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1 Introduction

Holographic methods have proved to be enormously useful to gain intuition about certain
physical questions at strong coupling [1-3]. However, in most applications, attention has
focused on cases where the bulk gravitational dual is two derivative. In the AdS/CFT
dictionary, this corresponds to infinite 't Hooft coupling and an infinite number of colours.
In order to make possible contact with the real world, one needs to consider effects due
to finite 't Hooft coupling and a finite number of colours. In the best studied example
corresponding to the AV = 4 SU(N) supersymmetric Yang-Mills with the gravitational dual
being type IIB superstring theory on AdSsx S°, finite coupling corrections correspond to
specific higher derivative corrections in the low energy effective action of string theory.
In addition to these corrections, there are also non-local contributions, for example from
graviton loops. One essential step to take into account the contributions at finite coupling,
is to be able to compute the holographic stress tensor and its correlation functions for an
arbitrary higher derivative theory of gravity.

Calculating the holographic stress tensor itself from first principles [4, 5] appears to
be prohibitively difficult except for certain cases where the generalized Gibbons-Hawking
term and the counterterms are known. Since the generalized Gibbons-Hawking term is
not known for an arbitrary higher curvature theory, this stymies any progress using con-
ventional approaches — only some sporadic results for specific examples are known in the
literature [6-16]. Recently, a way around has been found using the first law of entanglement
pertaining to spherical entangling surfaces [17]. The way this works is as follows: the first
law of entanglement states that [18, 19]

AS = AH, (1.1)

where for two density matrices p, o with o = e /tr e being the reduced density matrix
for a spherical entangling surface in a CFT with H being the modular hamiltonian, AH =
(H), — (H)s and AS = S(p) — S(o) with S(p) = —tr plogp being the von Neumann
entropy for p and is the entanglement entropy for a reduced density matrix p. The equality
arises at linear order in perturbation, meaning that p,o belong to some family of density
matrices p parametrized by some perturbation parameter A such that o = p(A = 0),p =
p(N\) and we are interested only in linear order in A. At nonlinear order in A we get an
inequality which corresponds to the positivity of relative entropy, leading to AH > AS.
The expression for H (which will be given below) involves the time-time component of the
field theory stress tensor. In holography, for spherical entangling surface, the entanglement
entropy for the vacuum state across the sphere S%2 gets mapped to the thermal entropy
on R x H%!. Using the gravitational dual, the thermal entropy is computed using the
Wald entropy which is known for an arbitrary higher derivative theory of gravity. For
bifurcate Killing horizons, there is a theorem due to Iyer and Wald [20] which states that
linearized perturbations satisfy the first law of thermodynamics which translated to our
case means that eq. (1.1) would be applicable with linearized perturbations in the Wald
formula. Thus the Lh.s. of eq. (1.1) can be computed using the linearization of the Wald
formula. The r.h.s. of eq. (1.1) has the perturbation of the time-time component of the field



theory stress tensor which now can be determined. In order to be able to do the integral,
one approximates the entangling surface radius R to be small. Since the only dimensionless
parameter is R%(T, w), the perturbative expansion can be done either by treating R to be
small or by treating (7),,) to be small. Thus although the expression for the stress tensor
obtained using the above logic pertains to an excited state that is a small perturbation
from the vacuum state, the expression should hold for any (7),,). Since this can be done
for an arbitrary higher derivative theory, we thus know how to compute the holographic
stress tensor for such a bulk dual.

The result of this calculation is a very compact expression for the stress tensor in
terms of certain parameters appearing in the linearized expression of the Wald formula.
In particular, if one ignores covariant derivatives of the curvature tensor, the result can be
worked out quite simply. Writing the linearized Wald functional as

6E§l{bcd _ _62g<abgcd>h - 03h<abng> + c4g<abgcd>R + C5R<abgcd> + CGRade, (12)
where
5gab — _hab’ 5Rabcd — Rabcd’ h= gcdtha (13)
one finds that!?
(Tyw) = dL*3[ey +2(d — 2)cg] B, (1.4)

where hffll,) appears in the Fefferman-Graham expansion of the asymptotic AdS metric as

~,dz? 1
ds? = LQZ—Z + S50 + 292 4 20 + - )datda” (1.5)

ny v

L is the AdS radius. This begs the question: what is this simple proportionality
constant depending on ¢;’s in (1.4)? Since the linearized Wald functional was involved
in the derivation of this simple form, with hindsight we can anticipate that there are
simplifications waiting to happen if we consider rewriting the Lagrangian as a background
field expansion around a suitable background. Recently this background field method has
been used to find simple expressions for trace anomalies in even dimensions [21]. We will
make a simple modification to this method so that the anomaly calculation can be carried
out easily using Mathematica. Let us now explain why this method is useful in correlating
with the results above as well as calculating higher point correlation functions. Given a
Lagrangian E(g“b, Rpede, V f Rocde, -+ ), we are going to treat g, and Rgpeq as independent
variables. We are going to expand Rgpeq around Rgpeq = —é(gacgbd — GadJbe) Where ggp in
this expression is the full metric. Raising and lowering indices and the covariant derivative

is done using the full metric. Define ARypeqd = Raped — Rabed- Then on the AdS background
(g,(f,],) = 7)) this quantity is zero. Further if we linearize this then in the transverse traceless
gauge, it can be easily checked that (ARu)* = (AR)Y = 0. This is the reason why the

expressions we will compute for the stress tensor correlation functions will take on simple

Note that we are considering field theory in flat space.

2The normalization of AH is fixed by the definition of modular Hamiltonian in (1.1). On the r.h.s. the
normalization of AS is fixed by holography where we demand that the definition of S gives the correct
universal terms. This resolves any ambiguity in the definition of (7,,) in (1.4) by using hfff,) in (1.5).



forms. Let us start with E(gab, Rpede), i.e., no covariant derivatives (we will set the AdS
radius L = 1 from hereon and will reinstate it when needed). The Lagrangian after doing
the background field expansion takes the form

8
L= <c0 4 AR+ %ARz n %AR‘“’AR@ n ‘;—GARabchRabcd +3EAKi+ - ),
i=1
(1.6)
where cg = —2dcp and AK; = ]Ci|R—>(R—R)' Note that we are not treating c;’s perturba-
tively. This Lagrangian can be shown to lead to (1.2). The basis for the third order terms

is given by

Ki = (R*, R{RLR;, RR™ Rap, RR™ Rapea, R R Racha, Rap R*™ R o4,
RabcdRabef RCd@f) RabcdRaefcRbefd) ) (1 7)

We are not using an explicit overall factor of 1/ 262_1 with the action since all the coeflicients
in the action are assumed to implicitly have the factor. In order to compute n-point
functions we expand the bulk action up to n’th order in the perturbation. However,
since ARAS = 0, this means that we only need to retain up to O((AR)") terms in the
Lagrangian. Thus, the background field expanded Lagrangian is an expansion in terms
of the correlation functions of the stress tensor. Further simplifications happen. Consider
(AR)? or (ARy)?. Since the linearized AR and AR, both vanish, these terms can only
contribute to four-point functions onwards. Thus we do not expect ¢4 or ¢5 in eq. (1.6)
above to enter the one, two or three point functions. This is consistent with the absence
of these coefficients in eq. (1.4). Moreover, this conclusion does not change on including
covariant derivatives.

Let us now summarize our findings for the correlation functions that follow from the
Lagrangian in eq. (1.6). The stress tensor two point function takes the form

Cr
<Tab(m)Tcd(x/)> = mzab,cd(x - .’E/), (18)
where 1 1
Iab,cd(x) = §[Iab(x)jcd($) + Iad(l')lbc(x)] - 877ab770d7 (19)
and -
() =y — 272 (1.10)

The coefficient Cr from the d 4+ 1 dimensional bulk Lagrangian works out to be
Cr = fal¥ ey + 2(d — 2)cg], (1.11)

where L is the AdS radius and f; is constant d dependent factor given by [22]
_,d+1 Td+1]

= . 1.12
Ja=21"7 72T [d /2] (1.12)
Thus the holographic stress tensor in eq.(1.4) can be written as
d
<T,u1/> — EzdeThfle/) (113)



Further for even dimensional CFTs the coefficient Cr is related to a B-type anomaly co-
efficient as we will show. In particular, the A-type Euler anomaly coefficient is simply
proportional to ¢; while the B-type anomaly coefficient (conventionally called ¢ in 4d and
Bs in 6d) is proportional to Crp.

