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Abstract: The pair-production process for a black hole (BH) is discussed within the

framework of a recently proposed semiclassical model of BH evaporation. Our emphasis is

on how the requirements of unitary evolution and strong subadditivity act to constrain the

state of the produced pairs and their entanglement with the already emitted BH radiation.

We find that the state of the produced pairs is indeed strongly constrained but that the

semiclassical model is consistent with all requirements. We are led to the following picture:

Initially, the pairs are produced in a state of nearly maximal entanglement amongst the

partners, with a parametrically small entanglement between each positive-energy partner

and the outgoing radiation, similar to Hawking’s model. But, as the BH evaporation

progresses past the Page time, each positive-energy partner has a stronger entanglement

with the outgoing radiation and, consequently, is less strongly entangled with its negative-

energy partner. We present some evidence that this pattern of entanglement does not

require non-local interactions, only EPR-like non-local correlations.
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1 Introduction

In a recent series of papers [1–7], we have developed a new theory of semiclassical black

hole (BH) evaporation, extending Hawking’s seminal works [8–10] to finite-mass BHs. As

motivated in [11–14], we have included the fluctuations of the background geometry by

way of a wavefunction for the horizon of the incipient BH. Our guiding principle was

to closely follow Hawking’s original calculations — but, instead of assuming a classically

fixed (Schwarzschild) metric, we evaluated background-dependent quantities as quantum

expectation values in the state of the BH. This prescription guaranties that, on average,

the emission rate from a BH is the standard thermal rate and that the fluctuations about

the average rate are small. We have also included the classical time dependence of the

particle emissions and their classical back-reaction on the BH.

The quantum corrections that arise from the background fluctuations are proportional

to the inverse of the BH entropy, 1/SBH . This is contrary to the standard methods of

effective field theory in a fixed curved-space background, for which one only expects ex-

ponentially small corrections from the quantum back-reaction of the matter fields on the

classical geometry. But our framework goes beyond that of an effective field-theory de-

scription of BH evaporation. From the standard point of view, the corrections arising from

our model would correspond to non-perturbative contributions to expectation values that

vanish to all orders in perturbation theory.

Let us emphasize that BHs do not “burn” like normal black bodies do; rather, their

burning (evaporation) is of a highly quantum nature. For example, the Sun and a BH at the
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same temperature will emit differently. The Sun emits radiation in a highly classical state

with high occupation numbers for the emitted modes, whereas the BH, on the other hand,

will emit a highly quantum state with low occupation numbers. (See, for instance, [6].) As

Hawking showed in [10], these quantum emissions can (but do not have to) be described

in terms of pair production. Indeed, by adapting Schwinger’s pair-production formula to

the case of a BH, one obtains the correct rate of emission (see below).

In [3], we have described BH evaporation in our semiclassical framework from the

perspective of pair production. Just as in Hawking’s model, the negative-energy pair

partners are subsumed into the BH interior at a rate that is determined by the thermal

rate of emission. But, for a BH of finite mass — and contrary to the situation in Hawking’s

model of an effectively eternal BH — this process acts to bound the number of entangled

pairs in the near-horizon zone at any given time, such that their number is parametrically

smaller than the BH entropy. This is the key fact that allows information to be released

from the BH without over-exciting the state of the near-horizon region. However, in [3],

we assumed that the pairs are produced in a pure state or, equivalently, that the produced

pairs and the outgoing radiation are not entangled. Here, this assumption is relaxed and we

in fact show that the pairs must be entangled to some degree with the outgoing radiation.

