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Abstract: In this work we study the γγ → W+
L W−

L and γγ → ZLZL scattering pro-

cesses within the effective chiral Lagrangian approach, including a light Higgs-like scalar

as a dynamical field together with the would-be-Goldstone bosons w± and z associated

to the electroweak symmetry breaking. This approach is inspired by the possibility that

the Higgs-like boson be a composite particle behaving as another Goldstone boson, and

assumes the existence of a mass gap between mh, mW , mZ and the potential new emergent

resonances, setting an intermediate energy region (above mh,W,Z and below the resonance

masses) where the use of these effective chiral Lagrangians are the most appropriate tools

to compute the relevant observables. We analyse in detail the proper chiral counting rules

for the present case of photon-photon scattering and provide the computation of the one-

loop γγ → W+
L W−

L and γγ → ZLZL scattering amplitudes within this Effective Chiral

Lagrangian approach and the Equivalence Theorem, including a discussion on the involved

renormalization procedure. We also propose here a joint analysis of our results for the two-

photon scattering amplitudes together with other photonic processes and electroweak (EW)

precision observables for a future comparison with data. This could help to disentangle the

nature of the light Higgs-like particle.
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1 Introduction

The present consensus in the High Energy Physics Community points towards the inter-

pretation that the recently discovered scalar particle at the CERN-LHC [1, 2] could very

well be the Higgs particle of the Standard Model of Particle Physics (SM). The most

recent measurements of this scalar Higgs mass by the ATLAS and CMS collaborations

set mATLAS
h = 125.5 ± 0.6GeV [3] and mCMS

h = 125.7 ± 0.4GeV [4], respectively. These

experiments also show that the most probable JP quantum numbers for this discovered

particle are 0+, and conclude that the measured Higgs couplings to the other SM particles

are in agreement so far, although yet with moderate precision, with the values predicted

in the SM. Also the Higgs-like particle width Γh has been found to be Γh < 17.4MeV

which is about 4.2 times the SM value [5]. However, there is one crucial issue of this
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discovered Higgs-like boson yet to be answered. The present data are still compatible

with either an elementary or a composite Higgs boson hypothesis, therefore any optimal

strategy to disentangle the real nature of this new scalar particle is very welcome in the

search for a complete understanding of the Higgs system and the Higgs Mechanism of the

Electroweak Theory.

In the present paper we assume that the Higgs boson is a composite particle and

propose as one of these optimal strategies where to look for deviations respect to the

SM predictions, the particular scattering processes where two photons scatter and pro-

duce two longitudinal weak bosons, i.e, we propose to look at the scattering amplitudes

M (γγ → ZLZL) and M(γγ → W+
L W−

L ). One of the most singular features of these two

processes is that they do not receive contributions from the Higgs particle within the SM

at the tree level. And even more, the neutral channel, γγ → ZLZL indeed vanishes in

the SM at the tree level. Therefore, they are very sensitive processes to potential devi-

ations from new physics in the Higgs sector, and they are specially appropriate for the

case of a composite Higgs particle, since the new induced interactions from its composite

nature with the photon-photon initial state could test the compositeness hypothesis more

efficiently than other scattering processes not involving photons in the external legs.

Assuming that the Higgs boson is a composite particle, and not assuming any specific

underlying strongly interacting theory explaining its properties in terms of its constituents,

still allows for two qualitatively different possibilities. Either the composite Higgs particle

appears as a resonance or it appears as a pseudo Goldstone Boson. On one hand we know

that the measured Higgs mass is not far from the weak boson masses and, besides, there

seems to be no new particles nor resonances in the spectra showing up at the presently

available energies at LHC. This apparent mass gap between the boson masses, mW , mZ ,

mh and the potential new particles/resonances masses leads to the preference for the hy-

pothesis of the Higgs composite particle being another would-be-Goldstone-Boson. Notice

that the assumed Electroweak Symmetry Breaking pattern, SU(2)L × U(1)Y → U(1)em
seems to work, leading to the correct explanation of the mass generation for mW and

mZ with the three corresponding would-be-Goldstone-bosons (WBGBs), w± and z, trans-

muted into the three needed longitudinal components, W±
L and ZL. Here we are inspired

by the appealing idea that the composite Higgs boson, h, together with the w± and z

bosons are the associated Goldstone Bosons (GBs) of a larger spontaneous global sym-

metry breaking pattern containing the Electroweak Symmetry Breaking pattern, once the

gauge interactions are included.

There are several Models proposed in the literature for a composite Higgs with specific

implementations for the relevant global symmetry breaking pattern, like the Composite

Higgs Model based on the coset SO(5)/SO(4), usually called minimally composite Higgs

model (MCHM) [6–9], dilaton models with spontaneous breaking of scale invariance [10, 11],

and others [12]. We do not consider here any specific model for composite Higgs, but instead

work in a model independent way with the most appropriate tool provided by Effective Field

Theories (EFTs). Concretely, we use here the EFT that is based in a non-linear realization

of the Electroweak Chiral Symmetry Breaking (EWCSB) pattern, SU(2)L × SU(2)R →
SU(2)L+R, that is built with the so-called Electroweak Chiral Lagrangian with a light
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Higgs-like scalar (ECLh). The scalar sector of this ECLh contains the three needed w±

and z bosons and the Higgs particle h as dynamical fields, and it shares with the SM

the previously mentioned EWCSB pattern, with SU(2)C = SU(2)L+R being the so-called

custodial symmetry, and with the Higgs field being a singlet under this symmetry. The

choice of a non-linear realization for the ECLh, instead of a linear one, and the name

Chiral are due to the obvious close analogy with the Chiral Lagrangian (CL) of low energy

QCD which, in its simplest version, is based in the well known Chiral Symmetry Breaking

pattern, SU(2)R × SU(2)L → SU(2)V . In this QCD case the dynamics of mesons, that are

identified with the associated GBs of this breaking, is well described by the CL [13] and

the systematic methods of Chiral Perturbation Theory (ChPT) [14–16]. The choice of a

non-linear realization for the QCD mesons is a crucial ingredient for the understanding of

the low energy meson phenomenology, in particular, for scattering processes involving the

dynamics of multiple mesons. This motivates the choice of a non-linear realization also for

the ECLh and, consequently, most of the EFT techniques that were learnt from ChPT are

nowadays applied to this new effective Lagrangian for the Electroweak Theory.

The ECLh is, on the other hand, the natural extension of the old models for the

Strongly Interacting Electroweak Symmetry Breaking Sector (SIEWSBS), first introduced

by Appelquist and Longhitano [17–19], and later studied by other authors (see, for

instance, [20] and [21]). These old models for the SIEWSBS together with the meth-

ods inherited from the CLs [13] and ChPT [14–16] for the study of low energy pion dy-

namics lead to the building of the so-called Electroweak Chiral Lagrangians (ECLs) [22].

These ECLs were used mainly for the study of the scattering of longitudinal EW gauge

bosons [22–27] and also for the study of other interesting observables like the ones proposed

here, M(γγ → W+
L W−

L ) and M(γγ → ZLZL) [28], the so-called oblique S and T param-

eters [29, 30] or some related EW precision observables like ∆r, ∆ρ [31] and others [32].

These ECLs did not include the Higgs particle as an explicit dynamical field but instead it

was considered as a potentially emergent resonance of the strongly interacting underlying

system. In fact the Higgs particle was assumed to appear at the O(1 TeV) scale and there

were indeed explicit computations of the ECL parameters emerging from the integration

to one-loop level of such a heavy Higgs within the SM context [33, 34]. After the discovery

of a relatively light Higgs these ECLs are obviously not considered anymore, however, yet

the generic EFT methods that were developed for the ECLs, basically following a similar

path as in ChPT, are yet applicable to the ECLh case.

At present the complete list of terms contributing to this ECLh at the tree level is well

known, including all the operators with bosonic and fermionic fields up to chiral dimension

d = 4 [35, 36], and there are several works that use the ECLh for phenomenological

purposes, like those devoted to the study of deviations in the Higgs-like particle couplings

to fermions and EW bosons at the tree level, and the possibility to disentangle these

deviations at the LHC [37, 38]. On the other hand there are a few works including also the

most relevant one-loop contributions from the ECLh, like the ones studying the scattering

of longitudinal EW gauge bosons [39–43], the oblique S and T parameters [44, 45] and

others dealing with the renormalization program of the effective action which, so far, has

only been studied for the linear realization case [46–48].

– 3 –
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In this paper we present a one-loop computation of the M(γγ → ZLZL) and M(γγ →
W+

L W−
L ) scattering amplitudes with the ECLh, valid up to next to leading order in the

chiral expansion, and take a special attention to the role played by the hypothetical com-

posite Higgs boson in these physical processes, as well as in the one-loop renormalization

program with the ECLh that we describe also in detail here. We postpone the study of the

potential experimental signatures at colliders, like LHC and future ILC, that are implied

by our computation, for a future work.

For the explicit computation here with the ECLh we make the following assumptions

and approximations:

1. The ECLh is SU(2)L × U(1)Y gauge invariant and provides a good description of

scattering processes, whenever their relevant energies,
√
s, are sufficiently low, say,√

s ≪ ΛECLh, where ΛECLh = min (4πv,M). Here, v = 246GeV, 4πv ∼ 3 TeV is the

typical scale introduced by the chiral loops, as in any other Chiral Lagrangian, and

M refers to the mass of any potentially emergent resonance. In the present paper

we focus on the bosonic part of the ECLh and leave the fermionic contributions for

another work. We also assume CP invariance in our selection of the relevant terms

of the ECLh.

2. We work in the Landau gauge that simplifies the one-loop computation since it implies

massless WBGBs, i.e., for the present computation we take mw± = mz = 0.

3. We use the Equivalence Theorem (ET) [49–52] that has been proven to work also

within the context of a SIEWSBS [53–56]. For the present computation it means that,

for energies well above the EW gauge boson masses, mW ,mZ ≪ √
s, the following

approximations can be done:

M
(

γγ → W+
L W−

L

)

≃ −M
(

γγ → w+w−
)

(1.1)

M(γγ → ZLZL) ≃ −M(γγ → zz) . (1.2)

The use of this theorem will allow us to extract the leading contributions to our

observables in terms of diagrams with only w±, z and h in the internal lines. The

diagrams with internal γ,W±, Z lines would enter at higher orders in g and g′ and

these would lead to subleading contributions under the assumption of small g, g′,

or more precisely for gv, g
′

v ≪ √
s with v kept fixed, which is precisely the energy

range set by the ET, mW ,mZ ≪ √
s. Besides, due to the close values of mh with

mW and mZ , the two previous assumptions together lead to the following window of

applicability in energies for our computation:

mh,mW ,mZ ≪
√
s ≪ ΛECLh . (1.3)

4. Finally, we also assume custodial symmetry invariance in the scalar sector of the

ECLh as in the SM. It means that the custodial symmetry breaking terms included

here for the bosonic sector are exclusively induced by the gauging of the hyper-

charge group, U(1)Y , hence their corresponding contributions to the observables will

be driven by the ‘small’ coupling g′. Equivalently, by setting to zero the hyper-

charge gauge coupling in the ECLh considered here one recovers the full symmetry,

SU(2)L × SU(2)R.
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The paper is organized as follows. In section 2 we introduce the ECLh and select the rele-

vant terms for the present computation of the one-loop M(γγ → w+w−) and M(γγ → zz)

scattering amplitudes up to O
(

e2p2
)

. We also include a detailed description on how we

implement the chiral dimension counting in the ECLh. The relevant chiral parameters

for the present computation will also be specified in this section. Section 3 contains an

illustrative and generic description of the various contributions entering in the present com-

putation, analyzing separately the Leading Order (LO) tree level terms, i.e. of O(e2), the

Next to Leading Order tree level terms, i.e. of O
(

e2p2
)

, and the one-loop contributions

generated from the LO terms, which are of this same order, i.e. of O
(

e2p2
)

. The renor-

malization of the ECLh parameters is also discussed in this section. Section 4 introduces

the two different parametrizations of the coset that we have used in this computation,

as a check of the parametrization independence of our final result. We also present the

final effective Lagrangian in terms of the relevant fields, the photon field and the w±, z, h

fields, and derive the corresponding Feynman Rules (collected in appendix A) for the two

chosen parametrizations. Section 5 contains the analytical results of our computation of

the one-loop γγ → wawb scattering amplitudes . In section 6 we discuss the results and

compare them with the predictions of other interesting observables that have been selected

here because they involve the same ECLh parameters and therefore there are correlations

among them. We also propose here the use of global analysis for all these observables as

a promising method to extract the values of the ECLh parameters from data. Section 7

is finally devoted to the conclusions. Technical details as the Feynman rules, the individ-

ual contributions from the various loop diagrams, the detailed predictions for the related

observables and the specific results for the γγ scattering processes in the particular model

MCHM have been relegated to the appendices.

