the SU(k)β × SU(k)γ ×U(1)t global symmetry of the 6d SCFT, together with

the rotation symmetry of the compact circle. The non-Abelian gauge symmetry in the

UV is broken by Wilson lines for the SU(k)β × SU(k)γ global symmetry, which have to be

turned on in order to have a perturbative gauge theory description in 5d, rather than an

interacting 5d SCFT. In the string theory setup, this corresponds to the B-field which has

to be turned on for the orbifold singularity to admit a perturbative description.

– 5 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
3

NN

NN

NN

NN

N

N

N

N

N

N

N

N

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

NN

Figure 3. The “honeycomb” bi-partite graph drawn on a cylinder and the corresponding quiver

gauge theory. The top and bottom lines are identified. Each cell of the bi-partite graph maps to

an SU(N) gauge group with 3N flavors corresponding to the six edges of the cell. Each node of the

bi-partite graph indicates a cubic superpotential term, with sign associated to the color of the node

In order to arrive to our N = 1 gauge theories, we need to include the effect of the

NS5 branes intersecting the D4 branes and in particular the orbifold action on the 4 − 4′

strings stretched across NS5 branes. From the point of view of the four-dimensional gauge

theory, we can start with an N = 2 linear quiver of four-dimensional U(kN) gauge groups

and embed Zk into the combination of SU(2)R and U(1) R-symmetries which preserves an

N = 1 sub-algebra, under which the 4d vector multiplet scalars (not to be confused with

the 5d vector multiplets above!) transform with charge 1 and the 4d hypermultiplets with

charge −1/2.

The a-th N = 2 vector multiplet will give us a necklace Na of N = 1 SU(N) gauge

groups (dropping the overall U(1) which decouple in the IR), with bi-fundamental chiral

multiplets running, say, counter-clockwise along the necklace from the (i + 1)-th to the

i-th gauge groups in the necklace. Because the N = 2 bi-fundalemental hypermultiplets

have charge −1/2 under the R-symmetry group, we need to embed Zk in the gauge groups

accordingly, with integral charges at even nodes and half-integral at odd nodes of the

original linear quiver. Then each N = 2 bi-fundamental hypermultiplet is projected down

to a set of bi-fundamental chiral fields which zig-zags back and forth between the nodes of

consecutive necklaces, say from the i-th node of each necklace Na to the i-th node of the

next necklace Na+1 and from the i-th node of Na+1 back to the (i+ 1)-th of Na.
Thus if we start with a N = 2 linear quiver of n U(kN) gauge groups, with kN

flavors at each end, we end up with a N = 1 quiver of kn SU(N) gauge groups with the

topology of a tessellation of a cylinder, with triangular faces associated to cubic super-

potential couplings (arising from the N = 1 superpotential coupling vectors and hypers in

the original N = 2 theory) and k SU(N) flavor groups at each end. This is the theory

associated to a bi-partite honeycomb graph drawn on the cylinder, with one side of the

hexagons aligned with the cylinder’s axis. See figure 3 for an example with k = 4 and

four necklaces.

– 6 –
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Figure 4. The six-dimensional lift of the brane configuration which engineers the core N = 1

gauge theories. We have N M5 branes sitting at the locus of a Zk singularity and wrapping a

cylinder, intersected by 5 transverse M5 branes. The world volume theory of the N M5 branes is

the T Nk (1, 0) SCFT, with 5 “minimal” defects (left). We expect that the de-coupling the four-

dimensional degrees of freedom can be implemented by replacing the semi-infinite ends of the

cylinder by maximal punctures on a sphere (right).

This N = 1 gauge theory is our candidate to describe the compactification of the T Nk
(1, 0) SCFT on the cylinder, decorated with (n+ 1) “minimal punctures” each associated

to a single transverse M5 brane wrapping two directions of the Ak−1 singularity (the M-

theory lift of the NS5 branes in the IIA description). In analogy with the class S analysis,

we hope to identify that with a compactification on a sphere, with two extra “maximal

punctures” playing the role of the cylinder’s ends. See figure 4.

Here and in the next sections, we will study these “core” N = 1 gauge theories,

their global symmetries, exactly marginal deformations and S-dualities, in order to find

manifestations of their conjectural six-dimensional origin. In particular, we aim to find

• One exactly marginal deformation parameter for each complex structure modulus of

the underlying Riemann surface.

• Global symmetries matching the six-dimensional description.

• S-dualities which manifest the indistinguishability among minimal punctures and

imply a 2d TFT-like associativity structure for the index

• RG flows which relate different types of punctures and, in particular, relate maxi-

mal and minimal punctures, thus justifying the picture of a sphere as opposed to a

cylinder.

The count of global symmetries and exactly marginal deformation parameters are

closely related. As each gauge group has Nf = 3Nc and the super-potentials are cubic,

the core theories can be thought of as deformations of a free theory. The (3n + 2)k sets

of bi-fundamental hypermultiplets have each a U(1) global symmetry and there are 3nk

marginal couplings. By the arguments of [28], the theory will have x exactly marginal

couplings iff 2k + x of the global symmetries are unbroken by superpotential terms or

mixed gauge anomalies.

The non-anomalous Abelian global symmetries of the core theories can be understood

graphically as in figure 5: each symmetry is associated to a straight sequence of chiral

– 7 –
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Figure 5. A simple set of generators for the Abelian global symmetries of the core theories. Each

arrow represents a generator, acting on the chiral multiplets crossed by the arrow with charge ±1,

depending on the sign of the crossing. The sum of all generators is 0. The vertical (red) arrows are

chosen to generate the U(1)α global symmetries associated to minimal punctures. The SE pointing

(green) arrows, quotiented by their diagonal, generate the
[
U(1)k

U(1)

]
β

“intrinsic” symmetries. The SW

pointing (blue) arrows, quotiented by their diagonal, generate the
[
U(1)k

U(1)

]
γ

“intrinsic” symmetries.

Finally, the anti-diagonal combination of blue and green arrow give the generator of the U(1)t
intrinsic symmetry.

multiplets with alternating charges ±1. There are 2k + n+ 1 generators which add up to

0. The set of (n + 1) U(1)α global symmetries associated to each of the (n + 1) blocks of

chiral multiplets with the same bi-fundalental hypermultiplet ancestor can be thought of

arising from the NS5 branes world volume gauge symmetry. We thus associate them to the

minimal punctures in the six-dimensional description. The remaining set of U(1)2k−1 global

symmetries can be thought of as the Cartan generators of the SU(k)β × SU(k)γ × U(1)t
global symmetry of the underlying 6d SCFT. Thus we are left with n exactly marginal

couplings, precisely as in the original N = 2 theory. We associate them to the relative

positions of the minimal punctures on the cylinder.

3 Basic building blocks

In this section we study the core N = 1 theories and their dualities. It is useful to begin by

introducing some nomenclature, which helps abstracting the properties of the core N = 1

theories to the expected properties of class Sk theories.

Each theory we build will be labelled tentatively by a punctured Riemann surface.

Some set of “intrinsic” global symmetries will be always present independently of the choice

of punctures: we can denote them as Gk ≡ U(1)t×
[

U(1)k

U(1)

]
β
×
[

U(1)k

U(1)

]
γ
. It will be convenient

to associate fugacities to these symmetries to keep track of charges of different fields and

– 8 –
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operators. We will denote the fugacities for the above mentioned global symmetries as t,

βi with
∏
i βi = 1 and γi with

∏
i γi = 1, respectively. We will also have a non-anomalous

R-symmetry, whose fugacity we can indicate as r or, with index computations in mind,
√
pq.

Each puncture will be associated to some specific set of flavor symmetries and a specific

set of ’t Hooft anomalies involving these flavor symmetries and the intrinsic flavor symme-

tries. It will also be associated to a set of canonical chiral operators with prescribed charges.

A “maximal” puncture will be associated to an SU(N)k global symmetry. Maximal

punctures will be labelled by a “color” n ∈ Zk and an “orientation” o = ±1, positive or

negative, which determine the pattern of ’t Hooft anomalies and the charges of the canonical

chiral operators. We will have N units of U(1)tSU(N)2 anomaly for all SU(N) groups, N

units of U(1)βi+n−oSU(N)2
i and −N units of U(1)γiSU(N)2

i . In other words, SU(N)i has

a mixed anomaly with a U(1) symmetry associated to the fugacity tβi+n−oγ
−1
i . The R-

symmetry mixed anomaly should be the same as if the SU(N)i acted on N fundamental

and N anti-fundamental free chiral multiplets with R-symmetry 0 (the anomaly, of course,

is computed from the fermions in the chiral multiplets, which have charge −1).

We also require a set of “mesons”, chiral operators Mai+1
ai which transform as funda-

mental/antifundamental of SU(N)i+1 and SU(N)i.
1 At a positively oriented puncture, the

mesons have fugacity tβi+nγ
−1
i . A useful mnemonic rule is that they involve the β fugacity

from the SU(N)i+1 node, and the gamma fugacity from the SU(N)i node. At a nega-

tively oriented puncture the mesons have fugacity tβi+n+1γ
−1
i+1. A useful mnemonic rule is

that they involve the β fugacity from the SU(N)i node, and the gamma fugacity from the

SU(N)i+1 node. Clearly, a cyclic re-definition of the βi, with fixed γi, will simultaneously

shift the color of all the maximal punctures in a theory.

3.1 A gluing prescription

Next, we give a gluing prescription, an operation on four-dimensional theories which is

interpreted in six dimensions as replacing two maximal punctures of opposite orientation

and the same color with a tube.

Consider a positively oriented maximal puncture of color 0 and flavor groups SU(N)i
and a negatively oriented puncture of color 0 and flavor groups ŜU(N)i. We will gauge

the diagonal combinations SU(N)gi of SU(N)i and ŜU(N)i−1. We will also add k blocks of

N2 chiral fields Φai
ai+1 in the fundamental/antifundamental representation of SU(N)gi ×

SU(N)gi+1. These fields also couple to the mesonic operators associated to the maximal

punctures, through cubic superpotential couplings,

W = λ
(

TrMΦ− TrM̂Φ
)
. (3.1)

The superpotential couplings determine the charges of Φai
ai+1 under the intrinsic global

symmetry Gk such that they have fugacities pqt−1β−1
i γi. The mixed anomalies at the

SU(N)gi gauge node cancel out and the intrinsic global symmetries remain non-anomalous.

1This requirement is for a generic theory. As we will see say in appendix B, in some degenerate examples

some mesons may be naively missing, but can be reinstated by adding pairs of gauge-neutral chiral fields

with superpotential masses which allow one to integrate them away. One element of each pair play the role

of the missing meson and the other is coupled to the rest of the theory by superpotential couplings.

– 9 –
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It can be easily seen using Leigh-Strassler-like [28, 29] arguments that this gauge

theory has one exactly marginal coupling which can be continuously tuned to zero. The

fact that the exactly marginal coupling can be switched off is related to the fact that for

each SU(N) gauge factor we have matter equivalent to 3N fundamental and 3N anti-

fundamental chiral fields and thus the one-loop contribution to the NSVZ beta-function

vanishes, and the superpotential couplings are also classically marginal.

In particular, we can count the difference between marginal parameters and broken

U(1) symmetries [28]. We have 3k marginal couplings, but we break the 2(2k−2) separate

intrinsic symmetries of the two theories together with the k symmetries acting on the

Φi down to a diagonal combination of the intrinsic symmetries. Thus we break 3k − 1

symmetries. Each broken symmetry lifts a marginal coupling, leaving only a single exactly

marginal one. We expect it to correspond roughly to the length and twist of the newly-

created tube in the underlying Riemann surface.

3.2 The free trinion

Having described some generalities of the setup let us turn our attention to concrete and

important examples. Our first ingredient is a free theory which we would like to label by

a trinion, a sphere with three punctures. Two of the punctures are maximal and one is a

“minimal” one. We will refer to this theory as the free trinion.

The free trinion is a collection of 2kN2 free chiral fields, equipped with a specific

action of the intrinsic and puncture-related global symmetries. We organize the fields in

two sets of k blocks of N2 chiral fields, denoted respectively as Qaibi and Q̃ai
bi+1 : the former

transform as fundamental/anti-fundamental representation of SU(N)i × S̃U(N)k−i+1 and

the latter in anti-fundamental/fundamental representation of SU(N)i × S̃U(N)k−i. The

sets of k SU(N)i and k S̃U(N)i global symmetries are associated respectively with the two

maximal punctures.

It is convenient to depict the free trinion as a ring with 2k dots connected by arrows.

The dots at even/odd places correspond to SU(N)i/S̃U(N)i flavor groups. See figure 6. We

also define the action of the intrinsic Gk = U(1)t ×
[

U(1)k

U(1)

]
β
×
[

U(1)k

U(1)

]
γ

global symmetries,

and of an extra U(1)α associated to the minimal puncture. Expressing the charges in terms

of fugacities, we associate fugacity t
1
2βiα

−1 to Qaibi and t
1
2αγ−1

i to Q̃ai
bi+1 .

It is straightforward to compute the ’t Hooft anomalies of the free trinion. The

U(1)SU(N)2 anomalies for each SU(N) flavor group receive contributions from two blocks

of chirals: we have N units of U(1)tSU(N)2 anomaly for all SU(N) groups, N units of

U(1)βiSU(N)2
i and U(1)βiS̃U(N)2

k−i+1, −N units of U(1)γiSU(N)2
i and U(1)γiS̃U(N)2

k−i.
In other words, SU(N)i has a mixed anomaly with a symmetry associated to the fugac-

ity tβiγ
−1
i , while S̃U(N)k−i+1 has a mixed anomaly with a symmetry associated to the

fugacity tβiγ
−1
i−1.

There are various U(1)3 anomalies, such as kN2 units of U(1)2
αU(1)t anomaly, −N2

of U(1)αU(1)2
βi

and N2 of U(1)αU(1)2
γi , and some anomalies involving intrinsic symme-

tries only.
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Q̃i : t
1
2αγ−1

i

SU(N)i

S̃U(N)k−i+1

S̃U(N)k−i

Qi : t
1
2α−1βi

Figure 6. The free trinion. Dots on the left an on the right represent SU(N) groups associated

to the two differnet maximal punctures. The horizontal lines are the bi-fundamentals Q̃ and the

diagonal lines Q.

Finally, we have chiral operators we can associate with each puncture. For example,

Mai
ai−1

= Q̃biai−1
Qaibi are fundamental/antifundamental of consecutive SU(N)i groups, with

fugacity tβiγ
−1
i−1, while M̃

bi+1

bi
= Q̃

bi+1
ai Qaibi are fundamental/antifundamental of consecu-

tive S̃U(N)i groups, with fugacity tβiγ
−1
i . We associate them to the respective maximal

punctures. On the other hand, baryon operators Bi = detQaibi and B̃i = detQ
bi+1
ai can be

associated to the minimal puncture.

We see that the first maximal puncture, associated to the SU(N)i, has color 1 and

positive orientation. The second maximal puncture is associated to the groups S̃U(N)k−i.
It has negative orientation and color 0.

3.3 Gluing two trinions

All our core theories are produced by gluing together a sequence of n+ 1 free trinions. We

can focus on the simplest interacting theory built by gluing two trinions.

We can take two free trinions, shift the definition of the βi in the second trinion so that

it has a positive maximal puncture of color 0 and a negative of color −1, and glue them

together as described in the previous subsection. The result is our candidate for a theory

with two maximal punctures, of opposite orientation and color 1 and −1, and two minimal

punctures. Let us denote this theory by T̃k and the quiver description of the theory is in

figure 7. Throughout the paper this theory will play an important role and we will refer

to it as our basic interacting theory or basic four-punctured sphere.

Our crucial claim is that the interacting theory described here enjoys an S-duality

property, which corresponds to the exchange of the two minimal punctures. Notice that this

is consistent with ’t Hooft anomalies, as the global symmetries U(1)α and U(1)δ associated

to the two minimal punctures have mixed anomalies with the intrinsic global symmetries

only, and the anomalies are identical. Since we have here an exactly marginal coupling, we

can switch on in a correlated manner the gauge couplings and the superpotential coupling

such that the beta-functions vanish, the superconformal R-charges of the different fields

are the free ones. For example the superconformal anomalies a and c are just the ones of
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QQ̃

QN

Figure 7. The interacting superconformal theory. The circles correspond to SU(N) groups with the

the white ones being gauged and colored ones being flavor symmetries. The fat brown line represent

the mesonic operator built from the quarks which is charged under the symmetries associated to

maximal puncture but is neutral under the symmetry associated to the minimal puncture. Fat blue

line represents a quark from which a baryon is built which is charged under the U(1) symmetry

associated with the minimal puncture but is a singlet under the symmetry associated with the

maximal puncture.

this particular collection of free fields,

a =
k

48
(14N2

c − 9) , c =
k

24
(8N2

c − 3) . (3.2)

We will find it convenient to assign R-charge 0 to all Q and Q̃ and R-charge 2 for all Φ.

Notice that in our notation we are focusing on a subset of the full global symmetry of

the gauge theory. The quarks and anti-quarks which are associated to a given gauge group

can be re-assembled into groups of 2N flavors, so that the theory really has SU(2N)k ×
U(1)k+1 global symmetry. The U(1) symmetries are associated to fugacities such as ti =

tβiγ
−1
i and η2 = αδ−1. The S-duality transformation should invert the definition of the

latter U(1) symmetry, the anti-diagonal combination of U(1)α and U(1)δ.

This structure is obviously similar to what one encounters in N = 2 SQCD, the k = 1

version of our story. As we will see momentarily, this is no coincidence: all our conjectural

S-dualities can be related recursively to the N = 2 SQCD S-duality by Seiberg dualities.

Our starting point is a theory T̃k defined as a necklace of SU(N)i gauge groups, con-

nected by bi-fundamental chiral fields Φai
ai+1

and to fundamental fields Qciai and Q̃
ai+1
ci , where

the ci indices transform under SU(2N) global symmetry groups and obvious cubic super-

potential. We can take the Φai
ai+1

to have fugacity t−1
i , Qciai of fugacity

√
tiη, the Q̃

ai+1
ci of

fugacity
√
tiη
−1. If we apply Seiberg duality formally at the k-th node, we obtain a new

theory T̃ ′k which has a rather simple description: it consists of a shorter necklace T̃k−1

where the (k− 1)-th SU(2N) flavor group has been gauged and coupled to 2N dual quarks

and 2N dual anti-quarks. The theory also has a set of 2N × 2N mesons coupled to the

latter fields by a cubic superpotential. The dual quarks and anti-quarks are rotated by

the SU(2N)k−1 and SU(2N)k global symmetries of the original theory. Crucially, the U(1)

flavor symmetry assignments work out in such a way that only fields in T̃k−1 transform

under U(1)η. See figure 8 for and example k = 2.