Let us consider a single pair, which is produced in a process that is akin to a grav-

itational version of the Schwinger effect. Schwinger’s famous equation [15] predicts the

rate per unit volume RE
PP of electron-positron pair production in an electric field E , where

RE
PP = α2

π2 E2e−
πm2

eE . Now suppose that one substitutes the gravitational force FG for the

electric force FE = Ee in Schwinger’s equation. If m denotes the relativistic mass of the

positive-energy partner, the Newtonian gravitational force is given by FG = GNMBHm
r2

.1

The resulting expression for the rate of gravitational pair production per unit volume RG
PP

in the near-horizon limit is then

RG
PP ∼ ~

R4
S

(
RSm

2π~

)2

e−
2πRSm

~ . (1.1)

This rate is maximized when m = ~

πRS
, which is of the order of the Hawking

temperature TH = ~

4πRS
; in which case, RG

PP ∼ ~

R4

S

. Meaning that, as expected, one

Hawking pair is produced per light-crossing time RS from a volume R3
S . Away from the

horizon (r > RS), the rate of pair production becomes exponentially small, and so the

idea that the quantum emission process originates from pair production near the horizon

is indeed supported.

Schwinger’s formula and its gravitational analogue provide the rate for the pair-

production mechanism but contain no information about the state of the produced pairs.

In Hawking’s model, the entanglement is maximal, corresponding to the original vacuum

state in the vicinity of the horizon. In the absence of additional physics introducing new

scales, this follows from the adiabaticity of the collapse process [8, 9, 16]. However, in our

model, the shell (incipient BH) is fluctuating and so adiabatic considerations need to be

1Here, GN is Newton’s constant, MBH = RS

2GN
is the BH mass, RS is the Schwarzschild radius, and

the speed of light and Boltzmann’s constant are set to unity.
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revised. This issue was discussed for harmonic oscillators in [14], but we would still like

to understand in detail how the situation is changed for our semiclassical model. Another

example in which adiabaticity is modified is given by the emission from fuzzballs [17, 18].

The overall goal of the current paper is to better understand the nature of the quantum

state of the pairs that are produced in this gravitational Schwinger process in the context

of our semiclassical model for BH evaporation.

The dependence of the degree of entanglement of pairs on the state of the producing

field was addressed for electron-positron pair production by an electromagnetic field in,

for example, [19, 20]. The state of a pair can vary between maximally entangled and a

product state, depending on the properties of the background field. In our case, we do

not have such a detailed knowledge of the dependence of the state of the pairs on the

production conditions. We will, instead, choose to parametrize the possible states and look

for general constraints from the conditions of unitarity evolution and strong subadditivity

(SSA) of entropy.

In the context of BH pair production, entanglement is expressed in terms of quantum

correlations of the times, frequencies and (possibly) the polarizations of the emissions.

Because we consider a Schwarzschild BH, the angular momenta of the emitted particles has

to sum up to zero and each particle has to be emitted within the thermal-frequency window.

Consequently, the main variable whose quantum correlations determine the amount of

entanglement is the emission time of the particles. These correlations determine the off-

diagonal elements of both the single-particle density matrix for the emitted radiation and

the density matrix for the produced pairs. In many discussions on the state of the emitted

radiation, the entanglement is modeled in terms of spin degrees of freedom (qubits). One

can also map the emission times formally into qubit states; however, it is important to

remember that the true physical variables are different.

But an outside observer can only determine the state of the outgoing radiation. She

might want to use her knowledge of this state to determine the state of the produced

pairs. However, it is clear that such a determination can only be achieved by supplying

additional ingredients about the physics of the pair-production process. Here, we will not

attempt to construct such a physical model but, rather, use quantum-information concepts

to constrain the possible models and to show that our semi-classical framework is indeed

consistent with all the requirements.

The plan of the paper is as follows: The next section recalls some of the basic elements

of our semiclassical model, as needed for the rest of the discussion. Then, in section 3, we

consider the constraints that quantum theory imposes on the process of BH evaporation,

on both general grounds and in the context of our semiclassical picture. In particular, we

address Mathur’s argument about the conflict between unitarity and SSA [21–24]. These

ideas are put on a quantitative level in section 4, where the conditions of unitarity and SSA

are used to constrain the state of the pairs in our framework. We are able to demonstrate

that our model is consistent with both of these principles. The paper ends in section 5

with a brief summary.
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2 Review of semiclassical finite-mass black holes

Before proceeding, we will review some basic elements of our semiclassical framework. A

four-dimensional Schwarzschild BH with radius RS and mass MBH is assumed for con-

creteness. All fundamental constants are set to unity except for ~ and Newton’s constant

G, or equivalently, the Planck length lP =
√
~G.