We use the method of background field expansion to calculate the three point functions
of stress tensor. Following the simple method devised in [23, 24] and used in [25, 26] we
perform the calculation of the three point function in a shockwave background and obtain
information about the three point function from the energy flux given by (these results are
for d > 4, for d = 3, the term proportional to t, is absent),

E gfez-knjnk 1 |e»-njnk\2 2

B (S _ T - 1.14

(e(n) =~ |1+t ( ey Ao 1) + ( ey E-1)| (1.14)

where,
did—1

tr= — I o 19(3d+ 4)e + 3(7d + 4)a)

(5] —+ 2(d — 2)66 (1 15)

6d(d®—1)(d+2) .. ‘

c1 + 2(d — 2)06

n is the unit normal in the direction in which energy flux is measured and ¢y and t4
are determined holographically. The coefficients t9, t4 and Cr are related to the three
independent coefficients appearing in the three point functions [27, 28].> Notice that for
d = 4, the ¢7, cg dependence in to and t4 are packaged in the same way, namely as 2¢7 — cg.
This is indicative of the fact that ¢, a,ts,t4 satisfy the relation (¢ —a)/c = t2/6 + 4t4/45.
This relation enables one to extract the 4d Euler anomaly a from the knowledge of two
and three point functions. In six (and higher) dimensions, there is no such relation (in
fact not even for a linear combination of the A-anomaly and the B-anomaly coefficients)
indicating the fact that a similar relation involving the Euler anomaly coefficient will also
involve higher point correlation functions.

We can easily extend the above results to the £(¢%, Ryege, V #Ryede) case, ie., to the
situation where there are at most two covariant derivatives of the curvature tensor in the
action. First notice that since the linearized ARy, and AR both vanish, only terms like
VARG VEAR™ will contribute to the two and three point functions while only terms
like AR. VAR VAR, will contribute to the three point functions. Further, we will show
that using the Bianchi identities and integration by parts [29], theV AR gpeq VAR
terms can be rewritten in terms of (AR, )? and VAR, V*ARY V,ARV®AR. Since the

3The relation between ts t4 and Cr and the CFT coefficients A, B and C are

Cr = %[(d— 1)(d + 2).A — 2B — 4(d + 1)C],
fy = 2d+1) (d=2)(d+2)(d+ A+ 3d*B —4d(2d + 1)C (1.16)
d (d—1)(d+2)A—2B—4(d+1)C ’ ‘
b= _d+1(d+2)(2d* —3d —3)A+2d°(d+2)B —4d(d + 1)(d +2)C
d (d—1)(d+2)A—2B—4(d+1)C '



last two terms do not contribute to two or three point functions, the result for the two
point functions will involve a redefined cg. We will explicitly show that the result for the
three point functions also follows a similar simple trend.

As an application for our methods we will compute the ratio of shear viscosity (n) to
entropy density (s) for a general four derivative bulk dual, without assuming the coupling
constants to be small (for earlier related work see [30-40]). Then following [25, 26|, we
will demand that —3 <t < 3 as well as Cp > 0, s > 0. These constraints were sufficient
in the Gauss-Bonnet case [23, 41, 42] to lead to n/s > %ﬁ R~ 0.64ﬁ. We will find that
in the general four derivative case, we can tune the couplings so that these conditions are
satisfied but n/s is arbitrarily small. This is of course due to the fact that the underlying
theory has non-unitary modes. We will also show that for the Weyl-squared theory, the
above constraints lead to /s > 12—172\/5% ~ 0.55& while including Weyl-cubed terms, the
same constraints lead to n/s > 0.17&. Both these theories will have non-unitary modes
supported near the horizon. It is interesting to note that there is still a bound on the ratio
in such theories.

The rest of the paper is organised as follows. In section (2.1) we give a brief review of
the calculations of [17]. In section (3.1) we calculate the holographic trace anomalies by
considering the background field expanded Lagrangian and also how various coefficients of
the Lagrangian in [17] are related to the Lagrangian we are considering. We then compute
the trace anomalies in d = 2,4,6 and show that the B-type anomalies are the coefficients
in the expression for the holographic stress tensor. In section (3.2) we extend the analysis
to Lagrangians containing covariant derivatives on the Riemann tensors and show how
the anomaly coefficients get modified. More specifically we show that c¢g in the B-type
anomaly coefficients can be replaced by an effective ¢j in presence of the VR terms in
the Lagrangian. In section (4) and section (5) we extend the analysis to calculating the
holographic two and three point functions of the stress tensor. We show that the coefficient
in the holographic one point function of the stress tensor is related to the coefficient of the
holographic two point functions of the stress tensor for arbitrary dimensions. Section (6)
presents one application of the method of background field expansion in the calculation
n/s. We present the calculations for Weyl-squared, Weyl cubed and general R? gravity
(appendix (E)). We also show that the bounds for n/s for these theories pertaining to the
physical constraints satisfied by the three point functions are much smaller that the KSS
bound [43-45]. We end with a discussion about open problems in section (7).

2 Stress tensor from first law of entanglement

In this section we review the derivation of the holographic stress tensor from the first law
of entanglement [18, 19] for (1.6) following [17]. The modular hamiltonian for a spherical
entangling region of radius R and centered around x = xg, is given by

—|x - Xo|?

R2
Hy = 27/ di 1 T XXl oy 2.1
) SR (T) (2.1)



and for any perturbation around the CFT vacuum we have

— |x — xol?

o7 5Ty . (2.2)

AHy = 277/ ddilsz
(R,x0)

As mentioned in [17], the entanglement entropy of the spherical entangling region in
the vacuum CFT is equal to the entropy of a thermal CFT on a hyperbolic cylinder with
the temperature set by the length scale of the hyperbolic spacetime. From the holographic
side the thermal entropy is given by the entropy of the hyperbolic black hole, which for
any classical higher derivative theory of gravity is evaluated using the Wald formula [20)]

GWald — _ /d”a\f n O s (2.3)

d

where £ is given in (1.6) and n is the unit binormal to the bifurcate Killing horizon #.
In general the Wald entropy functional differs from the enanglement entropy functional
by squares of the extrinsic curvature [46-53] but for the spherical entangling region these
terms vanish and SWald = Spp at the linear order in perturbations [17]. Further, the
perturbations of the vacuum CFT imply perturbations of the thermal CF'T since the per-
turbations of the vacuum AdS imply perturbations of each of the AdS-Rindler wedges for
the thermal state.*

Before proceeding we will specify the notations and conventions. Throughout we set
the AdS radius.® L =1 except where we explicitly restore it on dimensional grounds. R is
the radius of the entangling ball. In terms of the Poincaré coordinates, AdS spacetime is

given by,
dz? + nﬂydx“dx

ds® =
22

(2.4)

The spherical entangling region A in the vacuum CFT is associated with the hemispherical
region A in the black hole background given by A = {t = to, (2 — z})? + 22> = R?}
in Poincaré coordinates. These two different regions have the same boundary 0A in the
boundary CFT. Thus Sgg is equal to SWald evaluated on A. Similarly the perturbation
ASgg of the vacuum CFT is equal to 6SWV#4, For holographic CFTs the gravitational
version of §S4 = §E 4 is given by §58% = §E&rav = §SWald 3nd can be used to relate the
(T)) to the asymptotic form of the metric in the holographic side. In the limit of R — 0,

d(Ty(to,x)) can be replaced by its central value 6(T3(xo)) and we have using 6E4 = §S4,

21 .
OTi(an)) = 5o Jim ( 7aosiod). (25)

and repeating for arbitrary Lorentz frames we have

v d -1 a.
utu”§(T ) (z0)) = s Jl%ao (RdéSw 1d> . (2.6)

4This assumption is only valid at the leading order in perturbations. In the next order the hyperbolic
horizon changes due to the perturbations and we do not have the AdS-Rindler patch.
5Note that L is the length associated with the cosmological constant.



The variation of the Wald entropy around the hyperbolic black hole background for
an arbitrary higher derivative theory of gravity is given by

ssWald _ 5 <—27T / E;ﬁ{’cdeabncd> , (2.7)
A

where F%¢d is the Wald functional of the curvatures and their covariant derivatives, €qp is
the volume element and n.q = nln — nlin? is the binormal to the bifurcation surface B

respectively.