2 The Electroweak Chiral Lagrangian with a light Higgs

The ECLh is a gauged non-linear effective Lagrangian coupled to a singlet scalar particle

that contains as dynamical fields the EW gauge bosons, W±, Z and γ, the correspond-

ing would-be GBs, w±, z, and the Higgs-like scalar boson, h. The WBGBs, w±, z, are

described by a matrix field U that takes values in the SU(2)L × SU(2)R/SU(2)L+R coset,

and transforms as U → LUR† under the action of the global group SU(2)L × SU(2)R that

defines the EW Chiral symmetry. The subgroup SU(2)L+R = SU(2)C defines the custodial

symmetry group. We will assume here that, as it happens in the SM, the scalar sector of

the ECLh preserves this custodial symmetry, except for the explicit breaking due to the

gauging of the U(1)Y symmetry. Two particular parametrizations of this unitary matrix U

in terms of the dimensionless w±/v and z/v fields, with v = 246GeV will be presented in

section 4, where it will be also commented on the advantages and disadvantages of each of

these parametrizations, both leading to the same predictions for the physical observables.

Regarding the Higgs field h one has to take into account that it is a singlet under the

EW Chiral symmetry SU(2)L × SU(2)R and, therefore, there are not particular restric-

tions on the implementation of this field into the ECLh from the EW Chiral symmetry

requirements. The Higgs field is consequently introduced in the ECLh via multiplicative
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polynomial functions, F(h), and their derivatives. These polynomials are generically of

the form, (1 + 2ah/v+ b(h/v)2 + . . .), where a, b . . . are general ECLh parameters that are

added to the other ECLh parameters and that take particular values in specific models.

The EW gauge fields are introduced as usual by means of the gauge principle that ensures

the SU(2)L × U(1)Y gauge invariance of the ECLh. Concretely, they are introduced by

the covariant derivative of the U field, DµU , and by the SU(2)L and U(1)Y field strength

tensors, Ŵµν and B̂µν respectively. In summary, the basic functions for the building of the

SU(2)L ×U(Y )L gauge invariant ECLh are the following:

U
(

w±, z
)

= 1 + iwaτa/v +O
(

w2
)

∈ SU(2)L × SU(2)R/SU(2)L+R, (2.1)

F(h) = 1 + 2a
h

v
+ b

(

h

v

)2

+ . . . , (2.2)

DµU = ∂µU + iŴµU − iUB̂µ, (2.3)

Ŵµν = ∂µŴν − ∂νŴµ + i
[

Ŵµ, Ŵν

]

, B̂µν = ∂µB̂ν − ∂νB̂µ, (2.4)

Ŵµ = g ~Wµ~τ/2, B̂µ = g′Bµτ
3/2, (2.5)

Vµ = (DµU)U †, T = Uτ3U †, (2.6)

where we have also included the usual Vµ and T chiral fields.

According to the usual counting rules of Chiral Lagrangians, the SU(2)L × U(1)Y
invariant terms in the ECLh are organized by means of their ‘chiral dimension’, meaning

that a term Ld with ’chiral dimension’ d will contribute to O(pd) in the corresponding power

momentum expansion. For the present computation of one-loop M(γγ → W+
L W−

L ) and

M(γγ → ZLZL) scattering amplitudes by means of the Equivalence Theorem there are just

a few terms in the ECLh that are involved in the corresponding one-loop M(γγ → w+w−)

and M(γγ → zz) scattering amplitudes. Thus, we focus here mainly on this subset of

ECLh terms that we present in this section and classify according to its chiral dimension.

The chiral dimension of each term in the ECLh can be found out by following the

scaling with p of the various contributing basic functions. First, as it is usual in Effective

Chiral Lagrangians, the derivatives and the masses of the dynamical particles are considered

as soft scales of the EFT and are consequently of the same order in the chiral counting,

i.e. of O(p). The gauge boson masses, mW and mZ are examples of these soft masses in

the case of the ECLh. These are generated from the covariant derivative in eq. (2.3) once

the U field is expanded in terms of the wa fields as:

DµU =
i∂µ ~w ~τ

v
+ i

gv

2

~Wµ ~τ

v
− i

g′v

2

Bµ τ
3

v
+ . . . (2.7)

where the dots represent terms with higher powers of (wa/v) and whose precise form will

depend on the particular parametrization of U . Once the gauge fields are rotated to the

physical basis then they get the usual gauge boson squared mass values at lowest order:

m2
W = g2v2/4 and m2

Z =
(

g2 + g
′2
)

v2/4. Furthermore, in order to have a power counting

consistent with the loop expansion one needs all the terms in the covariant derivative

above to be of the same order. Thus, the proper assignment is ∂µ , (gv) , (g
′v) ∼ O(p) or,

– 6 –
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equivalently, ∂µ ,mW ,mZ ∼ O(p). In addition, due to the close values of the EW gauge

boson masses with the experimental Higgs boson mass, we will also consider in this work

the Higgs-like boson mass mh as another soft mass in the ECLh with, a similar chiral

counting as mW and mZ . That implies, mh ∼ O(p), or equivalently (λv2) ∼ O(p2), with

λ being the SM Higgs self-coupling. One can similarly conclude on the scaling of all the

other building blocks of the ECLh that we summarize and collect in the following:

∂µ, mW , mZ , mh ∼ O(p), (2.8)

DµU, Vµ, g
′v, T , Ŵµ, B̂µ ∼ O(p), (2.9)

Ŵµν , B̂µν ∼ O
(

p2
)

. (2.10)

Notice that to get the correct chiral counting of quantities involving the couplings g and/or

g′ it is convenient to rewrite them in terms of (gv) and/or (g′v) and dimensionless fields,

correspondingly. For instance, B̂µν = (g′v)∂µ(Bν/v)τ
3/2 − (g′v)∂ν(Bµ/v)τ

3/2 ∼ O(p2).

Similarly, one can check other examples like (1/g′)2B̂µνB̂
µν ∼ O(p2) etc.

With these building blocks one then construct the ECLh up to a given order in the

chiral expansion. We require this Lagrangian to be CP invariant, Lorentz invariant and

SU(2)L×U(1)Y gauge invariant. For the present work we include terms with chiral dimen-

sion up to O(p4), therefore, the ECLh can be generically written as:

LECLh = L2 + L4 + LGF + LFP , (2.11)

where L2 refers to the terms with chiral dimension 2, i.e O(p2), L4 refers to the terms

with chiral dimension 4, i.e O(p4), and LGF and LFP are the gauge-fixing (GF) and the

corresponding non-abelian Fadeev-Popov (FP) terms that have been explicitly separated

as they are particular terms added to EW gauge theory to fix the gauge freedom in the

path integral. As we said in the introduction, the Landau gauge is assumed all along this

work, which is the most convenient one for the present computation since the WBGBs

w± and z are massless in this gauge. The convenience of the Landau gauge choice in the

context of the gauged non-linear sigma model was emphasized long ago in [17], since in

this gauge there are no direct couplings of the GB to the ghosts.

We focus next in the relevant terms for γγ → w+w− and γγ → zz scattering processes.

First, the relevant terms in the leading order (LO) Lagrangian –of O(p2)– are given by

L2 = − 1

2g2
Tr
(

ŴµνŴ
µν
)

− 1

2g′2
Tr
(

B̂µνB̂
µν
)

+
v2

4

[

1 + 2a
h

v
+ b

h2

v2

]

Tr
(

DµU †DµU
)

+
1

2
∂µh ∂µh+ . . . , (2.12)

where the dots stand for O(p2) operators with three or more Higgs fields which do not

enter into this computation. In particular, notice that the Higgs self-interaction terms do

not enter here for this same reason. Besides, the Higgs mass term is not included either,

because it would lead to subleading contributions to the observables of interest here when

compared to the set of contributions that we are considering which will dominate in the

assumed energy range given in eq. (1.3).

– 7 –
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Second, the complete next to leading order (NLO) Lagrangian –ofO(p4)– contain many

terms. In particular it includes the complete set of CP-even, Lorentz and gauge invariant

operators that were first collected by Longhitano in ref. [18, 19], and also listed in other

works like [26–28, 31, 33, 34] and references therein. The total list in ref. [18, 19] includes

14 operators of chiral dimension 4, which are reduced to just 5 if one rejects operators

that are not custodial symmetry invariant, even in the case of switching off the g′ gauge

couplings, and also by the use of the equations of motion. This reduced list of 5 terms is

given by the explicit terms below:

LLonghitano = a1Tr
(

UB̂µνU
†Ŵµν

)

+ ia2Tr
(

UB̂µνU
†[V µ, V ν ]

)

− ia3Tr
(

Ŵµν [V
µ, V ν ]

)

+ a4 [Tr(VµVν)] [Tr (V
µV ν)] + a5 [Tr(VµV

µ)] [Tr (VνV
ν)] + . . . , (2.13)

where our notation for the chiral parameters ai is as in refs. [33, 34] and they are related

to Longhitano’s αi chiral parameters by: a1 = (g/g′)α1, a2 = (g/g′)α2, a3 = −α3, a4 = α4,

a5 = α5. They are also related with the usual notation for the chiral parameters Li from

the QCD Chiral Lagrangian [14–16] restricted to two light flavours:1 L1 = a5, L2 = a4,

L9 = a3 − a2, L10 = a1.

The parameters a4 and a5, on the other hand, are of great relevance since they par-

ticipate with a leading role in the scattering of longitudinal EW gauge bosons like, for

instance, W+
L W−

L → W+
L W−

L and W+
L W−

L → ZLZL. These have been studied within the

ECLh context by several authors [39–43] and they are of much interest due to the impli-

cations for LHC which presumably will explore these scattering amplitudes in the future

run. However the implications of a1,2,3 within the context of the ECLh have not been

studied yet, and this is one of our goals here. As we will see next, these a1,2,3 are the

relevant chiral parameters entering in γγ → wawb scattering. Notice also that the first

three operators involving a1,2,3 have been written in such a way that if the U(1)Y gauge

group were promoted to a wider symmetry SU(2)R with the help of spurionic fields for the

two missing gauge bosons, these operators would be SU(2)L × SU(2)R invariant.