2.1 The basics

• The classicality parameter CBH

We define CBH as the ratio of the Compton wavelength of the BH ~

2πMBH
to its

Schwarzschild radius RS , then CBH =
l2P

πR2

S

= S−1

BH . This parameter characterizes

the deviation from a classically fixed, curved spacetime (i.e., G → 0 , MBH → ∞ ,

RS ≫ 1 but finite), so that the semiclassical regime is when CBH ≪ 1 but finite.

The semiclassical corrections to physical quantities typically come as a power series in

CBH . These corrections are non-perturbative from the point of view of an effective

field theory in a fixed, curved background; hence, their inclusion is the essential

difference between our analysis and the standard discussions in the literature.

The parameter CBH = CBH(RS(t)) can be thought of as a dimensionless, time-

dependent ~. It is formally introduced into our theory as the dimensionless width

(squared) of the BH wavefunction. The same parameter has appeared in a different

guise in [25–29] and also corresponds to the (small) parameter 1/N2 in the AdS/CFT

correspondence [30] when N is large but finite.

• The emission rate of Hawking radiation

The Stefan-Boltzmann law determines the approximate classical time dependence

of the Schwarzschild radius, RS(t) = RS(0)

[
1−

(
t

τBH

)1/3
]

, where τBH ≃

SBH(0)RS(0) is the BH lifetime. We may now use SBH ∼ R2
S along with the rela-

tion between the number of particle emissions2 N and the entropy, ∆N = −∆MBH

E ≃
−~∆MBH

TH
= −∆SBH , to obtain N(t) = SBH(0)

(
t

τBH

)2/3
. This allows us to replace

t by N and use the latter as our (dimensionless) time coordinate. For instance, the

Page time [33, 34] is simply the “time” N when SBH(N) = N . The average emis-

sion rate of the semiclassical model is equal to the Hawking emission rate with small

fluctuations, of order CBH , about the average rate.

• The semiclassical single-particle density matrix

The single-particle density matrix of the outgoing Hawking radiation ρSC
3 is the

semiclassical two-point function or number operator, but with an appropriate nor-

malization. For a free theory, the full density matrix is completely determined by the

2This use of N should not be confused with the rank of the field theory in AdS/CFT.
3We previously called this matrix the “density matrix” or “radiation matrix”.
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corresponding single-particle density matrix. This is already evident in Hawking’s

work [10] and is further clarified in [6].

Each entry in the single-particle density matrix depends in principle on the frequency,

polarization and emission time of the radiated particles. We ignore the polarization

dependence. In the semiclassical model, the matrix ρSC no longer has Hawking’s

diagonal form and, as a result, the evaporation process becomes unitary even though

the thermal-like emission spectrum is kept [5, 6]. The matrix ρSC picks up off-

diagonal contributions that are uniform in terms of frequency but suppressed relative

to the diagonal elements by C
1/2
BH(N) [1].

The elements of ρSC do have a non-uniform suppression in terms of emission time;

modes emitted at different times tend to decohere [2]. Nonetheless, if the radiation is

being regularly monitored at intervals of ∆N ∼
√
SBH or less, then this suppression

can be compensated [5] (and see below). Thus, off-diagonal elements of the matrix

ρSC can be regarded as uniform in magnitude with respect to both frequency and

emission time. Knowing this form allows us to calculate the Rényi entropy of the full

density matrix [6].

As implicit in our earlier works and explained in [6], ρSC can be viewed as an N ×N

matrix, with the indices running over the wave-packet modes with non-vanishing

occupation number and with the diagonal elements given by the average occupation

number for each mode. The elements can then be expressed to good approximation

as [1, 2]

(ρSC)ii = 1 ,

(ρSC)i 6=j =
√

CBH(N)eiθij , (2.1)

where the phases θij can be treated as random for most purposes.

