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1 Introduction

Three-dimensional, N = 8 super Yang-Mills (SYM) theory with gauge group SU(N) was

among the first detailed examples of holographic duality [1]. In three dimensions the

gauge coupling g2
YM

has dimensions of energy and thus the theory possesses a non-trivial

renormalization group (RG) flow. Since the theory is asymptotically free, it provides an

example in which the ultraviolet (UV) is nicely behaved. The holographic description

of this theory is obtained from the supergravity solution sourced by N D2-branes in flat

space. The amount of supersymmetry can be easily reduced to N = 1 by replacing the

flat space transverse to the D2-branes, which is a cone over S6, by a G2-holonomy cone

whose base must be a six-dimensional nearly Kähler (NK) manifold M6 different from the

six-sphere [2]. In this case the dual gauge theory is presumably a quiver gauge theory.

Our goal in this paper will be to understand the effect of adding Nf flavors of fun-

damental matter to the theories above. In all cases the flavored theory will be N = 1

supersymmetric. We will loosely refer to this matter as ‘quarks’ despite the fact that it

will include both bosonic and fermionic degrees of freedom. We will see that their inclusion

leads to interesting infrared (IR) dynamics such as the appearance of a Chern-Simons (CS)
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matter theory in the case of massless quarks or of ‘walking’ (quasi-conformal) dynamics in

the case of light quarks.

The addition of quarks on the gauge theory side corresponds to the addition of D6-

branes on the gravity side [3]. We will work with unquenched quarks, meaning that their

backreaction on the adjoint (color) degrees of freedom is included. On the gravity side we

will therefore include the backreaction of the D6-branes on the D2-brane geometry.

The case when the internal manifold is S6 and all the D6-branes are overlapping was

studied in [4, 5]. The supersymmetric solutions constructed in these references depend

on two radial coordinates: the radius transverse to the D2-branes but parallel to the D6-

branes, and the radius transverse to both the D6- and the D2-branes. Despite their beauty,

these solutions are difficult to generalize because the dependence on two radii translates

into the requirement to solve non-linear partial differential equations. For example, it has

not been possible to find the generalizations corresponding to the introduction of a non-zero

temperature or a non-zero charge density into the system.1

In order to reduce the supergravity equations to ordinary differential equations, we will

smear the D6-branes over the internal manifold [8] (see [9] for a review of this approach).

This, together with the reduction to first-order equations implied by supersymmetry, will

allow us to construct the solution essentially analytically.

The presence of the quarks leaves the UV properties of the gauge theory unmodified,

but it changes the IR dynamics. In the case of massless quarks, the solution flows to an

AdS4 fixed point in the IR. We will argue that, in general, the dual gauge description is a

CS-matter theory. In the particular case in which the NK manifold is CP3 we will be able

to identify this theory as the flavored version [10] of the Ooguri-Park solution [11], which is

itself an N = 1 deformation of the ABJM [12] theory. In the case of quarks that are light

compared to the scale λNf/N set by the ’t Hooft coupling λ = g2
YM

N , the theory exhibits

‘walking’ or quasi-conformal dynamics in the energy range mq ≪ E ≪ λNf/N .

2 Flavorless solutions and nearly Kähler manifolds

Since three-dimensional SYM-type theories are asymptotically free, in the UV a pertur-

bative description is possible. At an energy scale E ∼ λ the theories becomes strongly

coupled. If N is large, then this regime can be described holographically by the gravita-

tional background sourced by N D2-branes; in terms of the string coupling and the string

length, the Yang-Mills coupling is

g2
YM

= gs/ℓs . (2.1)

If the space transverse to the D2-branes is flat space then maximal, N = 8 supersymmetry

is preserved (in three-dimensional language) and the gauge theory is SU(N) SYM. In order

to decrease the amount of supersymmetry — as the addition of flavor will do anyhow

— the stack of branes has to be positioned at the tip of a Ricci-flat cone with reduced

holonomy [2]. This replaces the transverse flat space, which in polar coordinates is a cone

1See however [6] for a perturbative, finite-temperature solution near the core of the D6-branes, and [7]

for a computation of the meson spectrum in the same near-core limit.
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over the six-sphere S6. In order to preserve N = 1 supersymmetry the cone must have

G2 holonomy. The base of a G2-cone is a nearly-Kähler manifold. Since properties of NK

manifolds will play an important role, we now proceed to review them.

NK geometries appear naturally in the classification of almost Hermitian manifolds [14].

A NK manifold is an almost Hermitian manifold whose fundamental form J satisfies the

condition

3∇J = dJ , (2.2)

with ∇ the derivative associated to the Levi-Civita connection. In this terminology, the

Kähler condition is ∇J = 0. Powerful splitting theorems reduce the study of these geome-

tries to six dimensions [15], and we will restrict ourselves to this case in the following. The

importance of these geometries in physics (and in particular in string-theory) stems from

the fact that they admit Killing spinors. Indeed, in six dimensions, a manifold admits a

Killing spinor if and only if it is NK [16]. As a consequence, such a manifold is Einstein

with positive curvature.

This property makes NK manifolds suitable geometries to support supergravity solu-

tions preserving some amount of supersymmetry. In fact, an equivalent way of defining a

NK manifold that makes this more apparent is the following. The Riemannian cone

ds2 (C7) = dr2 + r2 ds2 (M6) (2.3)

has G2 holonomy if and only if M6 is NK [17]. As is well known, G2 holonomy is the

condition to preserve minimal supersymmetry in four dimensions starting from eleven-

dimensional M-theory, in analogy with the SU(3) holonomy of Calabi-Yau manifolds that is

required when starting from ten-dimensional string theory. In particular, models with chiral

fermions can be obtained considering M-theory in the presence of G2-cone singularities

like (2.3), as shown in [18, 19].

These internal geometries also appeared in the quest for stabilizing moduli in string

compactifications to Minkowski (and related) vacua. In [20, 21] it was found that massive

type IIA supergravity admits N = 1, AdS4 × M6 solutions with M6 being NK. In the

context of flux compactifications, the most suitable language to analyze the backgrounds

is that of G-structures. This leads us to another way of characterizing NK geometries,

i.e. as six-dimensional manifolds admitting an SU(3) structure with only W1 non-vanishing

among the torsion classes in the codification of [22]. Possessing SU(3) structure implies

the existence of a globally defined, real two-form J (associated to the almost complex

structure) together with a globally defined, complex three-form Ω, satisfying

J ∧ Ω = 0 ,
1

3
J ∧ J ∧ J =

i

4
Ω ∧ Ω . (2.4)

From the class of SU(3) structure manifolds, nearly-Kählerness is selected by the require-

ments

dJ =
3

2
Im

[

W1Ω
]

,

dΩ = W1 J ∧ J , (2.5)
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Md C (Md) Gauge theory dual G-structure Globally defined forms

NK G2-cone D = 3, N = 1 SYM SU(3) J(2) , Ω(3)

SE Calabi-Yau D = 4, N = 1 SCFT SU(2) η(1) , J(2), Ω(2)

Table 1. Some key properties of NK manifolds in comparison with SE manifolds. J(2) always

denotes a real two-form. Ω(n) is a complex n-form. η(1) is a real one-form.

that is, the torsion classes W2, . . . ,W5 corresponding to other SU(3) representations that

could occur in (2.5) all vanish. For the purposes of this paper, equations (2.4) and (2.5)

will be the defining properties of the internal geometries.