Finally, in the building of the O(p4) terms of the ECLh, one has to add extra terms

involving the Higgs field, which include adding polynomial factors in front of the previous

operators of the generic type (1 + ki(h/v) + gi(h/v)
2 + . . .) and also in front of the other

O(p4) terms like ŴµνŴ
µν and B̂µνB̂

µν . In summary, by selecting the subset of O(p4) terms

that are relevant for the scattering of interest here, i.e. for γγ → w+w− and γγ → zz, we

find the following short list of contributing terms:

L4 = a1Tr
(

UB̂µνU
†Ŵµν

)

+ ia2Tr
(

UB̂µνU
†[V µ, V ν ]

)

− ia3Tr
(

Ŵµν [V
µ, V ν ]

)

− cW
h

v
Tr
(

ŴµνŴ
µν
)

− cB
h

v
Tr
(

B̂µνB̂
µν
)

+ . . . (2.14)

1Notice that while this correspondence between the ECL parameters ai and the SU(3) CL parameters

Lj from QCD is valid at the tree-level, this is no longer true at the loop level where the renormalization

and running of the effective Lagrangian parameters depend on the symmetry group. However, we can still

keep the analogy between the EW and QCD effective Lagrangians at the loop level if we relate the ECL

parameters with those in the original CL for low energy QCD in the case of SU(2) [14–16] leading to:

ℓ1 = 4a5, ℓ2 = 4a4, ℓ5 = a1, ℓ6 = 2(a2 − a3).
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where we have used the same conventions for the definition of the cW and cB parameters

as in refs. [35, 36]. Notice that the last two terms in the previous equation, once the gauge

fields are rotated to the physical basis, lead to one of the relevant operators here involving

the photon field strength, Aµν = ∂µAν − ∂νAµ, which is:

− cW
h

v
Tr
(

ŴµνŴ
µν
)

− cB
h

v
Tr
(

B̂µνB̂
µν
)

= −cγ
2

h

v
e2AµνA

µν + . . . . (2.15)

Finally to finish this section, we find illustrative to compare the different settings for

the ECLh parameters in some specific and most popular models, like the Higgsless ECL

models, the SM itself, the SO(5)/SO(4) MCHM, dilaton models and others. If we make the

comparison at the LO Lagrangian level (i.e at L2 level), the values of the ECLh parameters

in these models are, correspondingly:

a2 = b = 0 Higgsless ECL [17–19],

a2 = b = 1 SM,

a2 = 1− v2

f2
, b = 1− 2v2

f2
SO(5)/SO(4) MCHM [6–9],

a2 = b =
v2

f̂2
, Dilaton [10, 11]. (2.16)

If we make the comparison at the NLO Lagrangian level, then one has to set in addition

the values of the ECLh parameters in L4. Thus, for instance, in comparing with the

Higgsless ECL models one sets, in addition to the previous values above, cγ and all the

involved parameters in the polynomial functions for the Higgs field to zero. The rest of ai
parameters are present in the ECL as in the ECLh case. In the comparison with the SM,

for consistency, one has to set obviously all parameters in L4 to zero, ai = 0, cγ = 0, etc.

3 Electroweak chiral loops and renormalized ECLh parameters

In this section we describe the systematic procedure for our computation of the one-loop

M(γγ → w+w−) and M(γγ → zz) scattering amplitudes, starting with the relevant terms

of the ECLh that have been fixed in the previous section.

First, as in any Chiral Effective Theory, one has to fix the order in the Chiral expansion

up to which the amplitude is to be computed. Here we set the computation up to O(p4),

meaning that the amplitude will have two type of contributions: the Leading Order con-

tributions (LO), i.e, O(p2) and the Next to leading order contributions (NLO), i.e, O(p4).

Next, and following the standard counting rules of Chiral Lagrangians [13–16, 57], one has

to consider the contributions from chiral loops here called, for obvious reasons, electroweak

chiral loops, that are produced by the LO Lagrangian. In the present context of ECLh

these EW chiral loops will include the Higgs boson particle in the loops, in addition to

the usual dynamical fields of the Chiral Lagrangians. These EW chiral loops do also con-

tribute to order O(p4) and have to be taken into account together with the fixing of a well

defined renormalization prescription to deal with the divergences that are generated by the
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EW chiral loops, usually computed in dimensional regularization which will also be con-

sidered in this work. This implies setting a well defined procedure for the renormalization

of the ECLh parameters. Notice that dimensional regularization is particulary appropriate

for dealing with CL since it is chiral invariant so that no extra terms must be added to

the action to restore chiral invariance as would be the case if one uses a cutoff or other

non-invariant regularization methods (see for example [58] and references therein).

In order to clarify the various steps to follow in our case, let us first shortly review

how do the Weinberg’s chiral power counting rules [13] apply to the present case of ECLh.

With this purpose in mind, let us first write the term with chiral dimension d in the ECLh,

Ld, in the generic form:

Ld =
∑

k

f
(d)
k pd

(χ

v

)k
, (3.1)

where, χ refers to any of the bosonic fields in the ECLh, h, wa, W a
µ , Bµ; p refers to either

a derivative ∂ acting on the corresponding bosonic field or a soft mass, mW,Z,h; and f
(d)
k

are the corresponding coefficients in front of the terms with k powers of the dimensionless

field (χ/v). For instance, for the lowest dimension terms, L2 and L4, these go respectively

as: f
(2)
k ∼ v2 and f

(4)
k ∼ ai, where by ai we mean here generically all the dimensionless

parameters in L4 like a1, a2, a3 and cγ . The coefficients of higher chiral dimension terms f
(d)
k

will be correspondingly of lower energy (canonical) dimension [E]4−d. Now, according to

the usual Weinberg’s chiral counting rules, the contribution to a given scattering amplitude

from each Feynman diagram containing L loops generated with the LO L2, E external legs

and Nd interaction vertices from Ld, scales in powers of p as follows:

M ∼
(

p2

vE−2

)(

p2

16π2v2

)L
∏

d

(

f
(d)
k p(d−2)

v2

)Nd

, (3.2)

where we see explicitly the typical suppression factor of the chiral loops given by p2/
(

16π2v2
)

for each loop. For further details on the power counting in EW Chiral Lagrangians, see

refs. [59–62]. Notice also that, for d = 2, the last factor scales as p0, meaning that the

same result for the total scaling of M is obtained for any number N2 of vertices from L2

entering in the Feynman diagram. Then, applying this chiral counting to our γγ → wawb

scattering processes (with four external legs), we find immediately that the contribution

from a generic Feynman diagram containing L loops generated with L2, and N4 interaction

vertices from L4 (and for any N2) scales in powers of p as follows:

M ∼
(

p2

v2

)(

p2

16π2v2

)L(
aip

2

v2

)N4

∼
(

e2
)

(

p2

16π2v2

)L(
aip

2

v2

)N4

, (3.3)

where, as already stated above, the ai here refer generically to all the EW chiral parameters

of L4, i.e., a1, a2, a3 and cγ in the present work. Furthermore, for the particular present case

with two photons in the initial state, as it will be shown later in the explicit computation,

the first factor
(

p2/v2
)

indeed appears here as e2 with e being the electromagnetic coupling,

therefore, we have also rewritten in eq. (3.3) this generic expression in terms of the (e2)

pre-factor.
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Summarizing, we can now use the previous expression to the right in eq. (3.3) to con-

clude on the various contributions entering into our computation of the one-loop M(γγ →
wawb) amplitudes, and also set the various steps to follow. Generically, we will split the

amplitudes into two parts:

M = MLO +MNLO, (3.4)

where:

1. The LO contributions are given by all the tree-level diagrams (L = 0) with vertices

from just the L2 Lagrangian, i.e with N4 = 0:

MLO = Mtree
O(e2) ∼ e2. (3.5)

2. The NLO contributions come from two types of graphs:

MNLO = M1−loop
O(e2p2)

+Mtree
O(e2p2) . (3.6)

• One-loop diagrams (L = 1) with only vertices from L2, i.e with N4 = 0. These

contribute as,

M1−loop
O(e2p2)

∼ e2
(

p2

16π2v2

)

. (3.7)

It is known that these loops may generate UV divergences, therefore, requiring

the presence of local counter-terms to fulfill the renormalization.

• Tree-level diagrams (L = 0) with only one vertex from the L4 Lagrangian,

i.e. with N4 = 1, and the remaining vertices from the L2 Lagrangian. These

contribute as,

Mtree
O(e2p2) ∼ e2

(

ai p
2

v2

)

. (3.8)

3. The final step is to define a specific renormalization prescription to cancel out the one-

loop UV divergences that appear in M1−loop
O(e2p2)

. This is performed in a systematic way

by the renormalization of the EW chiral parameters in L4. In contrast, the parameters

in L2 do not get renormalized. This renormalization program is completely analogous

to the one in Chiral Perturbation Theory [13–16]. In our present case this will imply,

in principle, the renormalization of the four EW chiral parameters entering here,

namely, a1, a2, a3 and cγ :

a1, a2, a3, cγ → ar1, a
r
2, a

r
3, c

r
γ (3.9)

by the proper counterterms δai, with

ari = ai + δai , (3.10)

that will remove the UV divergences appearing, as usual in dimensional regulariza-

tion, as functions of 1/ǫ̂ defined as,

1

ǫ̂
= µ−2ǫ

(

1

ǫ
− γE + ln 4π

)

, (3.11)
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with D = 4 − 2ǫ. These δai counterterms in turn, will lead to the corresponding

running of the effective EW parameters, i.e. the dependence with the renormalization

scale µ of these parameters, ari (µ).

One of the big surprises in this work, that we anticipate here, is that after the very

intriguing computation of all the very many loops and contributing terms to the γγ

scattering amplitudes, it turns out that the final result for the M1−loop
O(e2p2)

terms are

indeed finite!!. This means that the particular combination of the EW chiral pa-

rameters a1, a2, a3, cγ entering here does not need renormalization, and therefore this

will give us the result for the physical one-loop amplitude in terms of a renormal-

ization group invariant combination of these a1, a2, a3, cγ parameters. This is a very

interesting result, but all this will be presented and discussed in full detail later.

4 Coset parametrizations and relevant Feynman rules

In order to perform the computations we are dealing with in this work we have to chose

some parametrization of the coset. As it was described in the previous section our effec-

tive low-energy theory is a gauged non-linear sigma model based in the coset SU(2)L ×
SU(2)R/SU(2)L+R coupled to the light scalar h. The gauge group is SU(2)L × U(1)Y and

SU(2)L+R is the custodial symmetry group. Therefore the coset is just the space SU(2)

which is isomorphic to the three dimensional sphere S3. In order to have an explicit effec-

tive Lagrangian we need to introduce some particular coordinates on this space that will

play the role of the WBGB fields. These three fields must be independent and properly

normalized but otherwise they are arbitrary since there is a well known theorem about

non linear sigma models guaranteeing that the S matrix elements (on-shell amplitudes)

are independent of the particular coordinates chosen (see for example [58] and references

therein). For the case considered here, one of the most popular elections is the exponential

representation given by:

U(x) = exp i
π̃

v
, (4.1)

where π̃ = τaπa(x) and τa (a = 1, 2, 3) are the Pauli matrices. However, as we will see later,

this is not at all the most efficient coset parametrization in this case. These coordinates

are inspired in ChPT where one usually deals with a SU(3) coset. However here we are

using just a SU(2) coset which is isomorphic to S3. Then it is possible to introduce the

much simpler coordinates:

U(x) =

√

1− ω2

v2
+ i

ω̃

v
, (4.2)

where again ω̃ = τaωa(x) and ω2 =
∑

a(ω
a)2 = ω̃2. We will call these coordinates spherical

to distinguish them from the exponential ones. As we will see next, the Lagrangian, the

Feynman rules and even the Feynman diagrams are simpler (meaning lesser in number) in

the spherical representations but the final results for the amplitudes are parametrization

independent, as expected. We have checked explicitly this fact by making the computations

using both representations independently.
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It is not very difficult to find the transformation equations passing from one set of

coordinates to the other. To do that we first realize that the exponential representation

can also be written as:

U(x) = cos
π

v
+ i

π̃

π
sin

π

v
, (4.3)

where π =
√
π2 with π2 =

∑

a(π
a)2. Therefore, we have:

ωa = πa v

π
sin

π

v
, (4.4)

which implies ω2 = v2 sin2(π/v). By expanding the result above we can get the series:

ωa = πa

[

1− 1

6

(

π

v

)2

+
1

120

(

π

v

)4

− 1

5040

(

π

v

)6

+ . . .