• Tracking

An observer is said to be tracking the radiation when she monitors and records the

amplitudes and phases of all the non-vanishing elements of the single-particle density

matrix ρSC at regular time intervals. These time intervals should be short enough

(as described above) to allow the observer eventually to record all the entries of ρSC
and, thus, reconstruct the full density matrix. Then, via the off-diagonal elements,

she will possess knowledge about all the correlations of the emitted particles, even

those that have since decohered. She will also have to compensate for the classical

time-dependence of CBH as explained in [5]. It will always be assumed that the

radiation is being tracked.

• Applicability

It should be noted that our formal methods employed Schwarzschild coordinates.

This is appropriate because our framework, just like Hawking’s, is formulated from

the perspective of an external, stationary observer. It is possible that a free-falling

observer — for whom Kruskal coordinates would be a better choice — would disagree
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on frame-dependent quantities such as the size of the horizon fluctuations. See [31, 32]

for a case in point.

3 Constraints from unitarity and strong subadditivity

We will now address the apparent conflict between unitary evolution and SSA, as has often

been emphasized by Mathur, and then, in the next section, explicitly verify that our model

can satisfy both of these conditions. Our discussion focuses on parametric dependence;

hence, numerical factors are sometimes omitted for clarity.

3.1 Unitarity

It has long been accepted — at least since the advent of the gauge-gravity duality —

that an evaporating BH respects unitarity, as would be the case for any other process of

quantum-mechanical evolution. The benchmark model for describing BH evaporation as

a unitary process is the Page model [33, 34]. (Also see [35].) Page assumes that the BH

starts off in a pure state and, at later times, views the remaining BH as the “purifier” of the

emitted radiation in some random basis. Meaning that a random unitary transformation

relates this basis to that in which the density matrix of the composite BH-radiation system

has a single entry. With these assumptions, Page is describing the minimal requirement

for a BH to release all of its information before the end of evaporation.

3.2 Strong subadditivity

Here, we recall Mathur’s arguments [21–24] about the SSA inequality and explain their

implication to our framework. Mathur’s perspective is closely related to but distinct from

that of the “firewall” proponents [36] (also, [37–41]). In brief, Mathur assumes a unitary

model of BH evaporation which allows for only small corrections to Hawking’s picture and

contends that, for the system consisting of entangled pairs plus escaped Hawking particles,

the entanglement entropy will grow monotonically throughout the pair-production process.

Mathur starts by assuming that the pairs are produced in a state which is approxi-

mately pure and that the pair partners are approximately in a state of maximal entangle-

ment. This implies that the pairs are produced in a state which is approximately equal to

that of the Hawking model. The deviations of the pair state from maximal entanglement

is parametrized by a small parameter ǫ. Specifically, each of the produced pairs is assumed

to have an associated entanglement entropy in bits of Spair = 1 − ǫ , where ǫ is meant

as a small number. Mathur then applies the SSA inequality to conclude that, after the

production of N pairs, the total entropy of the outgoing radiation is bounded from below

by NSpair. And so, as long as deviations from Hawking’s model are small (i.e., ǫ ≪ 1), the

entanglement entropy is necessarily large. Mathur correctly observes that a monotonically

growing entanglement entropy is contrary to the behavior of a “normal” burning body.

The key assumption which is made by Mathur is that ǫ is roughly constant and small for

each of the produced pairs. In particular, ǫ is assumed to have at most a weak dependence

on the history of the BH; meaning that it is essentially an N -independent number. The

constancy of ǫ is attributed to locality. It will be shown that this critical assumption is

– 6 –
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Figure 1. The ABC system shown on a spacetime diagram. The outgoing Hawking particle A is

far from the BH horizon while the B and C modes are near the horizon.

modified in our framework and indications will be given that non-local interactions are not

needed, only non-local correlations.