At this point, we can immediately conclude, recursively, that say the supersymmetric

index of T̃k is invariant under the transformation η → η−1: the Seiberg duality manip-
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Figure 8. Seiberg duality of one of the SU(N) gauge groups in the case of k = 2. The node

with a circle is an SU(2N) gauge group. There is a superpotential term for each triangle in this

quiver theory.

ulation leaves the index invariant, and the index of T̃ ′k is built from the index of T̃k−1,

with η only entering in the latter. As T̃1 is N = 2 SQCD with Nf = 2Nc, which has an

S-duality which acts as η → η−1 on the flavor fugacities, the index of T̃1 is invariant under

the transformation η → η−1.

In order to believe a full S-duality statement, we need to make some assumptions about

the RG flows associated to the Seiberg duality we employed, as the SU(2N) gauge node is

strongly-coupled. The RG flow of the theory T̃ ′k defines a map from the conformal manifold

of T̃k−1 to the conformal manifold of T̃k. By induction, we can assume that the conformal

manifold of T̃k−1 has two weakly-coupled cusps, where the quiver gauge theory description

is good. Near these cusps, the RG flow will map us to weakly-coupled T̃k quivers, with

opposite U(1)η charge assignments. Thus the crucial assumption for the induction to hold

is that the connected path between the two cusps in the conformal manifold of T̃k−1 maps

to a connected path in the conformal manifold of T̃k.

In analogy with class S, we can ask if other trinions may exist, in particular trinions

which carry three maximal punctures. This is of course far from obvious. In the case of class

S, a strong piece of evidence came from the existence of Argyres-Seiberg-like dualities [30].

A key step in the analysis was to find operations which “reduce” a maximal puncture to a

minimal one, a Higgs branch RG flow which replaces one end of a linear quiver of SU(N)

gauge groups with a “quiver tail” which is associated to a set of minimal punctures only,

all related by S-dualities. That suggests the existence of alternative S-duality frames where

all minimal punctures are produced by quiver tails, attached to a conjectural SCFT with

maximal punctures only.

Due to the intricacies of the quivers we study here, there is a bewildering array of pos-

sible RG flows one can trigger by a sequence of vevs for chiral operators. Correspondingly,

one can modify a maximal puncture to a wide array of “smaller” punctures. Our challenge

is to find a sequence which leads to a minimal puncture. We will undertake this challenge

in the following sections.
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Figure 9. The sphere with two maximal punctures of different color and one minimal puncture,

aka the free trinion.

3.4 The index avatar

Let us discuss the basic theories and the dualities in the language of the supersymmetric

index setting the nomenclature for the discussion in the following sections. The reader can

accustom him/herself with the standard definitions of the index in appendix A. The index

is a very precise tool to test dualities. To be very explicit and keep our formulae readable,

we will often specialize to the index of A1 theories of class S2. All we will say can be rather

straightforwardly extended to more general cases.

Free trinion. Let us start from writing down the index of the free trinion. As discussed

in previous subsections and depicted in figure 9 we associate this trinion to a sphere with

two maximal punctures and one minimal puncture. The two maximal punctures are of

different colors, and we will return to this feature momentarily. The index can be written

by collecting together the contributions of the different free field. For example, in the A1

k = 2 case the index of the free trinion is,

Ift(u, α,v;β, γ, t) ≡ Iuαv(β, γ, t, p, q) ≡ (3.3)

Γe

(
t
1
2 v±1

1 u±1
1 βα−1

)
Γe

(
t
1
2 v±1

1 u±1
2 γ−1α

)
Γe

(
t
1
2 v±1

2 u±1
1 γα

)
Γe

(
t
1
2 v±1

2 u±1
2 β−1α−1

)
.

Here the fugacities u and v correspond to SU(2)2 and S̃U(2)2 flavor symmetries associated

to the maximal punctures and α is the U(1) fugacity associated to the minimal puncture.

Note the index of the trinion is not symmetric under the exchange of the two maximal

punctures. This is a reason why one should associate an additional parameter, color, to

the maximal punctures. If we set β = 1 there is no distinction between the colors and

indeed the index becomes symmetric under exchanging the two maximal punctures. In the

k = 2 case we have two colors which are Z2 valued, 0 and 1. We will also refer to the two

punctures in this case as lower and upper ones.

We can glue two trinions together and obtain a theory corresponding to two maximal

and two minimal punctures, and we will come to details of the gluing at the level of the index

momentarily. We can also continue gluing free trinions to obtain theories corresponding

to spheres with many minimal punctures and two maximal ones. The S-duality operation

exchanging two punctures surely holds at the level of the index, under the usual assumption

that no new U(1) symmetry emerges accidentally in the IR.
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Let us for a moment discuss implications of the S-duality for general k and N . At

the level of the index, we can glue a free trinion to a theory T with a positive maximal

puncture of color 0 by the formula:

IT (v;βi, γi, t)→ IT+minα(v, α;βi, γi, t) ≡∮

u
dµn(u;βi, γi, t)Ift(v, α,u;βi, γi, t)IT (v;βi, γi, t) , (3.4)

where Ift is the free trinion index, dµn(u, βi, γi, t) the measure which accounts for the gauge

fields and Φ fields involved in the gluing and the u contour integral is the projection on

gauge-invariant operators. This can be thought as an integral transformation on the index

of T , with a kernel which depends on the fugacity α of the new minimal puncture.

The basic S-duality we derived in this section implies that if we apply the transforma-

tion twice, the result will not depend on the order of the two transformations. In other

words, the integral operators associated to different values of the fugacity α commute. It

is reasonable to assume that the transformations can be “diagonalized”, as in the class

S case [31, 32], by expanding the free trinion into “wavefunctions” associated to each

puncture,

Ift(v, α,u;βi, γi, t) =
∑

λ

ψ
[1]
λ (u;βi, γi, t)φλ(α;βi, γi, t)ψ̄

[0]
λ (v;βi, γi, t) (3.5)

with ψ
[n]
λ (u;βi, γi, t) ≡ ψλ(u;βi+n, γi, t) being the wavefunction for positive maximal punc-

tures, ψ̄
[n]
λ (u;βi, γi, t) ≡ ψ̄λ(u;βi+n, γi, t) being the wavefunction for negative maximal

punctures and φλ(α;βi, γi, t) being the wave function for minimal punctures, invariant

under color shift,

φλ(α;βi+n, γi, t) = φλ(α;βi, γi, t) . (3.6)

We take the maximal wavefunctions to be normalized as
∮

v
dµn(v;βi, γi, t)ψ̄

[n]
λ (v, βi, γi, t)ψ

[n]
λ′ (v, βi, γi, t) = δλλ′ . (3.7)

Then if we glue together n trinions we get an index

Iftn(ui, αk, vi, βi, γi, t) =
∑

λ

ψ
[n]
λ (ui, βi, γi, t)

[∏

k

φλ(αk, βi, γi, t)

]
ψ̄

[0]
λ (vi, βi, γi, t) , (3.8)

which is explicitly invariant under S-duality. Note that gluing n free trinions we get a

theory of two maximal punctures differing by n units of the Zk color.

In the rest of this subsection we will specialize to the case of k = 2 A1 theories. As

already mentioned here we have two colors for maximal punctures. The orientation of the

puncture corresponds to the ordering of the two SU(2) groups. We will denote

ψ(u;β, γ, t) = ψ[0](u;β, γ, t) , ψ̃(u;β, γ, t) = ψ[1](u;β, γ, t) , (3.9)

ψ(u†;β, γ, t) = ψ̄(u;β, γ, t) ,
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where we define (u1, u2)† = (u2, u1). Thus the index of the free trinion will be written as,

Ift(u, α,v;β, γ, t) = Iuαv =
∑

λ

ψλ(u1, u2)ψ̃λ(v1, v2)φλ(α) . (3.10)

The way to determine the functions ψλ, ψ̃λ, φλ, as well as the possible values of the index

λ will be determined in section 6. These functions will turn out to be eigenfunctions of

certain difference operators and thus we will refer to them as eigenfunctions. We stress

that it is a rather non trivial assumption that such a representation of the index exists.

We will discuss more of the physical implications of this property later on.

We have the following symmetry properties satisfied by the index of the free trinion

following from its explicit expression (3.3),

Iuαv(β, γ, t) = Ivαu(β−1, γ, t) ,

Iuαv(β, γ, t) = Iv†αu
†
(β, γ−1, t) , (3.11)

Iuαv(β, γ, t) = Iuα−1
v†(γ, β, t) ,

Iuαv(β, γ, t) = Iu†α−1
v(γ−1, β−1, t) ,

It is natural to assume that these transformations act on single eigenfunctions and do not

act on the labels λ. Under this assumption (3.11) implies that,

ψλ(u;β, γ, t) = ψ̃λ(u;β−1, γ, t) = ψ̃λ(u†;β, γ−1, t) = ψλ(u; γ, β, t) = ψλ(u†; γ−1, β−1, t) ,

ψ̃λ(u;β, γ, t) = ψ̃λ(u†; γ, β, t) = ψ̃λ(u; γ−1, β−1, t) , (3.12)

φλ(α, β, γ, t) = φλ(α, β−1, γ, t) = φλ(α, β, γ−1, t) = φλ(α−1, γ, β, t) .

We do not have to assume these properties for what follows but assuming them will make

some of the considerations simpler and we will state explicitly when such assumption will

be made. Moreover, when explicitly computing the eigenfunctions we find that these indeed

are satisfied although we will not prove them mathematically.

The gauging. We gave a prescription for gluing two theories together at maximal punc-

tures of appropriate color and orientation, by adding extra chiral fields and superpotential

couplings to the mesons and gauging diagonal combinations of the flavor symmetries. The

gauge group in general is SU(N)k and in case at hand it is SU(2)2. Since there are two

types of maximal punctures, we can glue theories along upper or lower punctures. In both

cases the gauge group is the same. We identify SU(2)i of one theory with SU(2)3−i of the

other one, and we add bifundamental chiral fields of SU(2)i × SU(2)i+1. The difference

between the two gaugings is that when we glue two upper punctures the two bifundamental

chirals have charges (+1,+1) and (−1,−1) under U(1)β×U(1)γ , whereas when gluing two

lower punctures the charges are (+1,−1) and (−1,+1).

For the index this implies that the functions ψλ and ψ̃λ are orthonormal under the

following measures,

∆̃(z) =
I2
V

4

Γe(
pq
t (βγ)±1z±1

1 z±1
2 )

Γe(z
±2
1 )Γe(z

±2
2 )

, ∆(z) =
I2
V

4

Γe(
pq
t (β−1γ)±1z±1

1 z±1
2 )

Γe(z
±2
1 )Γe(z

±2
2 )

. (3.13)
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Figure 10. The sphere with two maximal punctures of same kind and two minimal punctures.

That is
∮

v
dµ0(v;β, γ, t)ψ̄

[0]
λ (v, β, γ, t)ψ[0]

µ (v, β, γ, t) =

∮
dz1

2πiz1

∮
dz2

2πiz2
∆(z)ψλ(z)ψµ(z†) = δλµ ,

∮

v
dµ1(v;β, γ, t)ψ̄

[1]
λ (v, β, γ, t)ψ[1]

µ (v, β, γ, t) =

∮
dz1

2πiz1

∮
dz2

2πiz2
∆̃(z) ψ̃λ(z)ψ̃µ(z†) = δλµ .

(3.14)

From the free trinions we can obtain the sphere with two maximal punctures, either

both upper or both lower, and two minimal punctures (see figure 10). The two theories are

physically isomorphic and differ only by re-labeling of the flavor symmetries. The index of

the theory with two lower punctures is,

Iuδvα (t, β, γ, p, q) = [(q; q) (p; p)]2
∮

dz1

4πiz1

∮
dz2

4πiz2

[
Γe
(p q
t (βγ)±1 z±1

1 z±1
2

)

Γe
(
z±2

1

)
Γe
(
z±2

2

)
]
× (3.15)

[
Γe

(
t
1
2 z±1

1 u±1
1 βδ−1

)
Γe

(
t
1
2 z±1

1 u±1
2 γ−1δ

)
Γe

(
t
1
2 z±1

2 u±1
1 γδ

)
Γe

(
t
1
2 z±1

2 u±1
2 β−1δ−1

)]
×

[
Γe

(
t
1
2 z±1

1 v±1
2 β−1α−1

)
Γe

(
t
1
2 z±1

1 v±1
1 γα

)
Γe

(
t
1
2 z±1

2 v±1
2 γ−1α

)
Γe

(
t
1
2 z±1

2 v±1
1 βα−1

)]
.

Here the first line comes from the gauging with the second and third lines coming from the

contributions of the two trinions. This index has the duality symmetry

Iuδvα = Iuαvδ = Ivδuα , (3.16)

which we should expect following our discussion in previous subsections. As discussed

before this duality follows from a sequence of Seiberg and S-dualities with the relevant

mathematical identities proven in [33–35].

Using the eigenfunctions this index is given by

Iuαvδ =
∑

λ

ψλ(u1, u2)ψλ(v1, v2)φλ(α)φλ(δ) . (3.17)

Gluing many trinions together we can obtain theories with arbitrary number of minimal

puncture but with only two maximal punctures. Moreover if the number of minimal punc-

tures is even the two maximal punctures are of the same color and if that number is odd

they are of different color. To go beyond these constraints we will have to consider RG

flows triggered by vacuum expectation values of the theories obtainable from our trinions

and we are turning to that task next.
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αγ

v2
α−1β−1

βγ

1
βγ

αγ−1

α−1β

γ−1δ

u2

u1

β−1δ−1

γδ

βδ−1

v1

Figure 11. The sphere with two maximal and two minimal punctures with the fugacities associated

to the matter fields. The white nodes correspond to gauged SU(2) groups with the colored one to

flavor SU(2) groups. We suppressed the pq and t fugacities.

4 Closing minimal punctures and discrete charges

The six-dimensional SCFTs which we conjecture lie behind our story have global symme-

tries which we identify with the four-dimensional intrinsic global symmetries Gk. The two

copies of U(1)k/U(1) actually enhance to SU(k) and in four dimensional in general only

the Cartan subgroup is not broken. In the process of compactification from six to four

dimensions, one has a choice of curvature for the line bundles associated to these global

symmetries. In the standard class S story, there is a single global symmetry corresponding

to U(1)t, and one obtains N = 2 theories for a specific choice of line bundles, and more

general N = 1 theories for other choices. We will later comment on the orbifolded versions

of these N = 1 theories, which should correspond to different choices of U(1)t curvature.

In this section, we would like to assess the four-dimensional meaning of different choices of

curvature for the U(1)β and U(1)γ bundles.

In order to do so, we look at the possibility of “closing” a minimal puncture, by giving a

vev to a chiral operator charged under the U(1)α global symmetry associated to the minimal

puncture. An assumption we make is that such vevs leave us inside the class of theories we

are discussing, that is the theory in the IR can be associated to a certain Riemann surface.

An obvious choice for the operator to receive a vev is one of the (anti)baryons built from

the N2 blocks of the corresponding free trinion. There are 2k such operators, QNi and Q̃Ni ,

and we could be giving a vev to any of them.

We can do so for any of the minimal punctures. Indeed, the S-duality properties we

expect from our theories indicate that we should get the same result, up to a relabeling of

minimal puncture fugacities, by turning on (anti)baryon vevs in different free trinions. For

our purpose, it is particularly instructive to pick the duality frame where the free trinion

we are working on is glued to a maximal puncture of some other generic theory T to give

a theory T ′ with an extra minimal puncture and a new maximal puncture. The analysis

for a free trinion glued to two other theories can be done in a similar manner.

It is straightforward to see the effect of the vev. First of all, the vev Higgses the

SU(N) gauge group coupled to the (anti)quarks and identifies it with the S̃U(N) flavor

group of the (anti)quarks. The vev converts the cubic superpotential coupling involving

that set of (antiquarks)quarks to a mass term for one of the Φ fields and for one block of

(quarks)anti-quarks for the nearby gauge node. We can integrate these away.
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When giving a vev to the (anti)quark block, we need to re-define all the symmetry

generators, including the R-symmetry one, by an appropriate multiple of the generator of

U(1)α in such a way that the (anti)quark block is not charged under any of the assignments

re-defined symmetries. It is easy to verify that the final theory we obtain after Higgsing

has the same ’t Hooft anomalies for the re-defined symmetries as the initial theory, as is

obvious from anomaly matching. In particular, all the constraints we impose on ’t Hooft

anomalies of global symmetries associated to the punctures we did not close remain true

after the Higgsing.

The resulting theory has three fewer marginal couplings: we lost two superpotential

couplings involving the lifted Φ field and one gauge coupling. We also lost three blocks

of fields and one global symmetry. Thus we expect to have lost an exactly marginal

deformation parameter. This is consistent with the intuition that the minimal puncture

is gone.

The resulting theory depends on the choice of which 2k (anti)baryons got a vev, and

it is not equivalent to the theory T . Indeed, all the 2k resulting theories have the same

“punctures”, which differ from the punctures of T just by the color of the maximal puncture

the original free trinion was glued to. Thus we obtained 2k potential new class Sk theories

and discovered that class Sk theories need to be labelled by extra data besides the choice

of Riemann surface and punctures.

We aim to identify the extra data with a choice of curvature for the U(1)β × U(1)γ
global symmetries of the underlying six-dimensional theory. Tentatively, we would say

that closing a minimal puncture by a vev of a baryon charged under U(1)βi or an anti-

baryon charged under U(1)γi adds a unit of curvature for the corresponding six-dimensional

global symmetry.

If this idea is correct, adding one unit of curvature for each U(1)β` should be the

same thing as not adding any, as the U(1)β` are identified with the Cartan of a 6d SU(k)

global symmetry. The same should be true when adding one unit of curvature for each

U(1)γ` . We will see that this is indeed the case, as long as we refine slightly our notion of

“closing a minimal puncture” by adding to the theory some gauge-neutral chiral multiplets

coupled linearly to the surviving baryons (if we turned on a baryon vev) or anti-baryons

(if we turned on an anti-baryon vev) in the free trinion associated to the minimal puncture

we closed.

As we will often have to add gauge-neutral chiral fields with linear couplings to some

given chiral operator, it is useful to introduce the notion of “flipping” a chiral operator O:

an operation which maps a theory with a chiral operator O to a new theory with an extra

chiral multiplet φ coupled to O by a superpotential φO. The new theory lacks the operator

O, but usually has a new chiral operator φ with opposite charges to O.