]

. (4.5)

Also it is easy to show the useful relation

ωa

ω
=

πa

π
. (4.6)

From these fields it is useful to introduce the fields ω± = (ω1 ∓ iω2)/
√
2, ω0 = ω3 which

implies ω2 = 2ω+ω− +ω0ω0 and similar definitions for π± and π0. These two sets of fields

represent equally the WBGB w± and z responsible for the W± and Z masses respectively.

Now we can write the leading order Lagrangian found in the previous section in terms

of the two above parametrizations keeping photons as the only gauge fields. In the case of

the exponential parametrization we have the O(p2) Lagrangian,

L2(π, h, γ)=
1

2
∂µh∂

µh+
1

2
F(h)

[

v2

π2
sin2

π

v

(

δab −
πaπb

π2

)

+
πaπb

π2

]

∂µπ
a∂µπb

+

{

ieF(h)Aµ

[

v2

π2
sin2

π

v
∂µπ

+π−+
v

2

π+π−

π3
∂µπ

2 sin
π

v

(

cos
π

v
−π

v
sin

π

v

)]

+h.c.

}

+ e2F(h)AµA
µπ+π− v2

π2
sin2

π

v
, (4.7)

and for the spherical parametrization,

L2(ω, h, γ) =
1

2
∂µh∂

µh+
1

2
F(h)

(

δab +
ωaωb

v2 − ω2

)

∂µω
a∂µωb

+ ieF(h)Aµ(∂µω
+ω− − ω+∂µω

−) + e2F(h)AµA
µω+ω− (4.8)

where in both cases, the relevant terms in F(h) are:

F(h) = 1 + 2a
h

v
+ b

h2

v2
. (4.9)

These second coordinates give rise to a much simpler Lagrangian and simpler Feynman

rules and diagrams for a given processes. For example using the ω coordinates photons

only couple to two WBGB. On the other hand the exponential parametrization produces

couplings of photons to an arbitrary large number of WBGBs.
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For the two processes of interest here, γγ → zz and γγ → w+w−, the relevant O(p2)

Lagrangians for the two parametrizations considered here are:

L2(π, h, γ) =
1

2
∂µh∂

µh+
1

2
F(h)

(

2∂µπ
+∂µπ− + ∂µπ

0∂µπ0
)

+
F(h)

6v2

[

(

∂µπ
+π− + π+∂µπ

− + π0∂µπ
0
)2 − π2

(

2∂µπ
+∂µπ− + ∂µπ

0∂µπ0
)

]

+ ieF(h)

{

Aµ

[

(∂µπ
+π−

(

1− π2

3v2

)

− π+π−

6v2
∂µπ

2

]

+ h.c.

}

+ e2F(h)AµA
µπ+π−

(

1− π2

3v2

)

(4.10)

and

L2(ω, h, γ) =
1

2
∂µh∂

µh+
1

2
F(h)

(

2∂µω
+∂µω− + ∂µω

0∂µω0
)

+
F(h)

2v2
(

∂µω
+ω− + ω+∂µω

− + ω0∂µω
0
)2

+ ieF(h)Aµ
(

∂µω
+ω− − ω+∂µω

−
)

+ e2F(h)AµA
µω+ω−. (4.11)

These are the relevant pieces of the L2 Lagrangian (in the corresponding coset parametriza-

tion) for our photon-photon computation, where we use the Landau gauge and the WBGBs

are massless and we are, in practice, taking mh = 0. All these assumptions together with

the fact that we are using dimensional regularization will reduce considerably the number

of diagrams to be computed.

From these Lagrangians above it is now straightforward to get the Feynman rules for

the relevant couplings. In appendix A we show the relevant rules obtained from both

parametrizations for incoming particles. As one could have expected, those rules involving

less than four WBGBs are exactly the same in both parametrizations. This is because

both coordinates differ in terms which are at least quadratic in the WBGBs. Thus the

vertices with four WBGBs are indeed different in both parametrizations if the WBGBs are

off-shell but they coincide for on-shell legs to guarantee that the corresponding S matrix

elements are parametrization independent. Notice that in particular the vertex with four

neutral WBGBs zzzz vanishes in the exponential coordinates case but it does not vanish

in the spherical ones (off-shell). Therefore, this vertex will contribute to one-loop diagrams

in one case but not in the other one. This shows that the independence of the S matrix

elements on the particular parametrization at the one-loop level is not a trivial result at all

(see [58] and references therein). This fact was observed for the first time in [63, 64] in the

context of SU(2) ChPT for the process γγ → π0π0 to one loop and in the chiral limit. In

this case the on-shell one-loop amplitude requires the computation of four diagrams using

the exponential coordinates (see for example [65]) but only two diagrams when one uses

the spherical parametrization.

Besides, the vertices with four WBGBs and one photon are also different in both

parametrizations, even for on-shell legs but this is not a problem since the corresponding

physical process (S matrix elements) have other contributions at the tree level.
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5 Analytical results for the one-loop γγ → wawb scattering amplitudes

Following the procedure described in detail in the previous sections, we proceed now to

perform the computation of the γγ → wawb amplitudes up to NLO in the chiral expansion.

In the charge basis for the WBGBs, this corresponds to the computation of the γγ → zz

and γγ → w+w− amplitudes, respectively related to γγ → ZLZL and γγ → W+
L W−

L

amplitudes through the Equivalence Theorem.

In addition, under the assumptions and approximations taken in the present article,

many Feynman diagrams suffer important simplifications. First, we are left just with the

one-loop diagrams with only scalar fields, h, w± and z, in the internal lines. Second, in the

massless case considered here, namely, in the Landau gauge with WBGB’s poles at zero

and negligible Higgs mass, mh ≪ √
s ≪ 4πv, all the one point Feynman integrals A0(m

2)

with m = mh,w±,z vanish in dimensional regularization. Since this type of diagrams do

not contribute in our case they have not been included in our plots together with the

remaining one-loop graphs for γγ → zz and γγ → w+w−. Likewise, there is no wave-

function renormalization in the massless case (Z = 1) and there is no need for a separate

study of the self-energies. Nonetheless, we would like to emphasize that the three eliminated

contributions (Feynman diagrams with one-point scalar Feynman integrals, diagrams with

internal EW gauge bosons and the wave-functions renormalization) must be included if the

calculation is required to account also for subleading corrections, likeO
(

m2
W,Z,h/

(

16π2v2
)

)

corrections.2

The present computation has been performed with the help of FeynRules, FeynArts

and FormCalc [66–69] and has also been double-checked through two independent computa-

tions, one in the exponential parametrization of U(x) and the other with U(x) expressed in

spherical coordinates. We found full agreement in the final results from both parametriza-

tions when the two external WBGBs and the two external photons were set on-shell, as

expected [58].

We present the results for the scattering amplitudes by using the compact form

that is determined by electromagnetic gauge invariance. Thus, the results for the

γ(k1, ǫ1)γ(k2, ǫ2) → w+(p1)w
−(p2) and γ(k1, ǫ1)γ(k2, ǫ2) → z(p1)z(p2) amplitudes will be

given (as in the analogous case of scattering of photons into pions) by the general decom-

position [28, 63, 64, 70–73]

M = ie2
(

ǫµ1 ǫ
ν
2T

(1)
µν

)

A(s, t, u) + ie2
(

ǫµ1 ǫ
ν
2T

(2)
µν

)

B(s, t, u) , (5.1)

that is written in terms of the two independent Lorentz structures,

(

ǫµ1 ǫ
ν
2T

(1)
µν

)

=
s

2
(ǫ1ǫ2)− (ǫ1k2)(ǫ2k1), (5.2)

(

ǫµ1 ǫ
ν
2T

(2)
µν

)

= 2s(ǫ1∆)(ǫ2∆)− (t− u)2(ǫ1ǫ2)− 2(t− u)[(ǫ1∆)(ǫ2k1)− (ǫ1k2)(ǫ2∆)], (5.3)

2For instance, if we had considered mh 6= 0 in our analysis the WBGB wave-function renormalization

would have received corrections as Z = 1 +
(b−a2)
16π2v2 A0

(

m2
h

)

−
a2m2

h

32π2v2 [39–41], with A0

(

m2
h

)

the one-point

Feynman integral.
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with the Mandelstam variables defined as usual, s = (p1 + p2)
2, t = (k1 − p1)

2 and u =

(k1 − p2)
2, the relevant momentum combination is defined as ∆µ ≡ pµ1 − pµ2 , and the ǫi’s

are the polarization vectors of the external photons.

As for the separate contributions to the scattering amplitudes we will follow the steps

and notation that we have introduced in section 3. Thus, the results for the total am-

plitudes will be reported into two parts, correspondingly to the explained LO and NLO

contributions:

M = MLO +MNLO , and A = ALO +ANLO, B = BLO +BNLO . (5.4)

MLO involves the computation of the tree graphs from L2 which are indeed none for the

γγ → zz case and those illustrated in figure 3a for the γγ → w+w− case. MNLO includes

the two contributions: from the one-loop diagrams and from the tree graphs, as explained

in eq. (3.6). The tree graphs contributing to MNLO are displayed in figure 1 for γγ → zz

and in figure 3b for γγ → w+w−. Finally, the contributing one-loop diagrams are dis-

played in figure 2 for γγ → zz and in figure 4 for γγ → w+w−. Although, for shortness,

we report in the following on the total result for the sum of all the one-loop diagrams, i.e,

M1−loop(γγ → zz) =
∑10

i=1Mi(γγ → zz) and M1−loop(γγ → w+w−) =
∑39

i=1Mi(γγ →
w+w−), the individual analytical results for each diagram are also provided, for complete-

ness, in the appendix B.

Before presenting the final results, there are some subtleties/curiosities in the calcula-

tion of the loop diagrams that we find interesting to comment:

• The diagrams 5 and 7 in γγ → zz (figure 2) and 26 and 27 in γγ → w+w− (figure 4)

are always absent in the spherical parametrization of U(x), even off-shell, as there

is no vertex with one photon and four WBGBs in these coset coordinates. In the

exponential parametrization this difference is compensated by the diagrams which

contain vertices with four WBGBs (diagrams 1, 2 and 6 in figure 2 and 1, 2, 16, 28, 29,

30 and 31 in figure 4, in addition to some diagrams with one-point Feynman integrals

not plotted therein), which are different in spherical and exponential coordinates.

Nevertheless, in the Landau gauge considered here, where the WBGBs are massless,

the diagrams 5 and 7 in figure 2 and 26 and 27 in figure 4 happen to be zero in both

parametrizations of U(x). Likewise, diagrams 1, 2 and 6 in figure 2 and 1, 2, 16,

28, 29, 30 and 31 in figure 4 turn out to be respectively identical in the two coset

coordinates.

• In the Landau gauge, the diagrams 8 and 9 in γγ → zz (figure 2) and 28–35 in

γγ → w+w− (figure 4) are zero in both parametrizations, exponential and spherical.

• For the Landau gauge and for negligible Higgs mass, the diagrams 36–39 in γγ →
w+w− (figure 4) are zero in both parametrizations, exponential and spherical.