Let us next recall the precise meaning of SSA; first in general and then in the current

context. The SSA inequality relies on the unitarity of quantum mechanics and is a state-

ment about a tripartite quantum system |A〉⊗ |B〉⊗ |C〉. It asserts that the associated von

Neumann entropies must satisfy the bound [42] SAB+SBC ≥ SABC+SB or, equivalently,

SAB + SBC ≥ SA + SC . (3.1)

Here, SX = −TrX [ρ̂X ln ρ̂X ] such that ρ̂X is the reduced density matrix for subsystem X.

For instance, ρ̂AB = TrC [ρ̂ABC ] , ρ̂A = TrBC [ρ̂ABC ] and so forth. Equality is obtained if

and only if ABC is in a pure state, SABC = 0 .

Now, in the context of BH pair production, Mathur takes subsystem A to be the

positive-energy modes that have already moved far from the BH and B and C to be,

respectively, the positive- and negative-energy modes of a newly formed entangled pair

(see figure 1). If ǫ is indeed approximately constant and small, it is clear that SBC = 0 up

to irrelevant corrections and the reduced density matrix is then “thermal”, SB = SC = 1 .

Hence, the bound reduces to

SAB ≥ SA + 1 . (3.2)

Now suppose that this newly formed pair is the N th such pair produced. It would

follow, according to Mathur, that SA = N − 1 (as each escaped Hawking mode is still

presumed to share nearly maximal entanglement with its partner) and thus

SAB ≥ N . (3.3)

Extrapolating this process to the Page time, when the BH entropy is reduced to half

its original size [33, 34], one obtains

Srad ≥ 1

2
SBH(0) , (3.4)
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where Srad means the entropy of the external Hawking radiation. Mathur then contends

that the process continues in this fashion until the BH can no longer be regarded as

semiclassical. But, by then, it is too late to make Srad small as the remaining BH lacks

the entropy storage capacity to purify the radiation.

Mathur has argued4 that, if one restricts the discussion to the context of effective field

theory in a fixed background, then the small parameter ǫ cannot depend on the number

of emitted particles N without an accompanying violation of locality. This is because the

effects of a strictly local interaction can not depend on the characteristics nor the number

of the previously emitted Hawking modes. We believe that this argument is indeed correct

within the realm of effective field theory on a fixed, curved background. However, we

will argue — pending further investigations — that, when the background is treated as a

quantum state and its fluctuations are taken into account, such N -dependence is the result

of EPR-like, non-local correlations rather than non-local interactions.

The essence of our argument is that the degree of entanglement could depend on the

state of the BH (and possibly on the state of the pairs near the horizon), as typically hap-

pens in normal quantum systems. And, given unitary evolution, the state of the BH must

depend on the state of the outgoing radiation. In fact, an example of such a phenomenon

was given by Chowdhury and Mathur in the context of a fuzzball model [17, 18]. There,

the early emissions of the Hawking particles indeed change the state of both the BH and

the near-horizon matter such that later emissions are correlated with the early ones. In

contrast, our semiclassical model, as of now, does not include the physics that allows us

to estimate the degree of entanglement of the pairs. We then have to resort to general

arguments and constraints.

It is standard, classically or semiclassically, to regard the entangled pairs as being

created in a pure state. Our claim, however, is that the pairs are produced in an entangled

state with the outgoing radiation and so cannot, by themselves, form a pure state. Initially,

though, the entanglement of the pairs with the outgoing radiation is small and the deviation

of the pair partners from maximal entanglement can be estimated. What we find is that

the value of ǫ is not necessarily constant. Indeed, our model suggests that, at early times

much before the Page time,

ǫ(N) .
2NCBH

(1 +NCBH)
=

2N

SBH(0)
(3.5)

as follows from Bound (4.12) below. Besides the explicit dependence on N , one can also

notice that ǫ can become large (order one) when approaching the Page time.

As will be shown later, the pairs are indeed significantly entangled with the outgoing

radiation after the Page time; in which case, the parameter ǫ will have lost its meaning.