Let us now specialize to the k = 2 case and still hold N general while considering closing

two minimal punctures. We consider a duality frame where the two minimal punctures

reside in two free trinions glued to each other and also both of them glued to some general

models. That is the two minimal punctures reside on a “tube” connecting otherwise generic

Riemann surfaces. If we give vevs to baryons of fugacities (α−1
1

√
tβ)N and (α−1

2

√
tβ−1)N ,

we end up removing most of the chiral fields in the two corresponding free trinions. The
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SU(N)1 gauge groups to the left of the two trinions, in the middle, and to the right are all

Higgsed to a common SU(N)1. The other SU(N)2 gauge group which glues the two trinions

together survives, but most of the fields charged under it are lifted by mass terms: only

bifundamentals connecting it to the left and right SU(N)2 gauge groups survive. Thus we

have a node with Nf = N flavors. The low energy description of such a node is well-known:

a set of mesons and baryons constrained by the equation,

detM −BB̃ = Λ2N . (4.1)

The theory has a vacuum where M = Λ2 and B = B̃ = 0, which would precisely Higgs

the left and right SU(N)2 gauge groups and thus bring us back to the standard theory

with two fewer minimal punctures, except for the extra baryonic degrees of freedom B, B̃.

Even at the level of the index, one finds that the Nf = N node effectively produces a delta

function [36] of the fugacities of the left and right SU(N)z2 gauge groups, multiplied by

the index of the baryons B, B̃ with fugacities (α−1
1

√
tβ−1)N and (α−1

2

√
tβ)N .

We can modify our definition of how to close a minimal puncture, by both turning on

a vev for the baryon with, say, (α−1
1

√
tβ)N and a linear superpotential coupling between

the other baryon B with fugacity (α−1
1

√
tβ−1)N and a new gauge-neutral chiral field b.

The superpotential forces us at the origin of the baryonic branch of the Nf = N node and

insures the desired Higgsing. It also removes the undesired free baryons after the Higgsing.

We can now go back to general k. We consider a sequence of k trinions and close the

corresponding punctures by giving a vev to the baryon charged under U(1)β1 in the first

trinion, U(1)β2 in the second trinion, etc, and flipping all other baryons charged under the

U(1)β` . Because of S-duality, we could have picked any other permutation σ, turning on at

the σ(a)-th trinion a vev for the baryon charged under U(1)βa . The order we chose simplify

the analysis considerably, though.

After integrating away the chiral fields which receive mass parameters after the vevs,

precisely k− 1 gauge nodes end up with Nf = N flavors. With the help from the superpo-

tential couplings suppressing the corresponding baryons, the mesons for these gauge nodes

get vevs, and initiate another set of Higgsing and lifting of pairs of chiral multiplets. This

leads to another set of Nf = N nodes, etc. At the end of the RG flow cascade, the k

punctures have been completely eliminated.

Notice that using the gauging procedure discussed in this paper there is a certain degree

of correlation between the choice of punctures on a Riemann surface and the possible values

for the discrete charges. Starting from a theory T with a maximal puncture of some color

and orientation, we can glue to it a chain of k free trinions and then close the resulting

k minimal punctures in several different ways. This produces new theories with the same

punctures as T but different discrete charges. The discrete charges, though, will necessarily

add to a multiple of k.

4.1 A k = 2 example

We can give some rather explicit examples of this construction for theories in class S2. For

example, we can start from our basic interacting theory T̃2 built from two trinions, with
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two minimal punctures and maximal punctures of opposite orientation and color 1 and

−1 ≡ 1.

If we give a diagonal vev to, say, the block of quarks of fugacity
√
tα−1β in the second

trinion, we are left with an SU(N) gauge theory with 2N flavors: two blocks of N quarks

with flavour symmetries SU(N)2 and S̃U(N)2 and two blocks of N anti-quarks with flavour

symmetries SU(N)1 and S̃U(N)1. We also have neutral chirals in bi-fundamental represen-

tations of S̃U(N)1 × S̃U(N)2 and S̃U(N)1 × SU(N)2 coupled to the (anti)quarks by cubic

superpotential couplings and an additional decoupled set S̃U(N)1 × SU(N)1 which will

enter the definition of the “mesons” at the maximal punctures of color 1 and −1. Finally,

we have the single neutral chiral field we use to flip the baryon made out of the quarks of

fugacity β−2, which are charged under S̃U(N)2.

This is one of four theories which we can obtain by closing the same minimal puncture

in T̃2 in different ways. They all have one minimal puncture and two maximal of opposite

orientation and the same color 1, but different discrete charges. They will be important in

defining surface defects in section 6.

We can also consider theories obtained from T̃2 by closing both minimal punctures in

such a way that the total discrete charge does not cancel out. This produces a variety

of “charged tubes”, i.e. theories which can be associated to a cylinder with two maximal

punctures of the same type and some extra discrete charge. Such charged tubes can be glued

to a maximal puncture of some other theory T to shift the discrete charges of that theory

without changing the type of punctures. We will discuss some examples in appendix B.

4.2 The index avatar

Let us now translate the discussion above to the language of the index. To study RG flows

generated by vacuum expectation values at the level of the index one needs to study its

analytical properties. Different poles of the index correspond to operators for which a vev

can be turned on with residues being indices of the theories flown to in the IR [12].

To study analytical properties of the index we first take an index of a generic theory

corresponding to a Riemann surface and glue to it the free trinion. See figure 12. The

index of such a theory is given by

I2
V

∮
dz1

4πiz1

∮
dz2

4πiz2
I (z)

Γe
(pq
t (βγ)±1z±1

1 z±1
2

)

Γe
(
z±2

1

)
Γe
(
z±2

2

) (4.2)

Γe

(
t
1
2 z±1

1 u±1
1 αγ

)
Γe

(
t
1
2 z±1

1 u±1
2 α−1β−1

)
Γe

(
t
1
2 z±1

2 u±1
1 α−1β

)
Γe

(
t
1
2 z±1

2 u±1
2 αγ−1

)
.

We depict in figure 13 the fugacities associated to different fields of the free trinion. A

class of poles in the index above occurs whenever the integration contours are pinched

while varying the fugacities. We look thus for pinchings of the integration contours. The
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Figure 12. Gluing the free trinion to a general theory.

u2

Q1 : α−1β−1

Q̃1 : αγ

Q̃2 : αγ−1

u1 z1

z2

Q2 : α−1β

Figure 13. The glued sphere with fugacities.

poles inside and outside the integration contour coming from the free trinion are located at

in : z1 = t
1
2u±1

1 αγqnpm , t
1
2u±1

2 α−1β−1qnpm, (4.3)

z2 = t
1
2u±1

1 α−1βqnpm, t
1
2u±1

2 αγ−1qnpm,

out : z1 = t−
1
2u±1

1 α−1γ−1q−np−m, t−
1
2u±1

2 αβq−np−m,

z2 = t−
1
2u±1

1 αβ−1q−np−m, t−
1
2u±1

2 α−1γq−np−m .

When some of the in poles coincide with the out poles the integration contours are pinched

and the index develops poles. Different poles correspond to vevs for some protected op-

erators. In this section we are interested in the case of the baryonic operators obtaining

a vev.

We consider the pole in α, the fugacity associated to the U(1)α symmetry of a minimal

puncture, at α = t
1
2β−1. This pole occurs when an operator with weight tβ−2α−2, the

baryon Q2
1, gets a vacuum expectation value. Giving a vev to such an operator Higgses the

z1 gauge group. By turning on the vacuum expectation value we break the U(1)α symmetry,

i.e. we close the minimal puncture. There are similar poles at α = t
1
2β corresponding to vev

to baryon Q2
2, and α = t−

1
2 γ±1 corresponding to vevs for baryons Q̃2

i . Setting α = t
1
2β−1

the z1 integral is pinched at z1 = u±1
2 and the residue of the index becomes

IV Γe(tu
±1
2 u±1

1 β−1γ)

∮
dz2

4πiz2
I({u2, z2})

Γe(
pq
t (βγ)−1 u±1

2 z±1
2 )Γe(β

2z±1
2 u±1

1 )

Γe(z
±2
2 )

. (4.4)

Here and in what follows by residue we more precisely mean the following operation,

2IVResu→u∗
1

u1u2
F(u) → R̃esu→u∗F(u) . (4.5)
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Figure 14. The sphere with two maximal punctures of the same kind and one minimal puncture.

This corresponds to Nf = 4 SU(2) SQCD with some singlet fields and a superpotential.

This operation is natural as it removes the decoupled free chiral associated to the Goldstone

boson index of which is I−1
V . The factor of 2 appears since the U(1)α charge of the baryonic

operator which is getting a vev is 2.

In particular, if the general theory of index I({u2, z2}) is just a free trinion, the residue

is the index of an Nf = 4 SU(2) SQCD with additional singlet fields and superpotentials.

Let us denote the field corresponding to the prefactor in the integral M , which is in bifun-

damental of SU(2)u1 × SU(2)u2 . The fields in the numerator of the integral are a quark Φ

in fundamental of SU(2)u2 and a quark Q′ in the fundamental of SU(2)u1 . In I({u2, z2})
we have the contribution of additional four quarks, Q1 and Q̃1, and four gauge singlets in

a fundamental of SU(2)u2 which we denote by M1,2. The superpotential then is,

ΦMQ′ + ΦQ1M1 , (4.6)

with M2 being free fields. This theory enjoys an action of large duality group [37–41].

Under our assumptions that the RG flows generated by vacuum expectation values

should leave us in our class of theories, the Nf = 4 SU(2) gauge theory should be associated

to a Riemann surface. In fact it can be only associated to a sphere with one minimal

puncture and two maximal punctures of the same type. This is a new, interacting, trinion

we discover in our bootstrap procedure. Note that here the two maximal punctures are of

same color and thus the theory should be invariant under exchanging the two factors of

the associated flavor symmetries. This new trinion is depicted in figure 14. For general k

such a trinion can be obtained by gluing together k free trinions and closing k− 1 minimal

punctures in certain way.

Let us study what this residue teaches us about the functions ψλ, ψ̃λ and φλ. As we

take the residue for a minimal puncture fugacity and flip the other (anti)baryon, the wave

function φλ(α) in the sum is replaced by the insertion of certain functions of the intrinsic

fugacities, i.e.

C
(β,±)
λ ≡ Γe(pqβ

±4)R̃es
α→t 12 β±1

φλ(α) ,

C
(γ,±)
λ ≡ Γe(pqγ

∓4)R̃es
α→t− 1

2 γ±1
φλ(α) , (4.7)

which we can interpret as the contribution to the index sum of a unit of positive or negative

discrete charge for U(1)β or U(1)γ . Notice that it must be true that

C
(β,+)
λ C

(β,−)
λ = 1 , C

(γ,+)
λ C

(γ,−)
λ = 1 , (4.8)
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since as we discussed closing two minimal punctures by giving vevs to the two different

types of (anti)baryons leaves behind no discrete charge. Applying the residue prescription

to a trinion glued to a maximal puncture, we can get a neat integral relation between

wavefunctions of different color:

C
(β,−)
λ ψλ (u1, u2) = (4.9)

IV Γe
(
pqβ−4

)
Γe
(
tu±1

2 u±1
1 β−1γ

) ∮ dz2

4πiz2
ψ̃λ (z2, u2)

Γe
(pq
t (βγ)−1 u±1

2 z±1
2

)

Γe
(
z±2

2

) Γe
(
β2z±1

2 u±1
1

)
.

This relation is actually known as an elliptic Fourier transform [42], and can be inverted

by a second elliptic Fourier transform. The invertibility of the elliptic Fourier transform,

though, is precisely the index avatar of the Seiberg duality relation for an SU(N) gauge

node with N flavors and flipped baryons, which we used to show how opposite discrete

charges cancel out. Thus the elliptic inversion formula gives us the same result as directly

taking a residue of a free trinion glued to a φλ wave function:

C
(β,+)
λ ψ̃λ (u1, u2) = (4.10)

IV Γe
(
pqβ4

)
Γe
(
tu±1

2 u±1
1 βγ

) ∮ dz2

4πiz2
ψλ (z2, u2)

Γe
(pq
t βγ

−1 u±1
2 z±1

2

)

Γe
(
z±2

2

) Γe
(
β−2z±1

2 u±1
1

)
.

Computing residues of the basic four punctured sphere and removing the appropriate

singlets we thus get new trinions with indices,

I(β,±) =
∑

λ

C
(β,±)
λ ψλ(u)ψλ(v)φλ(α) . (4.11)

This is the SU(2) Nf = 4 SQCD with singlets and superpotential we discussed above. It

will be very useful when we derive the difference equations satisfied by ψλ.

We can consider closing the minimal puncture in the new interacting trinion. The theo-

ries obtained in this way would correspond to spheres with two maximal punctures of same

color and with non vanishing discrete charges. We will discuss briefly these constructions

in appendix B.

5 Closing maximal punctures

Our next aim is to give evidence for existence of theories corresponding to spheres with

maximal punctures only. To do so we will study RG flows triggered by the vev of chiral

mesonic operators which are charged only under symmetries associated to a single maximal

puncture and the intrinsic symmetries. To have a concrete example, to which we will refer

in the discussion below, the generic theory glued to a free trinion in the previous section can

be taken to be a sphere with two maximal and many minimal puncture, but the discussion

is completely generic and example independent.
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A1 k = 2. The analysis of a general case is a bit cumbersome so we choose to start our

discussion with A1 and k = 2 and gradually crank up these parameters. In the class S
theories of type A1, maximal punctures turn out to be equivalent to minimal punctures,

though they appear different in the brane construction, essentially because mesons and

baryons are on the same footing in linear quivers of SU(2) gauge groups.

For k = 2 maximal and minimal punctures are clearly different. The simplest choice

of chiral operators charged under the global symmetries of a maximal puncture are the

meson operators QiQ̃i with fugacities u±1
1 u±1

2 t
(
β
γ

)±1
. We refer to fugacities and fields as

depicted in figure 13. Turning on vevs for a single meson operator breaks the SU(2)u1 ×
SU(2)u2 flavor symmetry down to an U(1)δ subgroup. Thus we may hope it will result in

a minimal puncture.

Without loss of generality we can focus at first on giving a vev to the operator Q1Q̃1,

with fugacity (u1u2)−1t γβ . More specifically, we give a vev to the component of Q1 with

gauge charge 1 under the SU(2)1 and Q̃1 with gauge charge −1. When turning on these

vevs, we need to re-define the intrinsic global symmetries and define U(1)δ by appropriate

combinations of the old global and gauge symmetries, in such a way that the fields getting

a vev are neutral under the new global symmetries.

At the level of fugacities, this is accomplished by setting the the SU(2)u1 × SU(2)u2
fugacities to (u1, u2) = (t

1
2
γ
δ , t

1
2
δ
β ) with δ being a fugacity for U(1)δ and the gauge fugacity

for SU(2)1 to z1 = αδ.

As we turn on the vev for these chiral fields, some other fields are lifted by the cubic

superpotentials, which become mass terms. The SU(2)z1 gauge field is Higgsed and only

SU(2)z2 is left to glue the other free trinions to the one we triggered the mesonic vev in.

The crucial observation is that the surviving gauge groups only interact with chiral

fields which have the same charge under U(1)α and U(1)δ. This is obvious for the fields in

the general theory we glued to the free trinion, which are only charged under the diagonal

combination of the two, i.e. have fugacities depending only on z1 = αδ. Among the chiral

fields coupled to SU(2)z2 , the only ones which have different U(1)α and U(1)δ charges have

fugacities β
γ z
±1
2 ( δα)±1 and are exchanged by permuting α and δ. Other surviving fields have

fugacities pq
t (αδβγ)±1z±1

2 .

The surviving chiral fields which are not charged under SU(2)z2 have fugacities tα2γ2,

tδ−2γ2, tα−2β−2, and tδ2β−2. In order to find a complete symmetry between U(1)α and

U(1)δ we need to remove (“flip”) the fields with fugacity tδ2β−2 and tδ−2γ2, by adding

new fields of fugacity pq(tδ2β−2)−1 and pq/(tδ−2γ2) with quadratic superpotential cou-

plings, and add chiral fields with fugacity tδ−2β−2, tδ2γ2 with appropriate superpotential

couplings.

Thus we find that by giving vev to a meson and adding some extra neutral chirals

linearly coupled to chiral operators of the original theory we arrive to a theory which

has an extra explicit symmetry, permuting the unbroken δ fugacity with (any)one of the

minimal punctures fugacities. In other words, starting say from a linear quiver built by

concatenating free trinions we have produced a quiver gauge theory which can be rightfully

labelled by a single maximal puncture and several minimal ones. An alternative perspective
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is that the surviving fields in the “α” free trinion, together with the new chiral fields, define

a “quiver tail” which can be appended to a negative maximal puncture with color 1 in order

to convert it to two minimal punctures of fugacities α and δ.

Notice that we could have obtained a similar result starting with the second set

of mesons at the original maximal puncture. That would have imposed fugacities, say,

z2 = αδ′, (u1, u2) = (t
1
2βδ′, t

1
2

1
γδ′ ) pole corresponding to vev for Q2Q̃2. This would have

produced an a priori different way to reduce the maximal puncture to a minimal one.

It turns out that we can ascribe the difference between the two possible ways to map

maximal to minimal to a difference in discrete charges. Indeed, we can probe the difference

between these two choices further by closing the newly-created minimal puncture by giving

vev to baryonic operators of fugacity δ2tγ±2 or t 1
δ′2
β±2.

At the level of fugacities, if we set, say, δ = t−
1
2 γ in the relations (u1, u2) = (t

1
2
γ
δ , t

1
2
δ
β ) =

(t, γβ ) for the first type of maximal to minimal reduction we obtain the same result as if

we were setting δ′ =
√
tβ−1 in the same type of maximal to minimal reduction (u1, u2) =

(t
1
2βδ′, t

1
2

1
γδ′ ) = (t, βγ ) due to Weyl symmetry of u2. Similarly, setting δ = t−

1
2β in the

first reduction is equivalent to setting δ′ =
√
tγ−1 in the second one. A detailed analysis

of the reduction procedure shows that these pairs of ways to completely close the maximal

puncture are indeed equivalent, even when keeping track of the neutral chiral fields we

added in the process, as long as we remove an additional singlet chiral field with fugacity
β2

γ2
in the first way to reduce maximal to minimal and γ2

β2 in the second way.

Thus we conclude that reducing a maximal puncture to a minimal puncture by giving

a vev to a meson with fugacity proportional to γ
β or to a meson with fugacity proportional

to β
γ give class S2 theories with discrete charges which differ by one unit of U(1)β curvature

and one unit of U(1)γ curvature.

As we have identified a “quiver tail” which can be attached to a maximal puncture to

obtain two minimal punctures, it is natural to do the same step which in class S leads to

the definition of non-trivial trinion theories: we can conjecture the existence of SCFTs with

one puncture of color 0 and two of color 1 (and appropriate choices of discrete charges),

with the property that attaching a quiver tail to one puncture of color 1 will produce our

basic core theory built from two free trinions. As we have two different versions of the

quiver tail, we seem to need at least two distinct SCFTs, with discrete charges differing by

one unit of U(1)β curvature and one unit of U(1)γ curvature.

