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1 Introduction

Flux compactifications of type IIB string theory have given rise to two major developments

within string theory: AdS/CFT duality [1, 2] (see [3, 4] for a review) and the string

landscape [5–16] of moduli stabilised four dimensional (4D) string vacua. In the simplest

cases, these four dimensional minima have a negative cosmological constant and hence are

AdS4 vacua. It is then natural to inquire if these Anti de Sitter (AdS) vacua of the string
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landscape have Conformal Field Theory (CFT) duals and if so what the properties of these

theories are.

Identifying CFT duals of the AdS (and dS) vacua of the string landscape would be

a way to provide a proper non perturbative description of these vacua and put the string

landscape on firmer ground. This is the subject of the present article. For previous discus-

sions of this issue see [17–23].1

By now there are two main scenarios of moduli stabilisation in type IIB string com-

pactifications on Calabi-Yau (CY) manifolds: KKLT [10] and the Large Volume Scenario

(LVS) [25, 26]. Contrary to the original AdS5 ×S5 background where the flux was enough

to stabilise the geometric modulus of S5, in KKLT and LVS scenarios the fluxes fix only

part of the geometric moduli (this can be read from the ten dimensional equation of mo-

tions [8, 9], like for AdS5 × S5) leaving some flat directions. A key ingredient to stabilise

the remaining geometric moduli (in a AdS4 vacuum) is the presence of non-perturbative

effects in the 4D effective field theory (EFT) obtained after compactification. This makes a

full ten dimensional (10D) analysis of these vacua very difficult and we can only rely on the

EFT results. Black-brane solutions that were at the origin of the AdS5×S5/CFT4 duality

are not available and therefore there is less control on the potential duality in the KKLT

and LVS cases. This explains the relative shortage of efforts to study the CFT duals of

these vacua during the past ten years. Another difference with AdS5 × S5 is that in both

KKLT and LVS scenarios there is a hierarchy between the size of the internal dimensions

and the AdS radius. This is in contrast to the situation in Freund-Rubin compactifications

where one needs to establish on a case by case that there is a consistent truncation to the

massless modes of the KK tower (see for example the discussion in section 2.2.5 of [3, 4]) .

Even though both KKLT and LVS are based on Calabi-Yau flux compactifications of

type IIB string theory down to 4D, they have important differences that should be reflected

in the dual CFTs.

• The two scenarios realise the separation of scales that allow the neglect of part of

the spectrum in different ways. In KKLT this happens because of the small value of

the flux superpotential, while in LVS because of the hierarchically large value of the

volume of the compactification manifold. In fact, KKLT relies on the possibility of

tuning the flux superpotential Wflux to very small values (of the same order of the

non-perturbative superpotential), while LVS is based on a generically order oneWflux.

• The KKLT AdS4 vacuum preserves N = 1 supersymmetry, whereas the LVS AdS4
vacuum breaks supersymmetry spontaneously, with the breaking being induced by

generic fluxes.

1AdSd+1/CFTd duality has also been used in Calabi-Yau flux compactifications in a different context

that should not be confused with our target in this article. In those cases, conifold geometries such as the

Klebanov-Strassler warped throat are embedded in compact Calabi-Yau manifolds and provide a stringy

realisation of the Randall-Sundrum set-up with the tip of the throat providing the IR brane and the compact

Calabi-Yau at the beginning of the throat providing the UV Planck brane [24]. In these cases AdSd+1/CFTd

duality is used in the sense that 4D field theories are dual to 5D gravity theories in which locally the five

dimensions are the 4D spacetime dimensions plus the direction along the throat, i.e. d = 4. On the other

hand, in this paper we are concentrating on three-dimensional field theories dual to four-dimensional gravity

theories, i.e. d = 3.
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The fact that the LVS vacuum is not supersymmetric may raise concerns regarding

its stability and the existence of a CFT dual. It was shown in [27] that as long as

the effective field theory is valid the corresponding vacua are stable under bubble

nucleation and therefore a dual CFT is expected to exist. Moreover, the fact that

supersymmetry is spontaneously broken on the AdS side raises the question of how

this breaking manifests itself on the CFT side.

• Both scenarios allow the possibility to extend the AdS compactifications to include

dS. However, they are usually realised in different ways in both scenarios.2 Addressing

the possibility of duals to these dS vacua is very relevant, but since these vacua

are more model dependent and the dS/CFT duality is less understood we will not

address this issue here. Our discussion here may be relevant for a future approach to

this question.

In this article we make a general discussion of this potential duality with the intention

to learn as much as possible about the properties of the CFT3 duals. We are aware of

the difficulty of the task and attempt only to extract general properties of the CFT3.

Motivated by the recent works on the black holes and AdS/CFT [33–39], we compute the

one loop partition function in supergravity and extract the universal contribution to the

free energy. The universal contribution is proportional to the logarithm of the size of the

AdS space and will correspond to log c-correction to the free energy of the dual CFT. We

carry out the computation of this universal quantity on the AdS side of both the KKLT

and LVS compactifications. As we will explain later, to do these computations, we work

in a limit in which we only keep the contributions from massless supergravity fields and

Kähler moduli and ignore the contribution from the complex structure moduli and dilaton

(which have been supersymmetrically stabilized at a high scale) and the KK fields. Also

in this limit the computation of universal contribution reduces to the calculation of the

coefficient of ln |W0|2. The result of this coefficient for the case of KKLT and LVS case are

given in (5.18) and (5.47) respectively. Because of supersymmetry in the case of KKLT, the

expression of this coefficient is much simpler and can be expressed in terms of conformal

dimension of operators dual to massive Kähler moduli. Being universal, the result of this

calculation should provide a consistency check for any candidate CFT dual.

We organise this paper as follows. In section 2 we will present a detailed comparison

between AdS5 × S5 background and the Calabi-Yau flux compactifications. In section 3

we describe some properties of the three dimensional CFT dual to KKLT and LVS flux

compactification. In particular we identify the amount of supersymmetry, the central

charge, the conformal dimension of the various operators dual to fields on the gravity side

and the baryonic operator/vertex in the dual CFT. In section 4 we discuss the one loop

corrections to the partition function in supergravity. These corrections will correspond to
1
N effects in the partition function of the dual CFT. In this computation we calculate

the above mentioned universal contribution to the partition function of the dual CFT and

discuss the limit in which we perform the computation. In section 5 we explicitly compute

2See [10, 28–31] for explicit dS minima in the type IIB context considered in this paper.
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this term in the KKLT and LVS cases. This gives a prediction for the universal contribution

to the partition function of the dual CFTs.

2 AdS backgrounds from flux compactifications

The bosonic part of the 10D supergravity effective action for type IIB string theory in the

Einstein frame is

S =
1

(2π)7α′4

∫

d10x
√−g

{

R− ∂MS∂M S̄

2(ReS)2
− G3 · Ḡ3

12ReS
− F 2

5

4 · 5!

}

+ SCS + Sloc . (2.1)

Here S = e−φ + iC0 is the axiodilaton field, G3 = F3 − iSH3 the complex combination of

RR (F3 = dC2) and NS (H3 = dB2) three-form field strengths and F5 = dC4− 1
2C2 ∧H3+

1
2B2 ∧ F3 the self-dual five-form field strength (for which this action is only a short way of

writing the origin of its field equations). The Chern-Simons term is SCS ∝
∫

C4 ∧G3 ∧ Ḡ3.

Finally Sloc is the contribution from local sources such as D-branes and orientifold planes.

2.1 Basics of AdS5× S5/CFT4 duality

Let us start recalling some of the relevant results on AdS5 ×S5/CFT4 duality that will be

useful to compare with the cases of interest in this article. The original discussion started

with the solitonic black brane solutions of the 10D effective action, that has N units of

D3-charge; by taking the near horizon limit one extracts the AdS geometry that in the low

energy limit can be connected with the world-volume CFT on D3-branes, which is N = 4

Yang-Mills in 4D.

For our purposes, it is more illustrative to approach the AdS5 vacuum from the per-

spective of flux compactifications of type IIB string theory on S5, since that is the more

natural way to compare this background with the KKLT and LVS ones. One starts in this

case from the Freund-Rubin ansatz in which the metric is maximally symmetric, G3 = 0,

the axiodilaton S constant and (F5)mnpqr ∝ ǫmnpqr (with indices running along the compact

dimensions; a similar expression holds for the non-compact dimensions from self-duality of

F5). In this way the spacetime is naturally separated in a product of two five-dimensional

components. In particular the flux on the compact component, S5 is quantised as:

1

(2π)4α′2

∫

S5

F5 = N . (2.2)

One could try to compactify the 10D theory with a background flux given by (2.2):

plugging the F5 value back into the 10D action and integrating over the five compact extra

dimensions and Weyl rescaling to the 5D Einstein frame gives the 5D Einstein-Hilbert term

plus a scalar potential for the S5 radius modulus RS5 of the form:

V (RS5) = R
−16/3
S5

(

−a+ bN2R−8
S5

)

. (2.3)

The first term comes from the S5 curvature dominating at small RS5 and the second term,

dominating at large RS5 , comes from the F 2
5 term in the action; a, b are O(1) positive

constants. Minimising this potential fixes the value of the radius modulus to RS5 ∝ N1/4.

– 4 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
6

The effective cosmological constant of the non-compact 5D component of the spacetime

is given by the value of the potential at the minimum (Λ = V |min). In this case, it is

negative giving rise to AdS5 with AdS radius equal to the radius of the compact manifold,

i.e. RAdS = RS5 . This implies that there is no trustable limit in which we can decouple the

KK modes. Anyway, this analysis turns out to give the right answer for the background

geometry generated by turning on F5 fluxes, as it can be seen by comparing with the

solutions of the 10D equations of motion. Notice also that the combination of fluxes and

curvature of the extra dimensions were enough to fix the overall size of the extra dimensions

but there is still a flat direction corresponding to the dilaton which is completely arbitrary.

To trust the 10D supergravity analysis, one needs to have the AdS radius larger than

the string and the 10D Planck scale. This implies that these solutions are valid in the large

N and large gsN limits since3

RAdS

ℓ10dp

∼ N1/4 ,
RAdS√

α′ =
RAdS

ℓs
∼ (4πgsN)1/4 ≡ λ1/4 . (2.4)

At large N and large t’Hooft coupling λ the gravity description is well defined whereas for

small t’Hooft coupling the perturbative CFT description is well defined.

The symmetries on both sides of the duality match in the sense that local symme-

tries on the AdS side map to global symmetries on the CFT side. Besides the N = 4

supersymmetry, the SO(4, 2) × SO(6) symmetries of the AdS5 × S5 map to the SO(4, 2)

4D conformal symmetry and SO(6) R-symmetry of N = 4 supersymmetry. The number

of degrees of freedom is measured by the ‘central charge’, which is given by c ∼ N2. This

should be large in order for the duality to work. Also the conformal dimension of different

operators has a nontrivial structure. In general, for a scalar particle of mass m the dual

CFTd operator has conformal dimension [3, 4]

∆ =
d

2
± 1

2

√

d2 + 4(mRAdS)2. (2.5)

As we discussed before there is no separation of field theoretical scales since the radius of S5

is the same asRAdS. Hence, all Kaluza-Klein (KK) modes have masses of orderm ∼ 1/RAdS

and therefore there are many operators with conformal dimension of order O(1).

