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1 Introduction

The question of how a highly excited state in a quantum system relaxes to equilibrium or

how a quantum system relaxes when one of the parameters describing its Hamiltonian is

quenched is of phenomenological interest. The relaxation of the state produced initially

by high energy nuclear collisions from a highly excited state to quark-gluon plasma is an

important question in the RHIC experiments [1]. Similarly the question of quenching of

a quantum system can be studied experimentally in cold atoms where the coupling of an

interacting system can be tuned to almost any value and in short time scales [2–5]. There

have been various approaches, both analytical and numerical, developed to study these

questions for a variety of quantum systems. When the question of thermalization is asked in

quantum field theories which admit a holographic dual, the gauge/gravity correspondence

links the question of approach to equilibrium in the field theory to the formation of a black

hole in the bulk. See [6–10] for early studies pursuing this idea.
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More recently motivated by success of the gauge/gravity duality to describe near equi-

librium physics and hydrodynamic behaviour in strongly coupled field theories this question

has received renewed attention which has resulted in more quantitative understanding [11–

17]. In [13] the excited state in the quantum field theory was created by a translational

invariant perturbation along the boundary of a minimally coupled scalar field. This pertur-

bation lasted for a short duration of time. It was shown by solving the bulk equations that

for a small amplitude of the perturbation, the metric outside the in-falling shell of matter

is that of a black brane at the leading order. This result encouraged subsequent authors

to model the collapse to a black hole by a homogenous in-falling shell of matter [18–24].

For definiteness we consider the thin shell model of collapse [21] given by the following

metric

ds2 =
1

z2

[
−(1− θ(v)zd)dv2 − 2dzdv + dx2

]
, (1.1)

θ(v) =

{
0, for v < 0,

1, for v ≥ 0.

Here z refers to the radial co-ordinate, the boundary is at z = 0. x = x1, · · ·xd−1 are

the spatial co-ordinates at the boundary. The metric for v < 0 can be seen to be that of

AdSd+1 using the following co-ordinate transformation

v = t− z. (1.2)

While the metric for v > 0 reduces to that of the black brane in AdSd+1 under the co-

ordinate transformation

dv = dt− dz

1− zd
. (1.3)

From these co-ordinate transformations, we see that v coincides with time t at the boundary.

We have chosen to work with units in which the radius of AdSd+1 is unity. The radius of

the horizon is also unity. The Penrose diagram of the collapse is given in figure 1.

In [21] the study of how probes such as two point functions, Wilson loops and the

entanglement entropy [25] thermalize in the thin shell Vaidya collapse was initiated. This

study was mainly confined to the saddle point approximation of the probes. The behaviour

of the probes were characterized in terms of their minimal geometric volume. In [23] the

analysis was extended to study the two point function of operators dual to a minimally

coupled massive scalar beyond the geodesic approximation for the case of the AdS3 Vaidya

shell. The retarded Green function GR(t2, t1; k) with time t1 < 0, t2 > 0, before and after

the collapse of the shell was evaluated numerically. Translational invariance in the spatial

direction of the collapsing shell (1.1) enabled the characterization of the Green function in

the Fourier k space corresponding to the spatial directions. The analysis was numerical and

it showed that the relaxation of the Green function is determined by the first quasinormal

mode. In [24] the study of thermalizing Green functions was extended to fermions in the

AdS4 Vaidya shell. The analysis was again done numerically. Some analytic properties of

the time dependent scalar Green functions was studied in [26].
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Figure 1. The Penrose diagram of collapse in AdS Vaidya.

In this paper we develop a new method to evaluate the retarded two point function

GR(t2, t1; k) of an operator in the dual theory corresponding to the collapsing Vaidya AdS

shell in the bulk. The method is general and can be implemented in arbitrary dimensions

and for arbitrary types of fields in the bulk. The method relies on performing the matching

of the wave functions corresponding to the dual fields before and after the shell term by

term in the expansion of the radial co-ordinate z of (1.1). We will show that this enables

the determination of all the time derivatives of GR just after the collapse, v = 0+ of the

shell. It is then possible to evolve the Green function to an arbitrary future time t2. On

implementing this method we see that to obtain information of more and more higher

derivatives of the Green function one needs to perform the matching of the wave functions

of the bulk fields to higher powers in the radial coordinate z. This implies that one needs

the information of the wave functions of these fields closer to the horizon to obtain long

time behaviour of the Green function. It also implies that short time behaviour of the two

point function after the collapse can be determined analytically from the near boundary

information of the wave functions. Using the fact that the Green function at long time is

determined by the near horizon behaviour of the wave functions we show that the relaxation

of the Green function to equilibrium is determined by the first quasi-normal mode of the

dual bulk field corresponding to the operator of interest in the black hole background.

We implement the method numerically and re-visit the case of the minimally coupled

massive scalar in the AdS3 Vaidya shell. We reproduce the results of [23]. We then study

the case of the minimally coupled massless scalar in AdS5 Vaidya shell. The Green function

corresponding to this scalar is the retarded two point function of the spin 2 part of the
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stress tensor. We show that this Green function relaxes by the first quasi-normal mode

which was determined numerically in [27]. We then study the vector fluctuations of the

metric and obtain the Green function of the vector part of the stress tensor. For small

momentum k, it is known [28] that this mode admits a hydrodynamic quasi-normal mode

which obeys the dispersion relation given by

ω = −i η
Ts
k2, (1.4)

where η is the shear viscosity, s the entropy density and T the temperature of the fluid. We

show the time dependent Green function corresponding to the vector fluctuations of the

metric relaxes to equilibrium at small k by the hydrodynamic mode. Using this we deter-

mine the universal ratio of shear viscosity to entropy density from a time dependent process.

This paper is organized as follows. In the next section we detail the new method

developed in this paper to evaluate the retarded Green function in collapsing AdS Vaidya

thin shell backgrounds. We see that the method results in a recursion formula for the

derivatives of the Green function just after the collapse of the shell. In section 3 we apply

the method to obtain the Green function of the operator dual to the minimally coupled

scalar in AdS3 Vaidya shell. In section 4 we show that the long time behaviour of the Green

function is determined by the first quasi-normal mode. This is first done for the case of

AdS3 Vaidya for which wave functions before and after the collapse of the shell are known

exactly. Then the argument is extended in general for any Green function. In section 5 we

turn to the case of AdS5 Vaidya. We first study the thermalization of the shear correlator

of the stress tensor by solving the minimally coupled scalar in AdS5 Vaidya. We then

examine the vector perturbations of the metric to evaluate the two point function of the

spin-1 part of the stress tensor and show that it relaxes at small momentum by the shear

hydrodynamic mode. Section 6 contains the conclusions. Appendices A to D deal with

technical details required for the analysis in the paper.

2 Recursion method for time dependent Green functions

In this section we will outline the general method to obtain the retarded Green function

in the thin shell Vaidya AdS geometry. The method is general, and can be applied to any

field in the AdSd+1 Vaidya geometry given in (1.1). For definiteness let us focus on the

minimally coupled scalar of mass m. The differential equation obeyed by φ is given by

h(v, z)∂2
zφ+

(
1

z
∂vφ− 2∂v∂zφ

)
+

(
∂zh−

h(v, z)

z

)
∂zφ−

(
m2

z2
+ k2

)
φ = 0, (2.1)

where

h(v, z) = 1− θ(v)zd, (2.2)

and k is the Fourier conjugate of direction xd−1.

The solution φAdS in the region v < 0 corresponding to before the formation of the

black hole admits a closed form in terms of Bessel functions. The analytical solution will
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be explicitly discussed in the examples we will consider subsequently. The solution has

the form

φAdS(v, k, z; t1) = z∆+J(v − t1, k, z), (2.3)

where ∆+ > ∆− are the two solutions of the equation

∆(∆− d) = m2. (2.4)

The solution we choose satisfies the boundary condition

φAdS(v, k, z; t1)
z→0−−−→ z∆−δ(v − t1) + . . . , (2.5)

with t1 < 0. This is necessary to obtain the retarded Green function. In (2.3) note that

due to time translational symmetry for v < 0, the wave function just depends on the

combination v − t1. In the black hole region v > 0, the bulk equations of motion usually

do not admit a closed form solution. But the solution in the frequency ω and momentum

k domain can be constructed in terms of a Frobenius series around the boundary z = 0.