This result suggests that, at times later than the Page time, the pairs are produced in

a state that is becoming approximately a product state. This is really the essence of

how Mathur’s “small-corrections” theorem is evaded: The large quantum fluctuations as

parametrized by ǫ are causing the state of the pairs to deviate from the Hawking state. A

semiclassical background is, in itself, insufficient for this purpose [24].

4See, especially, the discussions about locality in [22].
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Now, to understand the origin of ǫ = ǫ(N) , let us consider the perspective of a

tracking observer. Such an observer does not have direct knowledge about the state of

the pairs. She may believe that it is Hawking’s state of maximal entanglement plus some

small corrections, but this is only a guess — just like, in the standard EPR situation, if

Alice were to guess the spin of Bob’s particle before even performing a measurement on

her own. But, because of the entanglement between the external particles and the pairs,

a tracking observer will naturally acquire knowledge about the near-horizon state. The

more measurements that she performs, the more precise her knowledge about the state

will become. At the same time, each such measurement will project the state of the pairs

further away from a maximally entangled state. If the observer is continuously monitoring

the radiation, then the number of measurements must be of order N2.

The fact that the number of emissions at the Page time is of order of the BH entropy has

another important consequence. So many emissions can change the state of the BH itself,

even though each one on its own makes only a small change. This is because the emissions

are coherent and, therefore, their effects can accumulate. Consequently, the deviation of

the state of the pairs near the Page time from the early-time maximally entangled state

could also scale with N , without requiring non-local interactions. From the perspective

of an effective field theory in a fixed background, it would be impossible to see this effect

at any order in perturbation theory. As such is the case, Mathur’s argument about the

necessity of non-local interactions would actually be correct.

One might still be tempted to attribute the N dependence of ǫ to non-local interactions

rather than entanglement. However, if this were so, then the modifications of ǫ would be

expected to depend on N times some coupling of the fields to the BH rather than be a

function of NCBH .

4 Constraining the semiclassical model

Of course, the previous discussion is a moot point if the evaporation process fails to be

unitary or if the SSA inequality is invalidated. It is, therefore, worth checking that our

semiclassical model is able to fulfill these minimal requirements.

A first test for any candidate model of unitary BH evaporation would be a demonstra-

tion that the rate of information release from the BH is at least fast as that predicted by

the Page model [43]. Remarkably, our semiclassical model with tracking passes this first

hurdle, as can be observed in [5, 6]. We now want to understand this information-transfer

process from the pair-production perspective.

Given that unitary evolution is indeed viable, we will use the SSA inequality to con-

strain the state of the pairs, as well as the entanglement pattern between the pairs and

the outgoing Hawking particles. Our model obeys the resulting constraints, but we still

hope to be able to derive the state of the pairs from a physical model of pair production

in future research.

For the purposes of this presentation, we will follow Mathur’s argument and take

subsystem A to be the escaped (early) Hawking particles, B to be a positive-energy mode

in the near-horizon zone (or late Hawking radiation) and C to be its negative-energy partner

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
0
1
2

in the zone. Although only one of the pairs need be considered, we could just as well work

with a fraction of the pairs and arrive at the same conclusions.

4.1 Unitarity

An essential point that we would like to reemphasize is that the pair-production picture

is inherently ambiguous as far as an external observer is concerned [10]. Such an observer

can only know for sure about what she learns by measuring the emitted particles; namely,

the state of the outgoing radiation.

This state was determined in [6], where the density matrix of the external radiation

ρ̂ was evaluated. This led to a calculation of the Rényi entropy H2(ρ̂) , which is the

main quantity that will be used to constrain the state of the pairs. This entropy is, up to

subdominant corrections,

H2(N) =
N

1 +NCBH
=

N(SBH(0)−N)

SBH(0)
. (4.1)

It is worth mentioning that these expressions for the Rényi entropy have higher-order

corrections in CBH but not in NCBH . Consequently, any of our findings are accurate as

long as CBH = 1/SBH ≪ 1, which is assured until the final stages of evaporation.