It is instructive to look a bit further to the combination of vevs which we expect to

produce and close a minimal puncture starting from a maximal one. It corresponds to

giving a vev to mesons with fugacities t γβu
−1
1 u−1

2 and tβγu
−1
1 u2. This implies a vev for

both chiral fields with fugacity u−1
1 z−1

1

√
tαγ and u−1

2 z1

√
tα−1β−1 and chiral fields with

fugacities u2z
−1
2

√
tγ−1α and u−1

1 z2

√
tα−1β. If we are working with a standard core theory

built from a sequence of trinions, these vevs force us to turn on chiral fields in the next free

trinion as well, because of the cubic superpotential couplings of the second and third fields

to the Φ field of fugacity pq
t βγz

−1
1 z2: the extremum equations for Φ require us to turn on

a vev for the meson of fugacity t 1
βγ z1z

−1
2 in the next free trinion. Looking at the theory

in detail, we find that the original free trinion has been completely eliminated, while the
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next free trinion is precisely subject to the vev which reduces the maximal puncture to

minimal. This is just another manifestation of the S-duality relations which permute the

minimal punctures of the theory.

Although we do not have an intrinsic way to compare discrete charges between theories

with different types of punctures, we can use some symmetry considerations to set up some

useful conventions. Let’s declare that the core theories have zero discrete charges. We

have several different ways to produce a theory with a single maximal puncture and several

minimal ones: a minimal puncture can be produces starting from a maximal puncture of

either color, which can be reduced in two ways.

We saw that the two ways of reducing a puncture of color 0 differ by one unit of

U(1)β curvature and one unit of U(1)γ curvature. In a similar fashion, the two ways of

reducing a puncture of color 0 differ by one unit of U(1)β curvature and minus one unit of

U(1)γ curvature. Finally, we saw that reducing a puncture of color 0 and then closing the

resulting minimal puncture in a specific way is the same as reducing a puncture of color 1

in a theory with one fewer minimal punctures.

Thus it is natural to pick the following symmetric convention to compare the discrete

charges of theories before and after reducing maximal punctures: giving a vev to a meson

with fugacity proportional to γ±1β∓1 in a color 0 puncture adds ∓1/2 unit of β charge and

±1/2 of γ charge, while giving a vev to a meson with fugacity proportional to γ±1β±1 in

a color 1 puncture adds ±1/2 unit of β charge and ±1/2 of γ charge.

A1 general k. The general k case for N = 2 is not much harder to analyze, except

that now both orientation and color matter. We will proceed by analogy with our k = 2

analysis, and give a prescription to reduce a maximal puncture to minimal.

Our prescription will be to give a vev to mesons of fugacity uiu
−1
i+1tβiγ

−1
i . We can

give a vev to up to k − 1 of them, say for i = 1, · · · , k − 1. Thus we give a vev to chiral

fields of fugacity uiz
−1
i

√
tβiα

−1 and ziu
−1
i+1

√
tγ−1
i α and Higgs k − 1 SU(2) groups, leaving

only SU(2)k. The chiral field vevs enter the cubic superpotential couplings of the Φ fields

between SU(2)i and SU(2)i+1 for i = 1, · · · , k − 2. They force us to also give a vev to the

mesons in the nearby trinion, with fugacities ziz
−1
i+1tβi+1γ

−1
i for i = 1, · · · , k − 2. In turn,

these fugacities Higgs k−2 SU(2)i gauge fields in the next column, for i = 1, · · · , k−2, but

also force us to turn on k − 3 mesons at the next trinion, etcetera. The result is that one

end of our quiver of (k − 1)k SU(2) gauge groups is modified to take a triangular shape,

with columns of k − 1, k − 2, · · · , 1 SU(2) gauge groups. See figure 15 for illustration.

We can parameterize the zi and ui in terms of a parameter δ, so that in general the

zi are proportional to (αδ)−1 and the ui proportional to δ−1. Thus in order to identify

a symmetry exchanging α and δ we need first to make sure that the fields charged under

SU(2)k satisfy such a symmetry. Then we can try to impose the symmetry on neutral

fields by adding extra neutral chirals. The relevant fields have fugacities u±1
k z±1

k

√
tβkα

−1

and z±1
k u±1

1

√
tγ−1
k α. Half of these receive masses by the meson vevs, the other half are

u−1
k z±1

k

√
tβkα

−1 and z±1
k u1

√
tγ−1
k α. They are symmetric if we set δ−2 = u1ukγ

−1
k β−1

k .

Notice that we have set u2 = u1tβ1γ
−1
1 , etcetera. Thus u1uk = u2

1t
k−1

∏k−1
i=1 βiγ

−1
i and

thus δ−1 = u1t
(k−1)/2β−1

k .
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Figure 15. Example of closing a maximal puncture in a linear quiver with k = 3. Giving a vev

to the two mesons denoted by dashed brown lines in the left column the SU(2)3 group denoted by

filled green dots is broken down to U(1). These vevs also Higgs two of the three gauge groups in

the second column. The vevs for the mesons through superpotential interactions generate vevs for

a meson in the second column, again denoted by dashed brown lines. This meson Higgses another

SU(2) gauge group. We end up with a “triangle” of unbroken gauge groups denoted by white dots.

Next we can focus on the lack of symmetry exchanging the α and δ symmetries of

neutral fields. The trinion fields have fugacities u±1
i z±1

i

√
tβiα

−1 and z±1
i u±1

i+1

√
tγ−1
i α, but

the ones which do not get vevs nor masses and are not eaten by the Higgs mechanism are the

ones with fugacities u−1
i z±1

i

√
tβiα

−1 and z±1
i ui+1

√
tγ−1
i α. Half of the fields have fugacities

proportional to α2, i.e. tβ2
i α
−2 and tγ−2

i α2, and are remnants of the baryons. The other half

has α-independent fugacities u−2
i and u2

i+1 proportional to δ±2. If we remove them through

linear couplings to new neutral chirals, and replace them with chirals of fugacities tβ2
i δ
−2

and tγ−2
i δ2 and appropriate superpotential couplings, we arrive at a theory symmetric in

α and δ. For the consistency of the picture with further closing the minimal puncture we

might need to decouple additional singlet fields charged only under the intrinsic symmetry;

we will not analyze this here.

Thus we learned how to convert a maximal puncture to a minimal puncture, in k

different ways. As for k = 2, these different procedures leave one with different amounts

of discrete charges on the surface. For general k we can consider giving vevs to different

combinations of mesons closing a maximal puncture down to a puncture Λ with symmetry

U(1) ⊂ GΛ ⊂ SU(2)k. On the quiver such choices are classified by carving out multiple

triangular wedges from the tail. We will not embark on tail classification here though it is

a very interesting problem to discuss. See figure 16 for illustration. We can call punctures

accessible from maximal punctures by RG flows triggered by vevs of mesons “regular”

punctures in analogy with class S. There might be other types of punctures one would

want to consider but that goes beyond the analysis of this paper.

AN−1 and general k. Let us now analyze the reduction of maximal punctures in AN−1

class Sk theories. The basic idea is the same as in A1 case but now we have many more

mesons and thus the details are more involved. For general AN−1 even in class S there is

a variety of possible punctures labelled by Young diagram [8] and to get from a maximal

one to minimal one has to turn on vevs for many mesons.

We begin our most general AN−1 class Sk discussion by prescribing a vev for mesons

of fugacity u
(a)
i+1(u(a))−1

i tβiγ
−1
i . We can give a vev to up to (N − 1)(k − 1) of them, say
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Figure 16. Example of closing a maximal puncture in a linear quiver with k = 3 down to a non-

minimal one. We give a vacuum expectation value to a single meson. This breaks the flavor group

to SU(2)2 ×U(1) and Higgses one of the gauge groups in the next column. This, next to maximal,

puncture together with the maximal and minimal ones are the only “regular” punctures of the A1

class S3. This puncture comes in several varieties depending on the color of the maximal puncture

we start with and the particular meson we choose to trigger the flow.

for i = 1, · · · , k − 1 and a = 1, · · · , N − 1. Thus we give a vev to chiral fields of fugacity

z
(a)
i (u

(a)
i )−1

√
tβiα

−1 and u
(a)
i+1(z

(a)
i )−1

√
tγ−1
i α and Higgs k− 1 SU(N) groups, leaving only

SU(N)k. These vevs are not yet sufficient for our purposes, as they leave N − 1 U(1)

symmetries unbroken. We will thus also turn on an extra set of N − 2 mesons, with

fugacities u
(a+1)
1 (u

(a)
k )−1tβkγ

−1
k , with a = 1, · · · , N − 2. Thus we give a vev to chiral fields

of fugacity z
(a)
k (u

(a)
k )−1

√
tβkα

−1 and u
(a+1)
1 (z

(a)
k )−1

√
tγ−1
k α with a = 1, · · · , N − 2. These

vevs Higgs SU(N)k to SU(2)k.

The vevs enter the cubic superpotentials and force us to turn on also vevs for

certain mesons in the next free trinion. Namely, we need mesons with fugacities

z
(a)
i+1(z

(a)
i )−1tβi+1γ

−1
i for i = 1, · · · , k − 2 and a = 1, · · · , N − 1, z

(a+1)
1 (z

(a)
k )−1tβ1γ

−1
k

and z
(a)
k (z

(a)
k−1)−1tβkγ

−1
k−1 with a = 1, · · · , N − 2. These vevs will Higgs the next column of

SU(N)i gauge groups to nothing, except for the last two, Higgsed again to SU(2).

These meson vacuum expectation values are implemented by vacuum expecta-

tion values for chiral fields in the next trinion of fugacities z
(a)
i+1(y

(a)
i )−1

√
tγ−1
i α

and y
(a)
i (z

(a)
i )−1

√
tβi+1α

−1 for i = 1, · · · , k − 2 and a = 1, · · · , N − 1,

as well as z
(a+1)
1 (y

(a)
k )−1

√
tγ−1
k α, y

(a)
k (z

(a)
k )−1

√
tβ1α

−1, z
(a)
k (y

(a)
k−1)−1

√
tγ−1
k−1α and

y
(a)
k−1(z

(a)
k−1)−1

√
tβkα

−1 with a = 1, · · · , N − 2. Here the y
(a)
i are the fugacities of the

next row of gauge groups. These enforce vevs of mesons at the next trinion with fugacities

y
(a)
i+1(y

(a)
i )−1tβi+2γ

−1
i for i = 1, · · · , k − 3 and a = 1, · · · , N − 1, y

(a+1)
1 (y

(a)
k )−1tβ2γ

−1
k and

y
(a)
k (y(a))−1

k−1tβ1γ
−1
k−1 and y

(a)
k−1(y

(a)
k−2)−1tβkγ

−1
k−2 for a = 1, · · · , N − 2, thus Higgsing all but

three SU(N)s to SU(2). As the vevs propagate along the quiver, the number of SU(2)

groups increases linearly. At some point SU(3) groups appear, etc.

We can parameterize the fixed z
(a)
i and u

(a)
i in terms of a parameter δ, in such a way

that z
(a)
i are proportional to αδ and u

(a)
i are proportional to δ. Thus in order to check for

a symmetry between α and δ we only need to focus on the initial trinion.

Few fields charged under the surviving SU(2) survive Higgsing and do not get a mass:

z
(a)
k (u

(N)
k )−1

√
tβkα

−1 and u
(N)
1 (z

(a)
k )−1

√
t/γkα for a = N − 1, N . In terms of the SU(2)
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fugacity z̃, such that z̃2 = z
(N−1)
k (z

(N)
k )−1, we can write z

(N−1)
k = z̃

√
z

(N−1)
k z

(N)
k and

z
(N)
k = z̃−1

√
z

(N−1)
k z

(N)
k , and the flavor fugacities as

(
z

(N−1)
k z

(N)
k

) 1
2
(
u

(N)
k

)−1√
tβkα

−1 and u
(N)
1

(
z

(N−1)
k z

(N)
k

)− 1
2
√
tγ−1
k α.

The flavor fugacities have a ratio u
(N)
1 u

(N)
k (z

(N−1)
k z

(N)
k γkβkα

−2)−1 which we want to iden-

tify with αN/δN . Thus we set δ−N = u
(N)
1 u

(N)
k (z

(N−1)
k z

(N)
k γkβk)

−1α2−N . As u
(a)
i+1 =

u
(a)
i t−1β−1

i γi, we have u
(a)
k = u

(a)
1 t1−kβkγ

−1
k and u

(N)
k = u

(N)
1 t(N−1)(k−1)(βkγ

−1
k )1−N . Also,

(
u

(N−1)
k u

(N)
k

)−1
=
∏

z
(a)
k =

(
u

(1)
1 u

(N)
1

)−1 (
t−1γkα

−1
)2−N

,

and thus δ−N = u
(N)
1 (u

(1)
1 )−1t(N−1)(k−1)+ 1

2
(N−2)β−Nk .

With this choice of δ, we have defined our global symmetries in such a way that U(1)α
and U(1)δ act in the same way on chiral fields which carry gauge charge. We will have a

bunch of gauge-neutral fields charged under both symmetries and by appropriate flips the

resulting theory can be made to be fully symmetric under exchanging the U(1)α and U(1)δ
symmetries.

We have learned how to convert a maximal puncture into a minimal one.

5.1 The index avatar

Let us discuss the above at the level of the index. As usual we specialize to the A1

k = 2 case.

The discussion above makes it clear that one should be able to produce φλ, up to a

normalization factor, by taking a residue of either ψλ or ψ̃λ at appropriate values of the

fugacities. When we defined φλ, we have normalized in such a way that the free trinion

would have a simple expansion of the form (3.10). In a 2d TFT language, it would be more

natural to introduce structure constants Cλ and write the index associated to a Riemann

surface of genus g with n punctures pa and charges qi in the schematic form

I(pa),(qi) =
∑

λ

C2g−2+n
λ

∏

i

(
Ciλ
)qi∏

a

ψpaλ . (5.1)

Thus if we use a convention where core theories have charge 0, we should write φλ = Cλψ
m
λ ,

with ψmλ being a properly normalized minimal puncture wave-function. Then with the

symmetric charge assignments discussed above, we can write

√
C

(β,−)
λ C

(γ,+)
λ ψmλ (α) = (5.2)

Γe
(
pqβ−2γ2

) Γe
(
tα−2β−2

)
Γe
(
tα2γ2

)

Γe (tα2β−2) Γe (tα−2γ2)
R̃es

(u1,u2)→
(
t
1
2 γ
α
, t

1
2 α
β

)ψλ(u1, u2) .

We can obtain three other similar relations involving the other way to reduce ψλ and the

two other ways to reduce ψ̃λ, with other prefectures of the form

√
C

(β,±)
λ C

(γ,±)
λ . Note
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that (5.2) together with (4.7) and (4.8) completely determine Cλ and C
(β/γ,±)
λ . We will

give explicit expressions for these in appendix B.

We can also describe the quiver tail which converts a maximal puncture to two minimal

punctures. To obtain this tail we glue to a maximal puncture a free trinion and subsequently

partially close the remaining maximal puncture of the free trinion to a minimal one. At

the level of the index we start from the general expression for the index of a theory glued

to a free trinion, set (u1, u2) = (t
1
2
γ
δ , t

1
2
δ
β ) and pinch the contour at z1 = αδ. The residue

of the index is given by

I = IV Γe
(
tα2γ2

)
Γe
(
tδ−2γ2

)
Γe
(
tα−2β−2

)
Γe
(
tδ2β−2

)
(5.3)

∮
dz2

4πiz2
I
(
{αδ, z2}†

) Γe
(pq
t (αδβγ)±1z±1

2

)

Γe
(
z±2

2

) Γe

(
β

γ
z±1

2

(
δ

α

)±1
)
.

The above manipulations imply a concrete relation between the wavefunctions correspond-

ing to maximal punctures and to minimal ones. For the functions ψλ, ψ̃λ, and ψmλ (5.3)

implies that,

Cλ

√
C

(β,−)
λ C

(γ,+)
λ ψmλ (α)ψmλ (δ) = (5.4)

Γe
(
pqβ−2γ2

)
Γe
(
tα2γ2

)
Γe
(
tδ2γ2

)
Γe
(
tα−2β−2

)
Γe
(
tδ−2β−2

)

IV
∮

dz2

4πiz2
ψ̃λ (z2, αδ)

Γe
(pq
t (αδβγ)±1z±1

2

)

Γe
(
z±2

2

) Γe

(
β

γ
z±1

2

(
δ

α

)±1
)
.

The relation (5.4) can be used to write the index of our core example of the four-

punctured sphere in a very suggestive form. We note that

Iuαvδ =
∑

λ

C2
λψλ (u)ψλ (v)ψmλ (α)ψmλ (δ) (5.5)

= Γe

(
pq
γ2

β2

)
Γe
(
tα2γ2

)
Γe
(
tδ2γ2

)
Γe
(
tβ−2α−2

)
Γe
(
tβ−2δ−2

)
×

IV
∮

dz2

4πiz2
I{z2,αδ}uv

Γe
(pq
t (αδβγ)±1z±1

2

)

Γe
(
z±2

2

) Γe

(
β

γ
z±1

2

(
δ

α

)±1
)
, (5.6)

where

Ihuv =
∑

λ

Cλ

√
C

(β,+)
λ C

(γ,−)
λ ψλ (u)ψλ (v) ψ̃λ (h) . (5.7)

This index can be interpreted as the index of a new strongly interacting trinion with two

lower maximal punctures and one upper puncture and discrete charges (1/2,−1/2) (see

figure 17).

The second equality in (5.5) can be interpreted as the computation of the index in

a dual description of the core theory, involving a quiver tail attached to that strongly-

interacting SCFT associated to a sphere with three maximal punctures. We can invert

the integral in (5.5) using the Spiridonov-Warnaar inversion formula, aka elliptic Fourier
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Figure 17. The sphere with two lower maximal punctures and one upper maximal puncture.

transform [42], to obtain explicitly the index of the strongly coupled theory without using

the eigenfunction. This is the same inversion procedure used in [11] to obtain the index of

the T3 theory.

We will propose an additional, related, duality which connects this interacting trinion

to a different Lagrangian theory in appendix D: SU(4) SQCD with four fundamental flavors

and two flavors in antisymmetric representation supplemented with gauge singlets and a

superpotential.

This conjectural, strongly interacting trinion theory can be used as a building block

together with the free trinion (with or without closed minimal punctures) to assemble class

S2 theories labelled by a generic Riemann surfaces of genus g with arbitrary numbers of

maximal and minimal punctures and arbitrary discrete charges.