Considerably less attention has been paid to NK manifolds in the context of the

gauge/string duality, despite the early observation in [2] that they emerge as the transverse

space to D2-branes preserving N = 1 supersymmetry and generalizing S6. In this respect,

a parallel can be traced with D3-branes in type IIB supergravity and Sasaki-Einstein (SE)

manifolds. Just like a stack of D3-branes at the tip of a cone over a SE manifold is dual to a

gauge theory with minimal supersymmetry in four dimensions, a stack of D2-branes at the

tip of a G2-cone as in (2.3) is dual to a gauge theory with minimal supersymmetry in three

dimensions. Despite this resemblance, there are also some important differences. First, the

D2-brane near horizon geometry is not AdS, as opposed to the D3-brane case. This means

that one cannot use the familiar tools of conformal field theories (CFT) to analyze the dual

gauge theory. And second, compared with Sasakian geometry, NK manifolds are still not

well understood from the mathematical viewpoint, though several important results are

known (for reviews see [23, 24]).

The comparison between NK manifolds in six dimensions and SE manifolds in five

dimensions is summarized in table 1.

The complete list of known, regular, compact, six-dimensional NK manifolds is as

follows:2

S6 ≃ G2

SU(3)

CP
3 ≃ Sp(2)

SU(2)×U(1)

S3 × S3 ≃ SU(2)× SU(2)× SU(2)

SU(2)

F(1, 2) ≃ SU(3)

U(1)×U(1)
(2.6)

All these manifolds are homogeneous. Moreover, any six-dimensional, homogeneous, NK

manifold is isometric to one of them [28]. We emphasize that the metric on the CP
3

that is compatible with the NK structure is not the perhaps-more-familiar Fubini-Study

metric used in the ABJM construction [12], which is instead Kähler. Regarding CP
3 as

an S2 fibration over S4, the NK metric is squashed with respect to the Kähler one. As a

2Besides, there are infinite families of examples with orbifold or conical singularities [25–27].
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consequence, the isometry is reduced to Sp(2) ≃ SO(5) ⊂ SU(4). In a similar manner, the

NK metric on S3 × S3 is not the product of the round metrics, so again the isometry is

reduced. For more details about these cosets we refer the reader to [18].

3 Adding flavor

3.1 Generalities

We have argued that a stack of N D2-branes placed at the tip of the G2-cone (2.3) provides

the holographic dual — at least in some energy range — to a three-dimensional gauge

theory with minimal supersymmetry, that is, two real supercharges. When the internal

NK geometry is taken to be the six-sphere, there is an enhancement of supersymmetry

to N = 8 and the resulting duality was examined in [1]. Still largely unexplored are the

detailed field theory duals for the remaining cosets in the list (2.6), as well as for other

putative NK manifolds to be found.3

Setting aside what is the specific SYM dual to these gravitational solutions, we will

focus instead on the inclusion of fundamental matter, to which we will also refer as ‘flavor’

or ‘quarks’. This is achieved by adding a new set of branes to the gravitational system [3].

Since we wish to preserve supersymmetry and we want the fundamental degrees of freedom

to propagate along the 2+1 gauge theory directions (see e.g. the discussion in section 5.5

of [30]), we will introduce an additional stack of Nf D6-branes. The relative orientation

between the color and the flavor branes is indicated by the following array:

x1 x2 r NK

D2 × × · · · · · · ·

D6 × × × × × × · · ·

with each D6-brane wrapping a three-dimensional submanifold inside the NK space trans-

verse to the D2-branes.

The case when all the D6-branes wrap the same submanifold and the internal manifold

is an S6 was studied in [4, 5] and generalized to other manifolds in [31]. As explained in

the Introduction, the supersymmetric solutions constructed in those references solve partial

differential equations and are therefore difficult to generalize. This technical difficulty can

be overcome by smearing the flavor branes appropriately [8]. Whenever there is a large

number of branes, it is possible to distribute them along their transverse directions — the

dots in the row of the D6-branes in the array above — in such a way that the dependence on

the second radius disappears. In practice one has traded the partial differential equations

for ordinary ones.

In our case we will distribute the D6-branes in a way that preserves the SU(3) struc-

ture of the NK internal geometry. We will see that this requirement essentially fixes the

distribution of D6-branes uniquely, and moreover that it is compatible with preservation

of supersymmetry.

3See [29] for a proposal for the quiver theory dual to the NK metric on CP
3.
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The D6-branes will contribute to the energy-momentum tensor and thus modify the

metric originally sourced only by the D2-branes. The parameter that controls the relative

influence of fundamental matter with respect to the initial color branes is [9]

Nf

N
g2eff . (3.1)

The effective dimensionless coupling geff is defined as in [1]

g2eff = g2
YM

N U−1 = λU−1 , (3.2)

where U is a radial coordinate on the gravity side that is dual to an energy scale in the gauge

theory. The so-called ‘probe approximation’ on the gravity side, in which the backreaction

of the flavor branes into the geometry is neglected, is justified when Nf g
2
eff/N is small.

On the field theory side this corresponds to a ‘quenched’ approximation in which the

flavor degrees of freedom are treated as probes of the gluon-plus-adjoint-matter-dominated

dynamics. If Nf g
2
eff/N is not small, then the backreaction of the flavor branes on the

geometry must be included. In the gauge theory this corresponds to a situation with

‘unquenched’ degrees of freedom in the fundamental representation. Note that, in the

context of the large-N expansion, a necessary condition for the fundamental matter to be

unquenched is that the limit N → ∞ is taken in such a way that Nf/N 6= 0. This way of

taking the large-N limit is usually referred to as the Veneziano limit.

It is clear from (3.1) and (3.2) that, for fixed λ and non-vanishing Nf/N , there is an

energy scale, or equivalently a radial position in the geometry, at which Nf g
2
eff/N becomes

of order unity. Below this scale the backreaction of the D6-branes must be included and

we expect the geometry to be significantly modified.

In the opposite limit, for high enough energies, the backreaction of the flavor branes

decreases. We therefore expect that the solution of the color branes, dual to pure super

Yang-Mills, will be recovered in the UV, which is in agreement with the theory being

superrenormalizable. As we will see, all these expectations will be confirmed by our explicit

solutions.

3.2 Ansatz

We will now write down the ansatz for the supergravity fields in our solution and derive

the corresponding BPS equations, which we will solve in subsequent sections. As indicated

by the D2/D6 array above, the ten-dimensional geometry consists of three Minkowski

directions, a radial coordinate and a six-dimensional internal manifold, which is assumed

to possess an SU(3) structure. This implies that there exist a real two-form J and a complex

three-form Ω defining the structure and subject to the compatibility conditions (2.4). Given

an appropriate set of vielbeins ea, a = 1, . . . , 6, at least locally we can write

J = e12 + e34 + e56 ,

Ω =
(

e1 + i e2
)

∧
(

e3 + i e4
)

∧
(

e5 + i e6
)

.
(3.3)
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If in addition the manifold is NK, as we assume, the differential relations (2.5) are verified.

Without loss of generality, the torsion class can be taken to be real and adjusted to W1 = 2,

so we have the differential conditions

dJ = 3 ImΩ , dReΩ = 2 J ∧ J , (3.4)

together with the Hodge duals with respect to the internal metric

∗6 J =
1

2
J ∧ J , ∗6Ω = −iΩ . (3.5)

The vast simplification implied by these assumptions follows from the fact that we have

a natural set of forms to employ in the ansatz for the supergravity fields as well as the

possibility to preserve supersymmetry.