2.1 For L(g?, Redes)

Evaluated on an AdS background where Ruped = —(9acpd — Jadge), it can be shown (see
appendix A) that the Wald functional and its linear variation for (1.6) (without covariant
derivatives of curvature terms in the action) takes the simple form

E}z{bcd _ Clg<abgcd> ’ (28)
and,
6E§1%bcd _ —ng<abng>h o cgh(abgcd) + C4g<abgcd>R + C5R<abng> + CGRade, (29)

where all the coefficients are not independent but related by [17]
¢y = —2dey —c5, c3=2c1 — (d—1)c5 — 4eg (2.10)

and (,) implies that it has been properly (anti)symmetrized to have the properties of the
Riemann tensor. The linearized Reimann tensor is given by

1 1
Rabcd - i(vcvbhad - vdvbhac + vdvahbc - vcvahbcl) + i(Raecdhi + Rle)cdhae)' (211)

When 07}, is small and R — 0, the scaling analysis in [17] shows that at the leading order
we can neglect all the derivatives 0, in comparison to d,. Near the boundary, the metric
perturbations can be written as

B (2,2%) = 2272 h (22) + ... (2.12)

Using (2.11) the relevant components of the linearized Wald functional in (1.2) take the
form

6E§31),uzuz _ Ah‘ul/gzz + Bhguugzz7 5E§%1)MVPU — Chg(ﬂVgPU> + Dh<#l/gpo> , (213)

where the coefficients A, B,C, D are functions of the coefficients® in (1.6). Substitut-
ing (2.13) and (2.8) into (2.7), we get,

4 [4—3 A1z

‘Wald __ v
oS = R N Zd’_2 (Alhtt + AQ??“ h,ﬂ,) . (2.14)

5The explicit dependences of A, B,C and D on the coefficients c; ... cs are given in footnote 20 of [17].



After putting A = d in order to get a finite answer [17] we find

A1—2<A—Z> (d—2)R? + [Cl—D(d—2)+2A(d—1)} <W R2>,

2 2 d—1
b i (2.15)
Ay = (%+2B) R+ [021+2+(CQB)(d1)] v ?
Performing the integral in (2.14) and using (2.5) we have,
0Ty = ahgf) + ﬁﬁtth,(fl)“, (2.16)
where the coefficients are given as
a=d(—c1 +c3+ (d—1)es + 2dcg) , (2.17)

B=[-(d+2)c1 +2(d+ 1)ea +c3+2d(d+ 1)cg + (d+ 1)es — 2(d — 2)cq]
)

and hLdV has no z dependence. These can be generalized to an arbitrary Lorentz frame and
combined with the tracelessness and conservation equations h,(f]‘)“ = 0, 8“h(d)/“’ =0 we
have (1.4) as

STE™ = dL3[ey + 2(d — 2)cg| (). (2.18)

2.2 For E(gab, Rcdef, VaRbcde)

The above analysis can be extended to actions containing covariant derivatives on the
Riemann tensors. The most general term containing arbitrary covariant derivatives on the
curvature tensors is deferred for futute work; we consider here £(g%, Rege £ VgReder). The
background field expansion of the action at O((AR)?) is given by

Svr = / A gz edmnT g AR 1eaV A Ryrs. (2.19)
It can be shown (see appendix B) that the above action can be written as
S = / A2 /gl AR AR ypeq + d2ARPV? ARy, + d3ARVZAR]. (2.20)
Since V,gp. = 0, we can write
S = / A\ /gldi AR®INV2 R ypeq + deARPV? Ry, 4+ d3sARV?R). (2.21)
At the linear order in fluctuations using (2.11)

1 1 1 1 1
L c d 2 ed e

= 3 ah c 5 ha e~ ha — S Va h ’~ ae h hae 5
RE 2v A +2vbv d 2v b 2v A3 +2(R pah + Rihge) (2.2
REY = V*Vhy, — V2h — dh.

If we consider the transverse, traceless gauge V%hg, = 0, h% = 0, we have,

1
RE =0, and RL = — LD + d] Rab- (2.23)



We can see that V2R term will not contribute to the action. To see that (VQARbC)2 will
also not contribute to the action, we will first carry out the linearization of AR, which is

given by
ARL g = Rl — Rhg = RE g + (00 hoa + 950 hae — 95 e — 950 had) (2.24)
Contracting with ¢(0% we get,
L L 1
AR, =Ry, + (d—1)hge = _E[D + 2] hge - (2.25)

This term vanishes on using the lowest order equation of motion for hy,. Thus this term
does not contribute to the holographic stress tensor. For the remaining V, Rpcqe terms we
can use the Bianchi Identity as in [29] to put the final expression [see appendix (B)] in the
form (neglecting the total derivatives),

R*®V?Ryge = —4(VaRee)? + (VR)? — 4R“R°, I Rey — ARSRIR! + 2R R] Rycqe
+2R"R% T Ry pge + AR R Rocpe. (226)

The O(R3) terms in the expression are given by

Sps = —AR“R° ;S Rop —ARGRYRI +2R"% R] Ryoge+ 2R R, ) Rypae+AR" R,/ Rycye.
(2.27)
Doing a similar backgroound field expansion of the above terms we have at the second

order in the expansion,
O(AR?) = 4(d + 2)AR® ARy, — 4(AR)? — 2dARY I AR yyeq (2.28)

and at the first order there is no contribution O(AR) = 0. Hence, the coefficients that get
shifted are
Cﬁl 264—8d3, 0/5 :C5+8(d+2)d3, C% :Cﬁ—4d dg, (2.29)

while ¢; remains unchanged. Putting these values in the expression for §7}3,"", we have,
STE™ = dL73[c) + 2(d — 2)cf]hld) = dL¥[ey + 2(d — 2)(cs — 4d d3)]h{D).  (2.30)
We can also calculate the holographic stress tensor in (1.4) directly (see appendix (C)) and

show the shift in the coefficient cg explicitly.

3 Holographic trace anomalies

3.1 For L(g%, Reges)

We will now calculate the holographic trace anomalies [54, 55] for the Lagrangian in (1.6)
following a simple method advocated in appendix A of [56]. This method can be easily
implemented on a computer. Our results will be in agreement with [21] wherever we have
been able to compare our expressions. We outline the essential steps in the computation
of the anomalies.

~10 -



1. We will first choose a reference background for g();;. Since there is no restriction,
we can choose any reference background, convenient for the calculation. Note that
we can also use multiple reference background for g to determine all the anomaly
coeflicients.

2. The form of g(1);; is fixed by conformal invariance as [57]

1 R o)
9(yig = “i1_2 (R(O)ij - Q(d_l)g(o)ij> ) (3.1)

where Rg)s are constructed out of g(g) respectively.

3. We will keep g(g);; arbitrary. Some comments are in order. Demanding the coefficient
to g(2) to vanish in d = 4 in the Lagrangian enforces the condition co = —8¢;. This is
the same condition as obtained from the lowest order equations of motion. For d = 6
the relation between ¢p and ¢; is obtained by demanding that the coefficient of g3);;
vanishes. We put in g(y);; for consistency but in the end it does not play a role.

4. Plugging in the FG expansion in (1.5) into (1.6), we get

S = /dzdda:zdlw/—g(o)b(m,z), (3.2)

where b(z, z) = bo(x) + 22b1(z) + .... Next we extract the coefficient of 1/2 term in
the above term which we call Sj,.

5. The trace anomaly in d dimensions is given by

(T}) = bay2, (3.3)
where by, is the coefficient of 2% in the expansion for b(z, 2).