5.2 Discrete charges for U(1)t

In our investigations we found that for the space of theories to be closed under gluings and

RG flows we have to consider the discrete curvatures for U(1)β and U(1)γ . However we did

not have to incorporate such curvatures for U(1)t. Nevertheless, we can consider turning

on these curvatures too as was done for k = 1, class S, in [17]. Let us here briefly outline

how to apply this generalization. To generalize our story we first should allow two types

of theories. These are two copies of theories we discussed till now but with R-symmetry of

the two types of theories related as

R+ = R− + 2qt− , R− = R+ + 2qt+ . (5.8)

The intrinsic and puncture symmetries of the two theories are related as

U(1)t × SU(k)β × SU(k)γ → U(1)t−1 × SU(k)β−1 × SU(k)γ−1 , (5.9)

SU(N)ku → SU(N)ku† .

To trinions of type + we associate a new Z valued charge +1 and to trinions of type − we

associate charge −1. We glue two trinions of the same type with the appropriate measure

we discussed till now, i.e. introducing bi-fundamental fields Φ and coupling them to the

mesons associated to the gauged maximal puncture through superpotential. We glue two

trinions of different types along a maximal puncture without introducing any extra fields

but turning on a quartic superpotential which is a product of the mesons associated to the
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√
pq
t αγ

−1

t
1
2γδ

t
1
2β−1δ−1

v2

√
pq
t αγ

√
pq
t α

−1β

√
pq
t α

−1β−1

u2

u1

v1
t
1
2γ−1δ

t
1
2βδ−1

Figure 18. An example of a theory with flux for U(1)t. The A1 k = 2 sphere with two maximal and

two minimal punctures built from two trinions of opposite type with the fugacities associated to the

matter fields. The white nodes correspond to gauged SU(2) groups with the colored one to flavor

SU(2) groups. Note that in our conventions the quarks in the trinion on the left have R-charge zero

and on the right R-charge one. Each gauge node has four flavors. We turn on superpotentials for

the two “diamond” paths in the quiver.

gauged puncture from the two glued theories. At each gauge node we have here Nf = 2N .

See figure 18 for an example. A way to derive the map of symmetries (5.9) is to study

anomaly free gluings of two free trinions of different type as depicted in figure 18.

If we consider only one type of theories as we did till now the new Z valued charge will

have a fixed value, which we can take to be ±(g− 2 + s) with s being the total number of

punctures and the sign determined by which class of trinions we use. However when we glue

theories of the two types together and start triggering RG flows closing minimal punctures

arbitrary values of the new Z valued charge can be achieved. It would be interesting

to develop this generalization in more detail. We make some comments on the index of

theories with U(1)t discrete charges in appendix E.

6 Surface defects

In this section we will use the strategy of [12] in order to produce difference operators

which act diagonally on wavefunctions, associated to BPS surface defects produced by a

“vortex construction”, i.e. RG flows initiated by position-dependent vevs of chiral opera-

tors. Consider two theories TUV and TIR connected by an RG flow initiated by a constant

vev of a chiral operator of charge 1 under some U(1)α global symmetry. If we couple the

theory TUV to a “vortex”, i.e. background connection for the U(1)α global symmetry, with

n units of flux concentrated near the origin of the plane, we can give the chiral operator a

vev which is constant at infinity, but has a zero of order n near the origin. An RG flow far

to the IR will leave us with a surface defect in TIR.

At the level of the index, the vortex construction of surface defect is very simple. The

index of TUV has a pole at some value α0 of the fugacity of U(1)α whose residue is the

index of TIR. The pole is accompanied to an infinite family of poles located at α0q
n, whose

residues give the index of TIR in the presence of the vortex defect of order n.

Let us take a general theory in class Sk and attach to it a sequence of k free trinions to

produce a new theory with k extra minimal punctures and the same discrete charges. We

know that we can recover the original theory by turning on a baryonic vev for each new
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Figure 19. Gluing the intercting trinion to a general theory.

minimal puncture, as long as we pick k baryons with distinct U(1)βi charges or anti-baryons

with distinct U(1)γi charges.

Thus we can produce 2k classes of interesting surface defects Sβi,n and Sγi,n by making

the vev of one of the k baryons position dependent, or one of the k anti-baryons.

Of course, we could also state the construction in term of the interacting trinions built

from a sequence of k free trinions by closing k − 1 minimal punctures. This will save us a

bit of work below.

6.1 The index avatar

The surfaces defects are very useful in the index considerations since they allow to fix the

functions ψλ(u) by specifying them as eigenfunctions of certain difference operators. As

usual, we specialize here to k = 2 and N = 2.

The index of the interacting trinion is given by,

I(β,−) = Γe
(
pqβ−4

)
Γe
(
tγβ−1v±1

1 v±1
2

)
Γe

(
t
1
2βα−1u±1

1 v±1
2

)
Γe

(
t
1
2 γ−1αu±1

2 v±1
2

)
× (6.1)

IV
∮

dz

4πiz

Γe

(
pq
tβγ v

±1
2 z±1

)

Γe (z±2)
Γe
(
β2v±1

1 z±1
)

Γe

(
t
1
2

βα
u±1

2 z±1

)
Γe

(
t
1
2 γαu±1

1 z±1
)
.

We remind the reader that this theory was obtained by closing a minimal puncture of a

sphere with two minimal and two maximal punctures by giving a vev to a baryon which set

δ = t
1
2β−1. The symmetry between u and v is not manifest here, it follows from the duality

property of the basic four punctured sphere. We glue this trinion to a generic theory by

gauging one of the maximal punctures (see figure 19). The resulting index is

I = I2
V

∮
du1

4πiu1

∮
du2

4πiu2

Γe

(
pq
t

(
β
γ

)±1
u±1

1 u±1
2

)

Γe
(
u±2

1

)
Γe
(
u±2

2

) I0

(
u†
)
I(β,−) (u,v, α) . (6.2)

This index has many interestng poles. If one computes the residue at α = t
1
2β we will

erase the minimal puncture and obtain precisely the index of the generic theory we glued

the trinion to. As an operatorial statement we say that computing the residue at α = t
1
2β

amounts to acting with identity operator on I0.

Next we can consider poles in α which have additional powers of q. We claim that this

index has, among many others, a pole when α = t
1
2βq

1
2 . This corresponds to the simplest

position-dependent vev for the baryon operator.
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The pole is produced by pinching the integration contours between poles of the in-

tegrand. The poles arise from the Γe functions associated to the chiral multiplets which

receive a vev. In particular, we have a collision of poles of Γe(t
1
2βα−1u±1

1 v±1
2 ) and obtain

a finite residue at2

u1 = q±
1
2 v±1

2 , u2 = q±
1
2 v±1

1 . (6.3)

Computing the residue is tedious, but straightforward. If we define

T (v1, v2;β, γ, t) =

θ

(
tv−1

1 v−1
2

q

(
γ
β

)±1
; p

)
θ
(
tβv1
γv2

; p
)
θ
(
tβ3γv2
v1

; p
)

θ
(
v2

1; p
)
θ
(
v2

2; p
) , (6.4)

the residue is computed by acting with the following operator on I0,

S
(β,−)
(0,1) · f(v1, v2) =

∑

a,b=±1

T (va1 , v
b
2;β, γ, t)f(q

a
2 v1, q

b
2 v2) . (6.5)

Since the theories we consider enjoy S-duality we can act with the difference operator on any

of the maximal punctures with the same outcome [12]. The functions ψλ are eigenfunctions

of S
(β,−)
(0,1) . This operator introduces a surface defect into the N = 1 theories of A1 class S2.

We can start from the trinion with opposite β discrete charge and close a minimal

puncture with t
1
2β−1, or start with one of the trinions with γ discrete charge and close the

minimal punctures appropriately. The difference operators one obtains are all related to

the above,

S
(γ,−)
(0,1) · f (v1, v2) =

∑

a,b=±1

T
(
va1 , v

b
2; γ, β, t

)
f
(
q
a
2 v1, q

b
2 v2

)
, (6.6)

S
(β,+)
(0,1) · f (v1, v2) =

∑

a,b=±1

T
(
va2 , v

b
1;β−1, γ−1, t

)
f
(
q
a
2 v1, q

b
2 v2

)
,

S
(γ,+)
(0,1) · f (v1, v2) =

∑

a,b=±1

T
(
va2 , v

b
1; γ−1, β−1, t

)
f
(
q
a
2 v1, q

b
2 v2

)
.

The functions ψλ should be simultaneous eigenfunctions of all these operators and indeed

it can be checked that these operators do commute.

We can now in principle compute more difference operators introducing more general

surface defects by computing other residues of the index above, with higher n. It is a priori

straighforward but tedious exercise and we refrain from doing it here.

We leave a systematic study of the difference operators and wavefunctions with generic

fugacities to future work. Here we will take some degeneration limits which simplify the

analysis considerably and allow us to write down some simple, explicit formulae. Although

for a general N = 1 theory the limit p→ 0 of the index may not be well defined, or useful,

2Setting α = t
1
2 βq

1
2 and u1 = q±

1
2 v±1

2 in (6.1) one flavor becomes massive and we can evaluate the

integral in terms of the Seiberg dual mesons [43]. With the particular charges and generic fugacities for

global symmetries appearing in (6.1) one of the mesons contributes zero. However tuning u2 = q±
1
2 v±1

1

another meson contributes a pole which cancels the zero.
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the indices of class Sk theories with the choice of fugacities used in this paper appear

to have a reasonable p → 0 limit, akin to the Macdonald limit of the index of N = 2

gauge theories. In this Macdonald-like limit, the eigenfunctions of this difference operator

orthonormal under the vector multiplet measure become (experimentally) polynomials up

to an universal pre-factor.

The measure under which the polynomial part of the eigenfunction is orthogonal is

∆k,N (z) =

k∏

`=1

∏N
a 6=b((z

a
` )(zb`)

−1; q)
∏N
a,b=1(t β−1

` γ` z
a
` (zb`+1)−1; q)

, (6.7)

with k = 1, N = 2, and β1 = β, γ1 = γ. This is a generalization of the AN−1 Macdonald

measure. We will discuss a straightforward algorithm to compute the eigenfucntions by

diagonalizing the difference operators in Macdonald limit in appendix B.

Let us here quote the results if we further set β, γ = 1 and take the Hall-Littlewood-like

limit p, q = 0. For the first several wavefunctions we find

ψ̂(0) =
1

(1− t z±1
1 z±1

2 )2
, (6.8)

ψ̂(1)± =
1

(1− t z±1
1 z±1

2 )2
((z1 + z−1

1 )± (z2 + z−1
2 )),

ψ̂(2)0 =
1

(1− t z±1
1 z±1

2 )2
((z2

1 + z−2
1 )− (z2

2 + z−2
2 )),

ψ̂(2)± =
1

(1− t z±1
1 z±1

2 )2
×


−

(
±
√

2− t2 + t
) (
z4

1 + 1
)

2 (t2 − 1) z1
2

−

(
±
√

2− t2 + t
) (
z2

4 + 1
)

2 (t2 − 1) z2
2

±
√

2− t2 − t+

(
z1 +

1

z1

)(
z2 +

1

z2

)
 .

The hat on the functions reminds us that these functions are not normalized to be or-

thonormal. Note that the coefficients of the polynomials here are algebraic expressions,

roots of polynomial equations, as opposed to rational expressions in the N = 2 case. The

N = 1 theories are in this sense irrational though algebraic. The indices are single valued

sums over roots of algebraic equations. We denote the normalized functions

ψλ (z) =
χλ (z)

(
1− t z±1

1 z±1
2

)2 , (6.9)

where χλ(z) is a polynomial. The HL index of the free trinion is then given by

Izyα =

[
1

1− tz±1
1 z±1

2

1

1− ty±1
1 y±1

2

1− t2
1− tα±2

]2∑

µ

χµ (z1, z2) χµ (y1, y2) χµ

(
t
1
2α, t

1
2α−1

)

χµ (1, t)
.

(6.10)
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As we will see in appendix B the index of the interacting trinion with three maximal

punctures becomes

Izyx =

[
1

1− tz±1
1 z±1

2

(1− t2)2

1− ty±1
1 y±1

2

1

1− tx±1
1 x±1

2

]2∑

µ

χµ(z1, z2)χµ(y1, y2)χµ(x1, x2)

χµ(1, t)
.

(6.11)

When β, γ = 1 there is no difference between the colors of punctures and we are blind to

the different discrete charges.

In appendix B we will write the general expressions for the index of any theory in class

S2 when p = 0.

7 Five dimensional interpretation

In this section we will re-examine our four-dimensional discussion in the language of bound-

ary conditions and interfaces for a N = 1 five-dimensional gauge theory NN,k, the necklace

quiver formed by k SU(N) gauge groups. This model is the world-volume theory of D4

branes sitting at an Ak−1 singularity and conjecturally arising from the compactification

on a circle of the six-dimensional SCFTs which inspire our work. Our intuitive picture

is that a Riemann surface with s semi-infinite tubes labels interfaces between s copies of

NN,k defined on half-spaces.

Our first task is to review the properties and definitions of boundary conditions and

interfaces for five-dimensional N = 1 gauge theories

7.1 Generalities

A five-dimensional N = 1 gauge theory is labelled by a gauge group G, a flavor group

F and a quaternionic representation of G× F which specifies the hypermultiplet content.

The hypermultiplets can be given real masses associated to the Cartan sub-algebra of F .

The gauge couplings of G can be identified as real masses associated to “instanton” global

symmetries U(1)I whose conserved currents are of the schematic form ∗TrF ∧ F . We can

denote the full global symmetry group as F̂ = F ×U(1)I . The theory is further labelled by

a choice five-dimensional Chern-Simons couplings κ, which may be integral or half-integral

depending on the amount of matter fields.

Although the gauge theories may have strongly-coupled UV completions, in the IR

they are free. That implies that the gauge groups can be treated as very weakly coupled

when describing a boundary condition. A simple class of boundary conditions is labelled by

two pieces of data: the subgroup G∂ of the gauge symmetry preserved at the boundary and

a choice of boundary condition for the hypermultiplets. Somewhat more general boundary

conditions are possible, which involve a generalization of the Nahm pole which occurs in

the maximally symmetric case. We will come back to these later in the section.

The boundary condition for the hypermultiplets can be strongly coupled. If the hyper-

multiplets pseudoreal representation is the sum of two conjugate representations, a general

construction is available, which starts from some free boundary conditions and adds su-

perpotential couplings to extra four-dimensional N = 1 degrees of freedom living at the
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boundary. If we denote the two halves of the hypermultiplets as X and Y , we can start

from a Y = 0, ∂⊥X = 0 boundary condition and add a linear superpotential coupling

W = XOX , (7.1)

to an operator OX in a boundary theory BX . Alternatively, we can start from a X = 0,

∂⊥Y = 0 boundary condition and add a linear superpotential coupling

W = Y OY , (7.2)

to an operator OY in a boundary theory BY . As long as we focus on F-terms only, the two

constructions are essentially equivalent: BY can be obtained from BX by “flipping” OX ,

i.e. by introducing a new chiral field φ with superpotential coupling φOX . Then OY ≡ φ.

A particular case is that the X = 0, ∂⊥Y = 0 can be obtained from Y = 0, ∂⊥X = 0 by

adding a chiral with Xφ coupling, and vice versa.

Boundary conditions for a five-dimensional gauge theory may have various anomalies.

The boundary cubic gauge anomaly receives three contributions:

• The bulk Chern-Simons coupling.

• The boundary theory.

• The boundary condition for the bulk hypermultiplet: Y = 0, ∂⊥X = 0 contributes

half of the anomaly of a boundary chiral field with the same charge as X.3 This half

is the reason the bulk CS coupling may sometimes be half-integral.

The total gauge anomaly for G∂ must cancel out.

We also have various sources of ’t Hooft anomalies. This includes cubic and mixed

anomalies arising from the boundary theory, the boundary condition for the hypermultiplets

and the bulk CS couplings. The R-symmetry anomaly also receives contributions from the

boundary conditions for the gauge fields, which is half of what a four-dimensional G∂
multiplet would give.

7.2 A review of NN,k

The necklace quiver theory NN,k has a U(1)2k global symmetry: rotations of the bi-

fundamental hypermultiplets and instanton symmetries. See figure 2. A natural way

to parameterize these symmetries follows from the UV realization of the gauge theory as

a web of fivebranes drawn on a cylinder, with k infinite NS5 branes and N circular D5

branes, see figure 20.

The transverse position of the i-th top half-infinite NS5 brane is the mass parameter for

a U(1)β̂i symmetry which acts with charge 1 on the X
ai+1
ai fields of the i-th hypermultiplet,

−1 on the Y ai
ai+1

fields, 1/2 on the instanton charge at the (i+ 1)-th node and −1/2 on the

instanton charge at the i-th node. We define the k − 1 symmetry generators
(

U(1)k

U(1)

)
β

by

quotienting by the diagonal symmetry U(1)t.

3That follows from the symmetry between Y = 0, ∂⊥X = 0 and X = 0, ∂⊥Y = 0 and the fact that we

can switch from one to the other by a flip.
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Similarly, the transverse position of the i-th bottom half-infinite NS5 brane is the mass

parameter for a U(1)γ̂i symmetry which acts with charge −1 on the X
ai+1
ai fields of the i-th

hypermultiplet, 1 on the Y ai
ai+1

fields, 1/2 on the instanton charge at the (i+1)-th node and

−1/2 on the instanton charge at the i-th node. We define the k − 1 symmetry generators(
U(1)k

U(1)

)
γ

by quotienting by the diagonal symmetry U(1)t.

Finally, we need to pick a U(1)p symmetry generator whose mass parameter is associ-

ated to the sum of all gauge couplings, i.e. the size of the cylinder. We pick it to act on

the instanton charge at the first node.

In terms of fugacities, the hypermultiplet fields X
ai+1
ai have fugacities tβiγ

−1
i , and the

CS coupling at the i-th node is
√

βi−1γi−1

βiγi
for i 6= 1, p

√
βkγk
β1γ1

otherwise.

In the following we will encounter variants of this symmetry labeling, where the U(1)βi
and U(1)γi are permuted among themselves by permutations σ and τ respectively, and the

U(1)p symmetry generator act on the i-th node. We can denote that as N σ,τ,i
N,k . We will also

often consider boundary conditions which break U(1)p. In that case, we can refer to N σ,τ,∗
N,k .

In the low energy quiver gauge theory, the mass parameters for these global symmetries

are constrained by the requirement that the gauge couplings should be positive. The UV

description in terms of fivebranes suggest that symmetry enhancements should occur when

some semi-infinite branes are brought together. A maximal case is when all semi-infinite

branes are brought together, giving rise to a SU(k)β × SU(k)γ symmetry enhancement.

Indeed, as the branes live on a cylinder there are k distinct ways to reach such a sym-

metry enhancement, as one bring the branes together in the order i, i + 1, · · · , i − 1. The

parametrization of N σ,τ,i
N,k is adapted to that order.