2.2 Calabi-Yau flux compactifications

We turn now to phenomenologically interesting Calabi-Yau (CY) flux compactifications

that have been shown to be suitable for a controllable moduli stabilisation. Without

the introduction of extra ingredients, such as background values of p-form potentials, the

simple compactification of type II string theory on such manifolds has plenty of unobserved

massless scalars at the 4D EFT level. These scalars are related to the geometric moduli

of the Calabi-Yau compact manifold. In type IIB string theory, the relevant ingredients

to stabilise the moduli without distorting too much the compact geometry (controlled

backreaction) are known: non-zero background values of G3 (three-form fluxes) stabilise

3Notice that from the second relation we can see that for fixed t’Hooft coupling λ the gs expansion is

equivalent to a 1/N expansion. Also for fixed RAdS the α′ expansion is equivalent to an expansion in 1/λ.
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the axio-dilaton S and a subset of the geometric moduli, the complex structure moduli

Uα (α = 1, . . . , h1,2). At lower scales, the rest of the geometric moduli, the Kähler moduli

Ti (i = 1, . . . , h1,1), are stabilised by additional terms in the scalar potential coming from

perturbative and non-perturbative gs and α′ corrections. In this section, we will review the

two steps: the first one (GKP) is the same in KKLT and LVS, while they are distinguished

by the second one.

Axiodilaton and complex structure moduli stabilisation (GKP). Let us give a

short review of the relevant features of the Giddings, Kachru, Polchinski (GKP) scenario,

in which both complex structure moduli and dilaton are stabilised by switching on three-

form fluxes [9].4 This is at the basis of both KKLT and LVS scenarios that we will discuss

in the rest of the article.

Compactifying type IIB string theory on a Calabi-Yau orientifold leads to an effective

N = 1 supergravity theory in 4D. The low energy action is partially determined by the

tree-level Kähler potential:

K = −2 lnV − ln i

∫

Ω ∧ Ω∗ − ln(S + S∗) (2.6)

with V the volume of the Calabi-Yau manifold as a function of the Kähler moduli, Ω the

unique (3, 0) form as a function of the complex structure moduli and S = e−φ + iC0 the

axiodilaton as before.

The complex structure moduli can be stabilised by turning on RR and NS fluxes F3

and H3, which obey the following quantisation conditions:

1

(2π)2α′

∫

ΣA

F3 = MA
1

(2π)2α′

∫

ΣA

H3 = −KA with MA,KA ∈ Z (2.7)

for any three-cycles ΣA ∈ H3(X3) of the compact Calabi-Yau three-fold X3. At the level

of the 4D effective action they induce a superpotential [41]:

Wflux =

∫

G3 ∧ Ω , with G3 = F3 − iS H3 . (2.8)

This superpotential is a function of the complex structure moduli Uα and dilaton S. The

supersymmetry conditions DαW = DSW = 0 stabilise their values in terms of the flux

numbers MA and KA in (2.7).5 The three-form fluxes F3 and H3 contribute to the effective

D3 brane charge. The vanishing of the total D3 brane charge, needed for D3-tadpole

cancellation, implies the condition

1

(2π)4α′2

∫

F3 ∧H3 + Qloc
D3 = 0 , (2.9)

4See also the previous analogous treatment in the F-theory language, studied in [8].
5These conditions are satisfied when the complex structure alligns such that the three-form G3 is imag-

inary self-dual, i.e. iG3 = ∗G3. The metric and the five-form F5 are also constrained to depend on a warp

factor eA. In particular, the metric on the compact manifold is only conformally equivalent to a Calabi-Yau

metric and the compact manifold is called a conformal Calabi-Yau.
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where Qloc
D3 is the contribution coming from the localised sources: D3-branes and supersym-

metric gauge fluxes on D7-branes will contribute positively, while O3-planes and curvature

of D7-brane and O7-planes contribute negatively (see [9]).

The complexified Kähler moduli are Ti = τi + iϑi, where τi are the geometric Kähler

moduli, i.e. the volumes of h1,1(X3) independent divisors of the Calabi-Yau threefold. The

moduli Ti do not appear in the tree-level superpotential Wflux because of the Peccei-Quinn

symmetries associated to their axionic component ϑi. As a consequence, the Kähler moduli

are flat directions of the tree-level potential, generated by K and Wflux. In particular

the potential is a sum of positive definite terms, that is minimized at zero by solving

DαW = DSW = 0.

This situation is similar to the AdS5×S5 case in the sense that fluxes stabilise some of

the moduli and leave flat directions. In this case the flat directions will naturally be lifted

by perturbative and non-perturbative effects in KKLT and LVS.

Varying the values of the integers KA,MA generate many different vacua. We may

conceive trading the fluxes for D-brane configurations that carry the same information,

like described for AdS5 ×S5 at the end of section 2.1. In this case the configuration would

be made up of (p,q) 5-branes wrapping the corresponding three-cycles and being domain

walls in the non-compact dimensions. The D3-charge of F3, H3 would be generated by

D3-branes streched between the (p,q) 5-branes. This immediately suggests a ‘Coulomb

branch’ approach towards duality. Notice however that at this stage the spacetime is still

Minkowski and not AdS.

KKLT scenario. The KKLT scenario extends the GKP one, adding corrections that

allows one to stabilise the Kähler moduli. It is assumed that the relevant correction to the

scalar potential is a non-perturbative superpotential Wnp which in general depends on the

Kähler moduli [42]:

Wnp =
∑

i

Aie
−aiTi (2.10)

with Ai functions of S,Uα. Natural sources of Wnp are instantonic E3-branes and gaugino

condensation effects on the worldvolume of D7-branes, both wrapping four-cycles of the

Calabi-Yau manifold. The assumption of KKLT is that the fluxes can be tuned in such

a way that the vacuum expectation value of Wflux is Wflux|min ≡ W0 ∼ Wnp. Thus the

contributions to W can compete to generate a supersymmetric minimum for the Kähler

moduli Ti, i.e with DiW = 0. Consequently, V ∝ −3|W |2 < 0 and so the minimum is

AdS4. The vacuum energy gives the value of the cosmological constant, V |min = Λ. In

KKLT we then have (in four dimensional Planck mass Mp units):

ΛKKLT ∼ −R−2
AdS ∼ −gs|W0|2

V2
eKcs . (2.11)

The gs factor comes from eKS with KS = − ln(S + S̄). The flux dependent constant eKcs

comes from the VEV of the complex structure moduli Kähler potential Kcs = − ln i
∫

Ω∧Ω̄

(where the VEVs depend on the flux numbers). In the following we will absorb this factor

in the definition of W0.

– 7 –
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Also other scales are fixed (in terms of Mp) once we fix all the geometric moduli.

The string scale Ms ∼ gsMp/V1/2 is larger than the KK scale MKK ∼ gsMp/V2/3 for

volume V large in string units. This is similar to the Freund-Rubin cases. However the

moduli masses are hierarchically smaller. The complex structure and dilaton masses are

of order mS,α ∼ 1/V . The Kähler moduli are even lighter: their masses mi ∼ |W0|/V1/3

are highly suppressed by the exponentially small |W0| factor (with typical values of order

|W0| ∼ 10−10), even if the volume factor is larger than the KK scale (the volume is only

parametrically large in KKLT).

We see that the |W0| factor appears also in (2.11). This implies that there is a hierarchy

between the size of the extra dimensions RCY ∼ 1/MKK and the AdS radius with ratio:

RCY

RAdS
∼ 1/MKK

RAdS
∼ V2/3g−1

s

Vg−1/2
s |W0|−1

∼ |W0|
V1/3g

1/2
s

≪ 1 (2.12)

This is clearly different from the AdS5 × S5 case in which both scales are the same. This

is important in order to be able to consistently neglect the KK modes in the effective

field theory.

Uplifting to de Sitter including supersymmetry breaking was also proposed in KKLT

by adding anti-D3-branes. This effect is under less control and not relevant for the present

article. Moreover, the proposed dS/CFT duality is not that well understood.

LVS scenario. The large volume scenario (LVS), also extends GKP but it includes not

only the non-perturbative corrections to W (2.10) but also the perturbative corrections to

the Kähler potential K. In the simplest case the most relevant perturbative contribution

is the leading order α′ correction which modifies the Kähler potential in the following way:

− 2 lnV → −2 ln
(

V + ξ(S + S∗)3/2
)

(2.13)

with ξ a constant proportional to the Euler characteristic of the CY. For the generic case

of several Kähler moduli and O(1) flux superpotential the Kähler moduli are stabilised in

such a way that the volume V is exponentially large. In particular, as we will see explicitly

in the example studied in section 5.2, the volume V and another Kähler modulus τ are

stabilised such that

τ ∼ 1/gs > 1 and V ∼ eaτ ≫ 1 . (2.14)

Besides the larger value of the volume and the untuned choice of flux superpotential this

scenario differs from the KKLT one in several other ways. The moduli are stabilised at an

AdS4 minimum with spontaneously broken supersymmetry. The source of supersymmetry

breaking is the same as in GKP, i.e. the three-form fluxes: the perturbative and non-

perturbative corrections generate only a subleading contribution to the non-zero DiW ,

where i runs on the Kähler moduli. The vacuum energy at the minimum goes like

ΛLVS ∼ −|W0|2
V3

g1/2s eKcs . (2.15)

As for KKLT we will absorb the complex structure moduli factor eKcs in |W0|2.

– 8 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
6

In LVS there is a hierarchy of scales but it is different from that in KKLT. Still

Ms ∼ gsMp/V1/2 ≫ MKK ∼ gsMp/V2/3 and both are much larger than the gravitino mass

m3/2 ∼ g
1/2
s |W0|Mp/V since the volume is very large V ≫ 1. Most moduli masses scale

with the volume V like the gravitino mass, mS,cs,τ ∼ Mp/V , except for the overall volume

modulus itself which has a mass of order mV ∼ Mp/V3/2 ≪ m3/2 and its axion partner

which is essentially massless.6

Like in KKLT, also in LVS there is a hierarchy between the CY size and the AdS

scale. This hierarchy comes now from having a large volume V rather than a small flux

superpotential W0.

RCY

RAdS
∼ 1/MKK

RAdS
∼ V2/3/gs

g
1/4
s V3/2/|W0|

∼ |W0|
g
5/4
s V5/6

≪ 1 . (2.16)

In table 1, we summarise (both for KKLT and LVS) the scales that are relevant for

the subsequent sections.