6. By matching the term S, with the expressions for (T}/) we can determine various
anomaly coefficients.

3.1.1 d=2

In d = 2 the S}, has only one anomaly term which is the Euler anomaly given by Fs = %R.
Evaluated on the manifold

ds® = gy drtdy! = 2dt? d—XQ 3.4
= 9(0)ij 0T 4T = U | X + X2 ) ()

the Fuler anomaly takes the form Fo = —ﬁ. The 1/p term in the action is given by
Sin = —c1. Equating this with the anomaly term A = = E» and finally putting u = 1, we
get

¢ =167 Lc;. (3.5)
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3.1.2 d=4

In d = 4 the S}, will contain a linear combination of the Weyl and the Euler anomalies

given by
Eq = R{§" Royavea — 4R {3y R(0)ab + Rl
abed ab 1 2 (36)
Iy = R0y  Ro)abea — 2R () R(0)ab + gR(o)a

where R(g)qpcq 18 constructed out of g(g)qp- The trace anomaly is given by

c a
T = Iy — ——=FE;4. .
(T) = Tom2 s~ 152 B (3.7)
We take g(g) as
i 2 1,2 dX2 v 2 2
g(0yijdr'dr’ = u (| —x dt* + el + ﬁ(dQ + do*), (3.8)
which is of the form AdS3 x Ss5. In this background the anomalies take the form
8 4(u —v)?
Ey=——, I1=——". 3.9
4 w4 3u2v? (3.9)

The coefficient of 1/z term in the action is

sin 0
Sin = TP (4ce(u — v)? + c1(u® + 4uv + v?)). (3.10)

Comparing Sy, and (T};) we get, after restoring the factors of Linaandc
a=nL%c;, ¢=n2L3(c1 + 4cg). (3.11)

The 4d holographic stress tensor in (1.4) can thus be written as

~ 4
(OTE™) = AL[e; + 4cg)hY) = 23 K. (3.12)

3.1.3 d=6

In d = 6 there are four anomaly coefficients [58, 59] of which three are called the B-type
anomalies which are the coefficients of the three Weyl anomalies and the other one is the
A-type which is the coefficient of the Euler term in 6d. The trace anomaly in 6d is given by

3

i=1
where the expressions for the anomalies are given by

Il — C«ijklC«i?rmjcfmnkl7
_[2 — C@] klckl mnCng]’

Ey = 38413 Eg = K1 — 12K2 + 3K3 + 16K, — 24K5 — 24K6 + 4K7 + 8Ks ,
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where the terms K;...Kg are given by (1.7). To determine the anomaly coefficients we
choose for 9(0) two manifolds AdSy x Sy and AdSs x Sy X Sy. In AdSy x S4 we have

51(u —v)3 39(u —v)3 36(19u + v)(u — v)? 144
[ _ o= Fg— —— (315
! 1004303 * 2 25u3p3 P 25u3v3 e uv?’ (3.15)
while in the AdSs x So x Sy background we have
3(51u® + 21u?v + 17uv? — 1703 3(39u? — 31u?v + 13uv? + 1303)
Il = — ; 12 = )
100u303 25u3v3 (3.16)
I — 12(11u? — 39u?v + 17uv? + 3v3) [ 48
T 25u3v3 P 0T T
Sin in the Adsy x S4 background takes the form,
9 9(u —v)? 9(u —v)?
S = =20 (e 4 8e) LT L 116y + 94eg + 10467 — 3465) 2L Y) (3.17)

8 4002 40003

where ¢7 and ¢ég are coefficients of the seventh and the eighth term in (1.7). Compar-
ing (3.17) and (3.13), we get

301

A="1
2

1 3
3 (8¢g + 1), 68B; —208B; + % + 30c6 + 31267 — 1023 = 0. (3.18)

T 128
Using AdSz x Sz x Sp for g(g) we get one more relation as,

36B; — 168y + 3¢1 + 10¢g + 248, — 545 = 0. (3.19)

We solve these two equations to get after restoring the factors of L,

-5 -
A:%cl, 33:122(806+Cl)7
=5 3c1 ¢ - =5 3c1 ¢ N (3.20)
2B =1L <_16_2+308>’ 2By =1L <—64+8+307>.
The holographic stress tensor in (1.4) can now be re-expressed as,
(OTE™) = 6L%[c1 + 8cg|hS) = 6LPB4h(S) (3.21)

where we define By = 128 Bs. The relation between the holographic stress tensor and the
asymptotic metric thus takes the form of (1.4) where Cp is related to the B-type anomaly
coefficient as

Cr = f4Bj. (3.22)

3.2 For £(g“b, Redefs VaRbede)

We will use the same Lagrangian (2.21) for the calculation of the holographic anomalies.
Here by a scaling argument as in [21] it is easy to show that the action with two covariant
derivatives acting on two Riemann tensors, will take on the form as in (2.21). In the
presence of the VR terms in the action, the central charges of the higher derivative theories
get modified accordingly.
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3.2.1 d=4

The additional contribution to the .Sj, is

16d3 sin 0(u — v)?
S@im =~ o , (3.23)

which combined with the remaining terms give

Sin == i;;i [(4cg — 64d3)(u — v)? + c1(u? + duv + v?)]. (3.24)

Comparing these expressions with the usual formula for the anomaly term we get the
anomaly coefficients, as

a=n?L3;, c¢=n?L34cs+ c1 — 64d3). (3.25)

We can say that ¢ = ¢ — 16d3 and hence the holographic stress tensor of (1.4) becomes

- 4
(OTE) = AL[ey + 4c]h(l) = F23° ) (3.26)

as before for 4d.

3.2.2 d=6
In 6d the additional contribution to S, due to the (VR)? terms in AdSy x Sy is,

108(7u + 3v)(u — v)?
Stayn = = 25u2v0*

ds. (3.27)

Comparing the total contribution to the coefficient of 1/z term with the expression for
(T}) for AdSy x Sy and AdSs x S x Sy we get, after restoring the factors of L,

3L° L’
A= 701, Bg == @(Cl + 806 - 192d3),
3c c 3¢ c (3.28)
N LS S S (R ST RV P
231 =L ( 16 9 + 368 + 24d3> ) 232 L < 64 + S + 307 6d3>

where ¢ = ¢g — 4dds. The holographic stress tensor in (1.4) can now be written as
STE™ = 6L3[c; + 8c]h(S) = 6L3BLAE) (3.29)

for the 6d case where as before we define Bf = 128 Bs.

4 Holographic two point function for higher derivative theories in arbi-
trary dimensions

In this section we will show that the coefficient in the expression for the holographic
stress tensor is related to the coefficient in the holographic two point function in arbi-
trary dimensions for any higher derivative theory whose bulk Lagrangian is of the form
L(g%, Ryede, VaRpede). In even dimensions the coefficient of the holographic two point
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function is related to the coefficient of the two point function in field theory which is pro-
portional to the B-type anomaly coefficient [27, 28] (our results in six dimensions are new).
The details of the calculation from the field theory side are done in appendix (D). In
odd dimensions there is no anomaly. We will show that the coefficient appearing in the
expression of the holographic stress tensor is related to the coefficient of the holographic
two point functions in arbitrary dimensions.

As previously, we will consider the action,
S = / Az /g [co + @ AR+ %ARZ n %AR‘”’ARab + %AR“MARGM . ()

where ¢y = —2dc;. The advantage of using the above action for the computation of the
two point function is that the result is then valid for any arbirary higher derivative theory
of gravity of the form £(g®, Rpede, VaRpede) With cg replaced by ¢ as argued previously.
To compute the two point function it is sufficient to keep upto O(AR)? terms only since
as we are expanding when we expand around the AdS background, O(AR)?3 terms will
start at order O(h3). To compute the two point functions we will follow the arguments
of [25, 26] where it is shown that to calculate the two point functions it is sufficient to
look at components like (T},T%,) since the other structures are completely determined
by symmetry. Following [25, 26]we turn on a component 72hg,(r,2)/L? of the metric
perturbations. The quadratic action for the fluctuation of the above form for our case is
given by
S = / A 2 [K16% + Ko (0.0)* + K302¢% + K49200,¢ + K5(0,0)* + Ko(9,0.0)*

+K707002¢ + K50, 007 + Ko(079)” + K10002¢ + K1190,6 + K12007 9. (4.2)
The last term can be integrated by parts to obtain
K19¢09%¢ = 0,(K1200,¢) — K12(0,0)? — 0, K1260,¢, (4.3)

where we have assumed that there exists a generalized Gibbons-Hawking term which takes
care of the total derivatives. We will consider the scalar field to be

¢(r,z) = pp(r)e ™. (4.4)

Taking the Fourier transform of the action, after the integration by parts of the last term,
we have