5.1 Analytical results for γγ → zz

The γγ scattering amplitude into a pair of neutral WBGBs is found to be zero at lowest

order in the chiral expansion i.e. at O(e2) (in agreement with [28] and also with the
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Figure 1. Single tree-level diagram contributing to γγ → zz at O
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)
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box stands for an interaction from L4 and the normal vertex is for one from L2.
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Figure 2. One-loop diagrams for γγ → zz.

analogous scattering amplitudes for the pions case [65, 70]):

M(γγ → zz)LO = 0 . (5.5)

At NLO, i.e at O
(

e2p2
)

one has one-loop and tree-level contributions to A(s, t, u) and

B(s, t, u), which depend only on the kinematical variable s at this order. After adding all

the contributions we find the following extremely simple result:

A(γγ → zz)NLO =
2acrγ
v2

+

(

a2 − 1
)

4π2v2
, (5.6)

B(γγ → zz)NLO = 0, (5.7)

where the term proportional to crγ comes from the tree-levelO
(

e2p2
)

contributions (figure 1)

and the term proportional to (a2 − 1) comes from the one-loop diagrams (figure 2).

Independent diagrams (e.g. diagram 6) are in general divergent. However, in dimensional

regularization, the final one-loop amplitude turns out to be UV finite when all the con-

tributions are put together. Therefore the L4 chiral parameter crγ does not need to be

renormalized to cancel the UV-divergences and, in consequence,

crγ = cγ . (5.8)

Notice also that by setting a = cγ = 0 in our formulas above we recover exactly the result

found in [28] for the case of Higgsless ECL, which in turn agreed with the analogous result

for the amplitude in the pions case [65, 70].
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Figure 3. Tree-level diagrams for γγ → w+w− at O(e2) (a) and O
(

e2p2
)

(b).

5.2 Analytical results for γγ → w+w−

At LO, i.e. at O(e2), the contributing diagrams are displayed in figure 3a. We find the

following result (in agreement with [28] and also with the analogous scattering amplitude

for the pions case [71]):

A(γγ → w+w−)LO = 2sB(γγ → w+w−)LO = −1

t
− 1

u
, (5.9)

where one can observe the contributions from the t and u-channel w+ exchanges.

For the NLO contributions, i.e., those of O
(

e2p2
)

, we obtain again an extremely simple

result after combining all the various tree-level (figure 3) and one-loop diagrams (figure 4)

(see the appendix B for the separate contributions from each diagram):

A
(

γγ → w+w−
)

NLO
=

8 (ar1 − ar2 + ar3)

v2
+

2acrγ
v2

+

(

a2 − 1
)

8π2v2
, (5.10)

B
(

γγ → w+w−
)

NLO
= 0. (5.11)

While B does not suffer corrections of O
(

e2p2
)

, one has that at this order there are

tree-level contributions to A and these are proportional to the combination of parameters

(a1 − a2 + a3) and to acγ . The total one-loop contribution is given by the term (a2 − 1)

in the right-hand side in eq. (5.10). Surprisingly, we find that again the one-loop UV

divergences exactly cancel out when all diagrams are put together and, in consequence, no

renormalization of the combination of L4 chiral parameters in (5.10) is required. Therefore,

from eqs. (5.10) and (5.11) and using eq. (5.8), we find:

(ar1 − ar2 + ar3) = (a1 − a2 + a3) . (5.12)

This result is highly non-trivial and comes after subtle cancelations of the various contribu-

tions. For instance, the box diagrams 14 and 15 yield a complicate Lorentz structure and

depend on the scalar two-point Feynman integrals B0(s, 0, 0), B0(t, 0, 0) and B0(u, 0, 0).
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Figure 4. One-loop diagrams for γγ → w+w−.
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See appendix B for more details. Finally, notice also that, as in the previous scattering

process, if we set a = cγ = 0 we recover exactly the result found in [28] for the case of

Higgsless ECL, which in turn agreed with the analogous result for the amplitude in the

pions case [71].

6 Discussion

First of all, we would like to remark again that our results for the one-loop scattering

amplitudes M(γγ → w+w−) and M(γγ → zz), presented in the previous sections, con-

verge to the corresponding results of the Higgsless ECL case in [28] if we set properly the

Higgs-like parameters, namely, if we set a = cγ = 0. In particular, it is interesting to

notice that the combination of EW chiral parameters ai that enters in γγ → w+w−, given

in eq. (5.12), which we have found to be renormalization group invariant, is the same in

both cases, the ECLh and ECL. This finding, apart of being a convenient check of our

computation, it is by itself a quite interesting result, since the dynamical Higgs boson is

contributing non-trivially in the loop diagrams of the present ECLh case and therefore it is

contributing to the renormalization of each of the ai’s. In contrast, the Higgs field is totaly

absent in the ECL case. The fact that we have found the same renormalization group

invariant combination (a1 − a2 + a3) for this scattering process in the ECLh case as in

the ECL could be just a coincidence for this particular case, or it could be a more general

result. In other words, one can wonder if there are other renormalization group invariant

combinations of the a′is that are common to the ECLh and ECL cases and if there is any

fundamental explanation for this. Obviously to give a complete answer to this question

one should compute the full one-loop action (in both the ECLh and the ECL) and set the

proper renormalization of all the parameters involved in these chiral Lagrangians, but this

is clearly beyond the scope of this work.

Secondly, we would like to point out some other interesting aspects that are suggested

by the simple final formulas that we have found in the ECLh case for the M(γγ → w+w−)

and M(γγ → zz) one-loop amplitudes. We believe that this simplicity of the final results

seems to be hinting some important underlying features in these ECLh models. A possible

explanation could be the existence of a more appropriate choice of the degrees of freedom

describing the WBGBs and the Higgs boson together in the massless Higgs limit, which

could point towards a larger symmetry, as it is indeed the case of the SO(5)/SO(4) model.

As commented above this massless Higgs limit is appropriate at high energies where the

Equivalence Theorem applies because of the phenomenological fact that the boson masses

are relatively light and close to each other, mh ∼ mW ∼ mZ ∼O(100GeV). For illustration

and comparison with the present ECLh case, in appendix C we have computed the one-

loop amplitude, for γγ → wawb scattering, in the context of the SO(5)/SO(4) model.

There it is shown that, by using an appropriate parametrization of the S4 coset relevant

for these models, which reduces the number of contributing one-loop diagrams drastically,

the computation can be greatly simplified and, indeed, we get the same result as we got

previously for M(γγ → zz)1−loop and M(γγ → w+w−)1−loop after a tedious calculation

and by setting the parameter a to the corresponding value in the SO(5)/SO(4) MCHM (see
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eq. (2.16)). In this way, we understand the simplicity of the results because the processes

considered here are independent of the b parameter at the one-loop level, thus making the

prediction of the SO(5)/SO(4) MCHM for the M(γγ → wawb)1−loop scattering amplitudes

to be a universal prediction.

Furthermore, in the computation of the previous section, one can see that the loop

suppression in the full amplitudes is actually stronger than that provided by naive dimen-

sional analysis, as we find strong cancellations between diagrams such that the suppression

of the loop contributions is not the usual in chiral Lagrangians, O
(

E2/(16π2v2)
)

, with

E2 = s, t, u, but rather O
(

(1− a2)E2/(16π2v2)
)

. This can be immediately understood

thanks to the computation in the SO(5)/SO(4) context (appendix C), where there are

just two contributing one-loop topologies (see figure 5) and each of them is suppressed by
(

E2/(16π2f2)
)

, with ΛECLh ∼ 4πf > 4πv the true characteristic cut-off scale of the ECLh.

Finally, motivated by a future phenomenological analysis of our results presented here,

we propose to study these scattering γγ → w+w− and γγ → zz processes together with

other observables that involve the same subset of chiral parameters, such that one can

perform in the future a global analysis of all these observables together, compare them with

data, and get useful information from this analysis on the values preferred by data for these

chiral parameters. With this purpose in mind, we have considered a set of four additional

observables: the h → γγ decay width, the EW precision S parameter, the γ∗ → w+w−

vector form-factor and the γ∗γ → h transition form-factor, whose detailed formulas are

collected in appendix D. As one can see in table 1, putting everything together, the whole

system of six observables is over-constrained. By means of these additional four appropriate

observables it is possible to fix the four relevant combinations of chiral parameters in the

considered amplitudes, for instance, a, crγ , a
r
1 and (ar2−ar3), and then predict from them the

remaining ones. Besides, we find that even though crγ and the combination (ar1−ar2+ar3) are

renormalization group invariant, if one looks into the separate contributions, the parameter

a1 and the combination (a2 − a3) need to be renormalized.

One can also learn from our study about the specific running of the involved chiral

parameters. Generically, the relation between a given renormalized chiral parameter Cr(µ)

and the corresponding bare parameter C(B) from the L4 Lagrangian (e.g. a1) is given by

Cr(µ) = C(B) +
ΓC

32π2

1

ǫ̂
, (6.1)

where we have performed theMS subtraction of the UV divergence 1/ǫ̂ defined in eq. (3.11),

with D = 4− 2ǫ. The running of the renormalized couplings are, in consequence, given by:

dCr

d lnµ
= − ΓC

16π2
. (6.2)

The relevant L4 parameters in our γγ → wawb analysis are C = a1, a2, a3, cγ and their

running is shown in table 2. One can see that crγ and the combination ar1 − ar2 + ar3 are

renormalization group invariant. The latter combination is renormalization group invari-

ant, as it happened in the case of the Higgsless Electroweak Chiral Lagrangian (ECL) [33].

This is also trivially true in the SM, where the cγ and the ai are absent. Indeed, since
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Observables Relevant combinations of parameters

from L2 from L4

M(γγ → zz) a crγ
M(γγ → w+w−) a (ar1 − ar2 + ar3) , c

r
γ

Γ(h → γγ) a crγ
S-parameter a ar1
Fγ∗ww a (ar2 − ar3)

Fγ∗γh — crγ

Table 1. Set of six observables studied in this article with the ECLh at one-loop and their cor-

responding relevant combinations of chiral parameters. The six of them can be given in terms of

the O(p2) chiral parameter a and three independent combinations of O(p4) parameters, crγ , a
r
1 and

(ar2 − ar3).

a = b = 1 for all the linear models where the Higgs is introduced through a complex doublet

Φ [46–48, 75], the renormalized couplings crγ , a
r
1 and the combination (ar2 − ar3) do not run

in those cases. Our result for the running of (ar2 − ar3) in table 2 also agrees with the QCD

determination for the analogous chiral parameter in ref. [74].

In addition, although they do not play any role in the present article, we have also in-

cluded for completeness in this table the running of ar4 and ar5. These two chiral parameters

enter in the W+W−, ZZ and hh scattering and therefore they will play a very relevant

role in the future analysis of LHC data at
√
s = 13TeV. Their running have been recently

determined in the one-loop analyses from refs. [39–43]. We have also included them, for

completeness, in the last two rows of table 2.

Regarding the second column in table 1, we wish to emphasize once again that the

parameters of the L2 Lagrangian (a in this case) do not get renormalized in dimensional

regularization, as it happens in Chiral Perturbation theory [14–16]: the loops arise always

at O(p4) or higher (O
(

e2p2
)

in the γγ → wawb scattering studied here) and operators of

that chiral dimension are then required to absorb the UV divergences. In our case, a and

v are the only relevant L2 parameters for the γγ → wawb scattering amplitude and the

related observables studied in this section.

Finally, we would like to mention that one could alternatively extract the running of the

L4 chiral parameters by computing the one-loop UV divergences in the ECLh path integral

by means of the heat-kernel method commonly used in Chiral Perturbation Theory [14–16].

However, this ambitious and interesting full computation, is clearly beyond the scope of

this work.