We finally notice that in both KKLT and LVS cases the expansion parameters

(gs,W0,V) should be related to the exapansion paramenters in the dual CFT, like for

the AdS5 × S5 case where N and λ are related to the flux and the string coupling. The

difference here is that these parameters cannot be made arbitrarily small. This is a due to

the fact that the flux numbers (2.7) are bounded from above [6, 14, 15] by the D3 tadpole

cancellation conditions (2.9). This implies on one side that there is a finite number of

flux vacua and on the other side that there is a bound on the value of gs and therefore

also on the volume in LVS since V ∼ ea/gs .7 For a rigid CY, the flux superpotential is

Wflux = (f1 +Πf2)− iS(h1 +Πh2) ≡ F − iSH, where Π is a complex number determined

by the geometry. Let us take Π = i for simplicity. The susy equation DSWflux = 0 gives

S̄ = i FH . The tadpole cancellation condition is ImH̄F ≤ L, where we have separated the

D3-brane contribution by the negative contribution coming from O3-planes, D7-branes and

O7-planes: Qloc
D3 ≡ ND3 − L. Fixing the S-duality symmetry, the flux vacua satisfying the

tadpole cancellation condition are given by h2 = 0, 0 ≤ f1 < h1 and h1f2 ≤ L. Thus we
have 1

gs
∼ f2

h1
= h1f2

h2
1

≤ L , and hence gsmin ∼ 1
L . (In this computation we are excluding

the vacua h1 = h2 = 0 that would give gs = 0, i.e. non-interacting strings.) This contrasts

with the large N expansion in which 1/N can be made arbitrarily small.8

3 Properties of the CFT3 duals

Having a precise description of the AdS4 type IIB flux vacua, it is natural to search for

the CFT3 duals. The situation is much less clear than in the AdS5 × S5/CFT4 case. The

main obstacle is that there is no clean 10D string theory formulation of the KKLT and

6In the most general cases there may be fields, like those corresponding to K3 fibrations, that get

masses only after string loop effects are included and their masses can be smaller than the volume mass

mf ∼ |W0|Mp/V
5/3 < mV [43, 44].

7In [6] a simple example of a rigid CY is presented. For illustration we use this case to show that gs will

be bounded from below by the tadpole cancellation condition.
8We thank N. Seiberg for emphasising this point.
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Mp Ms MKK R−1
AdS mS,α mi 6=V mV

KKLT 1 gs
V1/2

gs
V2/3

g
1/2
s |W0|

V
1
V

|W0|
V

|W0|
V

LVS 1 gs
V1/2

gs
V2/3

g
1/4
s |W0|
V3/2

1
V

|W0|
V

|W0|
V3/2

Table 1. Relevant scales of KKLT and LVS scenario, in 4D Planck units: string scale, KK scale,

AdS scale, axiodilaton and complex structure moduli masses, Kähler moduli masses, volume mod-

ulus mass.

LVS scenarios, and most of the results are obtained only through an effective field theory

approach. In particular, the description of the non-perturbative effects is valid only within

the effective field theory approximation. Contrary to the AdS5 × S5 case there are no

known black-brane solutions in which the AdS factor can be achieved by a near horizon

limit. On the other hand we should be able to extract some partial information based on

the effective field theory results and by analogy with known cases.

In particular the study of the Coulomb branch motivated [17] to come-up with a con-

crete proposal for the duals of KKLT compactifications. As anticipated before, the main

idea is to consider (p,q) 5-branes that are domain walls separating AdS vacua correspond-

ing to different fluxes. These 4D domain walls are 5-branes wrapping the same 3-cycles

threaded by the fluxes and located at different points in the radial direction of AdS.9 D3-

branes must be introduced in order to satisfy the total D3 charge constraint (2.9). These

D3 branes will be stretched between the 5-branes. As for the AdS5 × S5 case, the domain

wall configurations should represent the dual CFT in its Coulomb branch, i.e. when the

fields representing the location of the corresponding branes get a non-zero VEV. This is an

interesting proposal that is analogous to the AdS5 × S5 case: it implements a brane/flux

duality that seems to be at the core of the gauge/gravity correspondence. However it is

not yet clear if this is the proper identification of the CFT.

In general, the understanding of the CFT side is very limited. Hence, rather than

concentrating on tests of the duality, we will focus on extracting properties that these

CFTs will have in order to be dual to the KKLT or LVS AdS4 minima. In reference [45]

a set of conditions were spelled out in order for a CFT to have a gravity dual: (i) Having

a large central charge c; (ii) A small set of operators of conformal dimension of O(1) and

(iii) approximate (in an 1/
√
c expansion) factorisation of their correlation functions. In the

following we will see that if a CFT dual exists that is dual to KKLT or LVS AdS minima,

then it will satisfy the properties just mentioned.

3.1 Central charge and number of degrees of freedom

In 2+1 dimensional CFTs the central charge (c ∼ Ndof ) can be defined at least in two

ways [46]: from the two point function of the energy momentum tensor or from the ‘en-

tropy/temperature relation’. Both definitions were proven to be equivalent for theories

9Notice that these are precisely the same brane configurations that can nucleate the potential decay of

metastable minima as discussed in [27].
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with AdS duals [47] and to be proportional to R2
AdS in 4D Planck units. So we can write:

Ndof ∼ R2
AdS ∼























V2

gs|W0|2
KKLT

V3

g
1/2
s |W0|2

LVS

(3.1)

We see that in both cases, KKLT and LVS, the CFT has a very large central charge, as

expected for a CFT that has a gravity dual. This should be interpreted as the analogue of

large N .10

The number of degrees of freedom should match with the one computed in the dual

CFT. If one consider the ensemble of flux vacua, there will be a vacuum with the smallest

cosmological constant, i.e. the vacuum with the maximum number of degrees of freedom

Nmax
dof . If one knows the distribution of Λ over the Landscape of flux vacua and the total

number of vacua Nvac, one can estimate what is the minimum value that the cosmological

constant will take in the Landscape. For KKLT this problem was studied in [17]: ex-

pressing the volume in terms of the flux dependent parameters gs,W0, A and knowing that

the distributions of such quantities are roughly uniform, one obtains a roughly uniform

distribution of Λ [14, 15]. This means that ΛKKLT
min ∼ 1

Nvac
and so Nmax,KKLT

dof = Nvac.

In the LVS case, the value of Λ at the minimum is given by ΛLVS ∼ A3e−3a/gs

|W0| (where

we have used V ∼ W0

A ea/gs). Because of the exponential factor, the distribution will be

extremely peaked at small values of Λ (see [48] for a recent discussion of this point). This

leads to the expectation that the minimal value of ΛLVS will be much smaller than the

minimal value of ΛKKLT. Because of the exponential relation between ΛLVS and gs, the

smallest value of ΛLVS over the space of flux vacua is realised when gs takes the minimal

value (and W0 is of order one).

One may try to estimate the minimal value of gs by considering its uniform distribu-

tion around zero and making analogous consideration as for ΛKKLT. Unfortunately, gs ∼ 0

is at the bounday of the moduli space and one needs to be careful. Moreover, the uni-

form distribution is valid up to the value of gs for which the continuous approximation

is valid. In [14] this bound was computed for the rigid Calab-Yau case: the continuous

approximation is valid for gs ≥ 1√
L , where L is the D3-charge of the localised sources. This

bound is quite big, compared to 1
Nvac

(that is the minimal gs that would be estimated if

the continuous uniform distribution were valid for all values of gs), that for this case is

equal to 1
L2 [14]. On the other hand, this does not mean that there are not flux vacua

realising gs ≤ 1√
L . In fact, as shown in footnote 2.2, the actual minimal number of gs is

1
L .

For the generic case, it is difficult to estimate how small gs can be without the continuous

approximation. Moreover, this bound is valid for the rigid CY, i.e. with h1,2 = 0. For CYs

10Comparing to the AdS5 × S5 case the central charge is the natural generalisation of the number of

colors N (since in that case c ∼ N2). However there is no clear analogue of the ’t Hooft coupling λ. In any

case, we may assume the relation λ ∼ gsN suggested by the Riemann surface topologies that organise the

’t Hooft and string theory expansions. Hence, we may identify a ’t Hooft-like coupling as λ ∼ gsN
1/2
dof

with

Ndof as above. We thank the referee for this suggestion.
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with large h1,2, one expects that this bound is consistently lowered, even though maybe

not at the level of 1
Nvac

.

We can anyway try to infer at least the relation ΛLVS
min < ΛKKLT

min = 1
Nvac

. Considering

W0, A, a ∼ O(1), this condition becomes gs <
1

lnNvac
. In a situation with many flux vacua,

it is not hard to believe that this inequality is satisfied as there is a large set of tunable

fluxes that can make gs to be much smaller than 1
lnNvac

. We checked this in an example

published in [49].11 In that article, the authors studied Type IIB compactification on

CP
4
11169[18] (the same CY we used for our analysis at the end of section 5.2), with only a

subset of flux vacua turned on (see [13] for an explicit treatment). These fluxes were anyway

enough to stabilise all the complex structure and the dilaton (at a symmetric point in the

complex structure moduli space). The number of flux vacua after moduli stabilisation is

Nvac ∼ 1012, while L ∼ O(100) [13]. In [49] the authors were able to explicitly scan only

a subset of such flux vacua, i.e. O(104) vacua. Among these, they found that the minimal

value of gs is gmin
s = 1

27152 . We see that this value is much smaller than 1
lnNvac

∼ 1
30 . We

expect that if it was possible to compute gs for all the 1012 flux vacua in the considered

subset, the actual minimal value of gs could even be lowered.12 Hence we can conclude

that in this example ΛLVS
min ≪ ΛKKLT

min , as we guessed by considerations on the distribution

of the cosmological constant in the two setups. The example we have considered is typical

in the landscape of type IIB compactifications and the conclusion can be generalised to

other Calabi-Yau manifolds.

To summarise, in this section we have argued that the number of degrees of freedom

in the dual CFT is very different for KKLT and LVS. In particular the maximal value that

Ndof can take (given by the minimal value of Λ) is much bigger for LVS with respect to

the one for KKLT. We do not have a clear interpretation why this happens. Without a

complete scan of flux vacua in concrete type IIB compactifications (that is really hard to

do with the present techniques and not the main point of this article), we are not able to

estimate how huge the number of degrees of freedom is for LVS.

3.2 Conformal dimensions

The relation between the mass (m) of the various fields on the gravity side and the con-

formal dimension (∆) of the operator in the dual CFT is given in (2.5) for scalar fields. In

our case (d = 3):

m2R2
AdS = ∆(∆− 3) . (3.2)

• KKLT : since there is a hierarchy of scales we know that the conformal dimensions of

string and KK modes will be hierarchicaly large. The relevant fields are the moduli.

The complex structure moduli and dilaton have masses of order ∼ 1/V whereas

the Kähler moduli have masses of order the gravitino mass m ∼ m3/2 ∼ |W0|/V .
11We thank M. Rummel for providing the unpublished results concerning such an example.
12If computer techniques will be improved in the next future, a complete scan of flux vacua can be studied

(including all the bulk three-form fluxes and the two-form fluxes on the D7-branes), enlarging the number

of Nvac to the famous 10500 (or even 102000 if one includes the D7-brane fluxes) [13] and correspondingly

being able to probe much smaller values of gs.
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Therefore, from (3.2) we have

∆moduli ∼











O(1) τi, ϑi ,

1

|W0|
≫ 1 Uα, S ,

(3.3)

where Ti = τi + iϑi are the Kähler moduli, Uα the complex structure moduli and S

the axiodilaton. For a typical CY there is a relatively large but finite number (h1,1 ∼
O(1 − 100)) of fields with O(1) conformal dimension. Since there is a gravity dual

we expect approximate factorisation of the correlation functions for these operators.