Let us begin by writing down the ansatz for the supergravity forms in the Ramond-

Ramond (RR) sector. Since the solution is sourced by D2- and D6-branes, we expect the

RR six- and two-form field strengths to be non-zero. As explained in appendix A, the

distribution of backreacting D6-branes gives rise to a violation of the Bianchi identity for

the RR two-form,

dF2 = −2κ2 TD6 Ξ , (3.6)

where Ξ is the so-called smearing form that indicates how the flavor branes are distributed

in the internal directions. Intuitively, this is simple to understand. The D6-branes couple

minimally to the RR potential C7, and hence their presence leads to a source on the right-

hand side of the equation of motion for its field strength, i.e. we have d ∗ F8 ∼ Ξ, where Ξ

measures the local density and the orientation of D6-branes at any given point. Since by

definition F2 = − ∗ F8, this leads to eq. (3.6).

Given the forms at our disposal, the simplest ansatz for the RR fluxes reads

F2 = Qf J , (3.7)

F6 =
Qc

6
J ∧ J ∧ J . (3.8)

As we will see below, for massless quarks the fact that J is not closed is crucial for the

consistency of this ansatz with the violation of the Bianchi identity. As usual, the six-form

sourced by the D2-branes is proportional to the volume form of the internal space. The

parameters Qc and Qf have dimensions of (length)5 and (length)1 and are related to the

number of D2- and D6-branes, respectively, or equivalently to the rank of the gauge group

and the number of flavors, through the quantization condition

1

2κ2TDp

∫

F8−p =
1

(2πℓs)7−pgs

∫

F8−p = Np . (3.9)

Using (3.7) and (3.8) this immediately gives

Qc =
(2πℓs)

5gs
V6

N , Qf =
(2πℓs)gs

V2
Nf , (3.10)

where the dimensionless quantities V6 and V2 are the volume of the internal manifold and
∫

J , respectively. The computation of V2 requires the knowledge of an explicit realization
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of the NK structure. We emphasize that, in general, Qf = Qf (r) can be a function of

the radial coordinate, as will be the case for massive quarks. Note that, up to numerical

coefficients, we have that

Qc ∼ λ ℓ6s , Qf ∼ λ
Nf

N
ℓ2s . (3.11)

As always in the context of the gauge/string correspondence, the powers of ℓs will cancel

out in the computation of gauge theory observables.

It is instructive at this point to come back to the analogy with the more familiar SE

geometries transverse to D3-branes. In this case the flavored solution was found in [32]

and contains an additional stack of D7-branes, whose backreaction induces a violation of

the Bianchi identity for the RR one-form:

dF1 = −2κ2 TD7 Ξ . (3.12)

As shown in table 1, in a SE geometry we have at our disposal a globally defined, non-closed

one-form. The natural ansatz for the one-form field strength used in [32] was thus

F1 = Qf η . (3.13)

Equations (3.12) and (3.13) are the SE analog of our NK equations (3.6) and (3.7).

Equations (3.4), (3.6) and (3.7) determine the distribution of the flavor branes, i.e. Ξ,

up to an arbitrary function Qf (r) as

Ξ = − 1

2κ2 TD6

(

Q′

f dr ∧ J + 3Qf ImΩ
)

, (3.14)

where the ′ denotes differentiation with respect to the radial coordinate r. We will see that

for massless quarks Qf is just a constant, meaning that in this case the branes are smeared

purely along the directions spanned by ImΩ.

We now turn to the Neveau-Schwarz (NS) sector of the theory. Working in string

frame, we choose to parameterize it as

ds2s = h−
1

2 dx21,2 + h
1

2 e2χ ds2 (C7) ,
ds2 (C7) = dr2 + r2 ds26 ,

eΦ = h
1

4 e3χ ,

H = 0 . (3.15)

The internal metric ds26 = ea δab e
b is that of a NK manifold, associated to the vielbeins

introduced in (3.3) and normalized so that its Ricci tensor satisfies Rab = 5 δab. The G2-

cone metric (2.3) thus appears explicitly in our ansatz. The entire system is specified by

two functions of the radial coordinate, h(r) and χ(r), corresponding roughly to the dilaton

and the breathing mode (the volume modulus of the internal manifold). Even without

allowing for deformations of the internal NK manifold, one may have expected the most

general ansatz preserving the required symmetries to contain an additional function, but

this can always be integrated in terms of the other two — see appendix A for details.
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The virtue of the parameterization (3.15) is that the flavorless solution is straightforwardly

recovered by setting Nf = χ = 0 and taking h to be the usual harmonic function of the

D2-branes, h = Qc/5r
5.

At first sight, it may seem overly restrictive to not allow for any deformation of the

internal metric, specially taking into account that some form of squashing is present in

every solution with smeared flavor branes discussed in e.g. [9]. At the technical level, this

difference is due to the fact that in our case there is no natural way of writing a generic

NK manifold as a fiber over some base. In contrast, every SE manifold is a U(1) fiber over

a Kähler-Einstein base, and the backreaction of the flavor branes produces a squashing

between the fiber and the base.

One immediate consequence of this difference is that the metrics of our flavored solu-

tions possess the same isometries as the unflavored ones. Moreover, when the NK manifold

is not the six-sphere, the almost complex structure J , and therefore the fluxes in our

ansatz, preserve all the isometries of the metric [28]. It thus follows that the gauge theories

with fundamental matter dual to our solutions will be invariant under the same global

symmetries as the corresponding unflavored ones, the exception being the maximally su-

persymmetric case dual to S6. In this case the metric enjoys a full SO(7) invariance but

this is broken down to G2 ⊂ SO(7) by the two-form flux (3.7). This G2 subgroup can easily

be understood as the numerator of the coset S6 ≃ G2/SU(3).
4

That this is the preserved symmetry follows for instance from the observation in [33]

that the forms of the six-sphere NK structure, J and Ω, coincide with the G2 left-invariant

forms on the coset. The fact that the fluxes preserve a smaller amount of symmetry than

the metric is consistent with the equations of motion, because the fluxes enter the stress

tensor that sources the metric only quadratically, and the square of the fluxes is more

symmetric than the fluxes themselves.

3.3 BPS equations

Since we are seeking supersymmetric solutions, our next task is to write down the corre-

sponding BPS equations that the functions in our ansatz must obey. Typically this would

require studying the fermionic variations of the supergravity fields, but in our case we can

bypass this by making use of some results in the literature, together with the mathematical

properties of the background. Indeed, the ingredients needed to write the BPS equations

are contained in [34]. This reference studies the construction of four-dimensional domain

walls in type IIA supergravity, understood as solutions possessing Poincaré symmetry in

three dimensions. Minimal supersymmetry is also imposed. NK manifolds are particularly

simple examples of internal geometries potentially preserving N = 1, so they are consid-

ered in detail. Our ansatz verifies all the assumptions in [34] except for the violation of the

Bianchi identity for the two-form. Adapting the results of [34] to account for this fact, we

4This G2 subgroup should not to be confused with the holonomy of the cone (2.3). The cone over a

six-dimensional NK manifold always has G2 holonomy, but the isometry group of the NK manifold may

be different. For example, as mentioned above for CP
3 viewed as a NK manifold the isometry group is

Sp(2) ≃ SO(5).
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conclude that the BPS equations in our case read

χ′ =
Qf

r2
e2χ ,

h′ = −Qc

r6
e−2χ − 3Qf

r2
e2χ h . (3.16)

Since each of the D6-branes in our solution preserves supersymmetry, we expect that

each of them wraps a calibrated four-cycle inside the G2-cone transverse to the D2-branes.