We should also remember the six-dimensional UV completion of the five-dimensional

quiver gauge theory, in terms of a circle compactification of the (1, 0) SCFT correspond-

ing to N M5 branes in an Ak−1 singularity. Then U(1)p becomes the KK momentum

and SU(k)β × SU(k)γ × U(1)t become six-dimensional global symmetries. Then the five-

dimensional mass parameters are lifted to the inverse radius of the compactification circle

and to Wilson lines for the six-dimensional global symmetries.

Intuitively, we may hope to find “duality walls” in the five-dimensional gauge theory,

which express the invariance of the UV theory under permutation of two consecutive sym-

metries U(1)βi and U(1)βi+1
or U(1)γi and U(1)γi+1 . More precisely, such a wall would arise

as the low energy limit of a Janus configuration in the UV, where the mass parameters for

these symmetries are brought across each other as we move along the fifth direction.

The notion of duality walls for five-dimensional gauge theories is explored in depth

in a separate publication [44]. Here we mention them because the domain walls which

are associated to spheres with two punctures and non-trivial discrete charges will turn

out to coincide, amazingly, with the duality walls for the N σ,τ,i
N,k theories associated to

permutations of the U(1)βi and U(1)γi 5d mass parameters, i.e. of the 6d flavor Wilson

lines. This provides a powerful check of our conjectural interpretation of discrete charges

as curvature charges for the six-dimensional U(1)βi and U(1)γi global symmetries.
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γk

N D5s

k NS5s
βk

γ1

β2

β1

γ2

Figure 20. The brane picture for the necklace quiver NN,k. The top and bottom edges are

identified forming a cylinder.

7.3 Boundary conditions from maximal punctures

Consider any of our four-dimensional gauge theories, with a positive puncture of color 0.

We will build from it a U(1)p-breaking right boundary condition for NN,k, i.e. a boundary

condition for N ∗N,k
The anomalies and superpotential couplings match nicely. We can deform the X = 0

boundary conditions by coupling the Y ai
ai+1

to the mesons M
ai+1
ai . The gauge anomaly

cancels out because of the balance between fundamental and anti-fundamental fields. The

SU(N)i gauge group has a mixed anomaly associated to the fugacity tβi−1γ
−1
i from the

boundary fields,
√

(tβi−1γ
−1
i−1)−1(tβiγ

−1
i )−1 from the hypermultiplet boundary conditions,

for a total of
√

βi−1γi−1

βiγi
, which precisely cancels against the contribution from the CS

coupling for a right boundary condition. Similarly, a positive puncture of color n can be

coupled from the right to N (n+1,n+2,··· ),(1,2,··· ),∗
N,k .

We can use negatively oriented punctures to define left boundary conditions as well. For

example, if we have a negatively oriented puncture of color 0, shifting the i indices by one so

that mesons have fugacity tβiγ
−1
i and anomalies tβiγ

−1
i−1, the total anomaly

√
βiγi

βi−1γi−1
pre-

cisely cancels against the contribution from the CS coupling for a left boundary condition.

Thus a negative puncture of color n can be coupled from the left to N (n+2,n+3,··· ),(2,3,··· ),∗
N,k .

A crucial example of interface is a free trinion coupled on the left to N (2,3,··· ),(1,2,··· ),∗
N,k

and on the right to N ∗N,k. The fact that the interface breaks U(1)p is consistent with the

six-dimensional interpretation of the system as an infinite tube with a minimal puncture

with a specific location on the cylinder. Upon closing the minimal puncture, though, we

will find that U(1)p is restored.

7.4 Closing minimal punctures and duality walls

Next, we close the minimal puncture in the interface between N (2,3,··· ),(1,2,··· ),∗
N,k and N ∗N,k

by giving a vev to the bifundamental chirals of fugacity
√
tβ1α which are coupled to the

five-dimensional gauge groups SU(N)L1 and SU(N)R1 .
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The vev Higgses the two gauge groups together, so that they form a single SU(N)1

gauge group stretching across the interface. The vev also couples the bifundamentals of

fugacities
√
tγ−1

1 α−1 = tβ1/γ1 linearly to the five-dimensional hypermultiplets on the right

hand side of the interface, and
√
tγ−1
k α−1 = tβ1/γk on the left hand side, converting the

corresponding X = 0 to Y = 0 boundary conditions.

The match between the global symmetries across the new interface works almost ex-

actly as before, except for a crucial difference: the U(1)p symmetry acting on the SU(N)1

instanton charge both on the left and on the right of the interface is now unbroken! This is

consistent with the picture that the minimal puncture has been erased. We have obtained

an interface between N (2,3,··· ),(1,2,··· ),1
N,k and N 1

N,k.

It turns out that such an interface can be actually decomposed into k − 1 simpler

interfaces, each corresponding to a simple duality operation. The rightmost interface is

between N (2,1,3,4,··· ),(1,2,··· ),1
N,k and N 1

N,k and we can associate it to the permutation of β1 and

β2. The next interface is between N (2,3,1,4,··· ),(1,2,··· ),1
N,k and N (2,1,3,4,··· ),(1,2,··· ),1

N,k and we can

associate it to permutation of β1 and β3, etc.

The simple interface associated to a permutation of β1 and β2 lets all five-dimensional

gauge groups go through the interface, except for SU(N)L2 and SU(N)R2 , which are coupled

by a bi-fundamental chiral field Q of fugacity β2/β1. In turn, detQ is coupled to a gauge-

neutral chiral operator b by a linear superpotential W = b detQ.

The hypermultiplets also just go through the interface, except the ones charged under

SU(N)L,R2 . On the right, we set to zero the XR
2 field of fugacity tβ2/γ2 and the Y R

1 field

of fugacity t−1β−1
1 γ1. On the left, we set to zero the Y L

2 field of fugacity t−1β−1
1 γ2 and the

XL
1 field of fugacity tβ2γ

−1
1 . We introduce superpotential couplings QY L

1 X
R
1 +QXL

2 Y
R

2 .

This gives an interface between N (2,1,3,4,··· ),(1,2,··· ),i
N,k and N i

N,k for every i except when

i = 2. We would like to interpret it as the duality interface for permuting β1 and β2.

In a similar manner, we could consider an interface between theories N (1,2,··· ),(2,1,3,4,··· ),i
N,k

and N i
N,k for every i except when i = 2, involving a bi-fundamental chiral field Q̃ of

fugacity γ2/γ1 going in the opposite direction. We would need superpotential couplings

Q̃XL
1 Y

R
1 + Q̃Y L

2 X
R
2 . We would like to interpret it as the duality interface for permuting

γ1 and γ2.

In order to test our interpretation, we should check that these interfaces fuse in a

manner consistent with the expected properties of the permutation group of the βi and

the γi.

The first test is obvious: permuting β1 and β2 twice should give the identity, and thus

concatenating two copies of the corresponding duality interface should give a trivial inter-

face. This works indeed as expected: the SU(N)2 gauge theory in between the interfaces

gives at low energy a four-dimensional SU(N) gauge group with Nf = N , as the boundary

conditions at the interfaces eliminate completely the bulk hypermultiplets in the interval,

and only the two sets of Q chiral multiplets remain, together with the baryonic couplings.

We know that such a theory in the IR reduces to the QQ mesons with a non-zero vev, which

Higgses the five-dimensional gauge theories on the two sides of the fused interface together.

A second test is that permuting β1 and β2 should commute with permuting γ1 and

γ2. It turns out that this follows from a neat application of Seiberg duality. The SU(N)2
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gauge theory in between the interfaces now has Nf = 2N : the Q and Q̃ give 2N “quarks”,

while the bulk hypers in the interval give 2N “antiquarks”. Seiberg duality at that node

exchanges the setups which arise from fusing the interfaces in two different orders.

It is even easier to check that the interface for permuting of β1 and β2 commutes with,

say, the interface for commuting γ2 and γ3.

The σ12σ23σ12 = σ23σ12σ23 relations in the permutation group of the βi can also

be checked. If we concatenate the corresponding triplets of interfaces, we get interfaces

which support four-dimensional gauge theories which are related by the Seiberg duality of

a SU(N) theory with Nf = 2N , up to a slight mismatch in the superpotential couplings

which may perhaps explained away by operator mixing. We leave a more detailed analysis

to [44].

Finally, we can comment on the relation between different ways of closing a minimal

puncture and “curvature charges” in the six-dimensional puncture. By closing a mini-

mal puncture with chirals of fugacities proportional to βi, we obtain an interface between

N (2,3,··· ,1),(1,2,··· ),i
N,k and N i

N,k. The final order of the βj is independent of our choice, but the

interfaces glue the U(1)p action on the two sides in different ways.

We can try to match the interface with the behaviour of an Abelian SU(k) connection

on an infinite tube, asymptotically flat at the two ends, but with curvature (1, 0, 0, · · · ) in

between. The curvature will force the Wilson line parameter in the first eigenline to vary

as m1 → m1 + 1/R as we go from right to left, thus passing across all other Wilson line

parameters and back to the initial position on the circle. This seems to roughly match

what we see in the interface.

7.5 Punctures and orbifold Nahm poles

It is natural to identify a maximal puncture with a DX Dirichlet boundary condition for

the five-dimensional gauge theory, setting to zero the Y ai
ai+1

half of the hypermultiplets: if

we map a 4d theory T with a maximal puncture to a boundary condition B by coupling

it to the 5d theory, we can recover the 4d theory T from the 5d theory on a segment,

with boundary condition B at one end and Dirichlet at the other end. The surviving half

X
ai+1
ai of the hypermultiplets provide the expected “mesons” and the boundary condition

produces the desired ’t Hooft anomalies at the boundary.

The five-dimensional perspective is useful in describing other types of punctures as

well. For example, in class S general punctures are associated to a variant of Dirichlet

boundary conditions, the Nahm pole boundary conditions. In this section we generalize

that notion to the necklace quiver theories NN,k.
The boundary conditions we are after are boundary conditions for BPS equations

which describe field configurations of the 5d theory which preserve four-dimensional super-

Poincare invariance.

There are D-term and F-term equations. The F-term equations set the complex mo-

ment maps to be zero and require the hypermultiplet vevs to be covariantly constant under

a complexified gauge connection of the form D5 = D5 − Φ, where Φ is the scalar super

partner of the gauge bosons. The D-term equations set D5Φ to be equal to the real moment
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map for the hypermultiplets. For the necklace quiver, we can write schematically

XiYi = Yi+1Xi+1 , D5Xi = Φi+1Xi −XiΦi , D5Yi = ΦiYi − YiΦi+1 , (7.3)

D5Φi+1 = XiX
†
i − Y

†
i Yi −X

†
i+1Xi+1 + Yi+1Y

†
i+1 .

We are interested in deformations of the DX boundary conditions, which still set the

Yi fields to zero but enforce a singular behavior of the Xi, Φi fields,

Xi ∼ −
Bi
x5

, Φi ∼ −
Ai
x5

, (7.4)

with

Bi = Ai+1Bi −BiAi , Ai+1 = BiB
†
i −B

†
i+1Bi+1 . (7.5)

We can call these boundary conditions orbifold Nahm poles.

Notice that we can organize the Ai and Bi matrixes into two kN ×kN matrices t3 and

t+, with t3 block diagonal of blocks Ai and t+ with blocks Bi under the diagonal. The t+

and t3 give an SU(2) embedding ρ into SU(kN), with the property that t3 commutes with

a diagonal matrix Ω with N eigenvalues equal to 1, N equal to e2πi/k, etc. while t+ has

charge 1 under the action of Ω.

If we start from DX and we give a vev to the “mesons”, i.e. the boundary values of

the Xi, such that the kN × kN matrix M with blocks Xi under the diagonal is nilpotent,

it is natural to expect the boundary condition to flow in the IR to the orbifold Nahm pole

labelled by the su(2) embedding ρ in SU(kN) associated to M .

The vevs we used to fully close a maximal puncture are a perfect example of this setup:

the “chain” of k(N − 1) meson vevs engineers a nilpotent matrix M with a single, large

Jordan block.

8 Discussion

In this paper we have given a basic description of some the properties of class Sk theo-

ries. Starting from core theories which we associate to spheres with two maximal and a

bunch of minimal punctures we discovered that in order to build classes of theories closed

under gaugings and RG flows triggered by vevs for a very particular set of chiral operators

we should consider theories which are naturally associated to spheres with more general

combinations of punctures. Moreover, the theories should be labelled not just by a punc-

tured Riemann surface, but also by a collection of discrete charges. Some of the theories

which followed from our considerations are strongly coupled SCFTs. Some of these can

be thought of as IR fixed points of a Lagrangian theory but some lack such a description.

Using these SCFTs we in principle now can construct theories corresponding to Riemann

surfaces of arbitrary genus.

Our analysis is rather incomplete in many respects and leaves room for many new

insights to be uncovered. We can supplement our analysis with a very partial list of intere-

sting questions and open problems which we would like to see addressed in the near future.
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Comparison with bipartite theories. Although we have focussed on quivers drawn on

a cylinder and compactifications of the six-dimensional theories on surfaces of genus 0, we

could have also readily defined core theories associated to tori with kn minimal punctures,

by gluing together the two maximal punctures of our standard core theories. It would be

interesting to explore in full the relation between such genus 1 class Sk theories and the

standard bipartite quiver gauge theories associated to toric Calabi Yau singularities. See

appendix C for some examples.

Classification of punctures. We have discussed at first two types of punctures, max-

imal and minimal, the former coming in k varieties. We have argued that more general

“regular” punctures may be defined by turning vevs of collections of mesons at a maximal

puncture, and proposed a five-dimensional classification in terms of su(2) embeddings in

SU(kN) commuting with a Zk subgroup. The duality walls we encountered in five di-

mensions also suggest that one may define maximal or other regular punctures labelled by

general permutations of the βi and γi as well. A natural open problem is to complete a

systematic classification of “regular” punctures and the corresponding quiver tails.

Precision study of the spectrum. We have given a prescription to compute, at least

in principle, the index for any of the theories in AN−1 class Sk. It would be interesting

to actually extract from the indices information about the operators of the putatively new

strongly coupled SCFTs. For example, their marginal and relevant deformations [18]. It

would be also interesting to find a systematic way to determine their conformal anomalies.

Extension to other (1, 0) SCFTs. In this paper we discussed theories obtained, con-

jecturally, by reducing the T Nk (1, 0) SCFTs associated to N M5 branes on Ak singularity.

It would be interesting to extend the discussion to other types of (1, 0) SCFTs.

Some (1, 0) SCFTs can be obtained from RG flows initiated by Higgs branch vevs

in the T Nk theories. It may be possible to track the four-dimensional image of these RG

flows, perhaps by giving vevs to chiral operators which are charged under intrinsic symme-

tries only.

It should be possible to extend our work to other 4d gauge groups and 6d SCFTs by

considering “core” theories defined by brane systems enriched by orientifold planes.

Reduction to three dimensions. We can consider reducing theories of class Sk to

three dimensions. When we have a description of the theory in four dimensions in terms of

a conformal Lagrangian, in three dimensions the description will not in general be confor-

mal. Moreover, the reduction on a circle will produce additional superpotentials involving

monopole operators [45]. Such superpotentials break explicitly symmetries in three dimen-

sions which are anomalous in four dimensions. Keeping track of such superpotentials is

crucial to have dualities work for the compactified theories.

One interesting aspect of the dimensional reduction in class S1 was that the reduced

theories possess a mirror description which was always Lagrangian, a star-shaped quiver

with arms associated to the punctures of the original theory [46]. The difference opera-

tors and wave-functions [47] had a simple interpretation in the language of domain walls
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interpolating between two S-duality frames of N = 4 SYM with SU(N) gauge groups [48].

The eigenvalue equation was associated to the S-duality relation between a Wilson line a

’t Hooft line on the two sides of the duality wall [12, 49, 50].

We do not know how much of this will generalize to class Sk. The difference operators

do appear to be related to ’t Hooft line operators in a necklace quiver. It may be that the 3d

limit of the wave-functions is still related to domain walls interpolating between different

duality frames of N = 2 four-dimensional necklace quivers. It would be interesting to

explore this idea and perhaps build universal mirrors for the compactification of class

Sk theories.

Surface defects. We have discussed RG flows introducing surface defects into our the-

ories. It would be interesting to study properties of these defects in more detail. They

appear to give a broad generalization of the elliptic RS difference operators encountered in

class S theories.

Holography. Class Sk theories can be in principle studied in large N limit. For example

one can consider theories corresponding to Riemann surfaces without punctures to avoid

proliferation of flavor symmetries. Such AdS5 backgrounds were recently considered in [51,

52] generalizing some of the k = 1 results discussed in [53]. It would be interesting to study

the relations between holography and our results in more detail.

Geometrization of Seiberg dualities. Starting from quiver theories with bifundamen-

tal matter and employing different types of dualities one can in principle generate gauge

theory with matter in more intricate, tensor, representations. See appendix D for example.

It would be interesting to understand whether class Sk can serve as a natural setup to

systematize the diverse variety of Seiberg dualities.

Quantum mechanical models. It will be interesting to study in more detail the quan-

tum mechanical models for which our wavefunctions are eigenfunctions. Here we have

discussed in some detail the case of A1 and k = 2 and the generalization to higher k and N

though rather straightforward might be interesting. One can also try and compute other

partition functions, such as lens index [54], for class Sk theories. In terms of eigenfunctions

while the supersymmetric index is related to symmetric functions (and polynomials) the

lens index in general is a natural generalization to non-symmetric functions [55, 56]. The

lens index should also provide a window into subtleties with global properties of the gauge

and flavor groups [57].
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A The supersymmetric index

The supersymmetric index [58, 59] counts with signs and weights the protected operators of

the theory. It can be defined either as an S3 × S1 partition function with supersymmetric

boundary conditions on the S1 or as a trace over the Hilbert space on S3. The latter

definition takes the following form,

I(p, q; u) = TrHS3
(−1)F pj1+j2− 1

2
rqj1−j2−

1
2
r
∏

a∈F
uqaa . (A.1)

Here ji are the Cartans of the SO(4) ∼ SU(2)1 × SU(2)2 isometry of S3 and r is the U(1)r
R-symmetry. The charges qa correspond to U(1) global flavor symmetries with the set of

these symmetries denoted by F. The supersymmetric index of a free chiral field of R-charge

R is given by

Iχ =

∞∏

i,j=0

1− p1−R
2

+iq1−R
2

+ju−1

1− pR2 +iq
R
2

+ju
= Γ((pq)

R
2 u; p, q) ≡ Γe((pq)

R
2 u) . (A.2)

For the sake of brevity In this paper Γe(z) will stand for the elliptic Gamma function

Γ(z; p, q) implicitly defined above. When an SU(N)z flvor symmetry of a theory with

index I(z) is gauged, the index of the gauge theory is given by,

I =
(q; q)N−1(p; p)N−1

N !