• LVS : the masses of the various moduli go as

mτs ∼ mas ∼ m3/2 ∼
|W0|
V ,

mU ∼ mS ∼ 1

V ,

mτb ∼ |W0|
V3/2

,

mϑb
∼ 0 ,

where we have omitted the irrelevant gs factors and we are taking a model with one

large (τb) and one small (τs) Kähler modulus. From these expressions we get that

m2
τsR

2
AdS ∼ m2

ϑs
R2

AdS ∼ V ≫ 1 ,

m2
UR

2
AdS ∼ m2

SR
2
AdS ∼ V ≫ 1 ,

m2
τb
R2

AdS ∼ O(1) ,

m2
ϑb
R2

AdS ∼ 0 . (3.4)

The above equations suggest that the conformal dimension of the operators dual to

complex structure and small Kähler moduli is very large whereas for the operators

dual to volume modulus (V ∼ τ
3/2
b ) and its axionic partner it is O(1):

∆moduli ∼







O(1) τb, ϑb ,

V1/2 ≫ 1 τs, ϑs, Uα, S .
(3.5)

Since there are only few operators with O(1) conformal dimension, it suggests that

the dual field theory is very strongly coupled. Again correlation functions should

approximately factorise.

We find this result particularly interesting since the CFT seems to have only one scalar

operator (and its axionic partner) with conformal dimension of O(1). This is related

to the fact that the volume modulus mass is hierarchically smaller than the gravitino

mass, despite supersymmetry being broken. A standard concern about this result is

if quantum effects, after supersymmetry breaking, will naturally raise the value of

this mass to the supersymmetry breaking scale. This issue was discussed in [50] in
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which the loop corrections to the modulus masses were found to be proportional to

δm2 ∝ g·∆m2
bos−ferm ∼ m2

KK

M2
p
m2

3/2 ∼
M2

p

V10/3 . We see that for very large volume V , δm ≪
mτb ≪ m3/2. It is then expected that in the corresponding CFT quantum corrections

will not substantially change the conformal dimension and keep this hierarchy. Having

a CFT with such a simple structure of low-lying operators is intriguing and may be

interesting to search for.

3.3 Wrapped branes and their dual

There are some operators in the dual field theory whose existence depends on the given

choice of flux vacuum. This allows us to distinguish two different flux vacua that have

the same value of W0, gs and A. One such class of operator we consider here is the

baryon like operator/vertex. These operators/vertices in the field theory are dual to the

configuration of Dp-brane wrapping p-cycle in compact directions. They have provided

non trivial checks of AdS/CFT duality [51, 52]. In our case it is very natural to consider

a configuration of D3-branes wrapping a three-cycle Σ of the CY manifold. This will

correspond to a massive particle in AdS4 whose mass is determined in terms of the volume

of the three-cycle. Assuming that the particle is stable, we want to find the operator or

vertex in the CFT dual.

On the D3-brane world volume there is a gauge field Aµ. The D3-brane Chern-Simons

action generates a coupling between this gauge field and the background fluxes (in the

combination involving the RR scalar field):

(2π)α′µ3

∫

Σ×R

A ∧
[

F(3) + C0H(3)

]

. (3.6)

Here µ3 = 1
(2π)3α′2 is the D3-brane charge. Now, using (2.7) we find that the background

fluxes contribute to the charge of the particle under the worldvolume U(1) symmetry, which

is given by

[MΣ − C0KΣ]

∫

R

A . (3.7)

The charge [MΣ − C0KΣ] must be cancelled in order to prevent a tadpole for the field

A. Hence there must be an opposite contribution coming from open strings attached to

the D3-brane. The charge coming from open string ends is integral and so it can cancel

the one generated by fluxes only if the last one is integral as well. While MΣ and KΣ

must be integral, C0 is a not necessarily an integer depending on fluxes (after moduli

stabilisation). We conclude that the condition for the baryon operator to be present in the

dual theory is that

[MΣ − C0KΣ] ∈ Z . (3.8)

Different choice of fluxes that give the same value of W0 and gs can allow different

operators in the dual theory. These operators are a useful ingredient to probe different

flux vacua.
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4 Effective potential and quantum logarithmic effects

In AdS/CFT duality, the partition function of the theory of gravity on AdS space is equal

to the partition function of the CFT living at it’s boundary [2, 54]. There have been

several checks for this duality but the majority of works are in the infinite N limit which

corresponds to studying classical gravity in the bulk.

In this section we briefly review how one-loop corrections to the partition function

in gravity systems have been used to learn and test the gauge/gravity duality. Loop

corrections to the partition function on the gravity side correspond to going beyond planar

limit on the dual field theory side. This provides a test of AdS/CFT duality beyond

planar limit which is very non-trivial, as it involves string loop computations on the AdS

side. However in the α′ → 0 limit, this reduces to the computation in supergravity. In

these procedure it is always worth looking for the quantity which does not depend on

the details of the UV theory. Such quantities are universal in the sense that they can

be calculated in the low energy effective field theory. One quantity of this type is the

logarithmic correction, ln(RAdS), in the partition function of effective field theory on the

gravity side. This object has been used quite successfully in studying the entropy of black

holes [33–37]: the logarithmic corrections calculated on the supergravity side matches with

those computed on the string theory side. A similar comparison has been made in [38]

where the supergravity calculation in AdS4×X7, where X7 is a compact seven dimensional

manifold, reproduces the correct coefficient of the logarithmic correction present in the
1
N -expansion of the partition function of the three dimensional CFT.

Motivated by this success, we will do a similar computation in the KKLT and the LVS

cases where we have supersymmetric and non supersymmetric AdS4 minima respectively.

Assuming the validity of the AdSd+1/CFTd duality, these vacua will have a dual description

in terms of a (unknown) three-dimensional CFT. The computation on the AdS side will

give a non trivial prediction for the CFT partition function. As we will explain in detail

below, the logarithmic correction, ln(RAdSǫ), arises at one loop when a particle whose

mass scales with some power of RAdS runs inside the loop. Calculating such logarithmic

corrections in KKLT and LVS requires the knowledge of the explicit form of masses of

all the moduli fields. These are not available at the moment for all the scalar fields. In

particular, for the compactifications we have considered, the Kähler moduli masses are

known as functions of few paramenters (depending on the flux numbers (2.7)), while the

complex structure moduli masses are unknown functions of the fluxes. Since all the masses

of the Kähler moduli and gravity multiplets scale with some power of W0 (a function of

the flux numbers), we will calculate a similar logarithmic correction, ln |W0|2, that does

not requires the knowledge of the complex structure moduli masses (that do not scale with

W0). We claim that this is a universal prediction for the dual CFT, once one identifies

what W0 parametrises in the dual theory.

4.1 The limit |W0| → 0

The effective field theory in KKLT and LVS (after integrating out the axiodilaton and the

complex structure moduli) are basically labelled by three parameters, that are functions
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of the flux numbers (2.7): the super potential W0, string coupling gs and the prefactor

A of the non-perturbative contribution to the superpotential (in case there is only one

non-negligible non-perturbative effect). After stabilising the Kähler moduli, these fields

are also function of these parameters. In particular, this happens for the volume of the

compactification manifold V = V(W0, gs, A). Inverting this relation, we can express A in

terms of V and use this last one as the third parameter. The radius of the AdS is given by

1

R2
AdS

∼ gαs W
2
0

Vβ
. (4.1)

Here α = 1, β = 2 for KKLT and α = 1
2 , β = 3 for LVS.

Now, in order for the supergravity approximation to work, RAdS needs to be arbitrarily

large. This limit can be achieved in various ways. However in our case we will work in

the limit,

W0 → 0, gs = fixed, V = large but fixed . (4.2)

We motivate this as follows: if we are interested in the coefficient of logarithmic correction

lnRAdS, which is the general quantity of interest in standard AdS/CFT duality, then we

need to include all the fields whose mass scales with some power of RAdS. Therefore in

order to calculate logarithmic correction lnRAdS, we need to know the masses of all the

moduli fields including the KK modes. This is a rather harder problem at present, due to

the unknown expression for the complex structure moduli masses. An important point to

observe is that the masses of KK modes and complex structure moduli do not scale with

W0, while the masses of the Kähler moduli, gravitino mass and the cosmological constant

scale do scale with W0. Hence only Kähler moduli and the gravity multiplet contribute to

the coefficient of ln |W0|2, and we can single this out by considering the limit (4.2). This

is the reason why we look for the coefficient of ln |W0|2.

4.2 Effective potential

In this section we will describe the computation of the one loop effective action in su-

pergravity coupled to matter fields. The one loop calculation involves the computation

of determinants of the various operators which appear at the quadratic order in the fluc-

tuations of the fields in the Lagrangian about the background fields. The determinants

are then expressed in terms of the heat kernel of the operator. The UV divergences of

the effective action is captured by the asymptotic expansion of the heat kernel. In this

expansion we will look for the logarithmic divergence.

The heat kernel expression for the one-loop effective action is:

Γ(1) = −1

2

∫ ∞

ǫ

dτ

τ
Str exp[−τ(∇2 +X +M

2)]

= −1

2

∫ ∞

ǫ

dτ

τ
Str{exp[−τ(∇2 +X)]e−τM2}. (4.3)

Here ∇2 = −Igµν∇µ∇ν where I is the unit matrix in the space of fields and X is a spin

dependent matrix that is linear in the Riemann tensor [55] (the gauge field background in
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4D has been taken to be zero) and M is a field dependent mass matrix. In the second line

we have dropped space time derivatives of M since we are just considering the effective

potential. Now we use the adiabatic expansion for the heat kernel to write

Γ(1) = −1

2

∫ ∞

ǫ

dτ

τ

1

16π2τ2
STr{[a(s)

0 I + a
(s)
2 τ + a

(s)
4 τ2 + . . .]e−τM2}

= − 1

32π2
Str[a

(s)
0 I0 + a

(s)
2 I2 + a

(s)
4 I4 + . . .] . (4.4)

Note that in the first line above the trace includes an integral over the space time. Also

the prefix ‘S’ on the trace simply implies tracing over the physical degrees of freedom

with a factor (−1)2s, s being the spin. The coefficients a
(s)
2n are integrals over the De Witt

coefficients and are given below [55, 56]:

a
(s)
0 =

∫

d4x
√
gTrI ,

a
(s)
2 =

1

6

∫

d4x
√
gTr(R+ 6Xs) , (4.5)

a
(s)
4 =

1

180

∫

d4x
√
g

{

αsCµρνσC
µρνσ + βs

(

RµνR
µν − 1

4
R2

)

+ γs�R+ dsR2

}

.

Here Tr indicates the trace over the various indices of the field like space time indices and

internal indices.

In (4.4) I is a unit matrix and I0,2,4 are matrix valued integrals, whose entries are of

the form13

I0 =

∫ ∞

ǫ

dτ

τ3
e−τm2

, I2 =

∫ ∞

ǫ

dτ

τ2
e−τm2

, I4 =

∫ ∞

ǫ

dτ

τ
e−τm2

.

These integrals satisfy the conditions

dI2
dm2

= −I4,
dI0
dm2

= −I2.