1 . 1 i o
A =[diHE [f(1¢k¢k+K2k2¢k¢k+K3k4¢k¢k_2K4k2¢k¢k_2K4k2¢k¢k+K5¢k¢k
o 1 . 1 ) 1 o 1. . .
+ Kek*rd_1, — §K7k2¢k¢—k + iar(K7k2¢k)¢—k - §8T(K8¢k)d)—k - §K8¢k:¢—k:

— 0 (Kodr) i —K1ok2¢k¢—k+%K11¢k¢5—k+ %K11¢—k¢k — K12b1¢—1— K12016—k |
(4.5)
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where " denotes derivative with respect to r. The terms K; are given by

Ky =deir®!, Ky = ;clrd_3, K3 = (%5 + 66) rd=5 K, = %[(d + s + 466]rd_2,
K5 = 2[601 + (d+1)%c5 +4(d + T)eg|r?tt, K¢ =2cer®™t, K= %C{,T’d_l,
Kg = %[(d + 1)es + 12¢6]r92, Ky = %(05 + 4cg)rdt3, Ko = 210073,
K1 =2(d+ 2)clrd, Kig = 2¢179F T,
(4.6)
After integration by parts the above action can be written as a boundary term”
OA = —%K4k2¢k¢—k + Ksdnp—k + Kek>drd_r, + %ar(K7k’2¢k:)¢—k - %K%.bkﬁb—k (4.7)

— 8T(K9(5k)¢7k - K12¢Ek¢fk )

where again "denotes derivative with respect to . The solution to (0+2)h,, = 0 still solves
the higher derivative equations.® The solution is given by (restoring the AdS radius L)

2LA4| k|42 L2|k
Pr(r) = did/yg K < J |> : (4.8)

where K /5 is the modified Bessel function of the second kind. The normalization constant

is obtained by imposing the condition that ¢p(r = oo) = 1 and d is the field theory
dimension. By plugging this solution back into the surface term 0A and extracting the
coefficient of k% term in the resulting expression, we get, for AdSqy,/CFTy after restoring

the factors of ¢,
d Iab,cd<x — ac’)

/ —_ _—
<Tab($)Tcd(x )> = f/2CT |$ — l‘/‘Qd N (49)
where the coefficient Cr is given by
Cr = fal* er + 2(d — 2)cq), (4.10)
where f; is the constant factor given by
d+1 T[d+1]
=2 . 4.11
Ja=2077 md/2T[d/2] (4.11)
Thus the expression for (7%"") in (1.4) becomes,
d
gravy __ (d)
(TH™) = —deQCThMV . (4.12)

Note that while we have assumed the existence of a suitable generalized Gibbons-Hawking
term we have not used counterterms involving boundary curvature tensors in our calcu-
lations. We have explicitly checked, the addition of such counterterms will not alter our
findings.

"We have assumed that the volume counterterm gets rid of ¢xp_i terms as in [22, 61].
8See e.g. [60], alternatively we just assume that there is a massless graviton which by definition solves
this equation.
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5 Three point functions

The fact that we were able to get the one point and two point functions from the background
field expansion seems to suggest that the analysis can be extended to the calculation of 3-
point functions using the same technique. We will carry out the analysis first by considering
a higher derivative Lagrangian of the form £(g®, ARupq) and then extending the analysis
to the case where £(9%°, ARuped; VaARpeqe).-

Direct holographic calculation of the three point functions are involved and challenging.
We will follow the alternative route to derivation of the three point functions following the
analysis of [23] and used in [23, 25, 26, 62-65]. The energy flux associated with a localized
perturbation of fixed energy eijTij , where €;; is the polarization tensor, in the d(> 3)
dimensional CFT background is given by

* ik i k|2
eepn’n 1 €I n”| 2
14+t | 2 - t Y - . 5.1
T2 < e;-‘jeij d— 1> th ( ejjeij d2 —1 (5.1)

Here E is the total energy flux, n is the outward normal in the direction in which the

E
d—2

(e(n)) =

flux is measured and ,_ is the volume of a unit S9! sphere. The coefficients to and t4
are determined holographically in the following way. From the holographic side we insert
graviton perturbations h,, dual to the energy insertion in the field theory and evaluate
the on-shell cubic term in the higher derivative Lagrangian corresponding to these graviton
insertions. Following [23, 25, 26], we consider the shockwave background with perturbations
in d dimensions:

ds?, = L

sw

?[6(y+)W(yﬂ w)(dy)? — dytdy™ + di® + du®] + hijdz'da? (5.2)

where 3% = Zf:_g y? and d is the dimension of the field theory. The function W (¥, u) is

given by

2d—1 ud

WG = (1 +na—1)"t (u2 4 (g — Y)2)d-1 53
where ng_1 is the (d — 1)th component of the normal vector given by
ng—1 = (1— n?)%, and Y' = 1+n;d_1. (5.4)
W satisfies the following equation in any higher derivative theory of gravity [66],
d—1 d—2
2w — ——0.W + » onw =o. (5.5)
i=1

The transverse traceless gauge brings down the number of independent components of the
perturbations. In d dimensions we can consider the perturbation of the form hyi,. =
L2 u¢ (¥, u), while h = 0 = V#h,,, relates the other components as

1 1 1
3_hy+y1 = iayzhylzﬁ R 8_hy+y2 = iaylhy1y2 , 8_hy+y+ = Z(ayl hy+y1 + 8y2hy+y2). (5.6)
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It is sufficient to turn on these components only for general d(> 3) dimensions. The
component 1,2 satisfies the lowest order equation of motion for a scalar field in the
AdSg4y1 background given by,

d—2
d—1
Ond = ——0ub+ Y0y — 40,06 = 0. (5.7)

=0

5.1 L£(9%, Redef)

Using the equation of motion for ¢ and W we can evaluate the on-shell cubic effective

action to get the most general form in d(> 3) dimensions as’
1 - -
LS’I(/I?;)(Z52 =-1 / A/ —gpd* ¢ [2(01 +2(d — 2)c)W — 2u(2¢e — 12dé7 + 3(3d — 4)ég) 0, W
d—1
— 240 (267 — &8) Y 07 5 W + u(2c — 12(8 — d)&r + 3(12 — d)&s) (W + W)
i>2

d—1 d—1
— 24uP (267 — ) | Y070 —u_ 0707W }
=1

i>j

u=1,y1=0,y2=0 ‘
(5.8)

Note that the integral localizes on v = 1,y; = 0,52 = 0 [23-26]. As a result we do
not have to worry about boundary terms like the generalized Gibbons-Hawking term or
the boundary counterterms in this calculation. Comparing with the standard form given
in [25, 26],

(3) Cr

e d+1 — 2
Syyge = A /d x/—g $0Zd W1 + toTo + t4Ty], (5.9)

and T> and T} are given by

n? +n3 1 2

T, = A" Ty =2n2n3 — ——— 1

2 2 d—1 AT A T e (5.10)
while the coefficients t,t4 are given by,'”

d(d—1) N _ 6d(d®> —1)(d+2) .. .
tg = ———————1[2¢c6 — 12(3d + 4 3(7d + 4 ty = 267 — Cg).
2T+ 2(d — 2)06[ “ (8d+4)er +3(Td + 4)5), - ta c1+2(d —2)cg (287 — &)
(5.11)

This is the expected result for cubic Lovelock theory [62-65] where 2¢; = ég and hence ¢4 =
0. We have also checked that our general expressions are in agreement with [25, 26, 67, 68].

9To reach this simple form, we need to integrate by parts and use the on-shell conditions multiple number
of times.