∮ N−1∏

i=1

dzi
2πizi

N∏

i 6=j
Γe(zi/zj) I(z) , (A.3)

with

(z; q) ≡
∞∏

i=0

(1− zqi) , (A.4)

being the q-Pochhammer symbol. The index of a free vector field is given by,

IV = (p; p)(q; q) . (A.5)

We will also encounter theta functions which we will define as

θ(z; q) = (z; q)(qz−1; q) . (A.6)

An important property of the supersymmetric index is that it is independent of the con-

tinuous parameters of the theory, such as marginal couplings, and also is independent of

the RG scale. Thus it can be computed for example in the UV using a non-conformal

description and be the same as the superconformal index of the IR CFT.

We will adopt the standard convention that “ambiguous” powers in the arguments of

a function denote product over all the possibilities. For example the index of the N = 2

hypermultiplet is given by,

Γe

(
t
1
2 z±1

)
= Γe

(
t
1
2 z
)

Γe

(
t
1
2 z−1

)
. (A.7)

– 46 –



J
H
E
P
0
7
(
2
0
1
5
)
0
7
3

B Eigenfunctions for A1 class S2

We will discuss here explicit algorithm to construct eigenfunctions for A1 theories of class

S2 in the p = 0 limit. The simplifying factor here is that the eigenfunctions turn out to be

proportional to polynomials. For p 6= 0, as also is the case for class S1, the computation is

much more involved. However, in principle a perturbative computation in p around p = 0

solution can be set up. See for example [60].

For p = 0 the computation is rather straightforward. The equation we have to solve is

S
(β,−)
(0,1) · ψ(u) = E ψ(u) . (B.1)

Here S
(β,−)
(0,1) was explicitly given in section 6.1. A way to proceed is to make an anzats,

ψ(u) = Kmax(u)χ(u) , (B.2)

with

Kmax (u;β, γ) =
1(

t
(
β
γ

)±1
u±1

1 u±1
2 ; q

) . (B.3)

Then we assume χ (u) to be a polynomial in ui with general coefficients of maximal degree

n and symmetric in ui → u−1
i . Since our indices are invariant under u → −u we also can

assume that χ(u) has well defined parity. We will have then for polynomials of order n

order 1
4n

2 free parameters, and we also have the eigenvalue as a parameter. Expanding the

eigenvalue equation in ui and demanding it to hold for any monomial term will give us a

system of nonlinear equations for these coefficients. The non-linearity comes because the

eigenvalue can multiply other coefficients. We then should solve these system of algebraic

equations which in general has a finite set of solutions.

Let us illustrate this explicitly for the lowest orders. Assuming the polynomial is of

degree zero we get that

S
(β,−)
(0,1) · 1− E ∝ E − 1− β4t4 + β2γ2t2 +

β2t2

γ2
, (B.4)

and thus the order zero polynomial is an eigenfunction given that,

E = 1 + β4t4 − β2γ2t2 − β2t2

γ2
. (B.5)

The first eigenfunction is then given by,

ψ0(u) = Kmax(u)

√
(t2; q)(t2

(
β

γ

)±2

; q) . (B.6)

We have normalized it to have unit norm under the gluing measure.

At next order we make an ansatz,

χ (u) = u1 +
1

u1
+H

(
u2 +

1

u2

)
. (B.7)
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Then we compute taking q → 0 to avoid horrendous expressions

lim
q→0

q
1
2

(
S

(β,−)
(0,1) − q

− 1
2E ′
)
· χ (u)

∣∣∣∣
u01

= (B.8)

−
(
u4

2 − 1
) (
H
(
t2
(
β4γ2 − β2 − γ2

)
− γ2(E ′ − 1)

)
+ βγt

(
β2γ2t2 − 1

))

γ2u2
= 0 ,

lim
q→0

q
1
2

(
S

(β,−)
(0,1) − q

− 1
2E ′
)
· χ (u)

∣∣∣∣
u31

= (B.9)

(
u2

2 − 1
) (
βHt

(
t2 − β2γ2

)
− γ

(
E ′ + β2γ2t2 − 1

))

γ
= 0 .

Here E = q−
1
2E ′. This system of equations can be reduced to a quadratic equation in one

of the two variables H or E ′ and thus has two solutions. Ultimately we obtain,

H = (B.10)(
∓
√

4β4γ4(1−t2β−2γ−2) (1−t2β2γ2)+t2(1−β2γ2)2 (β2+γ2)2+t(1−β2γ2)
(
β2+γ2

))

2β3γ3 (1−t2β−2γ−2)
.

We should further normalize χ(u) to have norm one. We note that this expression is alge-

braic in fugacities. Taking for simplicity β, γ = 1 we obtain that here H = ±1 recovering

the result advertised in section 6.1. Note also that with this value for H all the symmetry

properties (3.12) are satisfied.

We can continue to derive eigenfunctions in this manner. Going to higher orders we

get higher order polynomial equations which do not have closed form solutions, but we can

solve them perturbatively in the fugacities.

The self-adjointness of the difference operator. Let us check that the basic dif-

ference operator we computed is self adjoint under the gauging measure. That is for two

sufficiently nice behaving functions f(u) and g(u) we have,

∮
du1

u1

∮
du2

u2

Γe(
pq
t (βγ )±1u±1

1 u±1
2 )

Γe(u
±2
1 )Γe(u

±2
2 )

f(u)S
(β,−)
(0,1) (u†)g(u†) = (B.11)

∮
du1

u1

∮
du2

u2

Γe(
pq
t (βγ )±1u±1

1 u±1
2 )

Γe(u
±2
1 )Γe(u

±2
2 )

(S
(β,−)
(0,1) (u)f(u))g(u†) .

We note that,

Γe(
pq
t (βγ )±1u±11 u±12 )

Γe(u
±2
1 )Γe(u

±2
2 )

∣∣∣∣∣
ui→q

1
2 ui

=
θ(q−1u−21 ; p)

θ(u21; p)

θ(q−1u−22 ; p)

θ(u22; p)

θ( tq (βγ )±1 1
u1u2

; p)

θ(t(βγ )±1u1u2; p)

Γe(
pq
t (βγ )±1u±11 u±12 )

Γe(u
±2
1 )Γe(u

±2
2 )

.

(B.12)
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Then we have that

Γe

(
pq
t (βγ )±1u±1

1 u±1
2

)

Γe
(
u±2

1

)
Γe
(
u±2

2

) T
(
u−1

2 , u−1
1

)
g
(
q−

1
2u2, q

− 1
2u1

)
f (u1, u2)

∣∣∣∣∣∣
ui→q

1
2 ui

= (B.13)

Γe

(
pq
t (βγ )±1u±1

1 u±1
2

)

Γe
(
u±2

1

)
Γe
(
u±2

2

) T (u1, u2) g (u2, u1) f
(
q

1
2u1, q

1
2u2

)
.

This implies that under change of coordinates {ui} → {q
1
2ui} the first term, out of four,

on the left hand side of (B.11) in the expansion of the difference operator maps exactly to

the fourth term on the right hand side. This can be repeated for the other three terms and

thus implies that the difference operator is self-adjoint.

The index of generic class S2 A1 theory. Let us here write down the index of a

generic theory residing in A1 class S2. We will specialize to the case p = 0 where we can

write very explicitly expressions for the index.

The index is given in terms of the following building blocks. The eigenfunctions

ψλ(u) ≡ Kmax(u)χλ(u) are associated to the maximal punctures. From (4.8), (4.7),

and (5.2) we deduce that

C
(γ,+)
λ ≡ Φλ(β, γ) =

(
(t2γ2β±2; q)

(t2γ−2β±2; q)

) 1
2

(
χλ(t, γβ ;β, γ)

χλ(tγ2, 1
βγ ;β, γ)

) 1
2

. (B.14)

We find that the eigenfunctions satisfy the symmetry properties (3.12), from which and

from (4.8) we can deduce that

C
(β,+)
λ (β, γ) = (C

(β,−)
λ (β, γ))−1 = C

(γ,−)
λ (γ, β) = (C

(γ,+)
λ (γ, β))−1 . (B.15)

For minimal punctures we use the above and the relation (5.2) to write

ψmλ (α) ≡ Kmin (δ)χmλ (δ) =
(
C

(β,−)
λ C

(γ,+)
λ

)− 1
2

(B.16)

(
β2γ−2; q

) (tα2β−2; q
) (
tα−2γ2; q

)

(tα−2β−2; q) (tα2γ2; q)
χλ

(
t
1
2
γ

δ
, t

1
2
δ

β
;β, γ

)
.

Thus we deduce that

χmλ (δ) =




√
χλ

(
tγ2, 1

βγ ;β, γ
)
χλ

(
tβ2, 1

βγ ;β, γ
)

χλ(t, γβ ;β, γ)




1
2

χλ

(
t
1
2
γ

δ
, t

1
2
δ

β
;β, γ

)
, (B.17)

with the K-factors given by,

Kmax (u;β, γ) =
1(

t
(
β
γ

)±1
u±1

1 u±1
2 ; q

) , (B.18)

Kmin (δ;β, γ) =

(
t2β−2γ−2; q

)

(t2β2γ2; q)
(
t2 γ

2

β2 ; q
) 1

(t2; q) (tβ±2δ−2; q) (tγ±2δ2; q)
.
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Finally the structure constant is set from (4.8) and (4.7) to be

Cλ =
(
t2; q

)
√

(t2γ2β±2; q)3 (t2β2γ−2; q)

(t2γ−2β−2; q)

1√
χmλ

(
t
1
2β
)
χmλ

(
t
1
2β−1

) . (B.19)

The index of a theory corresponding to genus g surface with mu upper maximal punctures,

md maximal lower punctures, mm minimal punctures, charge `β under U(1)β discrete

symmetry, and charge `γ under U(1)γ discrerte symmetry is given by,
md∏

i=1

Kmax(ui;β, γ)

mu∏

j=1

Kmax(uj ;β
−1, γ)

mm∏

k=1

Kmin(δk;β, γ)× (B.20)

∑

λ

(
Cλ

)2g−2+mu+md+mm
Φ(β, γ)`γΦ(γ, β)−`β

md∏

i=1

χλ(ui;β, γ)

mu∏

j=1

χλ(uj ;β
−1, γ)

mm∏

k=1

χmλ (δk) .

For example the index of the free trinion is given by

Iuαv =

(
t2β±2γ±2; q

) 1
2

(
t(βγ )±1u±1

1 u±1
2 ; q

) (
t(βγ)±1v±1

1 v±1
2 ; q

)
(tβ±2α−2; q) (tγ±2α2; q)

×

∑

λ

χλ (u;β, γ)χλ
(
v;β−1, γ

)
χλ

(
t
1
2
γ
α , t

1
2
α
β ;β, γ

)

√
χλ

(
γ
β , t;β, γ

)
χλ (γβ, tβ−2;β, γ)

. (B.21)

Note that if we specialize fugacities for different symmetries, i.e. ignore/break corre-

sponding symmetries the indices simplify. For example, taking γ = β, and thus identifying

the two corresponding U(1) symmetries, the difference between `1 and `2 is gone and we

label the theories by Riemann surface and one integer. Taking β = 1 and thus neglecting

the U(1)β symmetry there is no difference between upper and lower punctures and also `1
is not a meaningful number any more. Let us mention here that setting both β = γ = 1

one can derive from (5.4) the following factorization property,

χλ(t
1
2α, t

1
2α−1)χλ(t

1
2 δ, t

1
2 δ−1)

χλ(1, t)
= χλ(αδ−1, αδ) . (B.22)

Which in particular implies that switching off β and γ we cannot distinguish in the index

maximal punctures from pairs of minimal ones.

The eigenfunctions satisfy many properties which guarantee them to be consistent with

our considerations. For instance we can check that

(
χλ( γβ , t;β, γ)

χλ(γβ, tβ−2;β, γ)

) 1
2

χλ(t
1
2
γ

δ
, t

1
2
δ

β
;β, γ) =

(
χλ(tγ2, 1

βγ ;β, γ)

χλ(t, γβ ;β, γ)

) 1
2

χλ(t
1
2βδ, t

1
2

1

δγ
;β, γ) ,

(B.23)

which implies that reducing maximal puncture in two different ways to minimal punctures

discussed in section 5.1 gives the same result.
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Sphere with two maximal punctures. We can start from the (β,−) interacting trinion

of section 4.2 and close the minimal puncture. There are here only two bayons available

for which we can turn on vevs. These correspond to either δ = t
1
2β−1 or δ = t−

1
2 γ−1 as

can be seen from (6.1). In both cases the gauge group is Higgsed and we get a collection

of chiral fields. In the former case the index becomes (in Macdonald limit for simplicity),

I(β,−2) (u,v)=

(
tβγv±1

2 u±1
2 ; q

)
(

t
βγ v
±1
2 u±1

2 ; q
)

(
β4; q

)2
(
β2v±1

1 u±1
2 ; q

) (
β2v±1

2 u±1
1 ; q

) (
t γβu

±1
1 u±1

2 ; q
)(
t γβ v

±1
1 v±1

2 ; q
) ,

(B.24)

and in the latter case we obtain,

I(β,−1)(γ,−1) (u,v) =

(
γ−4; q

) (
β4; q

)
(
β2v±1

1 u±1
1 ; q

) (
γ−2v±1

2 u±1
2 ; q

) (
t γβu

±1
1 u±1

2 ; q
)(

t γβ v
±1
1 v±1

2 ; q
) .

(B.25)

Again, we can close the maximal punctures. Gluing these two-punctured spheres to a

general theory does not change the numbers of punctures but shifts the discrete charges.

For eigenfunctions this implies that they are “eigenfunctions” also of the following integral

operators with well prescribed eigenvalues,

(q; q)2
∮

du1

4πiu1

∮
du2

4πiu2

(
u±2

1 ; q
) (
u±2

2 ; q
)
(
t

(
β

γ

)±1

u±1
1 u±1

2 ; q

)
I(β,−1)(γ,−1)

(
u†,v

)
ψλ (u)

= Φλ (β, γ)−1 Φλ (γ, β) ψλ (v) , (B.26)

(q; q)2
∮

du1

4πiu1

∮
du2

4πiu2

(
u±2

1 ; q
) (
u±2

2 ; q
)
(
t

(
β

γ

)±1

u±1
1 u±1

2 ; q

)
I(β,−2)

(
u†,v

)
ψλ (u)

= Φλ (γ, β)2 ψλ (v) .

One can check that these equations hold for the eigenfunctions that we derived. Thus

the functions ψλ are eigenfunctions of difference operators with eigenvalues related to sur-

face defects, and are eigenfunctions of integral operators with eigenvalues being related to

discrete charges for intrinsic symmetries.

Sphere with one maximal and two minimal punctures. We can start from the
(β,−) interacting trinion of section 4.2 and partially close one of the maximal punctures
to obtain a trinion with one maximal and two minimal punctures. As we discussed we can
do this in general in two different ways by giving vevs to two different mesons. However,
in this case since the theory is not generic and has rather small flavor symmetry only one

meson exists, and it corresponds to setting (u1, u2)→ (t
1
2
γ
ε , t

1
2
ε
β ). This can be clearly seen

from the index (6.1). After turning on the vev the gauge part of the theory is SU(2) with
three flavors as one flavor acquires mass. Thus, in the Seiberg dual frame it is given by
a collection of chiral fields coupled through a superpotential. This theory has −3

2 units

of U(1)β discrete charge and 1
2 unit of U(1)γ discrete charge. The index of this theory in
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Macdonald limit is

I(β,− 3
2 ),(γ,+

1
2 )(u, δ, ε) = (B.27)

(β4; q)(β
2

γ2 ; q)(q; q)

( tεδ u
±1
1 ; q)( tδεβγ u

±1
2 ; q)(β

2

εδ u
±1
1 ; q)( δβγεu

±1
2 ; q)( t

β2ε2 ; q)(tγ2ε2; q)( t
2γ2

β2 ; q)
×

∮
dz

4πiz

(z±2; q)(t
3
2 γεz±1; q)

(t
1
2

1
βδu
±1
2 z±1; q)(t

1
2 γδu±11 z±1; q)( β

2ε

t
1
2 γ
z±1; q)

=

(β4; q)(β
2

γ2 ; q)(tβγδεu±12 ; q)

(tβ−1γ−1δεu±12 ; q)(βγ ( δε )±1u±12 ; q)(β2(δε)±1u±11 ; q)(t γβu
±1
1 u±12 ; q)( t

β2δ2 ; q)( t
β2ε2 ; q)(tγ2δ2; q)(tγ2ε2; q)

.

Note that the result is explicitly invariant under exchanging the two minimal punctures.

We can attach this theory to a trinion with opposite discrete charges and three maximal

punctures of the same color to obtain yet another duality frame for the basic four punctured

sphere. For the eigenfunctions the above implies the following relation,

CλΦλ(β, γ)
3
2 Φλ(γ, β)ψmλ (δ)ψmλ (ε) = (B.28)

(q; q)
2
∮

du1
4πiu1

∮
du2

4πiu2
I(β,− 3

2 ),(γ,+ 1
2 ) (u†, ε, δ

) (
u±21 ; q

) (
u±22 ; q

)
(
t

(
γ

β

)±1
u±11 u±12 ; q

)
ψλ (u) .

Thus we can glue our new trinion to an interacting trinion with appropriate discrete

charges to obtain yet another Argyres-Seiberg like frame for our basic interacting four-

punctured sphere.

One might consider closing punctures in the new trinion. We can further close the

maximal puncture in two different ways to obtain a theory corresponding to sphere with

three maximal punctures. We also can close a minimal puncture in four different ways and

obtain a sphere with one maximal and one minimal punctures.

C Fun with tori

Let us discuss here several simple examples of theories corresponding to torus with one

minimal puncture or no puncture in the k = 2 A1 case. Torus with one minimal puncture

can be obtained for example by gluing together the two maximal punctures of the trinion

with two maximal punctures of same color and a minimal puncture with one of the discrete

charges, `i, being ±1; the theory we obtained by closing a minimal puncture in our core

example of an interacting theory. Since here we have a Lagrangian, depicted in figure 21,

we can observe that the theory has one-dimensional conformal manifold. Giving a vev to

one of the chiral fields as depicted in figure 22 we Higgs two of the gauge groups and obtain

a theory which we can associate to torus with no punctures but with two units of one of the

discrete charges in class S2. This theory has an alternative interpretation as A1 theory of

class S1 corresponding to torus with two punctures (with additional singlet fields flipping

the quadratic operators built from the two adjoints). This theory is also know as Yp=1,q=1

(modulo the extra superpotential terms) in the Yp,q nomenclature [61].

Another two equivalent ways to obtain a torus with no punctures come from giving

vacuum expectation value to bifundamental built from quarks connecting one of the other
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Figure 21. Torus with one puncture and one of the `i = ±1. The nodes are SU(2) gauge groups.