Finally we have (substituting t = m2τ)

I4 =

∫ ∞

ǫm2

dt

t
e−t = Γ(0, ǫm2) ,

where

Γ(z, x) ≡
∫ ∞

ǫ
tz−1e−t

is the incomplete Gamma function for which we have the expansion (for z = 0),

Γ(0, x) = −γ − lnx−
∞
∑

k=1

(−x)k

k(k!)
.

13Due to the UV divergence, we need to use a cutoff ǫ. In string theory ǫ is a physical cutoff, effectively

ǫ = l2s or l2KK.
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Thus I4 = − ln(ǫm2) + f(ǫm2), I2 = m2 ln(ǫm2) + m2g(ǫm2), I0 = −1/2m4 ln(ǫm2) +

m4h(ǫm2) where f is an analytic function and g, h are meromorphic functions with poles

of order 1 and 2 respectively. Putting these results into (4.4), we obtain

Γ(1) =
1

32π2
Str

[

1

2
a
(s)
0 M

4 − a
(s)
2 M

2 + a
(s)
4

]

ln(ǫM2)

+

∫

d4x
√
g

[

1

ǫ
StrM2 +

1

ǫ2
StrI + V(1)(ǫM

2)

]

. (4.6)

with the last integrand V(1) being an analytic function. In a theory with equal numbers of

fermionic and bosonic degrees of freedom such as a supersymmetric theory the ǫ−2 term

will vanish. In a supersymmetric theory with zero cosmological constant and unbroken

supersymmetry the O(ǫ−1) will also vanish. In a flat background we will only have the first

term in the factor multiplying ln(ǫM2) which of course gives the usual Coleman-Weinberg

formula. In the following we will focus on the log divergence term, the first line in (4.6),

since the coefficients are independent of the UV regulator and we can find a universal

quantity that is just proportional to the log of the flux superpotential.14

4.3 Effective potential Γ(1) about AdS background

We now compute the De Witt coefficients ai appearing in the logarithmic divergence for the

fields with spin≤ 2 about the AdS4 background. In the next section we will use these coef-

ficients to compute the ln |W0| term for the cases of KKLT and LVS flux compactifictions.

The AdS4 metric is given by

ds2 = R2
AdS

(

dη2 + sinh2 ηdΩ3

)

, (4.7)

where dΩ3 is the metric of three-sphere.15 In this background the curvature has the form

Rµρνσ = −1

3
L−2(gµνgρσ − gµσgνρ), Rµν = −L−2gµν , R = −4L−2 , (4.8)

where R2
AdS = 3L2 and −L−2 ≡ −|Λ| < 0 is the AdS cosmological constant (CC).

Let us evaluate the coefficient a
(s)
4 ,a

(s)
2 and a

(s)
0 in this background. From (4.8) we

have R2 = 16L−4, RµνR
µν = 4L−4, and thus for our background we also have

RµνR
µν − 1

4
R2 = 0, CµρνσC

µρνσ = 0 . (4.9)

We parametrize the De Witt coefficients (4.5) as follows,

a
(s)
4 =

ds

180

∫

d4x
√
gR2, a

(s)
2 =

cs

6

∫

d4x
√
gR,

a
(s)
0 = f s

∫

d4x
√
g . (4.10)

14Note that modes with masses close to the cutoff, like KK modes and string states, give a suppressed

contribution to the first line of (4.6). In any case as noted earlier these will not contribute to the lnW0 terms.
15The metric is given in Poincare coordinates by ds2 = R2

AdS
1

z2
(dz2 +

∑3

i=1
(dxi)2). This presentation

shows that AdS is conformally flat so that its Weyl tensor is manifestly equal to zero, Cµρνσ = 0.
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s ds cs f s

0 29/12 1 1

1/2 11/24 -1 2

1 -31/6 -4 2

3/2 251/24 8 -88

2 1139/6 -22 2

Table 2. Coefficients appearing in (4.13) for spin s particles.

The coefficients (ds, cs, f s) are given in table 1 (for details see appendix B). Suppose the

theory has neutral chiral supermultiplets (moduli/ini) along with the graviton and the

gravitino. Then we have the effective potential,16

Γ(1) ∼
1

32π2

2
∑

s=0

(−1)2s
[

1

2
a
s
0m

4
s − a

s
2m

2
s + a

s
4

]

ln(εm2
s )

∼ 1

32π2

∫ √
gd4x

2
∑

s=0

(−1)2s
[

1

2
fsm4

s −
cs

6
Rm2

s +
ds

180
R2

]

ln(εm2
s) , (4.11)

where we have used (4.10).

The volume of AdS4 is infinite, however in AdS/CFT there is a well defined prescription

to extract the finite part [57],
∫

d4x
√
g =

4π2R4
AdS

3
= 12π2L4 . (4.12)

Thus we get,

Γ(1) ∼
3L4

8

2
∑

s=0

(−1)2s
[

1

2
f sm4

s +
2cs

3L2
m2

s +
4ds

45L4

]

ln(εm2
s ) . (4.13)

While carrying out the above computations, we also need to include the contribu-

tions of the various ghost fields for the spin 1, 32 and 2 fields. We list in the table the

coefficients ds, cs, and f s, taking into account the contributions of the various ghost fields.17

5 Coefficient of ln |W0|2 in type IIB flux compactifications

5.1 KKLT vacua

As we have seen, in the KKLT scenario the Kähler moduli are fixed by non-perturbative

contribution to the superpotential. In this section we consider a Calabi-Yau with one

16Note that we have suppressed for simplicity an additional sum over chiral scalar multiplets — this will

be remedied later.
17Note that: 1) in the table we have presented the coefficients for Weyl (Majorana) fermion, which we

obtained by considering a Dirac fermion and divide the result by half; 2) the coefficients f s for gravitino

is different from 2; this happens because the contribution of the ghosts, with mass 2m3/2, is included. For

more details see appendix B.
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Kähler modulus (i.e. h1,1 = 1). The volume V of the CY will be given in terms of the

Kähler modulus τ by V = τ3/2. We assume that there is a four-cycle D with volume τ that

supports a non-perturbative effect, generating a superpotential of the form Wnp = Ae−aT .

The N = 1 supergravity potential is determined by the Kähler potential K and the

superpotential W of the effective theory. These are functions of the Kähler coordinate

T = τ + iϑ, where τ = 1
2

∫

D J2 is the Kähler modulus and ϑ =
∫

D C4 is the axion coming

from the RR four-form potential. After integrating out the complex structure moduli and

the axiodilaton, the scalar potential is

V = eK
(

KT T̄DTW ¯DTW − 3|W |2
)

. (5.1)

In the KKLT case, we have

K = −2 lnV(T, T̄ ) = −3 ln
(

T + T̄
)

, W = W0 +Ae−aT . (5.2)

The supersymmetric minimum of this potential is at DTW = 0, i.e. at ϑ = 0 and

W0 = −Ae−aτ
(

1 + 2
3a τ

)

. (5.3)

The value of the potential at the minimum is

V |min = − 3W 2
0 a

2

2τ (3 + 2a τ)2
(5.4)

where τ satisfies the relation (5.3). From this we read the cosmological constant, i.e.

Λ = V |min.

Scalar masses. At the minimum, the Hessian of the potential is

∂i∂jV |min =





3W 2
0 a

3

2τ2(3+2aτ)
0

0
3W 2

0 a
2(2+aτ)(1+2aτ)

2τ3(3+2aτ)2



 , (5.5)

with i, j = ϑ, τ .

We need to calculate the masses of the canonically normalised fields. These are ob-

tained by multiplying the matrix ∂2V by 1
2K

−1
T T̄

= 2τ2

3 . The masses of the two scalar fields

are then

m2
ϑ =

W 2
0 a

3

3 + 2aτ
,

m2
τ =

W 2
0 a

2(2 + aτ)(1 + 2aτ)

τ(3 + 2aτ)2
. (5.6)

Fermion mass. In N = 1 four dimensional supergravity, the mass matrix for fermion is

given by

mf
ij = m3/2

(

∇iGj +
1

3
GiGj

)

, G = K + lnW + ln W̄ (5.7)
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where m3/2 = eK/2|W | is the gravitino mass and

∇iGj = ∂iGj − Γk
ijGk , (5.8)

with Γk
ij given in (A.3). In the case under study, i = T . Moreoever, since we have a susy

vacuum, DiW = 0. Therefore the fermion mass is

mf = m3/2

[

WTT

W
+KTT −KTKT

]

. (5.9)

Using (5.2), we get

mf = − 3W0a(1 + aτ)

2
√
2τ5/2(3 + 2aτ)

. (5.10)

The canonically normalised mass is

mψ = −
√
2W0a(1 + aτ)

τ1/2(3 + 2aτ)
. (5.11)

Contribution to ln |W0|2. Now we can calculate the contribution to the logarithmic

corrections due to Kähler moduli. The contribution due to two scalar fields is

Γs
(1) =

[

149

180
+ 3aτ +

25a2τ2

6
+

8a3τ3

3
+

2a4τ4

3

]

ln |W0|2 . (5.12)

The corresponding contribution of the fermion is

Γf
(1) =

[

251

720
+ 2aτ +

11a2τ2

3
+

8a3τ3

3
+

2a4τ4

3

]

ln |W0|2 . (5.13)

Putting the two results together, the contribution due to a single Kähler multiplet is

Γs
(1) − Γf

(1) =

(

− 1

48
+

1

2
(1 + aτ)2

)

ln |W0|2 =
(

− 1

48
+

1

8
m2

ψR
2
AdS

)

ln |W0|2 , (5.14)

where we remind that R2
AdS = 3L2 = 3

Λ . This is the result one expects for a supersymmetric

AdS4 minimum, where the scalar masses ms1,s2 are determined in terms of the fermion

mass18 mψ and the radius of AdS RAdS [58]:

m2
s1,s2 = m2

ψ − 2

R2
AdS

± mψ

RAdS
. (5.15)

If one plug these expressions in (4.13), the resulting contribution to ln |W0|2 matches

with (5.14). One can also verify that (5.15) is fulfilled in the present example.

The contribution coming from the gravity multiplet is a constant, due to super-

symmetry. The cosmological constant effectively acts as the mass of the graviton,

M2
(2) = −2Λ = 2L−2, while m3/2 = eK/2|W | is the mass of the gravitino that in the

supersymmetric case is M2
{3/2) =

1
3L2 . In this case the contribution to ln |W0|2 is given by

Γm
(1) − Γg

(1) = −113

48
ln |W0|2 (5.16)

18We refer here to the fermion mass in the canonically normalised Lagrangian.

– 21 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
6

Notice that in the above derivation, the eKS+Kcs factor in the mass cancels the similar

contribution present in RAdS.

Summing up all contributions, we obtain

ΓW0

(1) =
1

8

(

−19 +m2
ψR

2
AdS

)

ln |W0|2 . (5.17)

Notice that m2
ψR

2
AdS is the combination that appears in the relations between masses and

conformal dimensions of the dual operators. For the fermion fields, we have RAdSmψ =

∆ψ − d
2 [3, 4]. Hence, in the dual CFT3 the result (5.17) can also be written as

ΓW0

(1) =
1

8

(

−19 +

(

∆ψ − 3

2

)2
)

ln |W0|2 .