Then the most general solution in the time domain v > 0 can be obtained by taking Fourier

transform of the two independent solutions obtained by the Frobenius method with respect

to the frequency, ω. We write this as

φBH(v, k, z) =

∫ ∞
−∞

dωe−iωv
∞∑
n=0

[
z∆+C(ω, k)An(ω, k)zn + z∆−D(ω, k)Bn(ω, k)zn

]
. (2.6)

Note that here we have assumed that the roots of the indicial equation of (2.1), ∆+,∆−
do not differ from each other by an integer. The discussion can be carried out for the case

when the roots differ by an integer but as we will see that we will only need the less singular

solution which falls of as z∆+ to construct the retarded Green function. C(ω, k) and D(ω, k)

in (2.6) are functions which must be determined by continuity at v = 0. Note that the

coefficients of the differential equation (2.1) are discontinuous, but the discontinuity is finite

across v = 0, therefore the solution φ must be continuous at v = 0. Thus we have

φAdS(v = 0, k, z; t1) = φBH(v = 0, k, z). (2.7)

We impose continuity by equating each term of the power series in z about the boundary.

Thus we expand both sides of (2.7) in powers of z and obtain the equation

z∆+

∞∑
n=0

J̃nz
n + z∆−δ(−t1) =

∫ ∞
−∞

dω
∞∑
n=0

(
z∆+C(ω)An(ω)zn + z∆−D(ω)Bn(ω)zn

)
. (2.8)

We have suppressed the dependence of J̃n on t1, k and the dependence of C(ω), An,

D(ω), Bn on k to un-clutter the equations. Equating the coefficients of zn in the terms

proportional to z∆+ we obtain

J̃n =

∫ ∞
−∞

dω C(ω)An(ω). (2.9)
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From the examples considered in the paper, it is seen that An(ω) is an n-th order polynomial

in ω.1 Therefore we write An as

An =
n∑
j=0

ajnω
j . (2.10)

Substituting this expansion in (2.9) we obtain

J̃n =

n∑
j=0

ajn

∫ ∞
−∞

dω C(ω)ωj . (2.11)

Let us define the j-th moment of C(ω) as,

Mj =

∫ ∞
−∞

dω C(ω)ωj . (2.12)

Substituting this in equation (2.11), we can rewrite it as,

J̃n =
n∑
j=0

ajnMj . (2.13)

This equation can be inverted to obtain the moments, Mj , which contain information about

C(ω). Note that ajn are known from Frobenius series solution φBH . Therefore we obtain

Mn =
1

ann

J̃n − n−1∑
j=0

ajnMj

 ; n > 0, (2.14)

M0 =
J̃0

a0
0

. (2.15)

Knowledge of all the moments Mj is sufficient to construct the retarded Green function.

To see this consider the near boundary behaviour of the field φ. From equations (2.5), (2.6)

and (2.8), the near boundary behaviour of the field for v > 0 is given by

φBH(v, t1, k) =

∫ ∞
−∞

dωe−iωvC(ω)z∆+A0 + · · ·+O(z∆−). (2.16)

Together with the boundary condition (2.5), the AdS/CFT recipe for the retarded Green

function [29] states that it is given by

GR(v) =

∫ ∞
−∞

dωe−iωvC(ω). (2.17)

Here we have ignored overall proportionality constants in the Green function to simplify

the discussion. Expanding the exponential as Taylor series, and using the definition of the

moments of C(ω) we obtain

GR(v) =
∞∑
n=0

(−iv)nMn

n!
. (2.18)

1This can be seen using the recursion formula obtained during the construction of the Frobenius series

solution of (2.1).
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Thus the knowledge of all the moments of C(ω) is sufficient to construct the Green function.

Note that knowledge of D(ω) in (2.6) is not necessary. We call this the recursion method to

obtain the Green function since each term in (2.18) is given recursively from the knowledge

of the lower moments using (2.14). It allows for the construction of the the Green function

as a power series in time for v > 0. The information of t1 is present in J̃n and all terms

depend on momentum k. There is another way to view this construction of the retarded

Green function. Note that the j-th moment of C(ω) is essentially the j-th derivative of the

Green function, evaluated at v = 0+,

∂jGR
∂vj

∣∣∣
v=0+

=

∫ ∞
−∞

dω (−iω)jC(ω) = (−i)jMj . (2.19)

Thus this method determines the Green function for v > 0 from the knowledge of all its

time derivatives at v = 0+.

We now make some general properties of this method of determining the retarded

Green function. Since the method relies on construction of φBH using the Frobenius series

we can apply it in general to all black hole backgrounds even if closed form solutions do

not exist. The method can be applied even if the background is only known in terms

of a power series in z about the boundary for example in finite temperature versions of

RG flow solutions [30]. Note that for short time development of the Green function for

v > 0, knowledge of only a few moments is needed. This implies from (2.18) and (2.14)

we need the knowledge of wave functions before and after v = 0 close to the boundary.

That is we need the knowledge of the wave functions to a few powers of z. Thus short time

development of the Green function can be written down analytically by obtaining a few

moments. However for the long time behaviour of the Green function we need to know a

large number of moments. Again from (2.14), this implies we need the information of the

wave function for large powers of z which in turn implies that we need the behaviour close

to the horizon. This fits with the general intuition that long time behaviour is controlled

by the behaviour near the horizon. It is this property which will enable us to prove that

the long time behaviour of the Green function is determined by the quasinormal mode in

section 4. Finally, it will turn out that even moments are real and odd moments are purely

imaginary. This is because the coefficients ajn for odd j are imaginary. This is easily seen

due to the fact that each power of ω comes with a factor of i. Then from (2.14) it is easy to

see that even moments are real and odd moments are purely imaginary. This then ensures

that the Green function given by (2.18) is real.

3 Thermalization in AdS3 Vaidya

In this section we will implement the method developed in section 2 for the case of thin

shell Vaidya metric in AdS3. We study the thermalization of the retarded Green function of

the operator corresponding to the minimally coupled scalar of mass m. We will show that

using our method we reproduce the results of [23]. We also determine a few low moments

analytically to obtain the short time behaviour of the Green function. A simplification that

occurs for the case of the AdS3 is that the solutions of the minimally coupled scalar in the

– 7 –
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BTZ black hole are known in closed form in terms of hypergeometric functions [31]. These

solutions will provide the initial starting point in our argument to demonstrate that the

long time behaviour of the Green function is determined by the lowest quasi-normal mode.

The thin-shell AdS-Vaidya metric, in 3 dimensions is given by

ds2 =
1

z2

[
−h(z, v)dv2 − 2dvdz + dφ2

]
,

h(z, v) = 1− θ(v)z2.
(3.1)

The co-ordinate φ parametrizes the spatial direction of the field theory and we assume that

it is not compact. The scalar field equation in this metric is given by

h∂2
zΦ +

(
1

z
∂vΦ− 2∂v∂zΦ

)
+

(
∂zh−

h

z

)
∂zΦ−

(
m2

z2
+ k2

)
Φ = 0. (3.2)

3.1 Scalar wave functions in AdS3 Vaidya shell

We solve the minimally coupled massive scalar equation given in (3.2). We discuss the

solutions before and after the collapse of the shell below.

Solution for v < 0. The solution for the scalar field for v < 0 is given by [23]

ΦAdS(v − t1, k, z) (3.3)

= C
θ(v − t1)z∆+

[(v − t1)2 + 2(v − t1)z]
2ν+1

4

|k|ν+ 1
2J−ν− 1

2

(
|k|
√

(v − t1)2 + 2(v − t1)z
)
,

C =
2

1
2
−ν√π
Γ(ν)

. (3.4)

Note that this solution is written down in mixed Fourier space (t, k). Here ∆± are solutions

to the quadratic equation ∆(∆ − 2) = m2 and are given by

∆± = 1± ν, ν =
√

1 +m2. (3.5)

This solution satisfies the required boundary condition discussed in (2.5) which is required

to evaluate the retarded Green function,

ΦAdS(v − t1, k, z) = δ(v − t1)z∆− + . . . . (3.6)

To show this we first take the the limit z → 0 in (3.3) keeping v− t1 6= 0. We see that there

is no term proportional to z∆− . Now we take v → t1, the wave function then reduces to

ΦAdS(k, v, z)z→0 =
θ(v − t1)2

√
π

Γ(−ν + 1
2)Γ(ν)

z∆+

[(v − t1)2 + 2(v − t1)z]ν+ 1
2

. (3.7)

This solution certainly diverges in the limit v → t1. All what one needs to show is that

the expression in (3.7) is a representation of the delta function times z∆− . To demonstrate

this we perform the integral over v as follows∫ ∞
−∞

dvΦAdS(k, v, z)z→0 =
2
√
π

Γ(−ν + 1
2)Γ(ν)

z∆−

∫ ∞
−∞

dv

z
θ(v − t1)

1

[(v−t1z + 1)2 − 1]ν+ 1
2

= z∆− . (3.8)

Therefore we conclude that the solution in (3.3) satisfies the required boundary condition

given in (3.6).
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Solution for v > 0. The strategy to obtain a closed form solution for v > 0 is as follows.

Note that under the transformation

t = v − 1

2
ln

(
1− z
1 + z

)
, (3.9)

the metric given in (3.1) for v > 0 reduces to that of the BTZ black hole in Poincaré

coordinates. This is given by

ds2 =
1

z2

(
−(1− z2)dt2 +

dz2

1− z2
+ dφ2

)
. (3.10)

Now the solutions to the minimally coupled scalar in the BTZ black hole is known [31].