We have an additional gauge singlet field coupled to one of the bifundamental chirals connecting

two nodes without an adjoint field.

t
1
2
δ
γ

β2

β2

pqγ
tβ

t γ
β

t
γβ

β2

pq
tβγ

t
1
2
β
δ

t
1
2

1
βδ

pqγ
tβ

t
1
2γδ

pq
tβγ

Figure 22. We turn on a vacuum expectation value for the bifundamental denoted by dashed blue

line, i.e. in the index computing the pole at δ = t
1
2 β−1. The two gauge groups connected by these

quarks are Higgsed to a diagonal combination. The quarks with the vacuum expectation value do

not couple through superpotential and thus do not generate mass terms. The resulting theory in the

IR is depicted on the right. It is S1 theory of type A1 corresponding to torus with two punctures.

The three class S2 U(1)β × U(1)γ × U(1)t symmetries map to the U(1)t symmetry of class S1 as

well to the two U(1) symmetries corresponding to class S1 punctures.

pairs of gauge groups. This theory has a unit of both β and γ discrete charges. The

theory so obtained is the T1,1 theory or Yp=1,q=0 theory (again with extra singlets and

superpotential), SU(2)2 gauge theory with four bifundamental chirals and a superpotential.

See figure 23.

Finally we can give a vacuum expectation value to the quadratic singlet built from the

adjoint field. This amounts to setting δ = t
1
2β. This vacuum expectation value Higgses

the corresponding group and gives masses to four of the quarks. The remaining theory is

the SU(2)2 with two bi-fundamental flavors and two additional singlets and is associated

to torus with no punctures and no discrete charges. See figure 24.
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t
1
2
δ
γ

t
1
2γδ

pq
tβγ

β2

γ2

t 1
βγ

β2

pq
tβγ

t
1
2
β
δ

t
1
2

1
βδ

pqγ
tβ

Figure 23. Giving a vacuum expectation value to bifundamental denoted by dashed blue line, i.e.

in the index computing the pole at δ = t−
1
2 γ, the two gauge groups connected by these quarks

are Higgsed to a diagonal combination. The quarks with the vacuum expectation value do couple

through superpotential and thus generate mass terms for two other quarks. The resulting theory

in the IR is depicted on the right. It is the conifold, T1,1, theory. We have a quartic superpotential

involving all the bifundamentals. Moreover there are two additional superpotential terms flipping

the mesons built from β2 and γ2 fields.

t
1
2
δ
γ

t
1
2

1
βδ

pqγ
tβ

t
1
2γδ

β−2

β2

β2

pq
tβγ

t
1
2
β
δ

Figure 24. Giving a vacuum expectation value to the singlet built from the adjoint chiral denoted

by dashed blue line, i.e. in the index computing the pole at δ = t
1
2 β, the corresponding gauge group

is Higgsed and most of the chiral fields acquire mass.
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D Class S2 interpretation of a selfdual SU(4) SYM with tensor matter

Let us take our basic interacting four punctured sphere of A1 class S2 and perform Seiberg
duality on one of the gauge nodes. We have discussed this duality in section 3 and here let
us writing the index in the Seiberg dual frame,

Iuδvα =
[(q; q)(p, p)]4

4!
Γe

(
tβ

γ
u±1
1 u±1

2

)
Γe

(
tγ

β
v±1
1 v±1

2

)
Γe
(
tαδu±1

2 v±1
1

)
Γe

(
t

αδ
v±1
2 u±1

1

)
Γe

(
p2q2

t2

)2

∮ 3∏
i=1

dzi
2πizi

∏4
i=1 Γe

(√
pq
t

√
1

αδβ2 u
±1
2 zi

)
Γe(
√

pq
t

√
αδ
γ2
v±1
2 zi)Γe(

√
pq
t

√
αδγ2u±1

1 z−1
i )Γe(

√
pq
t

√
β2

αδ
v±1
1 z−1

i )∏
i 6=j Γe(zi/zj)

∮
dz2

4πiz2

Γe
(
p2q2

t2
z±2
2

)∏4
i=1 Γe

(√
t2

pq

√
δ
α
z±1
2 zi

)
Γe
(√

t2

pq

√
α
δ
z±1
2 zi

−1
)

Γe
(
z±2
2

) . (D.1)

The first line has the singlet mesonic operators appearing after the duality transformation

and the last line is the N = 2 block. Note that we cannot here take Macdonald limit of

the index of the ingredients. We can perform the S-duality transformation on the N = 2

block exchanging α with δ which will give us the exchange of the two minimal punctures

which we discussed in section 3. However, we also can act with the other elements of the

S-triality. Denoting,

a =

√
z1
z2
, b =

√
δ

α
z1z2, c = z3

√
z1z2, d =

√
α

δ
z1z2, (D.2)

the first duality above would exchange b with d but now we will exchange c with b to obtain

Iuδvα =
[(q; q) (p, p)]4

4!
Γe

(
tβ

γ
u±1
1 u±1

2

)
Γe

(
tγ

β
v±1
1 v±1

2

)
Γe
(
tαδu±1

2 v±1
1

)
Γe

(
t

αδ
v±1
2 u±1

1

)
Γe

(
p2q2

t2

)2

∮
dz2

4πiz2

Γe
(
p2q2

t2
z±2
2

)
Γe
(
z±2
2

) Γe

(√
t2

pq
z±1
2

(α
δ

)±1
) ∮ 3∏

i=1

dzi
2πizi

∏
i<j<4 Γe

(√
t2

pq
(zizj)

±1z±1
2

)
∏
i 6=j Γe (zi/zj)

(D.3)

4∏
i=1

Γe

(√
pq

t

√
1

αδβ2
u±1
2 zi

)
Γe

(√
pq

t

√
αδ

γ2
v±1
2 zi

)
Γe

(√
pq

t

√
αδγ2u±1

1 z−1
i

)
Γe

(√
pq

t

√
β2

αδ
v±1
1 z−1

i

)
.

We see that we have here the N = 2 block coupled to N = 1 SQCD with four flavors in

fundamental representation of SU (4) and 2 flavors in the antisymmetric representation.

The symmetry under exchanging the two minimal punctures, α ↔ δ, is manifest. Let us

denote the N = 1 theory with the antisymmetric matter by TA. The index of this theory is,

ITA =
[(q; q) (p, p)]3

4!
Γe

(
tβ

γ
u±1
1 u±1

2

)
Γe

(
tγ

β
v±1
1 v±1

2

)
Γe
(
tαδu±1

2 v±1
1

)
Γe

(
t

αδ
v±1
2 u±1

1

)
Γe

(
p2q2

t2

)

Γe

(
p2q2

t2
z±2
2

)∮ 3∏
i=1

dzi
2πizi

∏
i<j<4 Γe

(√
t2

pq
(zizj)

±1z±1
2

)
∏
i 6=j Γe (zi/zj)

(D.4)

4∏
i=1

Γe

(√
pq

t

√
1

αδβ2
u±1
2 zi

)
Γe

(√
pq

t

√
αδ

γ2
v±1
2 zi

)
Γe

(√
pq

t

√
αδγ2u±1

1 z−1
i

)
Γe

(√
pq

t

√
β2

αδ
v±1
1 z−1

i

)
.

The theory TA is actually dual to itself under Seiberg duality [38]. The index of this duality

was discussed in [62]. The global non-R symmetry of the theory is as follows,

(SU(2))2
u × (SU(2))2

v × SU(2)z2 ×U(1)αδ ×U(1)t ×U(1)β ×U(1)γ . (D.5)
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The group SU(2)z2 rotates the two quarks in the antisymmetric representation of SU(4)

gauge group. Under Seiberg duality we have the following map of the symmetries,

αδ → α−1δ−1 , β → γ , γ → β . (D.6)

Alternatively Seiberg duality can be thought of as exchanging (SU(2))2
u and (SU(2))2

v. We

would like to understand this theory in terms of class S2. The two symmetries u and v

live to two maximal punctures of the same color and the symmetries z2 and αδ will need

to be interpreted. We can write the index using the eigenfunctions as

ITA =
∑

λ

Υλ(αδ, z2)ψλ(u)ψλ(v) , (D.7)

where this equation can be viewed as definition of Υλ. We will derive the relation of Υλ

to the eigenfunctions soon. The fact that (D.7) can be written in terms of single sum over

eigenfunction is a manifestation of S-duality or in this case the Seiberg duality of [38]. We

have the following relation,

Iαuδv =
∑

λ

φλ (α)φλ (δ)ψλ (u)ψλ (v) = (D.8)

(p; p) (q; q)

∮
dz2

4πiz2

1

Γe
(
z±2

2

)Γe

(√
t2

pq
z±1

2

(α
δ

)±1
)
ITA =

∑

λ

ψλ (u)ψλ (v) (p; p) (q; q)

∮
dz2

4πiz2

Γe

(
p2q2

t2

)

Γe
(
z±2

2

) Γe

(√
t2

pq
z±1

2

(α
δ

)±1
)

Υλ (z2, αδ) .

From here we deduce that

φλ (α)φλ (δ) = (p; p) (q; q)

∮
dz

4πiz

Γe

(
p2q2

t2

)

Γe (z±2)
Γe

(√
t2

pq
z±1

(α
δ

)±1
)

Υλ (z, αδ) . (D.9)

We already have encountered a similar relation while closing maximal punctures (5.4),

φλ(α)φλ(δ) = Cλ

√
C

(β,+)
λ C

(γ,−)
λ (p; p)(q; q)Γe

(
t
γ

β

(α
δ

)±1
(αδβγ)±1

)
(D.10)

∮
dz

4πiz

Γe(
pq
t (αβγδ)±1z±1)

Γe(z±2)
Γe

(
β

γ
z±1

(α
δ

)±1
)

ψ̃λ(z, αδ) .

We thus use the elliptic Fourier transform to write

Υλ(w,αδ) = Cλ

√
C

(β,+)
λ C

(γ,−)
λ (p; p)2(q; q)2

∮
dz

4πiz

Γe(
pq
t (αβγδ)±1z±1)

Γe(
pq
t2

)Γe(z±2)
ψ̃λ(z, αδ)×

∮

C

dξ

4πiξ

1

Γe(ξ±2)
Γe

(
t
γ

β
ξ±1(αδβγ)±1

)
Γe

(
β

γ
z±1ξ±1

)
Γe

(√
pq

t2
w±1ξ±1

)
. (D.11)
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On the second line we have the index of SU(2) SYM with three flavors which can be exactly

evaluated in terms of the dual mesons,

(q; q)(p; p)

∮

C

dξ

4πiξ

1

Γe(ξ±2)
Γe

(
t
γ

β
ξ±1(αδβγ)±1

)
Γe

(
β

γ
z±1ξ±1

)
Γe

(√
pq

t2
w±1ξ±1

)
=

Γe

(
t2
γ2

β2

)
Γe

(
β2

γ2

)
Γe

(
pq

t2

)
Γe

(
t(αβγδ)±1z±1

)
(D.12)

Γe

(√
pq
γ

β
(αβγδ)±1w±1

)
Γe

(√
pq

t2
β

γ
z±1w±1

)
.

Plugging this back we note that some of the fields become massive and we obtain,

Υλ(w,αδ) = Γe

(
t2
γ2

β2

)
Γe

(
β2

γ2

)
Γe

(√
pq
γ

β
(αβγδ)±1w±1

)

Cλ

√
C

(β,+)
λ C

(γ,−)
λ (q; q)(p; p)

∮
dz

4πiz

Γe

(√
pq
t2
β
γ z
±1w±1

)

Γe(z±2)
ψ̃λ(z, αδ) . (D.13)

Writing the index of TA using this expression we finally obtain,

ITA = Γe

(
t2
γ2

β2

)
Γe

(
β2

γ2

)
Γe

(√
pq
γ

β
(αβγδ)±1w±1

)
(D.14)

(q; q)(p; p)

∮
dz

4πiz

Γe

(√
pq
t2
β
γ z
±1w±1

)

Γe(z±2)

[∑

λ

Cλ

√
C

(β,+)
λ C

(γ,−)
λ ψ̃λ(z, αδ)ψλ(u)ψλ(v)

]

= Γe

(
t2
γ2

β2

)
Γe

(√
pq
γ

β
(αβγδ)±1w±1

)
(q; q)(p; p)

∮
dz

4πiz

Γe

(√
pq
t2
β
γ z
±1w±1

)

Γe(z±2)
I(z,αδ)

uv.

The index in the square brackets is that of the theory corresponding to a sphere

with three maximal punctures of two different colors and appropriate discrete charges,

Γe(pq
γ2

β2 )I(z,αδ)
uv, we encountered in section 5.1. We thus deduce that the SU(4) SYM

with four quark flavors and two antisymmetric tensors is equivalent to certain SU(2) gaug-

ing with extra chiral fields of the strongly-coupled trinion with three maximal punctures.

We have a singlet field M0 with fugacities t2 γ
2

β2 and R-charge zero, fields q with fugacities
γ
β (αβγδ)±1w±1 and R-charge one, and fundamental quarks Q with R-charge one and fu-

gacities t−1 β
γw
±1. Moreover the SCFT has mesons M associated to the maximal puncture

we partially gauge. This mesons are in fundamental of the gauge SU(2) and have fugacities

t(γβ)±1(αδ)±1 with R-charge zero. The superpotential we turn on is thus,

M0QQ+ qMQ . (D.15)

Note also that the gauging is non anomalous with all the symmetries at hand.
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We can now go back further to the four-punctured sphere. The duality frame (D.3)
is then

Iuαvδ = Γe

(
t2
γ2

β2

)
Γe

(
p2q2

t2

)
(q; q)(p; p)

∮
dz

4πiz

1

Γe(z±2)
I(z,αδ)uv× (D.16)

(q; q)(p; p)

∮
dw

4πiw

1

Γe(w±2)
Γe

(√
pq
γ

β
(αβγδ)±1w±1

)
Γe

(√
pq

t2
β

γ
z±1w±1

)
Γe

(√
t2

pq

(α
δ

)±1
w±1

)
.

On the second line we have again SU(2) SYM with three flavors index of which can be

evaluated to be,

(q; q)(p; p)

∮
dw

4πiw

1

Γe(w±2)
Γe

(
√
pq
γ

β
(αβγδ)±1w±1

)
Γe

(√
pq

t2
β

γ
z±1w±1

)
Γe

(√
t2

pq

(α
δ

)±1

w±1

)
=

Γe

(
pq
γ2

β2

)
Γe

(
pq

t2
β2

γ2

)
Γe

(
t2

pq

)
Γe

(
pq

t
(αβγδ)±1z±1

)
× (D.17)

Γe

(
t
γ

β

(
α

δ

)±1

(αβγδ)±1

)
Γe

(
β

γ

(
α

δ

)±1

z±1

)
.

Plugging this back to (D.16) we obtain

Iuαvδ = (q; q)(p; p)Γe

(
pq
γ2

β2

)
Γe

(
t
γ

β

(
α

δ

)±1

(αβγδ)±1

)
(D.18)

∮
dz

4πiz

1

Γe(z±2)
Γe

(
pq

t
(αβγδ)±1z±1

)
Γe

(
β

γ

(
α

δ

)±1

z±1

)
I(z,αδ)

uv .

This is the Argyres-Seiberg frame for the four-punctured sphere obtained previously in (5.5).

E Comments on index of theories with U(1)t discrete charge

Let us outline here how to compute the index of theories with U(1)t discrete charges. The

index for k = 1 case was thoroughly discussed in [18] (see also [63–65]). The higher k

follows similar pattern but there are some new features which we will discuss here. We

restrict the explicit discussion as usual to A1 and class S2.

First, as we discussed in section 5.2, we have to introduce a second set of our theories

with charges under the global symmetries aproppriately flipped and R-charges shifted. This

means that the indices of the second copy of the theories are built using the eigenfunctions,

ψ̂λ (v;β, γ, t) ≡ ψλ
(
v†;β−1, γ−1,

p q

t

)
. (E.1)

Note that ψ̂λ (v;β, γ, t) are eigenfunctions of

Ŝ
(β,−)
(0,1) · f(v1, v2) =

∑

a,b=±1

T̂ (va1 , v
b
2;β, γ, t)f(q

a
2 v1, q

b
2 v2) , (E.2)

where

T̂ (v1, v2;β, γ, t) = T
(
v2, v1;β−1, γ−1,

pq

t

)
=
θ
(
tv1v2( γβ )±1; p

)
θ
(
tβ
qγ

v1
v2

; p
)
θ
(
tβ3γ
q

v2
v1

; p
)

θ
(
v2

1; p
)
θ
(
v2

2; p
) .

(E.3)
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We can derive yet another relation between eigenfunctions. Let us glue as in section 6 an

interacting trinion to a general theory but now glue it to the puncture of the opposite type,

i.e. glue ψ puncture to ψ̂ one without extra fields but with a quartic superpotential. Next,

we close the minimal puncture residing on the interacting trinion. Assuming dualities to

hold, i.e. that we can freely move around on the Riemann surface different punctures and

consider various pair of pants decompositions leading to the same theory, we deduce that

ψ̂ and ψ have to be orthonormal under the measure involving only the N = 1 vector

multiplets. These two facts translate into the following relation between eigenfunctions,

ψ̂λ(u) = Γe(
pq

t

(
β

γ

)±1

u±1
1 u±1

2 )ψλ(u) . (E.4)

Note that this means that ψ̂ are eigenfunctions of the following operator,

S̃
(β,−)
(0,1) = Γe

(
pq

t

(
β

γ

)±1

u±1
1 u±1

2

) [
S

(β,−)
(0,1)

]
Γe

(
t

(
β

γ

)±1

u±1
1 u±1

2

)
. (E.5)

We can compute this operator to be

S̃
(β,−)
(0,1) · f (v1, v2) =

∑

a,b=±1

T̃
(
va1 , v

b
2;β, γ, t

)
f
(
q
a
2 v1, q

b
2 v2

)
, (E.6)

and

T̃ (v1, v2;β, γ, t) =
θ
(
tv1v2( γβ )±1; p

)
θ
(
tβ
γ
v1
v2

; p
)
θ
(
tβ3γ v2v1 ; p

)

θ
(
v2

1; p
)
θ
(
v2

2; p
) . (E.7)

Note also that the operators S̃
(β,−)
(0,1) and Ŝ

(β,−)
(0,1) are not the same and an analogue of the

former we did not encounter till now for theories without discrete charges for U (1)t. The

functions ψ̂ have to be eigenfunctions of both operators if our assumptions are correct and

indeed the two operators are selfadjoint under the same measure and commute,
[
S̃

(β,−)
(0,1) , Ŝ

(β,−)
(0,1)

]
= 0 . (E.8)

In the k = 1 case discussed in [18] the two types of difference operators turn out to coincide

but for higher k one derives two different commuting operators.
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