Due to the fact the KKLT is supersymmetric, we can immediately write the contri-

bution to ln |W0|2 in the case that the Calabi-Yau three-fold X3 has h1,1 Kähler moduli.

Each chiral multiplet associated to a Kähler modulus will have a mass scaling like W0 and

will give a contribution to ln |W0|2 equal to (5.14). Hence the final result is

ΓW0

(1), h1,1 K.md
=



−113 + h1,1

48
+

R2
AdS

8

h1,1
∑

i=1

m2
ψi



 ln |W0|2 . (5.18)

5.2 LVS vacua

We consider type IIB compactified on a Calabi-Yau (CY) three-fold X3 and take the

simplest LVS example, i.e. we take X3 to have two Kähler moduli τb and τs and a volume

form of swiss cheese type:

V = τ
3/2
b − τ3/2s . (5.19)

Again the flux superpotetial Wflux is generated by switching on three-form fluxes G3.

This fixes the complex structure moduli and the axiodilaton at high energies, leaving a

constant superpotential W0 at lower energies (depending on the flux numbers). We also

assume that the divisor Ds with volume τs supports a non-perturbative effect (like an E3-

insanton or a D7-brane stack with a condensing gauge group) generating a contribution to

the superpotential like in KKLT. The total superpotential is then

W = W0 +Ase
−asTs . (5.20)

Here Ts = τs + iϑs is one of the Kähler variables of type IIB orientifold compactifications

(Ti =
∫

Di
(J ∧ J + iC4), with C4 the RR four-form potential).

After integrating out the complex structure moduli and the dilaton, the remaining

moduli are the deformations of the Kähler form. Their Kähler potential (including the

leading α′-corrections) is

K(Ts, Tb) = −2 log

(

V(Ts, Tb) +
ξ

g
3/2
s

)

, (5.21)

where ξ = − ζ(3)χ(X3)
4(2π)3

.
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The scalar potential for the Kähler moduli Ts = τs + iϑs and Tb = τb + iϑb has a

minimum where the volume of X3 is stabilised to be exponentially large. In particular, in

the region where V ≫ 1 (i.e. τb ≫ τs) the potential has the form (after minimizing with

respect to the axion ρs and taking W0 ∈ R
+ without loss of generality)

V =
8A2

sa
2
s
√
τse

−2asτs

3τ
3/2
b

+ cos(asϑs)
4AsasW0τse

−asτs

τ3b
+

3W 2
0 ξ

2 g
3/2
s τ

9/2
b

. (5.22)

We see that at this level of approximation, the axion ϑb is a flat direction of the

potential. Minimising the potential (5.22) with respect to ϑs, τs and τb, one obtain the

two equations:

∂ϑsV = 0 ⇔ ϑs =
π

as
(5.23)

∂τsV = 0 ⇔ τ
3/2
b =

3easτsW0
√
τs(asτs − 1)

Asas(4asτs − 1)
(5.24)

∂τbV = 0 ⇔ g
3/2
s

ξ
=

(4asτs − 1)2

16asτ
5/2
s (asτs − 1)

(5.25)

By restricting to the region in the moduli space where we can trust the supergravity

approximation, i.e. τs large, the two minimising equations (5.24) and (5.25) have the ap-

proximated solutions:

V ∼ 3easτs
√
τsW0

4Asas
and τs ∼

ξ2/3

gs
(5.26)

We see that the volume is stabilized at exponentially large values, as required by the

approximation we took at the beginning of the computations. Remember that we are

keeping only the leading terms in 1/τb expansion. This will hold in the following as well.

By using (5.23), (5.24) and (5.25), we can compute the value of the potential at

the minimum:

V |min = −12W 2
0 τ

3/2
s (asτs − 1)

τ
9/2
b (4 asτs − 1)2

. (5.27)

Scalar masses. We are now ready to compute the masses of the four real scalar fields

τs, τb, ϑs, ϑb. The masses of the fields are derived by the matrix ∂i∂jV |min. In our case this

matrix is block-diagonal. The block relative to the axions ϑb, ϑs is (at leading order in the

1/τb expansion)

∂ϑj̄
∂ϑk

V |min =
6W 2

0 (asτs−1)

τ
9/2
b (4asτs−1)

(

0 0

0 2a2sτ
3/2
s

)

. (5.28)

while the block relative to τb, τs is

∂τj̄∂τkV |min =
6W 2

0 (asτs−1)

τ
9/2
b (4asτs−1)







9τ
3/2
s (2asτs+1)
τ2b (4asτs−1)

−3τ
1/2
s (asτs−1)

τb

−3τ
1/2
s (aaτs−1)

τb

1+3asτs−6a2sτ
2
s+8a3sτ

3
s

τ
1/2
s (4asτs−1)






. (5.29)
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We are interested in the canonically normalised fields. The masses are the eigenvalues

of the matrices 1
2K

ij̄∂ϑj̄
∂ϑk

V |min and 1
2K

ij̄∂τj̄∂τkV |min. The inverse of the Kähler metric

is (at leading order in the 1/τb expansion)

Kij̄ |min =

(

4
3τ

2
b 4τbτs

4τbτs
8
3τ

3/2
b τ

1/2
s

)

(5.30)

The eigenvalues of the matrixKij̄∂j̄∂kV |min gives the physical masses of the canonically

normalised fields:

m2
Θ = 0 (5.31)

m2
θ =

16W 2
0 a

2
sτ

2
s (asτs − 1)

τ3b (4asτs − 1)
(5.32)

m2
Φ =

108W 2
0 asτ

5/2
s (asτs − 1)(5− 11asτs + 12a2sτ

2
s )

τ
9/2
b (4asτs − 1)2(1 + 3asτs − 6a2sτ

2
s + 8a3sτ

3
s )

(5.33)

m2
φ =

8W 2
0 (asτs − 1)(1 + 3asτs − 6a2sτ

2
s + 8a3sτ

3
s )

τ3b (4asτs − 1)2
(5.34)

We immediately realise that m2
φ,m

2
θ ≫ 1

L2 , while m2
Φ is of the same order as 1

L2 .

We can approximate the values of 1
L2 , m

2
Φ and m2

φ in the limit asτs ≫ 1. This is a

valid approximation. In fact as ∼ 1, while τs ∼ ξ2/3

gs
: to be in a controlled regime gs ≪ 1

(in the explicit example presented below, ξ ∼ 2.08). In this approximation

1

L2
=

3W 2
0 τ

1/2
s

4τ
9/2
b as

(

1 +
1

2asτs
+ . . .

)

(5.35)

m2
θ =

4W 2
0 a

2
sτ

2
s

τ3b

(

1− 3

4asτs
+ . . .

)

(5.36)

m2
Φ =

81W 2
0 τ

1/2
s

8τ
9/2
b as

(

1− 2

3asτs
+ . . .

)

(5.37)

m2
φ =

4W 2
0 a

2
sτ

2
s

τ3b

(

1− 5

4asτs
+ . . .

)

(5.38)

We see that at leading order in this approximation, we have m2
Φ = 27

2L2 and mφ = mθ.

Fermion masses. Let us now compute the masses for the (canonically normalised) mod-

ulini. We start from the fermion mass matrix in the sugra sigma model:

mf
ij = m3/2

(

∇iGj +
1

3
GiGj

)

, G = K + lnW + ln W̄ (5.39)

where m3/2 = eK/2|W | is the gravitino mass and ∇iGj = ∂iGj − Γk
ijGk. For the present

case, this matrix reads

mf
ij = −3W0

8τ3b





τ
3/2
s (2asτs+7)
τ2b (4asτs−1)2

−3τ
1/2
s (2asτs−1)
τb(4asτs−1)

−3τ
1/2
s (2asτs−1)
τb(4asτs−1)

(2asτs−1)

τ
1/2
s



 (5.40)
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As for the scalars, we compute the canonically normalised masses for the two mass

eigenstates:

mΨ = −W0(2asτs − 1)

τ
3/2
b

= −2W0asτs

τ
3/2
b

(

1− 1

2asτs
+ . . .

)

(5.41)

mψ =
8W0τ

3/2
s (asτs − 1)

τ3b (4asτs − 1)2
=

W0τ
1/2
s

2asτ3b

(

1− 1

2asτs
+ . . .

)

(5.42)

Contribution to ln |W0|2. We can now compute the contribution to ln |W0|2 coming

from the Kähler moduli spectrum. Like in KKLT, we assume that there are no further

massless fields remaining.

The scalar contribution coming from the four scalars is at leading order in the 1/τb
expansion:

Γs
(1) =

τ3b (1 + 6asτs − 3a2sτ
2
s − 20a3sτ

3
s + 88a4sτ

4
s − 128a5sτ

5
s + 128a6sτ

6
s )

12τ3s
ln |W0|2 (5.43)

The leading contribution in the τb expansion is basically given by the m4 term relative to

the fields θ and φ. In fact, their masses scales with powers of τb with respect to the 1/L,

i.e. L ·mθ,φ ∼ τ
3/4
b .

The fermion contribution is basically given at leading order in τb by the m4
Ψ term:

Γf
(1) =

τ3b (4asτs − 1)4(2asτs − 1)4

384τ3s (asτs − 1)2
ln |W0|2 . (5.44)

Considering both contribution, we obtain

Γs
(1)−Γf

(1)=
τ3b (31+152asτs−696a2sτ

2
s +1184a3sτ

3
s −1136a4sτ

4
s +1152a5sτ

5
s −768a6sτ

6
s )

384τ3s (asτs − 1)2
ln |W0|2.

(5.45)

The gravity multiplet contributes differently with respect to the KKLT. Since the min-

imum is not supersymmetric, the gravitino contribution is not determined by the graviton

one. In this case the contribution to ln |W0|2 is given by

Γm
(1) − Γg

(1) =
11τ3b (4asτs − 1)4

96τ3s (asτs − 1)2
ln |W0|2 (5.46)

The τb dependence comes from the gravitino mass, whose τb scaling is different from the

one of 1/L. This is a difference with respect to what happens in the KKLT case.

If we sum up all the contribution, we obtain

ΓW0

(1) =
τ3b (25− 184asτs + 1176a2sτ

2
s − 3360a3sτ

3
s + 3376a4sτ

4
s + 384a5sτ

5
s − 256a6sτ

6
s )

128τ3s (asτs − 1)2
ln |W0|2.

(5.47)

Taking the leading term in the τs ≫ 1 limit, we obtain

ΓW0

(1) ∼ −2 a4s τ
3
b τs ln |W0|2 . (5.48)

This leading contribution comes from Γs
(1) −Γf

(1), as the gravity contribution is subleading

for τs ≫ 1.
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A simple global model. We present an explicit global model for a LVS minimum, i.e.

we consider an explicit Calabi-Yau threefold and an orientifold projection, with a setup of

branes that satisfies all the string theory consistency conditions (like tadpole cancellation,

proper quantisation of fluxes, etc. . . ). The compactification manifold X3 is the famous

CY P
4
11169[18]. More precisely, it is an hypersurface described by the vanishing locus of a

polynomial of degrees (18, 6) in the toric ambient variety defined by the following weights

u1 u2 u3 x y z

1 1 1 6 9 0

0 0 0 2 3 1

(5.49)

and with SR-ideal given by {u1u2u3, x y z }. This Calabi-Yau manifold has Hodge numbers

h1,1 = 2 and h1,2 = 272, with Euler characteristic χ(X3) = −540.