The two independent solutions are given by

Φ
(1)
ω,k(z, t, φ) = e−iωt+ikφ(1− z2)−

iω
2 z∆− (3.11)

× F
(

1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)), 1− iω, 1− z2

)
,

Φ
(2)
ω,k(z, t, φ) = e−iωt+ikφ(1− z2)

iω
2 z∆−

× F
(

1

2
(∆− + i(ω + k)),

1

2
(∆− + i(ω − k)), 1 + iω, 1− z2

)
.

Note that these two independent solutions reduce to the ingoing and outgoing Fourier

modes at the horizon. We can now obtain the solution in the coordinates (z, v, φ) by

performing the substitution given in (3.9). This leads to the following independent solutions

for the Vaidya metric in the region v > 0,

Φ
(1)
ω,k(z, v, φ) = e−iωv+ikφ(1 + z)iωz∆− (3.12)

× F
(

1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)), 1− iω, 1− z2

)
,

Φ
(2)
ω,k(z, v, φ) = e−iωv+ikφ(1− z)iωz∆−

× F
(

1

2
(∆− + i(ω + k)),

1

2
(∆− + i(ω − k)), 1 + iω, 1− z2

)
.

Now the above solutions admit an expansion around the horizon z = 1, however we have

seen in section 2, to obtain the Green function we need an expansion around the boundary

z = 0. This can be achieved by using the transformation properties of the hypergeometric

functions. We have performed the required transformation in appendix A. This results in

the following independent solutions,

Φ
BTZ(+)
ω,k (z, v, φ) = e−iωv+ikφ(1 + z)iωz∆−× (3.13)

F

(
1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)),∆−, z

2

)
,

Φ
BTZ(−)
ω,k (z, v, φ) = e−iωv+ikφ(1 + z)iωz∆+×

F

(
1

2
(∆+ − i(ω + k)),

1

2
(∆+ − i(ω − k)),∆+, z

2

)
.
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It can be explicitly verified that the above solutions satisfy the equations of motion

given in (3.2) for v > 0. The partial Fourier transform of this solution with respect to ω is

given by

ΦBTZ(k, v, z) (3.14)

= z∆−

∫ ∞
−∞

dω e−iωv C1(ω)(1 + z)−iωF

(
1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)),∆−, z

2

)
+ z∆+

∫ ∞
−∞

dω e−iωv C2(ω)(1 + z)−iωF

(
1

2
(∆+ − i(ω + k)),

1

2
(∆+ − i(ω − k)),∆+, z

2

)
.

The above solution admits an expansion around the boundary z = 0. Therefore we have

written the solution in the black hole region in the required form given in (2.6). Note that

in the case of the BTZ black hole, the Frobenius expansion around the boundary can be

written in closed form.

3.2 Matching at v = 0 and Green function

We follow the general procedure discussed in section 2 to construct the time dependent

Green function. To do this we first obtain the moments of the function C2(ω) by matching

the wave function ΦAdS(v, k, z) in (3.3) and ΦBTZ(v, k, z) in (3.13) at v = 0. The moments

of C2(ω) are determined by comparing powers of z in the terms proportional to z∆+ . We

will demonstrate this procedure explicitly and obtain moments up to the second order. We

expand the l.h.s. of (3.3) and the z∆+ coefficient of (3.13) to quadratic order in z to obtain

the following equation

Cθ(−t1)

(
|k|
|t1|

)ν+ 1
2

(
1 +

(
ν

2
+

1

4

)(
2z

t

)
+

1

2!

(
ν

2
+

1

4

)(
ν

2
+

5

4

)(
2z

t

)2

. . .

)
×J−ν− 1

2
(|k||t1|) + z

dJ−ν− 1
2

(
|k|
√
t21−2t1z

)
dz

∣∣
z=0

+
z2

2

d2J−ν− 1
2

(
|k|
√
t21−2t1z

)
dz2

∣∣
z=0

+ . . .


=

∫ ∞
−∞

dωC2(ω)

(
1− iωz + iω(iω + 1)

z2

2
+ . . .

)
×

×

(
1 +

1
2(1 + ν − i(ω + k))1

2(1 + ν − i(ω − k))

1 + ν
z2 + . . .

)

=

∫ ∞
−∞

dωC2(ω)

(
1− iωz +

(
1 + ν

4
− ω2

2
− ω2 − k2

4(1 + ν)

)
z2 + . . .

)
. (3.15)

Comparing the terms we can read out the moments to quadratic order. These are given by

M0 =

∫ ∞
−∞

dω C2(ω) = NJ−ν− 1
2
(|k||t1|), (3.16)

M1 =

∫ ∞
−∞

dω wC2(ω) = −iNkJ−ν− 3
2
(|k||t1|),

M2 =

∫ ∞
−∞

dω w2C2(ω) = N

[(
(1 + ν)2

3 + 2ν
+ k2 − 2(1 + ν)(1 + 2ν)

t21

)
J−ν− 1

2
(|k||t1|)

− 2k(1 + ν)

t1
J−ν+ 1

2
(|k||t1|)

]
,
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here, N ≡ Cθ(−t1)
(
|k|
|t1|

)ν+ 1
2
. As discussed in section 2, see equation (2.18), the retarded

Green function is given by2

G(v) = M0 + ivM1 −
1

2!
v2M2 + · · · . (3.17)

Thus it is clear that the short time expansions of the Green function can be easily obtained.

It is interesting to take the k = 0 limit of the moments and construct the short time

expansion of the Green function. In this limit the Bessel function reduces to a rational

function and the first few moments are given by

M0 =
C

t2ν+1
1

2ν+ 1
2

Γ(−ν + 1
2)
,

M1 =
C

t2ν+1
1

2ν+ 1
2

Γ(−ν + 1
2)

−i 2(−ν + 1
2)

t1
,

M2 =
C

t2ν+1
1

2ν+ 1
2

Γ(−ν + 1
2)

1 + ν

(3 + 2ν)

(
1 + ν − 2

t21
(1 + 2ν)(3 + 2ν)

)
.

(3.18)

Note that it is clear that the Green function does not vanish identically for k = 0 for

arbitrary t1, v, since these moments do not vanish.

3.3 Recursive numerical construction of the Green function

It is easy to set up an algorithm in Mathematica to evaluate the moments recursively as

discussed in section 2. This algorithm is used to evaluate 56 moments of the function C2(ω).

From (2.18) we can construct the Green function to O(v56).3 To improve accuracy we then

approximate the Green function using the (28|28)th Padé approximant. The results for

the Green function are given in the 3 figures which we will discuss.

Figure 2, shows the thermalizing Green function (solid blue curve), the vacuum Green

function (dot-dashed red curve), and the thermal Green function (green dashed curve), as

functions of future time v. The thermalizing Green function starts close to the vacuum

Green function, for small time, however it deviates away from the vacuum Green function

within one horizon time. At large time, the thermalizing Green function approaches the

thermal one. At v = 0, the thermal Green function starts at a different value than the

thermalizing and the vacuum Green functions. The thermal Green function is plotted

from (B.2) derived in the appendix B. Figures 2 and 3, are plotted for specific values,

ν = 2
3 , k = π

2 and t1 = −1.7.

Figure 3 is the logarithmic plot of the absolute value of the thermalizing Green function

(solid blue curve), and the imaginary part of the lowest quasinormal mode (dot-dashed

red curve), e−∆+v. It is seen that for large time, the decay of the thermalizing Green

function is given by this lowest quasinormal mode. Here, large time means time of the

2Since we are interested only in the time dependence we are ignoring overall proportionality constants

in the Green function.
3We stopped at this order in moments since we found that for times v = 5 in horizon units the Green

function evaluated converged to high degree of accuracy.
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0.5

GR H v ,t1 ,kL

Figure 2. The thermalizing (solid blue curve), vacuum (dot-dashed red curve) and thermal (dashed

green curves) Green functions are plotted as functions of future time, v, for fixed values, ν = 2
3 , k =

π
2 and t1 = −1.7.

1 2 3 4 5
v

10- 5

0.001

0.1

ÈGR H v ,t1 ,kLÈ

Figure 3. The logarithmic plot of the absolute value of the thermalizing Green function is given

by the solid blue curve, for fixed values, ν = 2
3 , k = π

2 and t1 = −1.7. The dot-dashed red line gives

the lowest quasinormal mode of the thermal Green function.

order of a few horizon radii, as can be seen from the plot. It is important to note that

thermalization, i.e. decay of thermalizing Green function follows the lowest quasinormal

mode, is achieved within a few (∼ O(1)) horizon radii. The dips in the plot are the points

where the thermalizing Green function crosses the time axis in figure 2, and indicates the

oscillations of this Green function. Figures 2 and 3 reproduce those found in [23] by the

direct numerical integration of the differential equation (3.2).