107f we set W = 1 then we would be left with just the two point function which would be proportional
to Cr as expected.
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5.2 E(gab, Rcdef’ VaRdee)

We now extend the analysis of the previous section to higher curvature theories containing
covariant derivatives of the Riemann tensor. In section (2.2) we have shown how the
presence of the V2ZAR? terms modify the coefficient c¢g — ¢g = c6 — 4ddsz. In addition the
cubic order coefficients are modified as

57—>5/7=57—d3 Es—)E/SZES—i-Zldg, 52—)5’2252—4613,

5.12
55—)5’5:55+4d3, 66—>5,6:56—|—2d3. ( )

Thus ¢; and ¢ in (5.11) will be replaced by ¢, and & respectively. In this section we
will consider additional terms like VZAR3 terms in the action (1.6). For VVAR? terms,
since the linearized Ricci tensor and scalar curvature vanishes by using the tracelessness
condition and the lowest order equation of motion satisfied by hgp, as shown in section (2.2),
the terms which contribute to the three point functions are

S3 = e1R% R, V2R | + eaR%Y R VPR, (5.13)
To show that these are the only tensor structures that contribute to the three point func-
tions, consider the first term which can be shown to be,

R R VRV =V, (AR® AR VTARY ) — 2V,,ARY, V" ARY | AR
(5.14)
where the overall factor of 2 comes because of V acting on any term other than VAR are
equivalent. Similarly it can be shown for the second term as well.
These terms have additional contribution to the coefficients to and t4 but Cr remains
unaffected. The coefficients ¢; and & in (5.11) are replaced by their effective values as,

_ ) 6d(d2 — 1)(d +2)
2ck — 12(3d + 4)& d+4)E], ta =
[ Ce (3 + )67 + 3(7 + )08]7 4 c1 + 2(d — 2)6%

d(d—1) 1~
ty = ot 2d-2)d (2¢7 — &) ,
(5.15)
where & = & + 2dey and ¢ = & + 2des.

We mention here that although we leave the analysis for the general V... VAR ... AR
terms for future work, we feel that this pattern will continue to persist so that the V
terms in the action (1.6) will modify the coefficients appearing in the two and the three
point functions and the form of Cr, t2, and t4 will remain the same as in (5.11) with the

coeflicients being replaced by similar shifted ones as discussed above.

6 Application: n/s for higher derivative theories

As an application of the background field expansion method, we calculate the ratio of the
shear viscosity and entropy density [43-45] for higher derivative theories [30—40]. This can
be done in arbitrary dimensions but for simplicity, we will illustrate for the d = 4 plasma.
Following [69]'! we will use the pole method to calculate the shear viscosity where only

HSee also [70].
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the near horizon data is important. Following [69] we write the black hole metric as

L? dz? 7“(2)

2 _
= a0 " L2(1 - 2)

[—f(2)dt* + (dzy + (t)dxo)? + dxd + dx2].  (6.1)

To compute the shear viscosity and the entropy density we need to construct the horizon
perturbatively by solving the equations of motion for the higher derivative action order by
order in coordinate distance from the horizon but exactly in the couplings. The solution
can be written as

f(2) =22+ for? + f322 + ..., (6.2)

where fo and f3 are functions of the coefficients appearing in the action. The factor of 2
fixes the temperature with a particular normalization as

7o
T=—. 6.3
wL? (6:3)

To compute the shear viscosity we have to plug in a perturbation h;, and compute the
retarded Green’s function

G%y,a:y(w) _ —l/9<t) <Txy(t>Ta:y(0)>efiwt’ (64)
and finally
I TY,TY
n = lim M (6.5)
w—0 w

We plug in the perturbation corresponding to the shear mode at zero momentum corre-
sponding to the change of basis

dry — dx1 + ¢(t)dxs. (6.6)

Plugging this into the action (1.6), we get

Sgz = /d5w(A1¢ZJ¢'w + A2 8”,), (6.7)

where A; and Ay are function of the coefficients in the action (1.6). Following [25, 26, 69],
we apply the pole method for any general action of the form

Sy = / dludzL (0.6, 016), (6.8)
using which
ReSZ: 5(2_) W
n = —8xT lim # (6.9)
w—0 w

Putting in ¢(t) = e~ we thus extract the coefficient of 1/ term and expanding upto
quadratic orders in w, we finally get,

n=r3(A1+ Bifa + C1f3 + Csfs), (6.10)
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where the coefficients A;, By, Cq and Cj5 are functions of the coefficients in (1.6). Similarly
the entropy density for the higher derivative action is computed using the Wald formula
and takes on the form

s = 47TT8’(A2 + B fs + 02f22). (6.11)

Note that in the above expressions for both 7 and s, we have set the AdS radius L = 1. The
deviation of the n/s ratio from the KSS bound [43-45] for the action (1.6) corresponding
to the case when t4 = 0 and in the absence of O((AR)3) terms is simply given by

1
(77 - ) s = —2cgrd. (6.12)

s Arm

The explicit form of 7 and s are given in the appendix (E) for a general R? theory
where it is shown that for particular values of the coupling constants of the general R?
theory, the ratio can be driven to zero. As another example we quote the results for the
W3 gravity below where the lower bound for 7/s is much lower than the KSS bound.

Example: W3 theory. In [25, 26], a specific six derivative theory was considered which
led to equations of motion for fluctuations which were second order in radial derivatives.
The motivation was to consider putting bounds on 7/s using the positive energy constraints
as well as comparing these with the causality constraints. It was found that the positive
energy constraints bounded the couplings and led to (1/8)min = 0.414/47. In light of our
general analysis, we will consider the following six derivative Lagrangian [23] which also
leads to t4 # 0 and we will put bounds on the couplings. [23] had already considered this
action perturbatively in the couplings:

12

L? .
R+ 7t 7AW2 + L3 | (6.13)

S = /d%\/g

where W2 = ClpoqC?% and W3 = Cgé’C’gjfleg with Cypeq being the Weyl tensor. If we
expand this action around the AdS background to get (1.6), then the coefficients of (1.6)

for this action are given by ¢y = —8c1,¢c1 = 1, ¢4 = %, 5 = —%, cg = A\, C] = %,62 =
—Ap,is =Y, e = G & = 1, & = 4,8 = p and & = 0. Note that for W? gravity
foo =1 and L = 1. The coefficients Cr, to and t4 take the form
24(X —96p) 43204
Cr=2(1+4)\ tg= —————~ = . 6.14
T ( + )7 2 1_1_4)\ 5 4 1_1_4)\ ( )

Using the constraints for t2 and ¢4 listed in [25, 26], we find that A and p are bounded (see
figure 1). The shear viscosity and the entropy density for this action takes the form
3

n="2[3 = 6(1+2f2)A — 16(7 — 40f2 + 163 + 36f3)1), .
6.15
5= 27;"3[3 +6(1 — 2f2)A + 16(1 — 2f2)24]

where f3 is given in terms of fy by,

_270—64p+ 18\ + f2(216— 171X +6561) — 6 f3(9— 42X\ +3044) +4 3 (IN+3681) +128 f 11
B 36(-9—6(1—2f2)A+16(1—2f2)u) '

3
(6.16)
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A

Figure 1. A vs p plot. The horizontal line corresponds to p = 0. (1/8)min = 0.55/4w for p =0
and (1/8)min = 0.17/47 for p # 0.

where fo satisfies
64(1 — 2f2)% 1+ 36(6(1 + f2) — A+ 4(1 — f2)f2A) = 0. (6.17)

This equation has three roots and we will choose the correct root as the one which for the
Einstein case goes to fo = —1. Substituting for the Einstein value of fs we also get that
f3 =0 in the Einstein limit. We present the bounds on A and y in figure(1) obtained from
the causality constraints given by [25, 26],

1 2
Tensor: 1 — th — —t4 >0,

15
1 2
Vector: 1 + —to — —1t4, >0 6.18
ector +62 154_, ( )
Scal 1+1t+8t >0
calar: — —_— .
327154

The minimum values of /s for u # 0 lie close to the uppermost vertex of the triangle.
For Weyl squared gravity u = 0 and constraints give —1/12 < A < 1/4. This is presented
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as a single line interval in the A — p plot. The minimum value of /s corresponds to
A =1/4 and p = 0 which is at the extreme right end of the interval. The minimum value
of /s for the W3 gravity is given by

0.17

~— 6.19
- (619)

» |3

for A\=1/2, and p = 1/192 which is the uppermost vertex of the triangle. For u =0, i.e.,
for Weyl squared gravity the minimum value of the ratio is /s ~ 0.55 /4.

Thus even though (¢) > 0 for general R? theory, the 1/s ratio can be driven to zero
as we show in appendix (E). Further for W? theory we can see that the bound goes
down to about 55% of the KSS value whereas for W2 + W3 theory it is 17% of the KSS
bound. There are non-unitary modes in this theory. So it appears that unitarity is not a
prerequisite for a bound. As in [25, 26], there could be potential plasma instabilities and
it may be interesting to analyse these.