An integral basis of divisor is given by D1, Dz (with D1 = {u1 = 0} and Dz = {z = 0}),
with intersection numbers

D3
1 = 0 D2

1Dz = 1 D1D
2
z = −3 D3

z = 9 . (5.50)

We expand the Kähler form in the basis of Poincaré dual two forms D̂1, D̂z: J = t1D̂1 +

tzD̂z. The volumes of the divisors Dz and Dy = 9D1 + 3Dz are

τz =
1
2

∫

Dz

J2 = 1
2(t1 − 3tz)

2 τy = 1
2

∫

Dy

J2 = 3
2 t

2
1 , (5.51)

while the volume of the CY is

V =
1

6

∫

X3

J3 =
1

18

(

t31 − (t1 − 3tz)
3
)

=

√
2

9

(

(τy
3

)3/2
− τ3/2z

)

. (5.52)

In the following we will use the variables τb ≡ τy/3 and τs ≡ τz. Thevolume of X3 takes

then the form

V =

√
2

9

(

τ
3/2
b − τ3/2s

)

. (5.53)

We note that this is equal to (5.19), up to the overall factor. This can be absorbed

into a rescaling of W0, As, ξ. In detail, this model is equivalent to the one described by

the volume form (5.19), if W0 7→ 9√
2
W0 and As 7→ 9√

2
As and the definition of ξ is also

rescaled ξ 7→ 9
2
√
2
ξ. The new ξ is equal to ξ ∼ 2.08 in this model (where we have used

χ(X3) = −540).

The only other (non-flux dependent) parameter in the scalar potential that remains to

be determined is as. It depends on the non-perturbative effects that lives on the four-cycle

Ds = Dz. We consider two cases, corresponding to two different orientifold involutions.

These lead to a different spectrum and different nature of the non-perturbative effect.

1) The orientifold involution is given by

σ : z 7→ −z . (5.54)
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The fixed point locus is made up of two O7-planes at z = 0 and y = 0. They do

not intersect each other. The orientifold-plane D7-tadpole is cancelled by taking

four D7-branes (plus their four images) on top of z = 0 and a fully recombined D7-

brane wrapping a 4-cycle in the homology class 8Dy (called in litterature ‘Whitney

brane’ for its characteristic shape) [59]. The stack on z = 0 gives an SO(8) gauge

group, while the Whitney brane does not support any gauge symmetry. We choose a

background value for the bulk B-field equal to B = D̂z
2 . In this way there is a choice

of gauge flux on the D7-branes such that the gauge invariant flux F = F − ι∗B can

be set to zero. In fact, Freed-Witten anomaly cancellation requires the gauge flux on

the branes on z = 0 to be half-integrally quantized (F + c1(Dz)
2 ∈ H2(Dz,Z)). With

techniques described in [60, 61] one can compute the D3-charge of this configuration.

We make a choice of the flux on the Whitney brane that maximize the absolute value

of the charge, obtaining QD7
D3 = 1491. This large negative contribution to QD3 allows

to switch on positively contributing three-form fluxes on the bulk and two-form fluxes

on the Whitney brane; these stabilise at large scale the complex structure moduli, the

axiodilaton and the open string moduli describing the deformations of the Whitney

brane [59].

By using proper index theorems, one can compute (see for example [31]) the number

of even and odd (1,2)-forms on X3. With the chosen orientifold involution, we have

h1,2+ = 0 and hence h1,2− = h1,2 = 272. This means that we have no massless gauge

multiplet coming from C4 expanded on even three-forms.

The divisor Dz is a rigid CP
2 and hence it has h1,0 = h2,0 = 0. This means that the

theory living on the corresponding D7-brane stack is a pure SO(8) SYM. It undergoes

gaugino condensation, generating a superpotential

Wnp = Ase
−asTs . (5.55)

with as = π/3.

2) The orientifold involution is given by

σ : x 7→ −x . (5.56)

The fixed point locus is made up of one O7-plane at x = 0. The orientifold-plane

D7-tadpole is cancelled by a Whitney brane wrapping a four-cycle in the homology

class 8Dx. Hence we do not have any massless guage multiplet coming from the D7-

brane worldvolume. The D3-charge of the D7-brane and the O7-plane (considering

zero flux on the D7-brane) is QD7
D3 = 498.

By using the index theorems, we compute h1,2+ = 69 and h1,2− = 203. This means that

we have ngauge = 69 massless gauge multiplets. These will contribute to the coefficient

of ln |W0|2 with a constant term that is subleading with respect to the (5.45).

The rigid divisorDz is not wrapped by any D7-brane. On the other hand, an invariant

E3-instanton is wrapped on Dz when B = D̂z
2 . This will contribute to the non-

perturbative superpotential Wnp = Ase
−asτs , with as = 2π. If B = 0, the leading

contribution will be given by E3-instantons with higher rank, as described in [62].
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Inserting the model-dependent value of as into (5.47) (or (5.48)), one obtains the

coefficient of ln |W0|2 in terms of V and gs.
19

Summary. Our main results in this section are given by equations (5.18) for KKLT

and (5.47) for LVS. These results are obtained by one loop calculations in the supergravity

coupled to Kähler moduli about AdS4 background. In these computation we expressed one

loop determinant of the differential operator in terms of heat kernel and then considered

it’s small τ expansion, see (4.4). The coefficients of the τ expansion are expressed in terms

of curvature invariants and masses of fields, that we derive explictly for both KKLT and

LVS. From such an expansion we extracted the coefficient of ln |W0| which is given by

the coefficient of τ independent term in the heat kernel expansion. We computed these

contributions in the limit (4.2) where |W0| is taken to be small while keeping gs and V
fixed. In this limit we can ignore the contribution of the complex structure moduli and KK

modes, whose masses do not scale with W0.
20 In the AdS/CFT dictionary the ln |W0| term

will correspond to a term ∼ log c in the free energy of the dual CFT in the 1
N -expansion.

Thus our calculation provide a non trivial consistency checks for any candidate CFT dual.

6 Discussion

In this paper we have made some progress in describing the properties of the CFT duals

of AdS vacua of KKLT and LVS type. Our main technical result is the identification of

a concrete calculation, that we performed, of a duality independent quantity. This is the

coefficient of the logarithmic term of the one-loop vacuum energy. For the KKLT case the

result is quite simple and depends only on the conformal dimension of the involved Kähler

moduli and on h1,1. For the LVS case it is a model dependent quantity depending on the

values of the moduli at the minimum. The difference relies on the fact that the KKLT AdS

vacua preserve supersymmetry whereas in the LVS case supersymmetry is spontaneously

broken. In both cases we present then a concrete prediction that in principle should be

computable once a CFT dual candidate is identified. Performing the equivalent calculation

on the CFT side is left as an outstanding open question since we still have very limited

information on the CFT duals. For example, one would need to know, among other features,

the parameters (or the combinations of the parameters) of the CFT that corresponds to

W0, gs and A (or τs and τb in LVS). Only after that can one select the ln |W0|2 term in the

partition function and check the coefficient.

Our results are a small step towards identifying the CFT duals of the landscape of AdS

vacua and therefore towards its proper non-perturbative formulation. They could also lead

to applications. The three dimensional CFT duals that we have tried to uncover could pro-

vide good candidates for some of the applications of AdS/CFT duality. In particular the

19Unfortunately the lack of knowledge of the explicit expression of the prefactor As in terms of the

complex structure moduli, does not allow to obtain explicit numbers for the coefficient of ln |W0|
2 (as we

vary the fluxes to follow the limit W0 → 0). This is still true also in the subset of flux vacua considered

in [31, 49], where by switching on only symmetric fluxes, the values of gs and W0 could be computed.
20In other limits, where also V and gs vary, we shoul include these masses, that are not computable with

present techniques in a generic flux compactification.
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non-supersymmetric LVS vacua could be relevant for studies of condensed matter applica-

tions. The fact that these non-supersymmetric CFTs are particularly simple with only one

scalar operator with O(1) conformal dimension may give rise to interesting implications.

There are many questions left open. A typical chiral model with moduli stabilised has

many ingredients that should have a counterpart on the CFT side. Besides string, Kaluza-

Klein and moduli states, chiral visible and hidden sectors are present with a diversity of

gauge and matter fields which are model dependent but have to manifest themselves in

the dual theory. In general essentially all the compact models have anomalous U(1)s with

anomaly cancelled by the Green-Schwarz mechanism. These gauge fields get a mass by the

Stuckelberg mechanism. It may be interesting to find the dual realisation of this mechanism

which is generic in string compactifications. A proper understanding of supersymmetry

breaking on the CFT side would also be desirable.

Besides the AdS vacua studied here, the string landscape also includes de Sitter solu-

tions. A typical potential will have minima with both signs of the cosmological constant

and transitions between them should be approached from the dual side. These dS solutions

are less understood but would be interesting to explore, extending some of the discussions

in this article.
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A N = 1 supergravity Lagrangian

The supergravity Lagrangian in our conventions (MTW) is

L =
1

2
R− gij̄∂µφ

i∂µφ̄j̄ − igij̄χ̄
j̄ σ̄µDµχ

i + εklmnψ̄kσ̄lD̃mψn

− 1√
2
gij̄∂nφ̄

j̄χiσmσ̄nψm − 1√
2
gij̄∂nφ

iχ̄j̄ σ̄mσnψ̄m − eG/2

{

ψaσ
abψb + ψ̄aσ̄

abψ̄b

+
i√
2
Giχ

iσaψ̄a +
i√
2
Ḡīχ̄

īσ̄aψa +
1

2
[Gij +GiGj − Γk

ijGk]χ
iχj +

1

2
[Ḡīj̄

+ḠīḠj̄ − Γ̄k
ijḠk̄]χ̄

iχ̄j

}

− eG[gij̄GiḠj − 3] (A.1)

In the above we have

G = K + lnW + ln W̄ (A.2)

Also in the above Christoffel connection is defined as

∂kgij̄ = gmj̄Γ
m
ik. (A.3)
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B One loop computation

The calculations below are based on the deWitt coefficients given in [55, 56].

B.1 Scalar field

For a scalar field we have the Lagrangian,21

Lscalar =
1

2
φ
[

−�+m2
s

]

φ. (B.1)

For a massless scalar field we have the following deWit coefficients

a0 = 1, a2 =
1

6
R, a4 =

1

180

[

CµνρσC
µνρσ +

(

RµνR
µν − 1

4
R2

)

+
29

12
R2

]

. (B.2)

Therefore for a massive scalar field, we have

a4(total) =
1

2
a0m

4
s − a2m

2
s + a4

=
1

2
m4

s −
1

6
m2

sR+
1

180

[

CµνρσC
µνρσ +

(

RµνR
µν − 1

4
R2

)

+
29

12
R2

]

. (B.3)

B.2 Vector field

Let us first consider a U(1) gauge field with Lagrangian

Lvector =
1

4
FµνF

µν . (B.4)

We need to add a gauge fixing term

Lg.f. =
1

2
(∇µA

µ)2. (B.5)

The total Lagrangian is

Lvector + Lg.f. = −1

2
Aµ (−�gµν +Rµν)Aν . (B.6)

We also need to include the contribution of two ghost field. Thus the total contribution to

deWitt coefficients are given by

a0 = 2, a2 = −4

6
R, a4 =

1

180

[

−13CµνρσC
µνρσ + 62

(

RµνR
µν − 1

4
R2

)

− 31

6
R2

]

.