The fact that this cone possesses G2-holonomy and not just a G2-structure (i.e. that the

G2-structure is torsion-free, as implied by the fact that the base is NK) means that the

corresponding associative three-form Ψ and co-associative four-form Ψ̃ = ∗7Ψ are both

closed, and in fact they are both calibration forms. In terms of the NK forms and the

radial coordinate on the cone, the co-associative form is given by

Ψ̃ = r3 dr ∧ ReΩ +
1

2
r4 J ∧ J . (3.17)

We thus expect that the full world volume of a given D6-brane obeys a generalized cali-

bration condition of the form [35]

d
(

e−ΦK
)

= ∗F2 = F8 , (3.18)

with K a generalized calibration form proportional to Ψ̃. We have checked by direct

calculation that, upon using the BPS equations, this condition is indeed obeyed by

K = h
1

4 e4χ d3x ∧ Ψ̃ . (3.19)

By definition of a calibration, it then follows that the world volume action of a single

D6-brane can be written as

SD6 = −TD6

∫

(

e−ΦK − C7

)

, (3.20)

where dC7 = F8 and pull-backs onto the brane’s worlvolume are understood. The general

results in [36] imply that, in the presence of callibrated branes, the sourced-modified equa-

tions of motion are implied once the (violated) Bianchi identities are imposed. We have

checked that this is the case for all the equations of motion listed in appendix A.

4 Massless quarks and an infrared fixed point

We begin by considering the solution for massless quarks which, as we will justify in the

next section, corresponds to setting Qf to a constant. The system (3.16) of first order BPS

equations is easily integrable. The general solution, in terms of two integration constants

cχ and ch, is

e−2χ = cχ +
2Qf

r
,

h =
(2Qf + cχ r)

2

r6

[

Qc

315Q5
f

(

35Q4
f − 20Q3

fcχ r + 12Q2
fc

2
χ r

2 − 8Qfc
3
χ r

3 + 8c4χ r
4
)

+

(

ch −
8Qc

315Q5
f

) (

c9χ r
9

2Qf + cχ r

)
1

2



 . (4.1)
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Without loss of generality we will set cχ = 1, since this can be achieved through the

rescalings

xµ → c3χ x
µ , r → c−1

χ r . (4.2)

The interpretation of ch is clarified by examining the solution as Qf → 0. This limit is

smooth and results in the unflavored solution corresponding to D2-branes at the tip of a

G2-cone, with χ = 0. The dilaton then reads

eΦ = h
1

4 =

(

ch +
Qc

5 r5

)
1

4

. (4.3)

We see that ch is precisely the constant in the harmonic function of the D2-branes. Setting

ch = 1 selects asymptotically flat boundary conditions. Here we will instead set ch = 0,

since this implements the decoupling limit that yields the equivalence between the gauge

theory and the gravity descriptions. In conclusion, after fixing the integration constants,

the only parameters specifying the solution for massless quarks are the dimensionful ’t Hooft

coupling λ and the dimensionless numbers of D2- and D6-branes N and Nf , respectively.

Let us now examine the UV and the IR limits of the solution. The UV regime of the

gauge theory corresponds to the region r → ∞, in which the leading-order asymptotic form

of the metric and the dilaton are

ds2s =

(

Qc

5 r5

)

−
1

2

dx21,2 +

(

Qc

5 r5

)
1

2
(

dr2 + r2 ds26
)

,

eΦ =

(

Qc

5 r5

)
1

4

. (4.4)

This is exactly the solution for N D2-branes, meaning that the addition of flavor does not

modify the UV properties of the theory at leading order. The first corrections in e.g. the

dilaton behave as:

eΦ =

(

Qc

5 r5

)
1

4

[

1− 59

24

Qf

r
+

14657

2688

(

Qf

r

)2

+O
(

Qf

r

)3
]

. (4.5)

The IR regime of the gauge theory corresponds to the region r → 0, in which the

metric and the dilaton take the form

ds2s =
ρ2

L2
dx21,2 +

L2

ρ2
dρ2 +

9

4
L2 ds26 ,

eΦ =
1

2
√
3

(

Qc

Q5
f

)
1

4

=
1

gs

1

2
√
3

(

V 5
2

V6

)

1

4

(

N

N5
f

)
1

4

, (4.6)

where we have changed coordinates via r3 = Qf ρ
2 and we have defined

L =
2

3
√
3

(

Qc

Qf

)
1

4

=
4πℓs

3
√
3

(

V2

V6

)
1

4

(

N

Nf

)
1

4

. (4.7)

Remarkably, the IR geometry is AdS4 × NK with radius L. This falls in the general class

of supersymmetric AdS4 solutions with SU(3)-structure internal manifold found in [37].
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The requirement that type IIA supergravity provides a reliable description, namely the

conditions that L ≫ ℓs and gse
Φ ≪ 1, translate into

Nf ≪ N ≪ N5
f . (4.8)

Note that these inequalities require both N and Nf to be large.

There exists a technical difficulty with uplifting to M-theory type IIA solutions in

which the Bianchi identity for F2 is violated, but presumably this uplift can be obtained

along the lines proposed in [38]. Assuming the usual relation between the radii in ten

and eleven dimensions and the dilaton, the AdS solution would correspond in M-theory to

another AdS4 geometry with radius

L ∼ (N Nf )
1

6 ℓp , (4.9)

with ℓp the eleven-dimensional Planck length. This is always large in the large-N limit,

thus extending the range of validity of the solution to arbitrary Nf — see a closely related

discussion in [4].

We conclude that the solution (4.1) (with cχ = 1 and ch = 0) describes a set of

N = 1 supersymmetric RG flows (one for each possible internal NK manifold) from a

three-dimensional SYM theory in the UV to an interacting fixed point in the IR, driven

by the addition to the theory of massless quarks. We show in appendix A that the fixed

point is approached along irrelevant directions corresponding to operators of dimensions

∆ = 6, 11/3.

Several observations can be made about the gauge theories dual to the solutions above.

First of all there is the fact that the flow drives the theory to an interacting IR fixed point.