7 Conclusions

In this paper we have studied the γγ → W+
L W−

L and γγ → ZLZL scattering processes

within the effective chiral Lagrangian approach, including a light Higgs-like scalar as a

dynamical field together with the would-be-Goldstone bosons w± and z associated to the

electroweak symmetry breaking. We are proposing here the use of these processes as an

optimal tool to discern possible new physics related to the EWSB in the future collider
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ECLh ECL

(Higgsless)

Γa1−a2+a3 0 0

Γcγ 0 -

Γa1 −1
6

(

1− a2
)

−1
6

Γa2−a3 −1
6

(

1− a2
)

− 1
6

Γa4
1
6

(

1− a2
)2 1

6

Γa5
1
8

(

b− a2
)2

+ 1
12

(

1− a2
)2 1

12

Table 2. Running of the relevant ECLh parameters and their combinations appearing in the six

selected observables. For completeness, we also provide the running of ar4 and ar5 which participate

in ZZ and W+W− scattering [39–43]. The third column provides the corresponding running for

the Higgsless ECL case [33].

data. We have presented a full one-loop computation of the related amplitudes, by means

of the Equivalence Theorem, for the scattering processes γγ → w+w− and γγ → zz, which

provide a good description of the physical processes of interest here in the kinematic regime

mW,Z,h ≪ E ≪ 4πv.

The computation has been performed up to NLO, which in this chiral Lagrangian

context means taking into account all contributing one-loop diagrams generated from L2

in addition to the tree level contributions from both L2 and L4. That means that we have

computed for the first time the quantum effects introduced by the light Higgs-like scalar

and the would-be-Goldstone bosons w± and z altogether as dynamical fields in the loops

of these radiative processes. As part of this computation we have also set clearly here

the proper ‘chiral counting rules’ that are needed to reach a complete NLO result and we

have also illustrated the details of the renormalization procedure involved. For a further

check (this, highly non trivial) of our computation we have done the same exercise with

two different parametrizations of the SU(2)L × SU(2)R/SU(2)L+R coset, the exponential

and the spherical ones, and we have found the same results, as expected.

Our final analytical results, summarized in the equations from eq. (5.5) through

eq. (5.12), are surprisingly very short and extremely simple. The case of γγ → zz de-

pends just on a and cγ , and these ECLh parameters appear in the simple form given in

eq. (5.6). The case of γγ → w+w− depends on a, cγ , a1, a2 and a3, and they also enter in

a very simple way given in eq. (5.10). In our opinion, one of the most relevant features in

these simple results, is the fact that these two amplitudes are found to be given by ECLh

parameters or combinations of them that are renormalization group invariant. This is a

very interesting result and is a consequence of our findings in the computation of all the

one-loop diagrams from the ECLh that when added together yield a total contribution

that is ultraviolet finite, in both γγ → zz and γγ → w+w− cases. Specifically, we have

found our results in terms of a, cγ and the combination (a1 − a2 + a3) that do not get

renormalized, as it happens in the Higgs-less ECL case.
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It is also worth to remark that the one-loop contributions in our final results show up

in the form (1−a2)E2/(16π2v2). Since the present fits to LHC data [37, 38] suggest a value

of a close to one, these corrections are surprisingly suppressed with respect to the naively

expected E2/(16π2v2) contributions, typically occurring from chiral loops of chiral effective

field theories. We have tried to understand the origin of this suppression by redoing the

computation in the context of the SO(5)/SO(4) MCHM (appendix C), where we have found

just two contributing one-loop topologies. Each diagram was suppressed by E2/(16π2f2),

with f being the unique mass-dimension parameter of the MCHM L2 Lagrangian, being

related with a and b of the ECLh by v2/f2 = (1− a2) = (1− b)/2. This comparison with

the SO(5)/SO(4) MCHM therefore suggests the existence of a scale ΛECLh ∼ 4πf > 4πv

which is the true characteristic cut-off scale of the ECLh. We also believe that the origin of

the simplicity of our results could be relying on the custodial symmetry invariant structure

of the theory and an enlarged symmetry of the dynamical bosons sector (h, w±, z) that

arises in the relevant Lagrangian for γγ → wawb in the massless Higgs limit.

Finally, regarding the phenomenological relevance of our results, we have selected and

studied in this work a set of four additional related observables: the h → γγ decay width,

the EW precision S parameter, the γ∗ → w+w− vector form-factor and the γ∗γ → h

transition form-factor, that involve the same subset of chiral parameters as those studied

through these work, and whose detailed predictions are collected in tables 1, 2 and in

appendix D. Our proposal for a future phenomenological study is to perform a global

analysis of all these four observables together with the two scattering processes explored

here, γγ → w+w− and γγ → zz. From a future comparison with data, and since these set

of six observables provide an overconstrained system, one could extract the values preferred

by data for these involved chiral parameters. Consequently, this phenomenological analysis

could conclude on the most/least favorable scenarios for the EWSB.

Acknowledgments

A. Dobado would like to thank useful conversations with D. Espriu and F.J. Llanes-Estrada.

J.J. Sanz-Cillero thanks A. Pich for useful discussions on the power counting and pre-

vious results both in EW theories and QCD. This work is partially supported by the

European Union FP7 ITN INVISIBLES (Marie Curie Actions, PITN-GA-2011-289442),

by the CICYT through the projects FPA2012-31880, FPA2010-17747, CSD2007-00042

and FPA2011-27853-C02-01, by the CM (Comunidad Autonoma de Madrid) through the

project HEPHACOS S2009/ESP-1473, by the Spanish Consolider-Ingenio 2010 Programme

CPAN (CSD2007-00042) and by the Spanish MINECO’s “Centro de Excelencia Severo

Ochoa” Programme under grant SEV-2012-0249. The work of R.L. Delgado is supported

by the Spanish MINECO under grant BES-2012-056054.

– 24 –



J
H
E
P
0
7
(
2
0
1
4
)
1
4
9

A Feynman rules

In this appendix we present the Feynman rules of the ECLh in the two parametrizations,

exponential and spherical. We assume all momenta incoming.

A.1 Vertices from L2

Vertex Exponential Spherical
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Vertex Exponential Spherical

w−, p5

w+, p2 Aµ, p1

w+, p3

w−, p4

4ie

3v2
(p5µ + p4µ − p3µ − p2µ) 0

h, p3

Aν , p2

Aµ, p1

h, p4

w+, p5

w−, p6
4ibe2

v2
gµν

4ibe2

v2
gµν

A.2 Vertices from L4

Vertex Exponential Spherical

Aµ, p1

w+, p2

w−, p3

−
4ie(a3−a2)

v2

(

(p1p3)p2µ−(p1p2)p3µ

)

−
4ie(a3−a2)

v2

(

(p1p3)p2µ−(p1p2)p3µ

)

Aν , p2

Aµ, p1 w+, p3

w−, p4

8ie2a1

v2

(

(p1p2)gµν − p2µp1 ν

)

+
4ie2(a3 − a2)

v2

(

(p1 + p2)
2gµν

−(p1µ + p2µ)p1 ν

−p2µ(p1 ν + p2 ν)

)

8ie2a1

v2

(

(p1p2)gµν − p2µp1 ν

)

+
4ie2(a3 − a2)

v2

(

(p1 + p2)
2gµν

−(p1µ + p2µ)p1 ν

−p2µ(p1 ν + p2 ν)

)

Aν , p2

Aµ, p1

h, p3
2icγ
v

((p1p2)gµν−p2µp1 ν)
2icγ
v

((p1p2)gµν−p2µp1 ν)
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B Contribution from each diagram to the γγ → wawb amplitudes

B.1 γγ → zz scattering amplitude

In both the exponential and spherical parametrizations the non-vanishing diagrams in our

one-loop γ(k1, ǫ1)γ(k2, ǫ2) → z(p1)z(p2) computation yield

M1 = − ie2(sB0(s,0,0) (ǫ1ǫ2) + s (ǫ1ǫ2)− 2 (ǫ1k2) (ǫ2k1))

16π2v2
, (B.1)

M2 = − ie2(sB0(s,0,0) (ǫ1ǫ2) + s (ǫ1ǫ2)− 2 (ǫ1k2) (ǫ2k1))

16π2v2
, (B.2)

M3 = − ia2e2(B0(s,0,0) (ǫ1ǫ2) (t+ u) + 2 (ǫ1k2) (ǫ2k1) + (ǫ1ǫ2) (t+ u))

16π2v2
, (B.3)

M4 = − ia2e2(B0(s,0,0) (ǫ1ǫ2) (t+ u) + 2 (ǫ1k2) (ǫ2k1) + (ǫ1ǫ2) (t+ u))

16π2v2
, (B.4)

M6 =
ie2sB0(s,0,0) (ǫ1ǫ2)

8π2v2
, (B.5)

M10 = − ia2e2sB0(s,0,0) (ǫ1ǫ2)

8π2v2
, (B.6)

with the Mandelstam variables defined as usual, s = (p1 + p2)
2, t = (k1 − p1)

2 and u =

(k1 − p2)
2, the relevant momentum combination is defined as ∆µ ≡ pµ1 − pµ2 , and the ǫi’s

are the polarization vectors of the external photons. The vanishing of the diagrams 5,

7, 8 and 9 is implied by the fact that we work in the Landau gauge, the Higgs mass is

taken to be zero and the incoming photons are set on-shell. Furthermore, in the spherical

parametrization, the diagrams 5 and 7 are always absent as there is no γωωωω vertex in

these coordinates. In order to reach our final expression for the total amplitude we used

the on-shell kinematical condition s + t + u = 0. For the relevant massless Feynman

integral here we follow the notation

B0

(

q2, 0, 0
)

=

∫

ddk

iπ2

1

k2 (q − k)2
. (B.7)

We would like also to notice that the total result of the one-loop contributions to the

γγ → zz is in agreement with the recent result in ref. [74] within the QCD context for

γγ → π0π0 including both the pions and a light scalar singlet S1 when their masses mπ

and mS1
are set to zero and cγ = 0.

B.2 γγ → w+w− scattering amplitude

In both the exponential and spherical parametrizations the non-vanishing diagrams in our

one-loop γ(k1, ǫ1)γ(k2, ǫ2) → w+(p1)w
−(p2) computation yield

M1 = − ie2

144π2sv2

(

3B0(s,0,0)(t+ u)(− (ǫ1∆) (ǫ2k1) + (ǫ1k2) (ǫ2∆) + (ǫ1ǫ2) t (B.8)

+ 2 (ǫ1ǫ2)u) + 2 (ǫ1k2) ((ǫ2∆) (t+ u)

+ 3 (ǫ2k1) (t+ 2u)) + (t+ u)(−2 (ǫ1∆) (ǫ2k1) + 2 (ǫ1ǫ2) t+ 7 (ǫ1ǫ2)u)

)

,
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M2 = − ie2

144π2sv2

(

3B0(s,0,0)(t+ u)((ǫ1∆) (ǫ2k1)− (ǫ1k2) (ǫ2∆) + 2 (ǫ1ǫ2) t+ (ǫ1ǫ2)u)

− 2 (ǫ1k2) ((ǫ2∆) (t+ u)− 3 (ǫ2k1) (2t+ u)) + (t+ u)(2 (ǫ1∆) (ǫ2k1)

+ 7 (ǫ1ǫ2) t+ 2 (ǫ1ǫ2)u)

)

, (B.9)

M3 =
ia2e2

288π2v2

(

3B0(t,0,0)(2 (ǫ1ǫ2) t− 5((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1)))

+ (− (ǫ1∆) − (ǫ1k2))((ǫ2∆) − (ǫ2k1)) + 4 (ǫ1ǫ2) t

)

, (B.10)

M4 =
ia2e2

288π2v2

(

3B0(u,0,0)(2 (ǫ1ǫ2)u− 5((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1)))