Lastly, in figure 4, the thermalizing (red dots) and the thermal (solid blue curve) Green

function are plotted as function of k. The value of the thermalizing Green function close

to k = 0 is non zero, as expected from the earlier discussion in around (3.18). Also, the

values of the thermalizing and the thermal Green functions are close to each other near

k = 0. This figure is plotted for specific values, ν = 2
3 , t1 = −2 and t2 = 5.
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k
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- 0.0001
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0.0002

GR H k ,t 2 ;t1L

Figure 4. The thermalizing and thermal Green functions as functions of k are given by the red dots

and solid blue curve, respectively, for fixed values, ν = 2
3 , t1 = −2 and t2 = 5. From the plot it is

seen that values of the thermalizing and thermal Green function are close to each other near k = 0.

4 Long time behaviour of the Green function

It is clear from the expression for the Green function given in (2.18), that for obtaining

the long time behaviour of the Green function we need to evaluate moments Mn for large

values of n. Form the recursive relations for the moments in (2.14) we see that this can be

done if we implement the matching of the wave functions to order zn. This in turn implies

that we need the knowledge of the less dominant wave function in (2.6) Φ+ defined by

Φ+(ω, k, z) =

∞∑
n=0

z∆+An(ω, k, z)zn, (4.1)

closer to the horizon. This is because the coefficients of zn for large values of n will be

determined by the singular behaviour at the horizon. The behaviour of this wave function

near the horizon can be determined by the general properties of solutions of wave equations

in AdS black holes. Using this information we will show that the long time behaviour of the

Green function is determined by the first quasinormal mode. We will first demonstrate this

for the case of the minimally coupled scalar in AdS3 Vaidya. This is easy to do explicitly

since, the wave function ΦBTZ(+) is known in closed form. We will then show in general

that the long time behaviour of the Green function is determined by the first quasinormal

mode of the wave functions in the corresponding black hole background.

4.1 Green function in AdS3 Vaidya

From the preceding discussion we need to examine the behaviour of the function Φ+(ω, k, z)

close to the horizon. For the case of the minimally coupled scalar in the BTZ black hole

this function is known in closed form (3.14) and is given by

ΦBTZ(+)(ω, k, z) = z∆+(1+z)−iω2F1

(
1

2
(∆+ − i(ω+k)),

1

2
(∆+ − i(ω−k)),∆+, z

2

)
. (4.2)

– 13 –



J
H
E
P
0
7
(
2
0
1
5
)
0
4
1

The near horizon limit of this wave function can be easily determined from the properties

of the hypergeometric function given in (A.1). We see that the singular behaviour near

z = 1 is given by

ΦBTZ(+)(ω, k, z) ∼ (1− z)iω
Γ(∆+)Γ(−iω)

Γ(1
2(∆+ − i(ω − k)))Γ(1

2(∆+ − i(ω + k)))
. (4.3)

This equation will serve as the starting point of obtaining the long term behaviour of the

Green function. It is important to note that the mode Φ+ vanishes near the horizon when

the frequency is given by

ω±n = −i∆+ − 2ni± k, n = 0, 1, 2, · · · . (4.4)

These are the quasinormal modes of the minimally coupled scalar in the BTZ black hole [32].

Also note that these modes are located in the lower half ω-plane. We now impose the

matching condition at v = 0. This will lead to the following equation

C
|k|ν+ 1

2

(t21 + 2|t1|z)
(2ν+1)

4

J−ν− 1
2

(
|k|
√
t21 + 2|t1|z

)
(4.5)

∼
∫ ∞
−∞

dωC2(ω)(1− z)−iω
Γ(∆+)Γ(−iω)

Γ(1
2(∆+ − i(ω − k)))Γ(1

2(∆+ − i(ω + k)))
.

We expect this approximation near the horizon to estimate the behaviour of the moments

suitable to obtain long time behaviour of the Green function. We can now solve for C2(ω)

by substituting

y = ln(1− z), (4.6)

and multiplying both sides of the equation in (4.5) by e−iω
′y and formally integrating over

y from −∞ to ∞.4 This leads to the following expression for C2(ω)

C2(ω) ∼ Ĩ(ω, k)
Γ(1

2(∆+ − i(ω − k)))Γ(1
2(∆+ − i(ω + k)))

Γ(∆+)Γ(−iω)
, (4.7)

where

Ĩ(ω, k) =
C

2π

∫ ∞
−∞

dy
|k|ν+ 1

2

(t21 + 2|t1|z)
2ν+1

4

J−ν−1/2

(
|k|
√
t2 + 2|t1|z

)
e−iωy. (4.8)

Finally the Green function is given by

GR(k, v, t1) =

∫ ∞
−∞

dωe−iωvC2(ω) = (4.9)∫ ∞
−∞

dωe−iωv
Γ(1

2(∆+ − i(ω − k)))Γ(1
2(∆+ − i(ω + k)))

Γ(∆+)Γ(−iω)
Ĩ(ω, k).

Note that the factor multiplying Ĩ(ω, k) in (4.9) is a function of ω such that for ω → −i∞
it behaves as

lim
ω→−i∞

H(ω, k) = lim
ω→−i∞

Γ(1
2(∆+ − i(ω − k)))Γ(1

2(∆+ − i(ω + k)))

Γ(∆+)Γ(−iω)
, (4.10)

∼ e+iω ln 2(ω)ν+ 1
2 .

4Though the range of y is restricted from −∞ to 0, we are extending this range formally to obtain C2.
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Ĩ(ω, k) is essentially a Fourier transform of the Bessel function. We assume that this is

analytic in the lower half ω-plane and grows at the most exponentially in ω as ω → −i∞,

given by

lim
ω→−i∞

Ĩ(ω, k) < eiωM . (4.11)

Here M > 0 is a fixed constant. With these assumptions and the behaviour in (4.10)

we see that integrand in (4.9) goes to zero in the limit ω → −i∞ for sufficiently large

but fixed v > 0. This is because of the exponentially dying term e−iωv in the integrand

of (4.9). Therefore the integral can be performed by completing the contour in the lower

half ω-plane. Then the integral localizes to a sum over the poles of the Gamma functions.

The poles of the Gamma functions are at the quasinormal modes given by (4.4). The result

of the integral then reduces to

G(k, v, t1) ∼
∞∑

n=0,α=±
e−iω

α
nv Ĩ(ωαn , k)(−2πiResidueω=ωαn H(ω, k)). (4.12)

It is now clear from (4.12) that the long time behaviour of the Green function is determined

by the lowest quasinormal mode as we have seen in our explicit numerical evaluation of

the Green function. The decay of the Green function is controlled by the imaginary part

of the lowest quasinormal mode and the period of oscillation is determined by the real part

of the lowest quasinormal mode. Note also from (4.12) we see that since the expression

involves a sum over all the quasinormal modes, the rough time scale over which the lowest

quasinormal mode takes over is of the order of a few horizon times. This is also clearly

seen in the numerical evaluation of the Green function. It is important to note that the

starting point of the analysis was the behaviour of ΦBTZ(+) near the horizon given in (4.3),

which vanished at frequencies determined by the quasinormal mode spectrum in the lower

half ω-plane.

4.2 Green function in AdSd+1 Vaidya

Using the intuition gained by the explicit solutions of the minimally coupled scalar in the

BTZ black hole we now generalize the discussion. We show that the long time behaviour

of the retarded Green function in arbitrary AdSd+1 Vaidya background is determined by

the lowest quasinormal mode of the corresponding bulk field.

Consider the differential equation given in (2.1) for the minimally coupled scalar in

the AdSd+1 Vaidya for v > 0. Substituting

φ(v, k, z) = Φω(z, k)e−iωv, (4.13)

we obtain

(1−zd)∂2
zΦω−iω

(
Φω

z
−2∂zΦω

)
−
(
dzd−1+

1

z
(1−zd)

)
∂zΦω−

(
m2

z2
+k2

)
Φω = 0. (4.14)

This equation has two regular singular points, z = 0 and z = 1, corresponding to the

boundary and the horizon of the black hole. One can set up a Frobenius solution around
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either z = 0 or z = 1. Let the two independent solutions around z = 0 be Φ+
ω and Φ−ω .

From the indicial equation for the expansion at z = 0 we know that these solutions behave

as follows5

lim
z→0

Φ+
ω (z, k) ∼ z∆+ , lim

z→0
Φ−ω (z, k) ∼ z∆− . (4.15)

Therefore Φ−ω is the dominant singular mode at the boundary. Similarly one can set up an

expansion around z = 1, let the two independent solutions around z = 1 be Φin
ω and Φout

ω .