The existence of non-trivial conformal theories at the IR of a three-dimensional gauge

theory in the presence of a large number of flavors was first observed in [39]. This was

proven in an expansion in 1/Nf to all orders. Here we find that this feature is already

present in the Veneziano limit, at least for the N = 1 cases at hand. To elaborate on

this point, we note that the running gauge coupling g2(µ) can be computed introducing

a D2-brane probe in the flavored background at a fixed radial position r, expanding the

D2-brane action to quadratic order in the Born-Infeld field strength and matching with the

canonically normalized YM term. The result for the dimensionless effective coupling is

g2eff ≡ g2(µ)N

µ
=

λ

µ

(

1 +
2

V2

Nf

N

λ

µ

)

−
3

2

. (4.10)

To arrive at this equation we have used (2.1) and the fact that the energy scale in the

gauge theory is related to the radial position in the bulk through 2πµ = r/ℓ2s. In the UV

and in the IR this behaves as

UV: g2eff ∼ λ

µ
, IR: g2eff ∼

(

N

Nf

)
3

2

√

µ

λ
. (4.11)

The UV behavior is that expected of SYM, i.e. (3.2). In between these two asymptotic

behaviors the coupling attains a unique maximum at

µCFT =
λ

V2

Nf

N
, (4.12)
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where the subscript is a reminder that the physics below this scale is approximately con-

formal. At this scale5

g2eff =
V2

3
√
3

N

Nf
. (4.14)

and the YM β-function vanishes. This may seem to suggest that the theory reaches a fixed

point at a finite energy scale. However, this is not true because the IR YM interactions are

subdominant with respect to the Chern-Simons (CS) interactions generated along the flow,

which is consistent with the fact that the effective YM coupling actually goes to zero in the

deep IR. At the perturbative level, the addition of quarks is known to induce a CS term

with level proportional to the number of flavors running in the loop [41–43]. At strong

coupling, this effect can be seen in the non-vanishing of the Wess-Zumino (WZ) action for

a probe D4-brane that fills out the Minkowski directions and is suitably oriented along the

internal directions in the flavored background:

SWZ ∼
∫

A ∧ F ∧
∫

F2 ∼ Nf

∫

A ∧ F , (4.15)

where F is the field strength of the gauge field A living on the brane. We see that the

presence of an F2 flux induces a CS level proportional to Nf .

It has been conjectured that the free energy of a three-dimensional (Euclidean) field

theory placed on the three-sphere is a genuine measure of the number of degrees of freedom

and verifies appropriate monotonicity theorems [44]. This free energy thus plays a role

analogous to that of the c-function for two-dimensional field theories or the a-coefficient

in the Weyl anomaly in four dimensions. For a theory at a fixed point with a holographic

description, the free energy is proportional to the AdS4 radius measured in units of the

four-dimensional effective Planck length. For the IR fixed point (4.6) the free energy scales

with the number of flavors and the rank of the gauge group as

F
(

S3
)

∼ L2 e−2Φ

2κ24
∼ L8 e−2Φ

2κ2
∼

(

N3Nf

)
1

2 , (4.16)

where the dilaton factors account for the fact that the metric (4.6) is written in string

frame. We see that the N -dependence (the adjoint contribution) matches the peculiar

power of CS-matter theories of the ABJM type.

The consistent picture that emerges from this analysis is that, below the scale (4.12),

the CS term dominates over the YM term and the IR dynamics of our models is governed by

a CS-matter theory. In the case in which the internal NK manifold is CP3 this can be made

more explicit because of the connection with the solution by Ooguri and Park (OP) [11],

which is an N = 1 deformation of the ABJM [12] theory. Indeed, Conde and Ramallo

(CR) [10] constructed solutions corresponding to the addition of backreacting flavor to both

the ABJM solution and the OP solution. Regarding CP
3 as an S2 fibration over an S4 base

5This can be compared with the one-loop result, robust in the large Nf limit (see e.g. the discussion

in [40])

µ∂µg
2

eff = −g2eff + β0 g
4

eff (4.13)

for some positive β0. This vanishes at a non-zero coupling g2eff = 1/β0.
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— see the paragraph below (2.6) — CR showed that the backreaction produces a relative

squashing between the fiber and the base, as well as a deformation of the RR form F2 to

accommodate the violation of the Bianchi identity. CR parametrize this squashing and this

deformation with two dimensionless quantities q and η, respectively. Given η, q = q(η) is

determined by a second-order algebraic equation, which results in two branches of solutions.

Moving along a given branch corresponds to changing the number of flavors. Crucially, the

ABJM and the OP solutions lie on different branches. By explicit construction of the NK

structure on CP
3, it can be shown that our IR fixed point corresponds to a solution with

q = 2, η = −2 in the language of CR, and this solution happens to be on the same branch

as the unflavored OP solution. In fact, the results of CR show that this solution is obtained

by adding Nf = 4|k| flavors to the OP solution. It is interesting to note that the metric

on the CP
3 manifold of the unflavored OP solution is not even Einstein, yet under the

addition of an appropriate number of flavors the metric becomes not just Einstein but NK.

5 Massive quarks and quasi-conformal dynamics

In the case of massive quarks the D6-branes are separated from the D2-branes by a finite

distance proportional to the quark mass. This translates into the fact that the D6-branes

extend from infinity down to a non-zero minimal value of the radial coordinate rm. By

Gauss’ law this means that the D6-brane charge Qf (r) vanishes for r < rm. In the gauge

theory this corresponds to the statement that in the IR, i.e. at energies below the quark

mass, the quarks decouple from the dymanics. In contrast, in the UV the quarks can be

treated as effectively massless, so Qf (r) must approach the value that it would have had

in the case of exactly massless quarks. It is therefore convenient to write

Qf (r) = Qf p(r) , (5.1)

where Qf is now a constant and p(r) is a dimensionless function that vanishes for r < rm
and that approaches 1 as r → ∞. In between these two limits p(r) is monotonically

increasing.

It is important to note that p(r) is not determined dynamically: any function with the

properties mentioned above is an admissible choice. On the gauge theory side, this freedom

corresponds to the freedom of adding quarks of many different masses to the theory. The

supergravity equations can be solved for any p(r) in terms of an integral for χ and a double

integral for h as

e−2χ(r) = cχ + 2Qf

∫

∞

r

p(z)
dz

z2
,

h(r) = e−3χ

(

ch +Qc

∫

∞

r

eχ(y)
dy

y6

)

. (5.2)

Taking the massless limit p → 1, one can see that the integration constants have the same

meaning as before, so we can set cχ = 1 and ch = 0.

There is a family of functions p(r), labelled by rm, such that each member of the

family describes a theory in which all quarks have exactly the same mass proportional to
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rm. In order to find this family some details about the internal manifold are needed. This

means that to proceed further we cannot treat all the NK geometries simultaneously. For

illustrative purposes, we will therefore focus on the six-sphere henceforth.

The special class of functions corresponding to quarks of equal masses is determined by

the following consistency condition. By assumption, the full supergravity solution includes

the backreaction of a large number of flavor branes smeared over the internal manifold by

the action of a symmetry group — G2 in the case of D6-branes on the S6. Each of these

branes is embedded non-trivially on the internal manifold, but all these embeddings are

related by a symmetry. This means that the action for the entire set of branes should equal

Nf times the action of a single one. The mathematical expression of this statement is

TD6

∫

10
e−ΦK ∧ Ξ = Nf TD6

∫

7
e−Φ P [K]D6 , (5.3)

where P denotes the pullback to the brane. The action on the left-hand side is integrated

over the entire spacetime and depends on the D6-brane embedding indirectly only through

p(r). The action on the right-hand side is only integrated over the seven dimensional

submanifold occupied by a fiducial D6-brane and depends explicitly on the embedding of

the brane in spacetime. Thus this equation will relate p(r) to the embedding of the brane

and hence to the quark mass. Note that we should in principle consider the full action

instead of just the Dirac-Born-Infeld (DBI) part, but this is not necessary in this case

because the analysis for the Wess-Zumino (WZ) part of the action follows from the DBI

analysis by supersymmetry.

Using our calibration and smearing forms, the left-hand side of (5.3) can be easily

computed with the result

TD6

∫

10
e−ΦK ∧ Ξ =

12V6Qf

2κ2

∫

eχ r3
(

p+
r

4
p′
)

d3xdr , (5.4)

where we have explicitly performed the integration over the internal manifold.