The Rényi entropy stops growing when NCBH = 1 (i.e., at the Page time) and then

decreases monotonically for the remainder of the BH’s lifetime. That the entropy depends

on N in just this way is indicative of a unitary process of evaporation, but it is also the main

aspect of Mathur’s argument that unitarity is in contradiction with the SSA constraint.

4.2 Strong subadditivity

To check the status of the SSA condition, we consider the bound

H2(A) +H2(C) ≤ H2(AB) +H2(BC) , (4.2)

which also implies the bounds

|H2(A)−H2(B)| ≤ H2(AB) ≤ H2(A) +H2(B) . (4.3)

Bound (4.2) is saturated when the ABC system is in a pure state, and a sharp inequality

is expected when ABC is mixed. We may use the Rényi entropy, rather than the von

Neumann entropy, because the Hawking modes are in a Gaussian state [6, 10] and the SSA

inequality is respected by the Rényi entropy for such a state [44] as a consequence of the

Hadamard-Fisher inequality [45].

As a measure of entanglement, we will use E(X|Y ), the (negative of the) conditional

entropy [46]. This is actually a lower bound on the true entanglement between X and Y .

The conditional Rényi entropy of the AB system is given by

E(B|A) = H2(A)−H2(AB) (4.4)

and, similarly, for the BC system,

E(B|C) = H2(C)−H2(BC) . (4.5)

– 10 –
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The SSA inequality (4.2) tells us that

E(B|A) + E(B|C) ≤ 0 , (4.6)

which is essentially a statement of “monogamy of entanglement”. For instance, if B is

strongly entangled with C, then E(B|C) ∼ 1 and so E(B|A) . −1 , implying that B is

weakly entangled with A (and vice versa).

We will first be considering the constraints at times later than the Page time when

NCBH = 1 . A discussion about earlier times then follows.

We begin here with a relation that follows from eqs. (4.1) and (4.4),

E(B|A) = H2(N)−H2(N + 1)

=
2N + 1

SBH(0)
− 1 ≃ 2N

SBH(0)
− 1

=
NCBH − 1

1 +NCBH
. (4.7)

Since H2(N) starts to decrease only after the Page time, it is only after this time that

E(B|A) becomes positive and the SSA inequality becomes useful. The measure of en-

tanglement E(B|A) then grows monotonically from zero at NCBH = 1 to unity when

NCBH ≫ 1 . This tells us that the positive-energy partner B is becoming more strongly

entangled with the outgoing radiation as the evaporation proceeds.

From Bound (4.6), we also find that

E(B|C) ≤ −E(B|A) =
1−NCBH

1 +NCBH
. (4.8)

After the Page time, the right-hand side of this bound is smaller than zero and, therefore,

the conditional entropy E(B|C) is negative. The entanglement between B and C is then

getting weaker after the Page time; in particular, the BC system has to deviate significantly

from a pure and maximally entangled state. Eventually, for NCBH ≫ 1 , the difference

H2(BC)−H2(C) has to be of order 1, which means that the BC “pair” has to be substan-

tially mixed — essentially, a product state as then H2(BC) ∼ H2(B) +H2(C) ∼ 2 . This

stands to reason because, as seen above, the positive energy-partner already has a strong

entanglement with A.

We can also use this formalism to place limits on the “small” parameter ǫ from the pre-

vious section. Since H2(A) ≥ H2(B) ∼ 1 , at least until the late stages of the evaporation,

it follows from the left-most relation in Bound (4.3) that

H2(B) ≥ H2(A)−H2(AB) =
NCBH − 1

1 +NCBH
. (4.9)

Then, parametrizing H2(B) = 1− ǫ(N) , we find that

ǫ(N) ≤ 2

1 +NCBH
=

2(SBH(0)−N)

SBH(0)
. (4.10)

As one can see, ǫ(N) is large (order unity) close to the Page time, when B can be

expected to have significant entanglement with both A and C. On the other hand, if
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NCBH ≫ 1 , then ǫ(N) ≪ 1 . This is another indication that the AB system is becoming

approximately pure and maximally entangled at times well past the Page time. Then, by

monogamy of entanglement, the amount of entanglement between the pair partners has to

decrease accordingly.