It is easy to see from the indicial equation around z = 1, that their behaviour near z = 1

is given by

lim
z→1

Φout
ω (z, k) ∼ ei

2ω
d

ln(1−z), lim
z→1

Φin
ω (z, k) ∼ (1− z)0. (4.16)

The reason we have labeled these solutions as in and out is because they correspond to

the ingoing and outgoing solutions when these wave functions are transformed to the t, z

coordinates. To see this note that the coordinate transformation near z = 1 can be obtained

by integrating (1.3). This is given by

v ∼ t+
1

d
ln(1− z). (4.17)

Substituting this coordinate transformation we obtain the corresponding wave functions in

the t, z coordinates

φout
ω (v, z) = e−iωvΦin

ω (z, k) ∼ e−iωt(1− z)
iω
d , (4.18)

φin
ω (v, z) = e−iωvΦout

ω (z, k) ∼ e−iωt(1− z)−
iω
d .

Now we have 2 sets of linearly independent solutions {Φ+
ω ,Φ

−
ω } and {Φin

ω ,Φ
out
ω }. There-

fore by the uniqueness theorem of second order ordinary linear differential equations we

should be able to express one set in terms of the other as linear combinations. Let us write

Φout
ω (z, k) = M11(ω, k)Φ+

ω (z, k) +M12(ω, k)Φ−ω (z, k), (4.19)

Φin
ω (z, k) = M21(ω, k)Φ+

ω (z, k) +M22(ω, k)Φ−ω (z, k).

Let us now use the definition of quasinormal modes to obtain some information of the

coefficients M12 and M22. We have seen that Φin
ω ,Φ

out
ω correspond to the ingoing and

outgoing modes in the t, z coordinates. Now by definition quasinormal modes are those

values of frequencies for which these modes obey Dirichlet boundary conditions at the

asymptotic boundary. This implies that the more dominant mode proportional to Φ−ω
should vanish at these frequencies. Thus we have the equation

M12(ωout
n , k) = 0, M22(ωin

n , k) = 0, (4.20)

where ωout
n are the quasinormal frequencies which lie in the upper half ω-plane for the

outgoing modes and ωin
n are the quasinormal frequencies which lie in the lower half ω-plane

for the ingoing modes [32, 33]. Let us invert the equation (4.19), we obtain(
Φ+
ω (z, k)

Φ−ω (z, k)

)
=

1

detM

(
M22 −M12

−M21 M11

)(
Φout
ω (z, k)

Φin
ω (z, k)

)
. (4.21)

5We have assumed that the roots of the indicial equation do not differ by an integer. The discussion can

be easily generalized in case they do.
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Note that the inverse exists that is detM 6= 0. This is because Φ+
ω and Φ−ω can be written

as linear combinations of Φin
ω and Φout

ω . We can now easily read out the near horizon

behaviour of the solution Φ+
ω from the above equation. The singular behaviour of Φ+

ω is

given by

Φ+
ω (z, k) =

1

detM

(
M22(ω, k)Φout

ω (z, k)−M12(ω, k)Φin
ω (z, k)

)
, (4.22)

Φ+
ω (z, k)|z→1 ∼

1

detM
M22(ω, k)(1− z)i

2ω
d .

Here we have used the near horizon behaviour given in (4.16). Now M22(ω, k) vanishes at

ω = ωin
n , with zeros in the lower half plane. This is the general form of the equation (4.3)

seen explicitly for the case of the BTZ black hole for black holes in AdSd+1. Note that we

arrived at this result from the general definition of quasi-normal modes. From this point

onwards we can follow the rest of the argument in section 4.1 to arrive at the conclusion

that the long time behaviour is determined by the leading quasinormal mode. In general

the gaps between quasinormal modes are of the order of horizon scales. Therefore we expect

the leading behaviour to set in order of a few horizon times. Though here we have used

the minimally coupled scalar to demonstrate our argument for simplicity, the analysis can

be carried out for other fields. The steps involved will result in similar equations. We will

see this explicitly for the vector fluctuations of the metric in the subsequent section.

This concludes our general argument of why the long time behaviour is determined

by the leading quasinormal mode. Thus any retarded correlator which is used to probe

the onset of thermalization caused due to injection of energy at an instance of time in

the field theory will decay with the time scale set by the first quasinormal mode. In [34]

it was conjectured that thermalization time scales in the field theory are determined by

quasinormal modes. We have shown that the time dependent Green functions considered in

this paper provide an explicit realization of this statement. From our general argument we

expect this to be true for correlators whose lowest quasinormal modes are determined by

hydrodynamics if the probing momentum scales are sufficiently small. In the next section

we will verify this expectation for stress tensor correlators in N = 4 Yang-Mills whose

lowest quasinormal mode is sensitive to the shear viscosity.

5 Thermalization in AdS5 Vaidya

In this section we study the thermalization of the retarded two point functions in the

thin shell AdS5 Vaidya geometry. We first consider the equation satisfied by the spin

2 metric fluctuation hx1x2 . This fluctuation, perpendicular to the momentum k which

is along the x3 direction, forms the shear spin 2 mode. Evaluating the retarded Green

function holographically for this mode provides information of the retarded two point

function of the stress tensor 〈Tx1x2Tx1x2〉, for the strongly coupled N = 4 Yang-Mills.6

The lowest quasinormal mode of shear fluctuations of the metric has been studied earlier

6Metric perturbations for spherical shell collapse was studied in [35]. Non-equilibrium Green function

corresponding to the shear correlator was studied earlier by a complementary approach by examining

backgrounds perturbed by hydrodynamic modes [36, 37].
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in [27] numerically. We see our results are consistent with this earlier calculation. The

more interesting metric fluctuation to consider is hx1x3 . It is known that this mode admits

a hydrodynamic quasinormal mode in the AdS5 black hole for small momentum [28]. This

mode appears as a pole in the thermal two point function of the stress tensor 〈Tx1x3Tx1x3〉.
We will implement the recursion method numerically and evaluate the thermalizing Green

function for various values of small momentum k. From the long time behaviour of the

Green function we show that this Green function relaxes by the hydrodynamic quasinormal

mode. This enables us to read out the universal shear viscosity to entropy density ratio

from a time dependent process.

The thin shell AdS-Vaidya metric in 5 dimensions is given by,

ds2 =
1

z2

[
−h(v, z)dv2 − 2dzdv + d~x2

]
, (5.1)

h(v, z) = 1− θ(v)z4, (5.2)

here, ~x is a 3 vector, with components, xi, where i = 1, 2, 3. The xi’s parametrize the

spatial directions in the dual field theory. The transformation which reduces the v > 0

part of the above metric to the AdS5 black hole metric in Poincaré co-ordinates is given by

dv = dt− dz

1− z4
. (5.3)

In these coordinates we obtain the planar black hole metric in AdS5, for v > 0,

ds2 =
1

z2

[
−(1− z4)dt2 +

dz2

1− z4
+ d~x2

]
. (5.4)

Here again the radius of AdS as well as the black hole has been set to unity. The temper-

ature of the black hole is then given by

T =
1

π
. (5.5)

To study two point functions of the stress energy tensor of the boundary field theory

we consider small perturbations to the background metric, g
(0)
µν , of (5.1), gµν = g

(0)
µν + hµν .

The differential equations satisfied by the metric perturbations are obtained by linearizing

the Einstein’s equations which are given by

Rµν = −4 gµν . (5.6)

Here Rµν is the Ricci tensor and the value of cosmological constant, Λ, has been set to

Λ = −6, in units of AdS radius. The linearized Einstein’s equations are given by

R(1)
µν = −4hµν , (5.7)

where R(1)
µν is the linearized Ricci curvature.
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Figure 5. Figure (a) shows the thermalizing (solid blue curve), and vacuum (dot-dashed red curve)

Green functions for the shear mode. Figure (b) shows the logarithmic plot of the absolute value of

the thermalizing Green function. Plots are for values t1 = −15 and k = 10.

5.1 Spin 2 metric perturbations

First, we consider the case when only the scalar mode of metric perturbation, hx1x2 , is

turned on. We substitute the ansatz hx1x2(t, x3, z) = e−iωt+ikx
3
h̃x1x2(z) in (5.7). Here, the

momentum is chosen to be along the x3 direction. After the redefinition Φ(z) = z2h̃x1x2(z)

we obtain the following equation from (5.7),

v < 0 : z2Φ′′ − z(3− 2iωz)Φ′ − (k2z2 + 3iωz)Φ = 0, (5.8)

v > 0 : z2(1− z4)Φ′′ − z(3 + z4 − 2iωz)Φ′ − (k2z2 + 3iωz)Φ = 0, (5.9)

where the prime means derivative with respect to z. Note that as expected these are the

equations of the minimally coupled massless scalar in the AdS5 background for v < 0 and

the AdS5 black hole background for v > 0.