In order to preserve supersymmetry, the three-cycle wrapped by a D6-brane inside a

NK manifold must be calibrated by ReΩ [45, 46]. In the case of the six-sphere an equatorial

S3 ⊂ S6 provides an example of such a cycle, so it is convenient to write the metric on the

six-sphere as

dΩ2
6 = dθ2 + sin2 θ dΩ2

3 + cos2 θ dΩ2
2 , (5.5)

where dΩ2
n denotes the metric of the unit-radius n-sphere. The D6-brane embedding can

then be specified as θ = θ(r). To compute the pullback of the calibration form one needs

to use the following two results, which are easily obtained using the explicit realization of

the NK structure presented in appendix B:

P
[

d3x ∧ dr ∧ ReΩ
]

D6
= sin4 θ d3x ∧ dr ∧ ǫ(3) ,

P
[

d3x ∧ J ∧ J
]

D6
= 2 cos θ sin3 θ θ′ d3x ∧ dr ∧ ǫ(3) , (5.6)

with prime denoting the radial derivative and ǫ(3) being the volume form of the equatorial

S3. The right-hand side of (5.3) then takes the form

TD6

∫

e−Φ P [K]D6 = TD6 V3

∫

eχ r3
(

sin4 θ +
r

4

(

sin4 θ
)

′
)

d3xdr , (5.7)
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where V3 is the volume of the S3 wrapped by the brane. Comparing (5.4) and (5.7) and

using the quantization condition (3.10), together with the fact that 12V6 = V2V3, we arrive

at the conclusion that

p(r) = sin4 θ(r) . (5.8)

As anticipated, this equation relates the D6-brane embedding θ(r) with the supergravity

charge density function p(r). The quark mass enters as a boundary condition on the D6-

brane embedding, so our next task is to determine the equation of motion and the boundary

conditions for the latter.

The brane embedding is determined by the consistency condition that it solves the

equation of motion of a D6-brane probe in the background generated by the D6-branes

themselves. The DBI part of the action for the probe takes the form

SDBI = −TD6

∫

e−Φ√−gD6 d
7ξ = −TD6 V3

∫

eχ r3 sin3 θ
(

1 + r2 θ′2
)

1

2 d3xdr . (5.9)

The WZ part of the action depends on the background RR seven-form. This is determined

by the condition that dC7 = F8 = ∗F2, which is solved by6

C7 = −Qf e
3χ r2

4
d3x ∧ dr ∧ ReΩ . (5.10)

The WZ part of the action is now easily calculated with the result

SWZ = TD6

∫

P [C7]D6 = −TD6 V3

∫

Qf e
3χ r2

4
sin4 θ d3xdr . (5.11)

In principle, we should now solve the second-order equations of motion that follow from

varying SDBI + SWZ with respect to θ(r). However, in this case we can omit this step

because we know that the D6-brane embedding is supersymmetric, which means that the

brane embedding will be determined by a first-order BPS equation. Moreover, because of

the no-force condition between different D6-branes, we expect this equation to be the same

as for a D6-brane probe in an unflavoured background sourced by D2-branes alone. This

equation is known to be

θ′ =
cot θ

r
, (5.12)

and it is easy to verify that the second-order equations of motion are automatically satisfied

provided (5.12) holds. The solution for the brane embedding is thus

cos θ =
rm
r

, (5.13)

where rm is an integration constant that determines both the asymptotic behavior of the

brane embedding and the lowest value of the radial coordinate attained by the brane. From

6Gauge invariance implies that C7 is only defined up to exact terms. In view of the calibration condi-

tion (3.18), we could have also chosen C7 = e−Φ K. The choice we adopted differs from this one by an exact

piece.
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the asymptotic behavior we read off that the relation between rm and the bare quark mass

that enters the UV gauge theory Lagrangian is [47, 48]

mq =
rm
2πℓ2s

. (5.14)

Having solved for the brane embedding we can now use (5.8) to obtain the charge

distribution

p(r) =

[

1−
(rm

r

)2
]2

Θ(r − rm) , (5.15)

where Θ is the Heaviside theta function. Substituting into (5.2) we obtain the supergravity

solution for massive quarks:

e−2χ =











1 + 16
15

Qf

rm
if r < rm

1 +
2Qf

r

(

1− 2
3

(

rm
r

)2
+ 1

5

(

rm
r

)4
)

if r ≥ rm

h =











(

1 + 16
15

Qf

rm

)

Qc

5 r5
if r < rm

e−3χQc

∫

∞

r
eχ(y) dy

y6
if r ≥ rm .

(5.16)

The constants of integration have been adjusted so that in the UV the D2-brane solution

is recovered, as for the massless case. In the IR, below the scale set by rm, the D2-brane

solution is also recovered, but with a different normalization that translates into a finite

renormalization of the coupling:

λIR =

(

1 +
16

15

Qf

rm

)

−1

λUV . (5.17)

This difference in normalizations is needed to ensure the continuity of the solution at rm.7

The quark mass is similarly renormalized. This can be seen by computing the effective

quark mass at the decoupling scale, which can be read off from the action of a string

stretching between the lowest point on a D6-brane and the D2-branes:

mIR

q =
1

2πℓ2s

∫ rm

0

√−gttgrr dr =
1

2πℓ2s

∫ rm

0
eχ dr =

rm
2πℓ2s

(

1 +
16

15

Qf

rm

)

−
1

2

. (5.18)

Note that mIR

q ≤ mq.

The solution exhibits two qualitatively different regimes depending on the value of the

ratio Qf/rm, which in terms of gauge theory parameters may be written as

Qf

rm
∼ λ

mq

Nf

N
∼ µCFT

mq
, (5.19)

with µCFT the scale introduced in (4.12). If mq ≪ µCFT then the theory first reaches the

region at µ ∼ µCFT in which the physics is described by a conformal CS-matter theory, as

described in section 4, and only at a much lower scale mq it ‘realizes’ that the quark mass

7In fact the solution at rm is not just continuous but C2.
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eΦ

r/rm

Figure 1. Dilaton as a function of the energy scale for the solutions with massive quarks. The

values of rm and gs on the gravity side, or equivalently of mq and λ on the gauge theory side, are

the same for all curves. Instead, the ratio Nf/N increases from top to bottom. Specifically, we

take Qc = r5m and Qf = rm10n with n = {−2, 0, 2, 4, 6} from top to bottom, which translates into

Nf/N = 10n mq/λ.

is non-zero. Thus in this case the theory exhibits ‘walking’ at scales mq ≪ µ ≪ µCFT,

i.e. the physics is approximately conformal in this window. In contrast, if mq & µCFT, then

the quarks decouple from the dynamics before their presence can drive the theory to an

approximately conformal phase and the walking region disappears. These two regimes are

clearly seen in the behavior of the dilaton displayed in figure 1, obtained by numerically

integrating (5.16). The outcome only depends on the ratio between scales, which are

clearly visible in the plot. The lower one is approximately mq, that we keep fixed. The ’t

Hooft coupling λ is also common to all curves in order to have the same UV asymptotics.

The different curves are only distinguished by the value of Nf/N , which increases from

top to bottom. In the bottom curves a quasi-conformal region in which the dilaton is

approximately constant is clearly visible. As we decrease Nf/N and move to the top

curves, the size of the walking region decreases until it disappears all together.