Let us now discuss the situation before the Page time. At these times, the SSA in-

equality is not particularly useful unless additional information about the pairs is provided.

This is because of the minimal amount of entanglement between the pairs and the external

radiation. This is all that an external observer can truly know about the state of the pairs

at early times — as far as she is concerned, the BC system could just as well be in a

product state, a maximally entangled state or somewhere in between.

However, we do know that, at early enough times, the semiclassical model can be

viewed as Hawking’s plus perturbatively small corrections. Hence, it can still be expected

that the BC system is approximately pure and maximally entangled up to corrections of

order NCBH ≪ 1 .

And, in spite of the built-in ambiguity, we can still address the size of ǫ at early times.

The right-most relation in Bound (4.3) leads to

H2(B) ≥ 1−NCBH

1 +NCBH
. (4.11)

Again parametrizing H2(B) = 1− ǫ(N) , we then obtain

ǫ(N) ≤ 2NCBH

1 +NCBH
=

2N

SBH(0)
. (4.12)

This fits very well with the expected behavior of the BC system, being approximately pure

and maximally entangled at early times and deviating from this picture as the Page time

is approached.

4.3 A proposal for the entanglement

From the previous discussion, one can observe the pivotal role that is played by the Page

time for which NCBH = 1 . We expect that the amount of entanglement between the

outgoing radiation and the produced pair is very small at early times and large (order

unity) at the later stages of evaporation. This suggests that, initially, the positive-energy

horizon mode is almost in a product state with the outgoing radiation and almost maximally

entangled with its negative-energy partner, H2(BC) ≪ 1 . But, well after the Page time,

when the horizon mode is significantly entangled with the outgoing radiation, it is almost

in a product state with its negative-energy partner, H2(BC) ∼ 1 . We further expect

that, at intermediate stages close to the Page time, the horizon mode is substantially

entangled with both its partner and the outgoing radiation, but with the sum of these two

entanglements bounded by unity from above.

We can make the above expectations more quantitative by adding the assumptions

that the amount of entanglement is symmetric under the exchange N ↔ SBH(0)−N or,

equivalently, NCBH ↔ 1

NCBH
(see section 5.3 of [6]) and that the total entanglement is

– 12 –
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fixed on the grounds of unitary evolution. On this basis, we can propose that the following

equalities are valid at all times (cf, eq. (4.7)):

E(B|C) = −E(B|A) =
NCBH − 1

1 +NCBH
. (4.13)

It is straightforward to check that all of the above expectations are realized by this proposal.

5 Summary and conclusion

In brief, we have revisited the pair-production picture of our semiclassical model of BH

evaporation and have shown that it can be constrained in a way that is consistent with both

unitary evolution and the SSA constraint on entropy (i.e., the monogamy of entanglement).

The SSA inequality has proven to be a useful tool for constraining the state of the near-

horizon modes, but a physical description of the process is still lacking in our model. We

hope to address this matter at a future time.

Our findings are in general agreement with the arguments of Mathur, who argues

that, within the realm of an effective theory of fields on a fixed background geometry, the

corrections to Hawking’s model are small and cannot depend on the number of emitted

particles without violating locality. However, when additional non-perturbative effects

due to quantum fluctuations of the BH itself are taken into account, these assumptions

are no longer in effect. Indeed, the corrections from our model fail to satisfy both of

Mathur’s conditions. However, we argue that this violation can be attributed to non-local

entanglement rather than non-local interactions. Further analysis will be required to settle

this matter conclusively.

The SSA inequality necessitated an entanglement between the positive-energy pair

partners and the external Hawking radiation; the degree of which becomes substantial

after the Page time. It would then seem that a (so-called) firewall would be an inevitable

feature in our model. Nonetheless, another consequence of this framework is an upper

bound on the number of Hawking pairs in the near-horizon zone that is parametrically

smaller than the BH entropy. This bound also limits the degree of excitement of the

near-horizon state. The details of this argument are clarified elsewhere [4, 7].
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