(B.7)

21Note that all calculations are done in a Euclidean metric.
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B.3 Graviton

We consider the Lagrangian of the form

L = −1

2
(R− 2Λ) . (B.8)

In this section we will follow the calculation presented in [63]. Since graviton has gauge

degree of freedom, we need to add gauge fixing term and also ghost term in the Lagrangian.

We use harmonic gauge in which we

∇µφµν = 0, φµν = hµν −
1

4
gµνh

µ
µ. (B.9)

Also the ghost is the grassmann valued vector field φµ and its Lagrangian is

Lghost = φ∗
µ(−gµν�−Rµν)φν . (B.10)

At the quadratic order the complete action is given by

S = −
∫

d4x
√
g

[

1

2
φµν∆Λ(1, 1)φµν −

1

2
φ∆Λ(0, 0)φ+ φ∗

µ∆
Λ

(

1

2
,
1

2

)

φµ

]

, (B.11)

where

∆Λ(1, 1)φµν = −∇ρ∇ρφµν − 2Rµρνσφ
ρσ

∆Λ

(

1

2
,
1

2

)

φµ = −∇ρ∇ρφµ − Λφµ (B.12)

∆Λ(0, 0)φ = −∇ρ∇ρφ− 2Λφ.

In the above φµν is the traceless part of hµν and φ is the trace part. Thus including the

contribution of ghost field, we get the following deWitt coefficients

a0 = 2, a2 = −22

6
R,

a4 =
1

180

(

212CµνρσC
µνρσ +

1139

6
R2

)

(B.13)

Since the cosmological constant effectively acts as the mass for the graviton, the total a4

including the contribution of the effective mass is given by

a
Λ
4 (total) = a4 + 2Λa2 + 2Λ2

a0 (B.14)

B.4 Dirac fermion

The fermonic Lagrangian is

Lfermion = −iψ̄σ̄µDµψ − 1

2
mψψ − 1

2
mψ̄ψ̄ (B.15)
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In the above action ψ is a chiral fermion, σ̄µ = (I,−~σ), ~σ are Pauli matrices. Now the

above can be further written as

Lfermion = − i

2
ψ̄σ̄µDµψ − i

2
ψσµDµψ̄ − 1

2
mψψ − 1

2
mψ̄ψ̄

= −1

2
Ψ̄(iΓµDµ +m)Ψ (B.16)

In the above

Ψ =

(

ψ

ψ̄

)

, Γµ =

(

0 σµ
σ̄µ 0

)

, DµΨ = ∂µΨ+
1

8
ωab
µ [Γa,Γb]Ψ (B.17)

Here Γ matrices satisfy the Clifford algebra

{Γa,Γb} = −2ηab, ηab = (−1,+1,+1,+1) (B.18)

The above gamma matrix satisfy

Γa†Γ0 = Γ0Γa (B.19)

Defining the gamma matrix γµ as

γa = iΓa, {γa, γb} = 2ηab, γa†γ0 = −γ0γa (B.20)

We can rewrite the above Lagrangian as

Lfermion = −1

2
Ψ̄(γµDµ +m)Ψ (B.21)

Now we do analytic continuation to Euclidean space. In this case we assume that ψ̄ is

indep. of ψ and hence Ψ is a Dirac spinor. We calculate the one loop determinant and

divide the result by half as we are doubling the number of degrees of freedom.

We note that in Euclidean space γµ† = γµ.Then the one loop determinant is

lnZfermn ∼ ln det(γµDµ +m) ∼ 1

2
ln det(γµDµ +m)det(−γµDµ +m)

∼ 1

2
ln det(−�1+m2 − γµγνD[µDν]) (B.22)

Now

γµγνD[µDν]ψ = −1

4
Rψ, D[µDν] =

1

2
[DµDν −DνDµ] (B.23)

Here R is the Ricci scalar. Thus for the massless Dirac fermion, we get

a0 = 4, a2 = −2

6
R,

a4 =
2

180

[

11

24
R2 − 11

2

(

RµνR
µν − 1

4
R2

)

− 7

4
CµνρσC

µνρσ

]

(B.24)

In this case for massive Dirac fermion we have

a4(total) =
1

2
a0m

4 − a2m
2 + a4

=
1

90

[

180

(

m2 +
R

4

)(

m2 − R

12

)

+
101

24
R2

−11

2

(

RµνR
µν − 1

4
R2

)

− 7

4
CµνρσC

µνρσ

]

(B.25)
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Since we have computed the determinant for Dirac fermion, in order to get the result for

Weyl/Majorana fermion we have to divide the above result by half.

B.5 Gravitino

Next we consider the Lagrangian for gravitino

Lgravitino = ǫklmnψ̄kσ̄lD̃mψn −mψ[ψaσ
abψb + ψ̄aσ̄

abψ̄b] (B.26)

Here

D̃mψn = ∂mψn +
1

8
ωab
m [Γa,Γb]ψn − Γ̃k

mnψk +
1

4
(Kj∂mφj −Kj̄∂mφ̄j)ψn (B.27)

For our background, the last term is zero as the scalar fields are constant. The above

Lagrangian can also be written as

Lgravitino =
1

2
ǫklmnψ̄kσ̄lD̃mψn +

1

2
ǫklmnψnσlD̃mψ̄k −mψ[ψaσ

abψb + ψ̄aσ̄
abψ̄b] (B.28)

Now we define a Dirac spinor and Γµν as

Ψm =

(

ψm

ψ̄m

)

, Γµν =
1

2
[Γµ,Γν ] (B.29)

Then the above Lagrangian can be written as

Lgravitino =
1

2
ǫklmnΨ̄kΓlΓ5D̃mΨn +

1

2
mψΨ̄aΓ

abΨb (B.30)

In the above

Γ5 = iΓ0Γ1Γ2Γ3 =

(

12×2 0

0 −12×2

)

(B.31)

The gauge transformation can be written as

δΨµ = 2Dµǫ̂+ imψΓµǫ̂, ǫ̂ =

(

ǫ

ǭ

)

(B.32)

Using the relation

Γµνρ = −iǫµνρσΓσΓ5 (B.33)

the Lagrangian becomes

Lgravitino =
i

2
Ψ̄kΓ

klmD̃lΨm +
1

2
mψΨ̄aΓ

abΨb (B.34)

Writing in terms of γ-matrix (γµ = iΓµ), we get

Γµνρ = iγµνρ (B.35)

and

Lgravitino = −1

2
Ψ̄µγ

µνρD̃νΨρ −
1

2
mψΨ̄µγ

µνΨν (B.36)

– 33 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
6

The susy transformation becomes

δΨµ = 2Dµǫ̂+mψγµǫ̂ (B.37)

To calculate the gravitino partition function we will follow appendix A of [64]. We consider

the following field redefinition. The motivation for this will be clear later.

Ψµ = ηµ +Aγµη, η = γµηµ, η̄ = η̄µγ
µ (B.38)

A is a real constant to be determined later. It is easy to see that the above field redefinitions

have trivial Jacobian. Now

γµΨµ = (1 + 4A)η, Ψ̄µ = η̄µ +Aη̄γµ =⇒ Ψ̄µγ
µ = (1 + 4A)η̄ (B.39)

We find that

Ψ̄µγ
µνρD̃νΨρ = η̄ /Dη

[

(1 + 4A)2 − 2A(1 + 4A)− 2A2 − 2A
]

− (1 + 2A)η̄D̃µηµ

−(1 + 2A)η̄µD̃µη − gµν η̄µγ
κD̃κην (B.40)

Therefore choosing A = −1
2 , the cross terms disappear and we get

Ψ̄µΓ
µνρD̃νΨρ =

1

2
η̄ /Dη + gµν η̄µγ

κD̃κην (B.41)

Also

Ψ̄µΓ
µνΨν = η̄η − gµν η̄µην (B.42)

The gravitino Lagrangian becomes

Lgravitino = −1

4
η̄
(

/D + 2mψ

)

η − 1

2
gµν η̄µ

(

γκD̃κ −mψ

)

ην (B.43)

We also need to add gauge fixing condition. We put gauge condition η = 0 and gauge

fixing Lagrangian

Lg.f. =
1

4
η̄
(

/D + 2mψ

)

η (B.44)

This choice of gauge fixing Lagrangian introduces a determinant det−1
(

/D + 2mψ

)

. The

Lagrangian becomes

Lgravitino + Lg.f. = −1

2
gµν η̄µ

(

γκD̃κ −mψ

)

ην (B.45)

The corresponding supersymmtery transformation is

δη = −γµδΨµ = −2
(

/D + 2mψ

)

ǫ (B.46)

which will give Fadeev Popov determinant ∼ det−2
(

/D + 2mψ

)

.

Therefore the complete partition function of Dirac gravitino is

ZDiracgravitino ∼
det

(

γκD̃κ −mψ

)

|ηm
det3

(

/D + 2mψ

)

|η
(B.47)
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We have already calculated the coefficient of log correction from Dirac fermion. We here

calculate the contribution from numerator. Now
(

γκD̃κ −mψ

)(

−γµD̃µ −mψ

)

ηρ = −�ηρ +
1

4
Rηρ −

1

2
γµγνRµνρση

σ +m2
ψηρ (B.48)

Thus we get the deWitt coefficient,

a4(gravitino) =
1

360

[

− 960R

(

1

4
R+m2

ψ

)

+ 2880

(

1

4
R+m2

ψ

)2

+212RµνρσR
µνρσ + 80R2 − 32RµνR

µν

]

(B.49)

We also need to include ghost contribution. The contribution from ghost is thrice the

contribution of a massive Dirac fermion. The deWitt coefficient including the mass term

for the ghost a4(ghost) is given by

a4(ghost) = =
12

360

[

− 60R

(

1

4
R+ 4m2

ψ

)

+ 180

(

1

4
R+ 4m2

ψ

)2

−7

4
RµνρσR

µνρσ + 5R2 − 2RµνR
µν

]

(B.50)

Thus deWitt coefficient including the mass term for the physical gravitino is given by

a4(total) = a4(gravitino) − a4(ghost)

=
1

360

[

5R2 − 960Rm2
ψ − 31680m4

ψ + 233RµνρσR
µνρσ − 8RµνR

µν
]

(B.51)

From the above expression for a4(total), we can extract the coefficients in (4.10) for the

physical gravitino,

a0 = −166, a2 =
16

6
R

a4 =
1

360

[

251

6
R2 + 233CµνρσC

µνρσ + 458

(

RµνR
µν − 1

4
R2

)]

(B.52)

In the above we have calculated for Dirac gravitino, so to extract the contribution for

Weyl/Majorana gravitino, we will divide the above results by half.
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