7 Discussion

In this paper we have computed one, two and three point functions for a general gravity
Lagrangian of the form £(g%, Reqe £, VaRpede). We explained that the coefficient appearing
as the proportionality between the renormalized stress tensor and the bulk metric is related
to Cr, the coefficient appearing in the two point function of stress tensors. Further we saw
how this relates to B-type anomaly coefficients in even dimensions. We also computed
three point functions for bulk Lagrangians of the above form in arbitrary dimensions.
Our general form of the action given in eq. (1.6) packages the A-type anomaly co-
efficient (or its analog in odd dimensions) into ¢; while Cp is given in terms of ¢y, cg.
Again we emphasise that all these coefficients themselves depend on all higher derivative
terms that appear in the original bulk Lagrangian. This simple separation of the A-type
anomaly coefficient as a proportionality constant in front of AR makes it very tempting
to think that this is a useful starting point for a general proof of holographic version of
the a-theorem [71, 72] in arbitrary dimensions. We can speculate how this may work: first
note that the background around which we are expanding could be either the AdS in the
ultraviolet or the AdS in the infrared. This means that the respective background ex-
panded Lagrangians must be equal to one another. If there was a matter sector as well, it
makes sense to do a background expansion of this sector where we will use the background
for the matter fields to be their values in AdS, for example for a scalar field this will be
a constant (different constants in the UV and IR). We thus have a natural separation
between the gravity sector and the matter sector — this was one of the vexing issues in
the current literature on holographic c-theorems [73-81]; namely how does one define any
energy condition if matter couples to the higher curvature terms. Thus we can envisage
a situation where on the Lh.s. we have a term proportional to (ayy — arg)R plus other
curvature terms while on the r.h.s. we can place the difference between the UV and IR
matter Lagrangians. It is very tempting to speculate that (ayy —arg) > 0 is necessary for
there to be no non-unitary modes on the Lh.s. arising from expanding R which in turn is
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necessary (but may not be sufficient) so that there are no non-unitary modes in the matter
Lagrangian. It will be nice to work this out in complete detail as this will shed light on
how the proof of the a-theorem may work in arbitrary dimensions.

Another important question is to extend our methods and results to four point stress
tensor correlation functions. As we pointed out in the introduction, while the A-type trace
anomaly in 4d is related to two point and three point functions, in higher dimensions
it appears to depend on higher point correlation functions. Also in 3d since there is no
analog of ty, it is unclear if the analog of the A-type trace anomaly (proportional to c;)
can be extracted from local correlation functions at all — this appears to be consistent
with recent claims in [82]. The general forms for ty and t4 that we have derived also
seem to suggest that in order to relate the A-type anomaly coefficient in dimensions higher
than 4 to the coefficients appearing in correlation functions will need at least four point
functions. Furthermore, it could well be that the coupling constants for higher derivative
theories are further constrained by considering four point functions.'> These reasons are
sufficient motivation to look at the four point functions in the general gravity theories we
have considered in this paper. May be the techniques developed in [83, 84] could help us
out here.

It will be interesting to extend our results to completely general bulk Lagrangians
of the form £(g%, Regef, VaRpede, V(aVi)Redes; -+ ). We expect that for the one, two and
three point functions, the simple features we have found in this paper will continue to hold.
Finally, it should be possible to extend our methods to study correlation functions which
involve the massive graviton modes and 7}, [85-87].
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A The Lagrangian in terms of [17]

Consider the background field expanded Lagrangian given by

8
L = ag+ a3AR + by AR? + byAR™ ARy, + bsAR™ A Rgpeq + Y | &AK;
i=1
+ zelabedmprsy 7 A Ryprs ARaped + - - - - (A1)
The Wald functional for any gravity dual following [20] is,
oL oL
Eabcd — S v e A2
R 8‘Rabcd ¢ <8veRabcd> * ’ ( )

121t will also be interesting to compare how constraints from entanglement entropy [88] compare with
these ones.
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which for the above Lagrangian takes the form
E?szd _ an(abgcd) + YadeefghARefgh - ZefabcdmprsvevaRmprs 4+ (A3)

where Yabedefgh ig the tensor structure that comes from the second order terms in AR and

zefabedmprs comes from the Vo Rpeqe terms in the Lagrangian. To connect this to eq. (6.8,

6.9, 6.11) of [17] we need to evaluate EX°d and §E%? around AdS space. We split the
background metric as g, = 9©)ab + Agap. Then Ry can be written as

Raped = —(gacGbd — Gadge) = _(g(O)acg(O)bd - g(O)adg(O)bc) - <g<(0)abAgcd))
0
= Rt(zb)cd — (9(0)abAYeay) » (A.4)

and
ARaped = Rabed — Rabcd = AOl%abcd + g((O)abAgcd> ) (A5)

where A°Roped = Raped — R(S?)Z:d is the expansion around the background with only g(g)as-
Using this relation with the fact that

Yabcdefgh _ Ybabcdefgh + O(Ag),

(A.6)
Zefadcdmprs _ ngabcdmprs + O(Ag),

where Yy and Zp denote the quantities calculated with the metric gy which is the AdS
metric for our purpose. To begin with, we consider an action without the VR terms. Then

E;z%bcd _ a2g<abgcd> + YoabcdefghAoRefgh +O(Ag), (A.7)
where we have used the tensor structure of Y as
yabedefgh _ py gacgbdgeg fh |y qacqeq obf gdh b ae bf geg pdh (A.8)
and when evaluated around the AdS background we have at the leading order
Eebed — awéabggd>. (A.9)

Comparing with eq. (6.8) of [17] we have as = ¢;. Next we compute

aEabcd o
8912 = 2c1h“geh + W(YAR). (A.10)

The last term gives around the AdS background

d Y O abede
w(YAR) _ a79A0R 4 W(YO PO g 01 DGghy)- (A.11)

The first term vanishes when evaluated on AdS and thus

%(YAR)\MS hel = 2(2dby + ba)hg'® gD 4 2((d — 1)by + 4b3) R g, (A.12)
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Further
aE?%de abcdefgh (ab cd) {(ab cd) abed
ths ORcrgn =Yy ORcfgn = b1RG\ g™ + ba R\ g + b3 R,
Comparing with eq. (6.11) of [17] we get by = c4/2, ba = ¢5/2, bs = cg/2. Further,
Cy = —2dC4 — Cs, C3 = 201 — (d — 1)65 - 406. (A.13)
The Lagrangian (1.6) thus can be written as,

8
S = / dd+1x¢§[co AR+ %ARQ + %AR“bARab + %AR“WARGM +3 &AK;

=1

+ ZARVVAR+---|. (A.14)

B Details of calculation for section (2.2)
The Bianchi identity reads
VaRocde + VoReade + VeRapge = 0. (Bl)

Then
VZ‘Rbcde = vavaacde - VUbvc—Rabde‘ (B2)

Using
vavaacde = vaaRacde + R[{Racde + Rabchafde + Rabdeacfe + RabefRacdfv (BB)
we have

R"N?Rygge = 2R™ N,V Rycge + 2R"% R] Ryege + 2R R’ Ropge + 4R R ) Rocye.
(B.4)
Again using the Bianchi Identity,

vaRacde = VgRee — VeReq, (B-5)
we can write, neglecting the total derivatives

R"N? Rygge = AR™ N,V 4 Ree + 2R R} Ryeqe + 2R R ' Roge + AR™ R%, / Rycye.

(B.6)
The first term can be written as (neglecting total derivatives),
AR,V 4 Ree = —AV,RY ¥V R = —4(VgRee)? — AR“VV 4Ry (B.7)
and
~ AR“V°V 4R = (VR)? — 4R“R°,/ R.y — ARSRIR!. (B.8)
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C Holographic stress tensor involving VR terms

Here we consider an extended analysis of [17] to derive the holographic stress tensor in-
cluding the V... VR terms in the action. The most general analysis is deferred for future
work although from the following analysis it will be clear that the most general case will
also work out in an analogous way. We consider the most general term involving two Vs
in the action. Such terms after background field expansion are schematically given by

S = /dd“x\/gZVV(AR)”, (C.1)

where Z contains all the relevant tensor structures. Note that the Wald functional obtained
from such a terms will be of the form

Eed = 4 7,V (AR £ (C.2)

For n > 2, these terms vanish since when we put the background AdS, AR,p.q vanishes in
the variation of E%’Cd. So the only terms at the two Vs order relevant for the calculation
of the holographic stress tensor are schematically given by VARV AR. These terms in the
action are:

Svp = /dd+1x\/gzefabcdmnrsARmnrsvevaRabcd , (03)

where as before Zefabedmnrs ¢ontains all possible tensor structures.