6 Outlook

We have constructed analytic solutions dual to three dimensional SYM theories with dy-

namical flavors of arbitrary mass. The simplicity of the solutions, in particular the fact

that they can be found by solving ordinary differential equations, opens the door to several

interesting extensions including the addition of temperature and/or a quark density. In

the first case we expect that, as the ratio mq/T is varied, the solutions will exhibit the

backreacted version of the phase transitions between Minkowski and black hole embeddings

uncovered in [49–51]. In these second case we can make contact [52] with the results of [53]

in the limit in which the quarks mass becomes sufficiently large.
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A Conventions

In this appendix we provide the details needed to reproduce the solutions in the main

text together with some additional material, like the reduction of the system to a four-

dimensional action.

A.1 Ten-dimensional action and equations

We work with type IIA supergravity in string frame, enlarged with adequate sources. The

total action is:

S = SIIA + Ssources = SNS + SRR + Ssources . (A.1)

The first part is the action of type IIA supergravity. The Neveu-Schwarz sector is

SNS =
1

2κ2

∫

e−2Φ

(

R ∗ 1 + 4dΦ ∧ ∗dΦ− 1

2
H ∧ ∗H

)

, (A.2)

with H = dB solving the Bianchi dH = 0. The RR piece, containing the kinetic terms

for the two- and four-forms plus a topological interaction (whose explicit form will not be

needed here), reads

SRR =
1

2κ2

∫
(

−1

2
F2 ∧ ∗F2 −

1

2
F4 ∧ ∗F4

)

+ Stop . (A.3)

In the absence of sources, the field strengths are

F2 = dC1 , F4 = dC3 −H ∧ C1 , (A.4)

solving the Bianchi identities

dF2 = 0 , dF4 = H ∧ F2 . (A.5)

On the other hand, the action for the sources is the sum of the smeared DBI and WZ

terms8

Ssources = −TD6

∫

(

e−ΦK − C7

)

∧ Ξ , (A.6)

8Here and in all subsequent equations we assume that the gauge invariant combination F = 2πα′dA+B

vanishes, where A is the Born-Infeld field on the branes.
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where K is the calibration form, given essentially by the induced metric on the brane, and

C7 is the Hodge dual of C1, with the convention

F2 = − ∗ F8 ⇒ F8 = ∗F2

F4 = ∗F6 ⇒ F6 = − ∗ F4 .
(A.7)

This new coupling between the D6-branes and C7 is translated into a modification of the

Bianchi for F2 (which coincides with the equation of motion for F8) that now reads

dF2 = −2κ2TD6 Ξ . (A.8)

The equations of motion for the lower forms are unmodified by the sources

d
(

e−2Φ ∗H
)

− F2 ∧ ∗F4 −
1

2
F4 ∧ F4 = 0

d ∗ F2 +H ∧ ∗F4 = 0 (A.9)

d ∗ F4 +H ∧ F4 = 0 .

In contrast, the equation of motion for the dilaton receives an additional contribution from

the DBI action

R ∗ 1 + 4d ∗ dΦ− 4dΦ ∧ ∗dΦ− 1

2
H ∧ ∗H − κ2 TD6 e

ΦK ∧ Ξ = 0 . (A.10)

Einstein’s equations are also modified to reflect the presence of the explicit sources

RMN + 2∇M∇NΦ− 1

4
HMRSHN

RS = T IIA
MN + T sources

MN , (A.11)

where T IIA
MN is the usual energy-momentum tensor of the RR sector9

T IIA
MN =e2Φ

[

1

2
(F2)MR(F2)N

R +
1

12
(F4)MR1R2R3

(F4)N
R1R2R3 − 1

4
gMN (F2yF2 + F4yF4)

]

.

(A.12)

The contribution from the sources is

T sources
MN =

κ2 TD6

2
eΦ

[

gMN Ξy (∗K)− ΞMRS (∗K)N
RS

]

. (A.13)

In deriving the last equation we used the equation of motion for the dilaton, as well as the

facts that K ∧ Ξ = − [Ξy (∗K)] ∗ 1 depends on the metric only through the vielbeins and

that
δ

δgMN
=

1

2
eAN

δ

δeAM
. (A.14)

The WZ term in the action does not contribute to this equation, since it is topological, its

only effect being the modification of the Bianchi identity for the two-form.

9For arbitrary n-forms ωn and ξn, we have defined the contraction symbol as ωnyξn =
1

n!
ωM1...Mn

ξM1...Mn .
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A.2 BPS equations and reduction to four dimensions

The conditions for havingN = 1 solutions preserving three-dimensional Poincaré invariance

with a NK internal geometry in type IIA were derived in [34]. We can capitalize on their

results to write the BPS equations for our system simply by allowing for a suitable violation

of the Bianchi identity for the 2-form. In order to make contact with their notation, here

we use the following ansatz for the NS sector10

ds2s =
e2A

τ2
dx21,2 + ρ

(

dz2 + ds26
)

,

eΦ =
ρ

3

2

τ
, H = 0 , (A.15)

where ds26 is the metric of the internal NK manifold, normalized to Rab = 5 δab. The

RR-forms are taken as in eq. (3.7). Then, the set of BPS equations that can be gathered

from [34] by including the effect of the flavor is

ρ′

ρ
= 2− Qc

2

1

ρ τ
+

Qf

2

ρ

τ

τ ′

τ
= 3− Qc

2

1

ρ τ
− 3Qf

2

ρ

τ
(A.16)

A′ = 3− Qc

4

1

ρ τ
− 3Qf

4

ρ

τ
.

As usual, the equation for the warp factor can be integrated in terms of the rest of the

functions. In this case it can be written as

A = A0 +
3

2
z +

1

2
log τ , (A.17)

where A0 is a content-free integration constant that can be absorbed into a rescaling of

the Minkowski coordinates. Thus, the information of the system is contained in just two

functions, which justifies the form of our ansatz in the bulk of the paper. The dictionary

with the variables used there is

ρ = r2 h
1

2 e2χ , τ = r3 h
1

2 , ez = r . (A.18)

It is also convenient to have a reduced action from which the BPS equations follow. The

reduction of (massive) type IIA supergravity on an arbitrary NK manifold was performed

in [54]. The resulting theory is an N = 2 gauged supergravity in four dimensions. From the

full collection of modes respecting the NK structure, our solutions excite a very restricted

subset comprising the dilaton and the breathing mode, that is, the volume modulus of

the internal space. On top of that we have to allow for the deformation coming from the

flavor branes, which was not considered in [54]. The reduced four-dimensional action that

10With the exception that we have changed to a more convenient radial variable ρ drthere = τ dzhere.

– 21 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
6

captures the dynamics of our brane intersection reads11

S4 =
1

2κ2

∫

(

R ∗ 1− 3

2ρ2
dρ ∧ ∗dρ− 2

τ2
dτ ∧ ∗dτ − V ∗ 1− 3 ρ

1

2

τ2
Q′

f ∗ 1
)

=
1

2κ2

∫

(

R ∗ 1−Gij dφ
i ∧ ∗dφj − V ∗ 1− 3 ρ

1

2

τ2
Q′

f ∗ 1
)

, (A.19)

where the potential is

V =
Q2

c

2

1

ρ3τ4
+

3Q2
f

2

ρ

τ4
+Qf

12

τ3
− 30

ρτ2
. (A.20)

The first piece, quadratic in Qc, descends from the kinetic term of the four-form in ten

dimensions. The last one is due to the curvature of the internal manifold. This two terms

will appear in the reduction on any arbitrary Einstein manifold, not necessarily NK. The

additional two terms containing Qf are exclusive of NK geometries in the presence of flavor.