− (ǫ1∆) ((ǫ2∆) + (ǫ2k1)) + (ǫ1k2) ((ǫ2∆) + (ǫ2k1)) + 4 (ǫ1ǫ2)u

)

, (B.11)

M5 =
ia2e2

288π2v2

(

3B0(u,0,0)(2 (ǫ1ǫ2)u− 5((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1)))

− (ǫ1∆) ((ǫ2∆) + (ǫ2k1)) + (ǫ1k2) ((ǫ2∆) + (ǫ2k1)) + 4 (ǫ1ǫ2)u

)

, (B.12)

M6 =
ia2e2

288π2v2

(

3B0(t,0,0)(2 (ǫ1ǫ2) t− 5((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1)))

+ (− (ǫ1∆) − (ǫ1k2))((ǫ2∆) − (ǫ2k1)) + 4 (ǫ1ǫ2) t

)

, (B.13)

M7 =
ia2e2sB0(s,0,0) (ǫ1ǫ2)

16π2v2
, (B.14)

M8 =
ia2e2B0(t,0,0)((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))

32π2v2
, (B.15)

M9 =
ia2e2B0(u,0,0)((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))

32π2v2
, (B.16)

M10 =
ia2e2B0(u,0,0)((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))

32π2v2
, (B.17)

M11 =
ia2e2B0(t,0,0)((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))

32π2v2
, (B.18)

M12 = − ia2e2(B0(s,0,0) (ǫ1ǫ2) (t+ u) + 2 (ǫ1k2) (ǫ2k1) + (ǫ1ǫ2) (t+ u))

16π2v2
, (B.19)

M13 = − ia2e2(B0(s,0,0) (ǫ1ǫ2) (t+ u) + 2 (ǫ1k2) (ǫ2k1) + (ǫ1ǫ2) (t+ u))

16π2v2
, (B.20)

M14 =
ia2e2(t+ u)

288π2s2v2

(

6(t+ u)(B0(s,0,0)((ǫ1∆) (ǫ2k1)− (ǫ1k2) (ǫ2∆) + 2 (ǫ1ǫ2) t

+ (ǫ1ǫ2)u) +B0(t,0,0)(((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))− (ǫ1ǫ2) t))

+ (ǫ1∆) ((ǫ2∆) + 3 (ǫ2k1))(t+ u) + (ǫ1k2) ((ǫ2k1) (23t+ 11u)

− 3 (ǫ2∆) (t+ u)) + 2 (ǫ1ǫ2) (5t+ 2u)(t+ u)

)

, (B.21)
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M15 =
ia2e2(t+ u)

288π2s2v2

(

6(t+ u)(B0(s,0,0)(− (ǫ1∆) (ǫ2k1) + (ǫ1k2) (ǫ2∆) + (ǫ1ǫ2) t

+ 2 (ǫ1ǫ2)u) +B0(u,0,0)(((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))− (ǫ1ǫ2)u))

+ (ǫ1∆) ((ǫ2∆) − 3 (ǫ2k1))(t+ u) + (ǫ1k2) (3 (ǫ2∆) (t+ u)

+ (ǫ2k1) (11t+ 23u)) + 2 (ǫ1ǫ2) (2t+ 5u)(t+ u)

)

, (B.22)

M16 =
ie2sB0(s,0,0) (ǫ1ǫ2)

16π2v2
, (B.23)

M17 =
ia2e2

288π2v2

(

6B0(t,0,0)(7((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))− (ǫ1ǫ2) t)

+ ((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))− 4 (ǫ1ǫ2) t

)

, (B.24)

M18 =
ia2e2

288π2v2

(

6B0(u,0,0)(7((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))− (ǫ1ǫ2)u)

+ ((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))− 4 (ǫ1ǫ2)u

)

, (B.25)

M19 = −3ia2e2B0(t,0,0)((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))

32π2v2
, (B.26)

M20 = −3ia2e2B0(u,0,0)((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))

32π2v2
, (B.27)

M21 = −3ia2e2B0(u,0,0)((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))

32π2v2
, (B.28)

M22 = −3ia2e2B0(t,0,0)((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))

32π2v2
, (B.29)

M23 = − ia2e2sB0(s,0,0) (ǫ1ǫ2)

8π2v2
, (B.30)

M24 =
ia2e2B0(t,0,0)((ǫ1∆) + (ǫ1k2))((ǫ2∆) − (ǫ2k1))

16π2v2
, (B.31)

M25 =
ia2e2B0(u,0,0)((ǫ1∆) − (ǫ1k2))((ǫ2∆) + (ǫ2k1))

16π2v2
, (B.32)

with s, t, u, ∆ and the ǫi’s defined as in the previous section. The remaining diagrams

are zero in both coset coordinates when we work in the Landau gauge, the Higgs mass is

taken to be zero and the incoming photons are set on-shell. Furthermore, in the spherical

parametrization, the diagrams 26 and 27 are always absent as there is no γωωωω vertex in

these coordinates. In order to reach our final expression for the total amplitude we used

the on-shell kinematical condition s+ t+ u = 0.

C One-loop γγ → zz and γγ → w+w− scattering in MCHM

This appendix is devoted to the computation of the one-loop amplitudes considered in

this work for the γγ → zz and γγ → w+w− processes in the context of the so called

SO(5)/SO(4) MCHM [6–9]. In this model it is assumed that some global symmetry break-

ing takes place at some scale 4πf > 4πv so that the group G = SO(5) is spontaneously
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broken to the subgroup H = SO(4). Therefore the corresponding Goldstone bosons (GBs)

live in the coset K = G/H = S4. These four GBs will be identified with the Higgs-like

boson h and the three WBGBs needed for giving masses to the W± and Z. The G group

contains also the subgroup H ′ = SO(4) = SU(2)L × SU(2)R in such a way that the gauge

group Hg = SU(2)L × U(1)Y is a subgroup of H ′. Notice however that H 6= H ′. In fact

G = SO(5) has many SO(4) subgroups which can be defined by giving a fixed five dimen-

sional vector belonging to the G fundamental representation which is invariant under the

action of the G subgroup. For example the H ′ group is defined by the invariant vector Φ′
0

and similarly H is defined by Φ0:

Φ′
0 = f















0

0

0

0

1















, Φ0 = f















0

0

0

s

c















, (C.1)

with s = sin θ, c = cos θ and θ being the misalignment angle. Thus the H ′ group acts only

on the first four components of any five dimensional Φ vector belonging to the G funda-

mental representation. The SU(2)L subgroup has generators T k
L = iMk

L/2 (k = 1, 2, 3):

M1
L =















0 0 0 − 0

0 0 − 0 0

0 + 0 0 0

+ 0 0 0 0

0 0 0 0 0















, M2
L =















0 0 + 0 0

0 0 0 − 0

− 0 0 0 0

0 + 0 0 0

0 0 0 0 0















,

M3
L =















0 − 0 0 0

+ 0 0 0 0

0 0 0 − 0

0 0 + 0 0

0 0 0 0 0















, (C.2)

and the U(1)Y is generated by the third SU(2)R generator which is given by T 3
R = iM3

R/2 =

iMY /2 with:

MY =















0 − 0 0 0

+ 0 0 0 0

0 0 0 + 0

0 0 − 0 0

0 0 0 0 0















. (C.3)

Clearly these generators fulfill [T i
L, T

j
L] = iǫijkT

k
L and [T k

L, TY ] = 0. The expressions for all

the SO(5) generators can be found in the appendices of refs. [6–9].

Now the low energy dynamics of the system can be described by the non-linear sigma

model (NLσM) given by the Lagrangian:

LMCHM
2 =

1

2
∂µΦ † ∂µΦ |S4 , (C.4)
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with the G fundamental representation vector parametrized as:

Φ =















ω1

ω2

ω3

cω4 + sχ

−sω4 + cχ















. (C.5)

The condition for Φ being in S4 is just ΦTΦ = f2 from which we can obtain the fifth

coordinate χ as a function of the first four ωα (α = 1, 2, 3, 4):

χ =

(

f2 −
∑

α

(ωα)2

)1/2

. (C.6)

Therefore we have the G/H = SO(5)/SO(4) = S4 NLσM Lagrangian:

LMCHM
2 (ωα) =

1

2
gαβ∂

µωα ∂µω
β (C.7)

with the S4 metric being given in our coordinates by:

gαβ = δαβ +
ωαωβ

f2 −∑α(ω
α)2

. (C.8)

Now we can introduce SU(2)L×U(1)Y gauge interactions by introducing the covariant

derivative:

Dµ = ∂µ − igT k
LW

k
µ − ig′TY Bµ (C.9)

where W k
µ and Bµ are the SU(2)L and U(1)Y gauge bosons respectively. The photon field

is then given as usual by

Aµ = sin θW W 3
µ + cos θW Bµ , (C.10)

with θW being the Weinberg angle: sin θW = g′/
√

g2 + g′2. Then, if we are interested only

in electromagnetic interactions the covariant derivative becomes:

Dµ = ∂µ − ie
(

T 3
L + TY

)

Aµ = ∂µ + eMQAµ (C.11)

where e = g sin θW = g′ cos θW is the electromagnetic coupling and T 3
L + TY = iMQ/2 is

the electromagnetic group U(1)EM generator given by:

MQ =















0 − 0 0 0

+ 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0















. (C.12)

Thus the photon field Aµ only couples to ω1 and ω2 or the complex combination:

ω± =
1√
2

(

ω1 ∓ iω2
)

(C.13)
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Γ
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+

Γ
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w
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w

w

2

a

b+

+

+

Γ

Γ

w

w

w

w

3

a

b

+

+

Figure 5. MCHM one-loop diagrams for γγ → wawb.

and by using this covariant derivative the U(1)EM gauge NLσM Lagrangian takes the form:

LMCHM
2 (ωα, γ) =

1

2
gαβ(ω)D

µωαDµω
β (C.14)

=
1

2
gαβ(ω) ∂

µωα ∂µω
β + ieAµ

(

ω−∂µω+ − ω+∂µω−
)

+ e2A2ω+ω−.

Thus the Higgsless electromagnetic interactions are exactly the same we found in this work

for the ECLh Lagrangian L2 in the spherical parametrization of the S3 coset, i.e., keeping

just the constant term F(0) in the function F(h) and dropping terms with Higgs fields.

Making the identification h = ω4 and ωa as in the main text for a = 1, 2, 3 (see section 4),

with ω2 =
∑

a(ω
a)2, the Lagrangian becomes

LMCHM
2 (ωα, γ) =

1

2
∂µωa ∂µω

a +
1

2
∂µh∂µh+

1

2

(

ω+∂µω
− + ω−∂µω

+ + ω0∂µω
0 + h∂µh

)2

f2 − ω2 − h2

+ ieAµ

(

ω−∂µω+ − ω+∂µω−
)

+ e2A2ω+ω−

=
1

2
∂µωa ∂µω

a +
1

2
∂µh∂µh+

1

2f2

(

ω+∂µω
− + ω−∂µω

+ + ω0∂µω
0 + h∂µh

)2

+ ieAµ

(

ω−∂µω+ − ω+∂µω−
)

+ e2A2ω+ω− + . . . (C.15)

where the dots stand for terms with six or more boson fields, irrelevant for the one-loop

calculation of the photon-photon scattering amplitudes.

Now the point is that for the computation of the one-loop γγ → zz and γγ → w+w−

amplitudes we can use the S4 gauged NLσM Lagrangian above which has a much simpler

structure than the ones used in the main text. Then according to [63, 64], where these

processes were considered in the framework of general SO(N+1)/SO(N) gauged NLσM for

low-energy QCD, the one-loop computation only involves the bubble and triangle diagrams

(figure 5) which are very easy to compute. The result is simply

A(s, t, u)γγ→zz = − 1

4π2f2
= −

(

1− a2
)

4π2v2
,

A(s, t, u)γγ→w+w−

= − 1

8π2f2
= −

(

1− a2
)

8π2v2
, (C.16)

where we have used the relation (1 − a2) = v2/f2 between f , v and a from SO(5)/SO(4)

MCHM [6–9].