Solution for v < 0. In appendix C we have obtained the solution which satisfies the

boundary condition (2.5) for a minimally coupled massive scalar in AdS5. On setting the

parameter m2 = 3 or ν = 2 in (C.1), the equation reduces to (5.8). Therefore we can read

out the solution in mixed Fourier space which satisfies the required boundary condition

from (C.18). This is given by

ΦAdS(v, k, z; t1) = GAdS
R (v, k, z; t1) = θ(v − t1)2−

3
2
√
π× (5.10)(

k√
(v − t1)2 + 2(v − t1)z

) 5
2

z4J− 5
2

(
k
√

(v − t1)2 + 2(v − t1)z
)
.

Solution for v > 0. Unlike the case of the BTZ black hole, closed form solutions to

minimally coupled scalar in the AdS5 black holes are not available. However the recursive

method we developed in section 2 just relies on information of the Frobenius expansion of

the solution near the boundary. The roots of the indicial equation of (5.9) are given by

∆± = 4, 0. As discussed earlier to obtain the retarded Green function we need to obtain

the Frobenius solution with the less dominant mode, that is with ∆+ = 4. The recursion
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relations for the coefficients ajns defined in (2.10), necessary for the construction of the

solution in the region v > 0, are given by the following equations with a0
0 = 1,

a0
1 = 0, a1

1 = −ia0
0, (5.11)

a0
2 =

k2a0
0

12
, a1

2 = 0, a2
2 =
−i7a1

1

12
,

a0
3 = 0, a1

3 =
k2a1

1 − i9a0
2

21
, a2

3 = 0, a3
3 =
−i9a2

2

21
,

and, for n ≥ 4,

a0
n =

k2a0
n−2 + n2a0

n−4

n(n+ 4)
, (5.12)

ajn =
−i(2n+ 3)aj−1

n−1 + k2ajn−2 + n2ajn−4

n(n+ 4)
; j = 1, 2, . . . , n− 4,

ajn =
−i(2n+ 3)aj−1

n−1 + k2ajn−2

n(n+ 4)
; j = n− 3, n− 2,

ajn =
−i(2n+ 3)aj−1

n−1

n(n+ 4)
; j = n− 1, n.

We can now extract the moments of the Green function by substituting the values of

ajn determined from (5.11), (5.12) into (2.14). The values of the coefficients J̃n in (2.14)

can be obtained from the recursion relation (D.4) with ν = 2. Finally the retarded Green

function is constructed using (2.18). This procedure is clearly algorithmic and can be easily

implemented numerically. Using Mathematica we implemented this procedure of obtaining

the Green function. We have evaluated up to 200 moments C2(ω) and the Green function

is constructed to O(v200) in future time, v. We then approximated the Green function

by the (100|100) Padé Approximant for better accuracy. For the values of k studied, 200

moments were sufficient to obtain convergent results.

Figure 5a shows the thermalizing Green function (solid blue curve) for t1 = −15 and

a particular value of k = 10. As expected, the thermalizing Green function starts close

to the vacuum Green function (red dot-dashed curve) at small time, and deviates from it

within one horizon time. From the logarithmic plot, figure 5b the slope as shown by the

dot-dashed red line of the thermalizing Green function (solid blue curve) is measured at

large time, i.e. at time of the order of a few horizon radius. This slope gives the negative

imaginary part of the lowest quasinormal mode (−Im ω), as shown in section 4. From the

gaps between consecutive zeroes of the thermalizing Green function, real part of ω can be

calculated using, Reω = π/gap. The values of real and imaginary part of ω, for several

values of k, are listed in table 1. These values agree with figures 5, 6 of [27] where the

numerical values of the real and imaginary part of the quasinormal modes for the minimally

coupled scalar with ∆ = 4 in AdS5 were obtained for various values of k. To compare our

results to that of figures 5,6 of [27], note that we need to perform the following scalings

kours = 2qtheirs, ωours = 2ωtheirs. As a simple check note that kours = 10 corresponds to

qtheirs = 5, looking at their figure 6 we note that Imωtheirs = .8 which corresponds to
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k Re ω −Im ω

7.0 8.34 1.90

7.5 8.84 1.77

8.0 9.29 1.76

8.5 9.80 1.78

9.0 10.28 1.76

9.5 10.72 1.63

10.0 11.21 1.63

10.5 11.70 1.52

11.0 12.22 1.55

Table 1. Values of the real and imaginary part of the lowest quasinormal modes, −Im ω, calculated

from the large time behaviour of the thermalizing Green function, for several values of momentum,

k, and fixed value of t1 = −15.

Imωours = 1.6 which agrees with our result in table 1. Similarly note that for small values

of qtheirs, the value of Reωtheirs is above the 45◦ line. This is also the case from our results

in table 1.

5.2 Vector metric perturbations and shear viscosity

It is known that vector metric perturbations hx1x3 , htx1 in the AdS5 black hole with momen-

tum along the x3 direction admits a hydrodynamic mode at small momentum in addition

to the usual gapped quasinormal frequencies [28]. The hydrodynamic quasinormal mode

corresponds to the hydrodynamic pole in the thermal correlator 〈Ttx1Ttx1〉. This was used

to read out the ratio of shear viscosity to entropy density in [28]. Using the methods de-

veloped in this paper we can evaluate the time dependent thermalizing retarded two point

function 〈Ttx1Ttx1〉 in the AdS5 thin shell Vaidya background. From the general analysis

of section 4 we expect that the time dependent Green function in the AdS5 thin shell

Vaidya background should relax to equilibrium by the hydrodynamic quasinormal mode.

Therefore from the decay it should be possible to read out the ratio of shear viscosity to

entropy density from a dynamical Green function. In this section we perform this analysis

using the methods developed in this paper and obtain the universal ratio of shear viscosity

to entropy density.7

We first turn on the following metric fluctuations with momentum along the x3

direction,

hvx1(t, x3, z) = e−iωt+ikx
3
h̃vx1(z), hx1x3(t, x3, z) = e−iωt+ikx

3
h̃x1x3(z). (5.13)

We can obtain the linearized equations of motion from (5.7). Redefining the fields as,

Hv(z) = z2h̃vx1(z), H3(z) = z2h̃x1x3(z), (5.14)

7As far as the authors are aware this is the first instance where the universal ratio of shear viscosity to

entropy density is obtained from a time dependent process.
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we obtain the following coupled equations in the AdS5 background before the collapse of

the thin shell, v < 0,

H ′′v −
3

z
H ′v + ikH ′3 = 0, (5.15)

H ′′v +

(
−3

z
+ iω

)
H ′v − k2Hv − kωH3 = 0,

H ′′3 +

(
−3

z
+ 2iω

)
H ′3 −

3iω

z
H3 + ikH ′v −

3ik

z
Hv = 0.

After the formation of the AdS5 black hole for v > 0, the equations are given by

H ′′v −
3

z
H ′v + ikH ′3 = 0, (5.16)

H ′′v +
1

f

(
−3− 3z4

z
+ iω

)
H ′v −

k2

f
Hv −

kω

f
H3 = 0,

H ′′3 +
1

f

(
−3 + z4

z
+ 2iω

)
H ′3 −

3iω

zf
H3 +

ik

f
H ′v −

3ik

zf
Hv = 0,

where f = 1− z4. To decouple the above differential equations we define

H ′v = pv, (5.17)

then the equations reduce to,

v < 0 : z2p′′v + z(−3 + 2iωz)p′v − (−3 + k2z2 + 3iωz)pv = 0, (5.18)

v > 0 : z2(1− z4)p′′v + z(−3− z4 + 2iωz)p′v + (3− k2z2 + 9z4 − 3iωz)pv = 0. (5.19)

Solution in AdS5: v < 0. We see that on substituting m2 = 0, i.e. ν = 1 in (C.1), the

equation reduces to (5.18). Therefore we can read out the solution in mixed Fourier space

which satisfies the boundary condition (2.5) from (C.18). This is given by

pAdS
v (v, k, z; t1) = GAdS

R (v, k, z; t1) = (5.20)

θ(v − t1)2−
1
2
√
π

(
k√

(v − t1)2 + 2(v − t1)z

) 3
2

z3J− 3
2

(
k
√

(v − t1)2 + 2(v − t1)z
)
.

Solution for AdS5 black hole: v > 0. We again use the Frobenius expansion around

the boundary z = 0 to solve (5.19). We obtain the following recursion relation for ajn for

the the root ∆+ = 3 of the indicial equation where a0
0 = 1,

a0
1 = 0, a1

1 = −ia0
0, (5.21)

a0
2 =

k2a0
0

8
, a1

2 = 0, a2
2 =
−i5a1

1

8
,

a0
3 = 0, a1

3 =
k2a1

1 − i7a0
2

15
, a2

3 = 0, a3
3 =
−i7a2

2

15
,
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and, for n ≥ 4,

a0
n =

k2a0
n−2 + (n2 − 2n− 8)a0

n−4

n(n+ 2)
, (5.22)

ajn =
−i(2n+ 1)aj−1

n−1 + k2ajn−2 + (n2 − 2n− 8)ajn−4

n(n+ 2)
; j = 1, 2, . . . , n− 4,

ajn =
−i(2n+ 1)aj−1

n−1 + k2ajn−2

n(n+ 2)
; j = n− 3, n− 2,

ajn =
−i(2n+ 1)aj−1

n−1

n(n+ 2)
; j = n− 1, n.