The one quadratic in the number of flavors is inherited from the kinetic term of the two-

form, while the linear term is due to the DBI action. Notice that, at least when Q′

f = 0,

this is a consistent truncation, in the sense that any solution to the action (A.19) can

be uplifted to a type IIA solution in the presence of sources as described in the previous

section.

The potential can be derived from the superpotential

W =
ρ (12 τ − 3Qf ρ)−Qc

4 ρ
3

2 τ2
(A.21)

by means of the standard relation

V = (d− 2)
[

(d− 2) Gij∂iW∂jW − (d− 1) W 2
]

. (A.22)

Here d is the dimension of the bulk, four in our case. Using the domain wall ansatz

ds2d = e2Adx21,d−2 + dz2 (A.23)

all the equations of motion are solved by the first order system

A′ = ±W φi ′ = ∓ (d− 2) Gij∂jW . (A.24)

The superpotential has an extremum at

ρ =
1

3

(

Qc

Qf

)
1

2

, τ =
2

3
(QcQf )

1

2 , (A.25)

which is of course an extremum of the potential as well. This uplifts to a supersymmetric

AdS4 geometry, in the class found in [37], that governs the IR of the more general solutions

11The unusual term Q′

f , proportional to the radial derivative of the flavor charge distribution, is needed

in the massive case. Varying with respect to Qf gives the calibration condition. Here and in the following

we will use a four-dimensional radial coordinate, related to the ten-dimensional one by ρ
1

2 τ dz10 = dz4.
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to the full set (A.16). From the derivatives of the potential we can compute the masses of

the scalars around the AdS point. They turn out to be

m2 L2 = 18,
22

9
, (A.26)

corresponding to irrelevant operators of dimensions

∆ = 6,
11

3
. (A.27)

B Nearly Kähler structure of S6

In this appendix we provide the details for constructing a NK structure on the six-sphere,

needed to obtain the massive quarks solution. Contrary to other NK manifolds, there exist

infinitely many such structures compatible with the round metric on the sphere [28]. In [46]

a constructive algorithm is given by considering the cone over S6, that is R7, as the space

of octonions. We will simply state the final result in a convenient set of coordinates.

Let us write the metric of the six sphere as

dΩ2
6 = dθ2 + sin2 θ dΩ2

3 + cos2 θ dΩ2
2 , (B.1)

where dΩ2
2 and dΩ2

3 are respectively the metrics of a two and three sphere

dΩ2
2 = dα2

1 + sin2 α1dα
2
2 , dΩ2

3 = dβ2
1 + sin2 β1

(

dβ2
2 + sin2 β2dβ

2
3

)

. (B.2)

Take the following functions of the angles:

u1 = cos θ cosα1 , u2 = cos θ sinα1 cosα2 ,

u3 = cos θ sinα1 sinα2 , u4 = sin θ cosβ1 ,

u5 = sin θ sinβ1 cosβ2 , u6 = sin θ sinβ1 sinβ2 cosβ3 ,

u7 = sin θ sinβ1 sinβ2 sinβ3 ,

(B.3)

dictated by the embedding of the unit-radius sphere into flat space,
∑

n u
n un = 1. In

terms of the one-forms vn ≡ dun, the metric can be written as
∑

n v
n vn = dΩ2

6, while the

almost complex structure reads

J = u1
(

v23 + v47 + v56
)

+ u2
(

v45 + v67 − v13
)

+ u3
(

v12 + v57 − v46
)

+u4
(

v36 − v17 − v25
)

+ u5
(

v24 − v16 − v37
)

+ u6
(

v15 − v27 − v34
)

+u7
(

v14 + v26 + v35
)

. (B.4)

On the other hand the complex three-form has real part

ReΩ = u1
(

v257 − v246 − v345 − v367
)

+ u2
(

v146 + v356 + v347 − v157
)

+u3
(

v145 + v167 − v247 − v256
)

+ u4
(

v237 + v567 − v126 − v135
)

+u5
(

v127 + v236 + v134 − v467
)

+ u6
(

v124 + v457 − v137 − v235
)

+u7
(

v136 − v125 − v234 − v356
)

, (B.5)
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as well as imaginary part

ImΩ = v123 + v156 + v147 + v245 + v267 − v346 + v357 . (B.6)

As mentioned in the main text, a BPS D6-brane has to wrap a three-dimensional subman-

ifold Σ calibrated by ReΩ. This implies ImΩ Σ = 0, as shown in [46]. An example is the

equatorial S3 ⊂ S6 given in our coordinates by θ = π/2.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[34] M. Haack, D. Lüst, L. Martucci and A. Tomasiello, Domain walls from ten dimensions,

JHEP 10 (2009) 089 [arXiv:0905.1582] [INSPIRE].

– 25 –

http://arxiv.org/abs/math.DG/0203038
http://arxiv.org/abs/hep-th/0107177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107177
http://arxiv.org/abs/hep-th/0109152
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109152
http://dx.doi.org/10.1103/PhysRevLett.95.021601
http://arxiv.org/abs/hep-th/0403049
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403049
http://dx.doi.org/10.1016/j.nuclphysb.2004.12.004
http://arxiv.org/abs/hep-th/0407263
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407263
http://arxiv.org/abs/math/0202282
http://inspirehep.net/search?p=find+EPRINT+math/0202282
http://arxiv.org/abs/math/0703231
http://inspirehep.net/search?p=find+EPRINT+math/0703231
http://dx.doi.org/10.1088/0264-9381/20/19/308
http://arxiv.org/abs/hep-th/0206151
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206151
http://dx.doi.org/10.1088/1126-6708/2002/08/027
http://arxiv.org/abs/hep-th/0207117
http://inspirehep.net/search?p=find+EPRINT+hep-th/0207117
http://arxiv.org/abs/math/0602160
http://inspirehep.net/search?p=find+EPRINT+math/0602160
http://arxiv.org/abs/math.DG/0612655
http://dx.doi.org/10.1016/S0370-2693(02)01878-6
http://arxiv.org/abs/hep-th/0203092
http://inspirehep.net/search?p=find+EPRINT+hep-th/0203092
http://arxiv.org/abs/1101.0618
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0618
http://arxiv.org/abs/hep-th/0308046
http://inspirehep.net/search?p=find+EPRINT+hep-th/0308046
http://dx.doi.org/10.1088/1126-6708/2007/02/090
http://arxiv.org/abs/hep-th/0612118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612118
http://dx.doi.org/10.1016/j.nuclphysb.2009.03.011
http://arxiv.org/abs/0901.4251
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4251
http://dx.doi.org/10.1088/1126-6708/2009/10/089
http://arxiv.org/abs/0905.1582
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1582


J
H
E
P
0
7
(
2
0
1
5
)
0
5
6

[35] J. Gutowski, G. Papadopoulos and P.K. Townsend, Supersymmetry and generalized

calibrations, Phys. Rev. D 60 (1999) 106006 [hep-th/9905156] [INSPIRE].

[36] P. Koerber and D. Tsimpis, Supersymmetric sources, integrability and generalized-structure

compactifications, JHEP 08 (2007) 082 [arXiv:0706.1244] [INSPIRE].
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