If instead of using the Φ vector representation in eq. (C.4) for the SO(5)/SO(4) Gold-

stone bosons we employ the exponential parametrization in ref. [6–9] it is not difficult to
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check that LMHCM
2 has the same structure and produces the same one-loop photon-photon

amplitudes as the general ECLh Lagrangian L2 considered in the main text provided

a2 = cos2 θ = 1− v2

f2
, b = cos(2θ) = 1− 2

v2

f2
. (C.17)

That means that if we are interested only in processes which do not depend on the b

parameter appearing in F(h), the results obtained from the SO(5)/SO(4) MCHM are

universal (we only need to tune f and sin θ to get the required a parameter according to

the previous equation). This is in particular the case of the processes considered in this

work, γγ → w+w− and γγ → zz. However this is not the case for other kind of processes

as for example wawb → wcwd, wawb → hh or hh → hh considered in [42, 43].

D Related observables: S–parameter and other photon transitions

In this work we computed the γγ → zz and γγ → w+w− scattering amplitudes up to

NLO in the chiral expansion. It is not difficult to find other simple observables where the

bosonic contribution is determined by the same effective parameters. We remind the reader

that the fermionic contributions is not considered here. It must be eventually taken into

account in a realistic phenomenological analysis of the experimental data. In this appendix

we discuss six of these observables described in terms of four independent combinations of

couplings, a, ar1, (a
r
2 − ar3), c

r
γ (see table 1 for a summary).

γγ → zz and γγ → w+w− scattering amplitudes. These are the main results of

this work (eqs. (5.6)–(5.7) and (5.10)–(5.11)). The total one-loop amplitude has been found

here to be UV finite and the relevant O(p4) ECLh parameters involved in these processes

are found to be renormalization group invariant.

Γ(h → γγ). We have computed the one-loop bosonic contribution to the h(q) →
γ(k1, ǫ1)γ(k2, ǫ2) decay width from the ECLh. Under the same approximations consid-

ered in the text this is given by the amplitude (fermion loops are absent),

Mh→γγ =
ie2

v

(

m2
h(ǫ1ǫ2)− 2(k2ǫ1)(k1ǫ2)

)

[

crγ +
a

8π2

]

. (D.1)

If the fermionic contributions are dropped one has the following modification with respect

to the SM result,

Γ(h → γγ) = Γ(h → γγ)SM
[

a+ 8π2crγ
]2

, (D.2)

with Γ(h → γγ)SM =
α2m3

h

64π3v2
. Higher order terms in the m2

h/(16π
2v2) expansion have been

dropped in the latter and previous two equations. Likewise, we are just keeping the lowest

order in the g(
′) expansion (O(α) in eq. (D.1) and O(α2) in eq. (D.2)) and not including

higher order corrections (for v fixed). The total one-loop amplitude is found again to be

UV-finite and hence no renormalization is needed for the O(p4) ECLh parameter cγ . It is

then trivial to check that for a = 1 and crγ = 0 one recovers the SM result for α−2Γ(h → γγ)

in the limit g, g′ → 0 and without the fermion loop contributions [76].
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Oblique S-parameter. The first non-vanishing contribution appears at NLO. Likewise,

we find that the one-loop amplitude is UV-divergent and needs to be renormalized by means

of the ECLh parameter a1. In the MS scheme we find

S = −16πar1 +
(1− a2)

12π

(

5

6
+ ln

µ2

m2
h

)

, (D.3)

with ar1 being the renormalized coupling at the renormalization scale µ, and absorbing the

UV-divergences from the one-loop diagrams. In this expression, the oblique parameter is

defined with the reference value mRef
h set to the physical Higgs mass [29, 30]. Notice that

the NLO from the Higgsless ECL [27] is again recovered for a = 0. Likewise, we recover the

(1− a2) coefficient of the logarithm from the one-loop computation [44, 45] with a Chiral

Lagrangian including also vector and axial-vector resonances.

Electromagnetic vector form-factor (γ∗
→ w+w−). The electromagnetic transition

γ∗ → w+w− from a virtual photon with momentum qµ = pµ1 + pµ2 is described through the

matrix element

〈w+(p1)w
−(p2)| Jµ

EM |0 〉 = e (pµ1 − pµ2 )Fγ∗ww(q
2) . (D.4)

The electromagnetic vector form-factor (VFF) can be computed with the ECLh up to NLO.

We find

Fγ∗ww = 1 +
2q2(ar3 − ar2)

v2
+ (1− a2)

q2

96π2v2

(

8

3
− ln

−q2

µ2

)

, (D.5)

with the O(p4) chiral couplings given in the MS scheme at the scale µ and renormalizing

the one-loop UV-divergences.

Higgs transition form-factor (γ∗γ∗
→ h). An interesting observable in order to pin

down the hγγ coupling crγ is the Higgs transition form-factor (HTFF), which describes the

process γ∗(k1)γ
∗(k2) → h(p) [77–80]. This transition is given by the matrix element,

∫

d4xe−ik1x〈h(p)|T
{

Jµ
EM(x)Jν

EM(0)
}

|0 〉= ie2 [(k1k2)g
µν−kµ2k

ν
1 ]Fγ∗γ∗h

(

k21, k
2
2

)

, (D.6)

where in the case when one of the photons is on-shell we find that the O(p4) HTFF is

given by

Fγ∗γh(k
2, 0) = −2crγ , (D.7)

with no contribution present at O(p2) nor coming from loops at O(p4). Here again we

provide the result in the mh → 0 limit and higher correction of O(m2
h/(16π

2v2)) have

been dropped. Notice that this result does not correspond to the same kinematical regime

as Γ(h → γγ), since here we are considering m2
h ≪ k2 ≪ 16π2v2. The one-loop O(p4)

diagrams cancel out completely in this energy range and, therefore, there are no UV-

divergences and again cγ does not need to be renormalized.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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[68] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and

D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[69] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A

complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250

[arXiv:1310.1921] [INSPIRE].

[70] J. Bijnens, S. Dawson and G. Valencia, γγ → π0π0 and KL → π0γγ in the chiral quark

model, Phys. Rev. D 44 (1991) 3555 [INSPIRE].

[71] J. Bijnens and F. Cornet, Two Pion Production in Photon-Photon Collisions,

Nucl. Phys. B 296 (1988) 557 [INSPIRE].

[72] U. Burgi, Charged pion pair production and pion polarizabilities to two loops,

Nucl. Phys. B 479 (1996) 392 [hep-ph/9602429] [INSPIRE].

[73] U. Burgi, Charged pion polarizabilities to two loops, Phys. Lett. B 377 (1996) 147

[hep-ph/9602421] [INSPIRE].

[74] L. Ametller and P. Talavera, The lowest resonance in QCD from low-energy data,

arXiv:1402.2649 [INSPIRE].

– 39 –

http://dx.doi.org/10.1007/BF01496584
http://arxiv.org/abs/hep-ph/9403291
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9403291
http://dx.doi.org/10.1016/0370-2693(94)90772-2
http://arxiv.org/abs/hep-ph/9403283
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9403283
http://dx.doi.org/10.1016/0550-3213(95)90707-N
http://arxiv.org/abs/hep-ph/9405341
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9405341
http://dx.doi.org/10.1016/j.nuclphysb.2014.01.018
http://arxiv.org/abs/1307.5017
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5017
http://dx.doi.org/10.1016/j.physletb.2014.02.015
http://arxiv.org/abs/1312.5624
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5624
http://dx.doi.org/10.1103/PhysRevD.73.056001
http://arxiv.org/abs/hep-ph/0504277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504277
http://dx.doi.org/10.1007/JHEP07(2012)101
http://arxiv.org/abs/1203.6510
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6510
http://dx.doi.org/10.1016/0370-2693(95)01240-0
http://arxiv.org/abs/hep-ph/9511244
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9511244
http://dx.doi.org/10.1103/PhysRevD.52.2878
http://arxiv.org/abs/hep-ph/9407321
http://inspirehep.net/search?p=find+J+Phys.Rev.,D52,2878
http://dx.doi.org/10.1103/PhysRevD.37.2423
http://inspirehep.net/search?p=find+J+Phys.Rev.,D37,2423
http://dx.doi.org/10.1016/0010-4655(90)90001-H
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,60,165
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,140,418
http://dx.doi.org/10.1016/S0010-4655(98)00173-8
http://arxiv.org/abs/hep-ph/9807565
http://inspirehep.net/search?p=find+J+Comput.Phys.Commun.,118,153
http://dx.doi.org/10.1016/j.cpc.2014.04.012
http://arxiv.org/abs/1310.1921
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1921
http://dx.doi.org/10.1103/PhysRevD.44.3555
http://inspirehep.net/search?p=find+J+Phys.Rev.,D44,3555
http://dx.doi.org/10.1016/0550-3213(88)90032-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B296,557
http://dx.doi.org/10.1016/0550-3213(96)00454-3
http://arxiv.org/abs/hep-ph/9602429
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602429
http://dx.doi.org/10.1016/0370-2693(96)00304-8
http://arxiv.org/abs/hep-ph/9602421
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9602421
http://arxiv.org/abs/1402.2649
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2649


J
H
E
P
0
7
(
2
0
1
4
)
1
4
9

[75] G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light

Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

[76] A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the

minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

[77] N. Watanabe, Y. Kurihara, K. Sasaki and T. Uematsu, Higgs Production in Two-Photon

Process and Transition Form Factor, Phys. Lett. B 728 (2014) 202 [arXiv:1311.1601]

[INSPIRE].

[78] A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs Effective Lagrangian via

FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].

[79] G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via

h → V F decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].

[80] G. Isidori and M. Trott, Higgs form factors in Associated Production, JHEP 02 (2014) 082

[arXiv:1307.4051] [INSPIRE].

– 40 –

http://dx.doi.org/10.1088/1126-6708/2007/06/045
http://arxiv.org/abs/hep-ph/0703164
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703164
http://dx.doi.org/10.1016/j.physrep.2007.10.005
http://arxiv.org/abs/hep-ph/0503173
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503173
http://dx.doi.org/10.1016/j.physletb.2013.11.051
http://arxiv.org/abs/1311.1601
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1601
http://dx.doi.org/10.1007/JHEP04(2014)110
http://arxiv.org/abs/1310.5150
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5150
http://dx.doi.org/10.1016/j.physletb.2013.11.054
http://arxiv.org/abs/1305.0663
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0663
http://dx.doi.org/10.1007/JHEP02(2014)082
http://arxiv.org/abs/1307.4051
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4051

	Introduction
	The Electroweak Chiral Lagrangian with a light Higgs
	Electroweak chiral loops and renormalized ECLh parameters
	Coset parametrizations and relevant Feynman rules
	Analytical results for the one-loop gamma gamma –> w**a w**b scattering amplitudes 
	Analytical results for gamma gamma –> zz
	Analytical results for gamma gamma –> w**+ w**-

	Discussion
	Conclusions
	Feynman rules
	Vertices from L(2)
	Vertices from L(4)

	Contribution from each diagram to the gamma gamma –> w**a w**b amplitudes
	gamma gamma –> zz scattering amplitude
	gamma gamma –> w**+ w**- scattering amplitude

	One-loop gamma gamma –> zz and gamma gamma —> w**+ w**- scattering in MCHM
	Related observables: S–parameter and other photon transitions