Note that ajn, defined above determine the Frobenius expansion around the boundary for the

differential equation for pv given in (5.19). We can implement the matching conditions (2.7)

on the function pv and construct the Green function as done in the previous examples from

the values of ajn in (5.21) and (5.22) using the equations (2.14) and (2.18). The time

dependence of the Green function corresponding to the mode pv is proportional to the

Green function 〈Ttx1Ttx1〉. This reason is as follows: note that the vector fluctuation hvx1

reduces to htx1 at the boundary since the coordinate v equals time t at the boundary. It is

htx1 which determines the behaviour of the Green functions 〈Ttx1Ttx1〉. Now Hv is related

to the vector fluctuation hvx1 from equations (5.13) and (5.14). Finally Hv is related to pv
by the equation (5.17). This implies that the power series expansion of Hv is given by

Hv = z4

( ∞∑
n=0

Anz
n

)
, An =

n∑
j=0

ajnω
j (5.23)

where ajn are given in (5.21) and (5.22). Note that the only difference between the mode

Hv and pv is that ∆+ = 3 for pv while it is ∆+ = 4 for Hv. Therefore reading out

the time dependence of pv is sufficient to extract the time dependence of the two point

function 〈Ttx1Ttx1〉.

Green function and quasinormal modes. Using the equations (5.21), (5.22), (2.14)

and (D.4), with ν = 1, the moments Mi are obtained. Then the thermalizing retarded

Green function 〈Ttx1Ttx1〉 of the boundary theory, is evaluated using (2.18). We used

Mathematica to evaluate up to 3500 moments C2(ω), the results converged at this order

of moments. The Green function is constructed to O(v3500) in future time, v and then

we approximated it by its (1750|1750) Padé approximant. From these moments the Green

function is evaluated for various values of the momentum k.

Figure 6a shows the thermalizing Green function (solid blue curve), which starts close

to the vacuum Green function (dot-dashed red curve), and deviates away from it within

one horizon time.

The hydrodynamic pole of the thermal two point function 〈Ttx1Ttx1〉 or the quasinormal

mode of the vector perturbations of the metric obeys the dispersion relation

ω = −i η
sT
k2. (5.24)
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Figure 6. The solid blue curve is the thermalizing Green function. In (a), the dot-dashed curve is

the vacuum Green function. Figure (b) has the logarithmic plot of the absolute value of the Green

function, plotted with its late time slope (red dot-dashed curve). Plots are for values, t1 = −5 and

k = 1.1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
k

0.05

0.10

0.15

0.20

0.25

-Im Ω

Figure 7. The red dots show the value of the hydrodynamic frequency obtained from the slope of

the long time behaviour of the Green function (at t1 = −5) for various values of k. The blue curve

plots the expected behaviour, −Im ω = 1
4k

2.

η, s and T are the shear viscosity, entropy density and temperature, respectively. The

universal value of η/s for the vector mode of metric perturbation is known to be (4π)−1.

The temperature of the AdS5 black hole is T = π−1, in which the radius of AdS and that of

the horizon are normalized to unity. Therefore the dispersion relation for the hydrodynamic

quasinormal frequencies is given by

ω = −ik
2

4
. (5.25)

As discussed in section 4 the long time behaviour of the thermalizing Green function is

dictated by the lowest quasinormal mode. Therefore it is possible to extract the value of

the −Im ω from the slope of the logarithmic plot of the thermalizing Green function for

k � 1 and show that it obeys the dispersion relation given in (5.25).
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In figure 6b, the logarithmic plot of the absolute value of the thermalizing Green

function (solid blue curve) is plotted along with the line measuring the slope of its large

time behaviour (dot-dashed red line). The slope of this straight line gives the value of −Im

ω. The plot is for fixed values of t1 = −15 and k = 10. Figure 7, shows the red dots for

values of −Im ω for several values of k obtained from Mathematica. For small k, these

values lie very close to the expected parabolic behaviour (solid blue curve), predicted by the

hydrodynamic dispersion relation (5.25). For larger k, these values lie inside the parabola.

This behaviour agrees with figure 12 of [27] which studied this quasinormal mode for large

values of k in the AdS5 black hole.

6 Conclusions

We have developed a recursive method to obtain the time dependent Green functions in

the thin shell AdS Vaidya background. Using the intuition developed from this method

we showed that the long time behaviour of the Green function is determined by the lowest

quasinormal mode of the corresponding black hole. Thus our analysis provides an explicit

realization of the general conjecture made in [34] that time scales in thermalization are

determined by the quasinormal modes. We applied the method to study Green functions

in thin shell Vaidya geometries in AdS3 and AdS5. Using this method we obtained the

universal ratio of shear viscosity to entropy density by studying the relaxation of the time

dependent Green function of the vector metric perturbation in the AdS5 Vaidya shell.

The methods developed in this paper to study time dependent Green functions can be

generalized for fermion Green function which was obtained by direct numerical integration

in [24]. It will be interesting to generalize this method to Vaidya shell geometries which

have a finite width found in [13]. These geometries are a more accurate description of the

thermalization process. The dependence of the width of the shell on the time dependence of

the Green function will be interesting to extract. It is interesting to study thermalization

of Green function of higher spin fields to study the spin dependence in thermalization.

It is known that a non local probe like entanglement entropy is the slowest to relax to

equilibrium [21]. It will be interesting to see if higher spin fields relax faster or slower

compared to scalars and entanglement entropy. In this context the exact solutions to

wave functions of higher spin fields found in the BTZ background [38, 39] will prove to

be useful to obtain analytical results. Finally it will be useful to use these lessons learned

in holography to understand time dependent Green function in conformal field theories

during thermalization along the lines developed in [40].
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A Scalar wave functions in BTZ

In this appendix we derive the scalar wave functions in the BTZ geometry as an expansion

around the boundary by transforming the known wave functions which are written as

expansions around the horizon. Consider the wave functions given in (3.12) which admit a

natural expansion near the horizon. We can use the following transformation property of

the Hypergeometric function to write it as an expansion around the boundary,

F (a, b, c, z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F (a, b, a+ b− c+ 1, 1− z) (A.1)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1, 1− z).

Substituting (A.1) in (3.12) we obtain

Φ
(1)
ω,k(z, v, φ) = e−iωv+ikφ(1 + z)−iω× (A.2)[

B1(ν, ω, k)z∆−F

(
1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)),∆−, z

2

)

+B2(ν, ω, k)z∆+F

(
1

2
(∆+ − i(ω + k)),

1

2
(∆+ − i(ω − k)),∆+, z

2

)]
,

Φ
(2)
ω,k(z, v, φ) = e−iωv+ikφ(1− z)iω× (A.3)[

B3(ν, ω, k)z∆−F

(
1

2
(∆− + i(ω + k)),

1

2
(∆− + i(ω − k)),∆−, z

2

)

+B4(ν, ω, k)z∆+F

(
1

2
(∆+ + i(ω − k)),

1

2
(∆+ + i(ω + k)),∆+, z

2

)]
.

The coefficients Bi, i = 1, . . . 4, are made up of gamma functions obtained from (A.1), and

do not depend on z. The hypergeometric functions of (A.3) can further be related to the

hypergeometric functions of (A.2), by the transformation,

F (a, b, c, z) = (1− z)c−a−bF (c− a, c− b, c, z). (A.4)

Thus, the only two independent near boundary solutions are,

Φ
BTZ(−)
ω,k (z, v, φ) = e−iωv+ikφz∆−(1 + z)iω× (A.5)

F

(
1

2
(∆− − i(ω − k)),

1

2
(∆− − i(ω + k)),∆−, z

2

)
,

Φ
BTZ(+)
ω,k (z, v, φ) = e−iωv+ikφz∆+(1 + z)iω×

F

(
1

2
(∆+ − i(ω + k)),

1

2
(∆+ − i(ω − k)),∆+, z

2

)
.
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B Thermal Green function in BTZ

The thermal Green function is obtained by taking the Fourier transform with respect to ω

of the following thermal Green function in Fourier space [23],

Gthermal
R (k, ω) =

1

2 sin(π∆+)(Γ(∆+))2

∣∣∣∣Γ(1

2
(∆+ + i(ω + k))

)
Γ

(
1

2
(∆+ + i(ω − k))

)∣∣∣∣2
× (cos(π∆+) cosh(πω)− cosh(πk)− i sin(π∆+) sinh(πω)) . (B.1)

The Fourier transform is taken by performing integration over
∫∞
−∞ dωe

−iω(v−t1) and com-

pleting the contour in the lower half ω-plane. It can be shown that the integral vanishes

over the arc of sufficiently large radius. The result is a sum over the residues, which are

evaluated at the poles of the gamma functions in the lower half ω-plane,

Gthermal
R (v − t1, ω) =

1

2 sin(π∆+)(Γ(∆+))2
(B.2)

×
∑
n

∑
a=±1

(−1)n

n!
e−iω

a
n(v−t1)Γ

(
1

2
(∆+ + i(ωan − ak))

)
× Γ

(
1

2
(∆+ + i(ωan + ak))

)
Γ

(
1

2
(∆+ − i(ωan + ak))

)
× [cos(π∆+) cosh(πωan)− cosh(πk)− i sin(π∆+) sinh(πωan)] .

These poles, ω(n, a), are the quasinormal modes of the BTZ black hole,

ωan = ak − i(∆+ + 2n), a = ±1. (B.3)

C Mixed Fourier transform of Green function in AdS

In this appendix we solve equations of the form (5.19) with the analog of the boundary

conditions in (2.5) first in the frequency-momentum space. We then perform the partial

Fourier transform in the frequency space. This results in the Green function in AdS which

satisfies the boundary condition of (2.5). Consider (5.19), with a more general mass term,

z2p′′v + z(−3 + 2iωz)p′v − (−3 +m2 + k2z2 + 3iωz)pv = 0, (C.1)

this equation has the following Fourier space solution, where ν =
√

1 +m2,

pv(k, ω, z) = e−iωzz2
(
A(ω)Jν

(
z
√
ω2 − k2

)
+B(ω)J−ν

(
z
√
ω2 − k2

))
. (C.2)

Using the property of the Bessel function for small argument, the following near boundary

behaviour of the solution is obtained,

pv(k, ω, z)
z→0−−−→ z2

(
A(ω)

(
z
√
ω2−k2

2

)ν
1

Γ(1+ν)
+B(ω)

(
z
√
ω2−k2

2

)−ν
1

Γ(1−ν)

)
. (C.3)
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The delta function boundary condition in (2.5) in the time domain requires that near the

boundary the wave function in Fourier space solution goes to

pv(k, ω, z)
z→0−−−→ 1

2π
· z∆− . (C.4)

This determines B(ω) to be

B(ω) =
Γ(1− ν)

2π

(√
ω2 − k2

2

)ν
, (C.5)

where, ∆± = 2± ν.

We now use the following asymptotic behaviour of Bessel functions to obtain the

behaviour of the solution near the origin of AdS,

Jν(x)
x→∞−−−→

√
2

πx
cos
(
x− νπ

2
− π

4

)
, (C.6)

J−ν(x)
x→∞−−−→

√
2

πx

[
cos(πν) cos

(
x− νπ

2
− π

4

)
− sin(πν) sin

(
x− νπ

2
− π

4

)]
.

As z →∞, the solution,

pv(k, ω, z) −→ e−iωzz2

√
2

πz
(ω2 − k2)−

1
4

[
(A(ω) +B(ω) cos(πν)) cos

(
x− νπ

2
− π

4

)
−B(ω) sin(πν) sin

(
x− πν

2
− π

4

) ]
,

(C.7)

where, x = z
√
ω2 − k2. The solution near the origin has both ingoing and outgoing be-

haviour due to the presence of cosine and sine. In order to impose ingoing boundary con-

dition at origin, the solution is rewritten as a linear combination of ingoing and outgoing

solutions,

pv(k, ω, z) = C(ω)e−i(x−
νπ
2
−π

4
) +D(ω)ei(x−

νπ
2
−π

4
), (C.8)

where C and D in terms of A and B, are

C(ω) =
1

2

(
A(ω) +B(ω)e−iπν

)
, (C.9)

D(ω) =
1

2

(
A(ω) +B(ω)eiπν

)
. (C.10)

The ingoing boundary condition at origin, means that D(ω) = 0, hence,

A(ω) = −B(ω)eiπν . (C.11)

Substituting this in (C.2), we obtain,

pv(k, ω, z) = B(ω)e−iωzz2
[
−eiπνJν(x) + J−ν(x)

]
(C.12)

= −i sin(πν)eiπνB(ω)e−iωzzH
(2)
−ν (x).
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The Fourier transform of the above equation with respect to ω, gives

GAdS
F (v, k, z) = −ieiπν 1

2Γ(ν)
z2

∫ ∞
−∞

dω e−iω(v+z)

(√
ω2−k2

2

)ν
H

(2)
−ν

(
z
√
ω2−k2

)
, (C.13)

using the integral representation of H
(2)
−ν (x),

H
(2)
−ν (x) =

i

π
e−

iπν
2 x−ν

∫ ∞
0

dy exp

[
− i

2

(
y +

x2

y

)]
yν−1, (C.14)

GAdS
F (v, k, z) =

e
iπν
2

2ν2πΓ(ν)
z2−ν

∫ ∞
0

dy yν−1 exp

[
− i

2

(
y − z2k2

y

)]
(C.15)

×
∫ ∞
−∞

dω exp

[
−i
(
ω2z2

2y
+ ω(v + z)

)]
=
e−i

π
4 e

iπν
2

2ν2πΓ(ν)

√
2πz1−ν

∫ ∞
0

dy yν−
1
2 exp

[
i

2

(
y

(
2v

z
+
(v
z

)2
)

+
z2k2

y

)]
=
e−i

π
4 e

iπν
2

2ν2πΓ(ν)

√
2πz1−ν2

(
kz2

√
v2 + 2vz

)ν+ 1
2

K−ν− 1
2

(
−ik

√
v2 + 2vz

)
=

1

2νΓ(ν)

√
2π

2
z2+ν

(
k√

v2 + 2vz

)ν+ 1
2

H
(1)

−ν− 1
2

(
k
√
v2 + 2vz

)
.

In the last step, Kλ(x) = iπ
2 e

iπλ
2 H

(1)
λ (ix), has been used. The retarded two point function

is obtained from the Feynman two point function using the relation

GR(t, t′) = θ(t− t′)
(
GF (t, t′) +G∗F (t, t′)

)
. (C.16)

The following properties of the Bessel functions,

H
(1)
λ (x)∗ = H

(2)
λ (x), (C.17)

H
(1)
λ +H

(2)
λ = i csc(πλ)(e−iπλ − eiπλ)Jλ(x),

are used in last two equations, to obtain the retarded Green function which is given by

GAdS
R (v − t1, k, z) = Cθ(v − t1)z2+ν

(
k√

(v − t1)2 + 2(v − t1)z

)ν+ 1
2

(C.18)

× J−ν− 1
2

(
k
√

(v − t1)2 + 2(v − t1)z
)
,

where, C = 2
1
2−ν
√
π

Γ(ν) . Though we started out by assuming ν is not an integer and the two

independent solutions are given by (C.2), the discussion can be generalized to the case

when ν is an integer, leading to the same final result given in (C.18). A simple way to see

this is that in the final result the order of the Bessel function is fractional.
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D Recursion relation for retarded Green functions in AdS

In this appendix for completeness we obtain the recursion relation for the mixed Fourier

space retarded Green function in AdSd+1 at v = 0. This is useful to implement the recursive

algorithim to obtain the thermalizing Green function in thin shell Vaidya geometries. The

solution for a scalar field in mixed Fourier space in AdSd+1, has the following dependence

on the Bessel function,

ΦAdS(v = 0, k, z; t1) = z∆+R(z). (D.1)

Here we have assumed t1 < 0.

R(z) = C

(
k√

t21 − 2t1z

)ν+ 1
2

J−ν− 1
2

(
k
√
t21 − 2t1z

)
, (D.2)

where, from (3.3) and (C.18), we see that, ∆+ = d/2+ν. The differential equation satisfied

by R(z) is,

(t1 − 2z)R′′(z) + 2(λ− 1)R′(z) + k2t1R(z) = 0. (D.3)

Substituting the ansatz, R(z) =
∑∞

n=0 J̃nz
n in the above equation, the following recursion

relation for J̃n is obtained,

J̃n =
2(n− 1)(n− 1− λ)J̃n−1 − k2t1J̃n−2

t1n(n− 1)
; forn ≥ 2. (D.4)

To get the solution of (D.2) from the above recursion relation, J̃0 and J̃1 are chosen to be,

J̃0 = C

(
k

|t1|

)ν+ 1
2

J−ν− 1
2
(|k||t1|), (D.5)

J̃1 = C

(
k

|t1|

)ν+ 1
2

k J−ν− 3
2
(|k||t1|). (D.6)

Thus we obtain the Frobenius series expansion of AdS scalar field solution, around z = 0,

ΦAdS(v = 0, k, z; t1) = z∆+

∞∑
n=0

J̃nz
n. (D.7)
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