We now focus on the derivation of the holographic stress tensor for the action includ-
ing (2.21). The Wald functional corresponding to this term is given by

E%b]%d _ dlg<abng> VZAR + d2v2AR(abgcd> + d3V2ARade , (04)

and evaluated on the AdS, E%bﬁd = 0, while the linearized variation of the wald function is
given by
OER! = 6(Z10M T oV ARy, (C.5)

where the structure of Z for the contributing terms is given by
Zefabcdmn’/‘s — (d gac bd mr ns —|—d gac mr bn ds +d39amgbngcrgds) (06)

All indices are raised or lowered with respect to the background AdS metric ¢g,,. Thus com-

bined with the original expressions in [17] for E, (Labed _ E%’Cd—l—E%bﬁd = Eade and 5E( Jabed
is given by,

5E(1)abcd —c hg< cd) 63h<ab cd) + C4Rg(ab cd) + C5R(ab cd) + cg Rabed + 5Eabcd ) (07)
C.l1 d=4

The coefficients (2.13) for d = 4 are given by

c3 3¢y C2
A=—-———-—-5 32d B=———2¢c4—c5—12d 4d

1 1 Ce + 32d3, 5 C4 — Cs 2 + 4ds, (C.8)
C = —co —4cq + c5 + 32d3, D = —c3 — 3¢5 + 4cg — 64ds.
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Thus the coefficients A; A, take the form

1 2
A = —24(66 — 8d3)R2 + 5(61 —c3 — 3¢5 — 68cg + 512d3) <,; — R2> R
2
Ay = <%1 — o — 4ey — 265 — 24ds + 8d3) R?+ 5 (1= c3 + 1565 + Ac + 144ds + 80dy).
(C.9)

)

We can use the tracelessness condition of h,, viz. h,(td = 0 to eliminate A and thus

integrate over Ay to get

870y LR
15

where Q9 is the volume of the unit Sy and finally using (2.5), we have

oS yald — (¢1 + 8cg — 64ds3), (C.10)

STE™ = 4L[c1 + 4(ce — 16d3)] . (C.11)

C.2 d=é6

The corresponding coefficients in (2.13) for d = 6 after putting A = d are given as

1 co 11
A= —(—c3 — bcs — 52¢q + 576d3), B=——=—3c4 — —c5 — 30dy + 6d3,

1 (3 =55 6 3) 5 4= G 260
C = —c9 — 6y + 2¢5 — 60do, D = —c3 — 5es + 8cg — 144ds.

Putting these in the integral we have

1
Al = 5(01 —c3 — bes — 292¢q + 3456d3 < - R2> - 120 CG — 12d3)R R

1 2
Ay = S (e1 = 2¢y — 12¢; — 115 — 120dy + 24d3) R + + L1 — c5 + 7005 + 8c6 — 264d3)r5

(C.13)

[\

Again by using the tracelessness argument we can set h = 0 and integrating and finally
using (2.5), we get,

35 -
STEaV — lim [ —56 Wald | _ L3 — 94d)]. 14
T 21Qy R0 ( 76098 6L ler + 8(cs 3)] (C.14)

D (T,.(x)T,,(0)) in even dimensions

The B-type anomaly coefficients appearing in the expression for the holographic stress ten-
sor in even dimensions are precisely the coefficients of the stress tensor two point functions
from the field theory perspective. The 2d and 4d cases were worked out in [28]. We will
extend this result to 6d in what follows. Before that we will review the 2d and 4d results.

The starting point of the derivation is the renormalization group equation in [27, 28]
which takes on the form in general d dimensions as

1)
d,. pv
(,u,(?“ + Q/d xg Sgi

)W:O. (D.1)
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We know that

0
/dda:g“"WW = /ddﬂcg“”<TW> = /ddannomalya (D'Z)

which gives us

po, W = —2/ddannomaly. (D.3)

We now functionally differentiate the L.h.s. w.r.t. g twice to get

52A
o d anomaly
From the general conformal properties of the 2 point functions the r.h.s. now takes the
form o )
T T
Top(x)Te = A —, D.

Maﬂ( b($) d(0)> 4.(d — 2)2d(d + 1) abcd“aﬂxQd_zl ( 5)

where the tensor Agbcd now takes the form
T 1 T
Aabccl = §(Sa85bd + SadSbc) - d— 1SabScd7 Aaacd =0, (DG)

—2d+4 ;

where Sy, = 0,05 — 94p0%. In general x is singular function. We need to regularize

the function in what follows.

D.1 d=2

We consider the anomaly in d = 2 which is given by Fo = %R, I, = 0. The RG equation
is given by

po, W+ [ (i) =0, (D.7)

and the 2 pt function is given by

1 [, &R
[L8#<Tab(.%')Tcd(O)> = _Z d xw. (D8)

From the second order variation of R, §2R = h0h — h@eafhef we get,

R

Sg®oged [(9ab0e0a + 9eaDaDs) — Gabgead?]0° (). (D.9)

Converting into the momentum space we can see that

1
/1,8” <Tab(p)Tcd(0)> = _Z[(gabpcpd + gcdpapb) - gabgcdp2] ) (DlO)

using which we see that Cr and c¢ are proportional to one another.
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D.2 d=4

In 4d there are two anomalies given by

Ey = R Ry.q — AR™R,, + R?,

1 D.11
Ii=FE;+2 (R“bRab — 3R2> . (D-11)

The contribution from the Fy term in 4d is given by the integral of

/ddfomaB(x —y, T — 2), (D.12)
where the term Afg,aﬁ(x —y,x — z) is given by
Afa,aﬁ(qj — YT = Z) = (Dlg)

— (egawepg(;)\aﬁax((?vtsd(x — y)@géd(az —2))+ epaweaﬁg,\&ﬂ(‘b\(&yéd(x - y)855d(:1: —2))).

To compute the integral we first convert the §%(z —y) into momentum space and carry out
the differentiations as

8650{(33 o z)(%éd(x . y) _ 87 </ eip(xy)ddp> Os </ eiq(xZ)ddq>

= —pygs / elpra)z=ipy=iazgdy, qdg (D.14)
Acting 0,0y on this, we get

DO <_p7% / ellptale=ipy=iqz gd), ddq) = pyas(P+ AP+ @) / ellprar=ipy=iazqdy gdq

D.15
Thus the first term on the Lh.s. in the above integral (D.13) becomes ( )
N N / i)z g, / e=ipy=iazgdy, gdo (D.16)

which becomes after substituting the delta function from the first integral as
€rayr€pBon / Pras(P + (P + @)% (p + q)e” PV d%p dq. (D.17)

Thus this integral vanishes on its own. Similarly it can be shown that the second part of
the integral also vanishes by itself. Thus there is no contribution from the E4 term to the
anomaly. The only contribution to the anomaly comes from the term R R, — %RQ term
in the Weyl anomaly. Thus

52 1
4 mn 2
1O (Tap(x)Teq(0)) = —/d xi(sgabgcd {2 (R R — §R )] . (D.18)
The last term on the r.h.s. gives
52 R? SR R

5gab,ycd = 5gab 5gcd' (Dlg)
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After linearization of the scalar and functionally differentiating w.r.t. g*® we have

oR
g™ (0a0h — gap0*)0" () = Sapd’ (), (D.20)
where we define Sq, = 9,0, — gap0?. Thus the last term becomes after some integration by
parts
52 R?
g

The first term on the r.h.s. becomes after integration by parts as

SapSead™(z). (D.21)

OR™ § R,

1
WW = i(Sachd + SadSbc)54(x)' (D22)

Thus the total contribution from the Weyl anomaly is given by

10 (Tap(2)Tea(0)) = —4BA%06 () , (D.23)

abc

where we define AaTbcd = %(Sachd + SadSee) — %SabScd.
Thus in 4d we have using 3 = —¢/167? from [27]

1O Tap(@)Tea(0)) = 15 Alad* (). (D.24)

Comparing with (D.5) we have

C 1 c
A(d — 2)22(61 Ty = T30 (@). (D.25)

Hopd 42

In 4d the regularized 1/z* can be expressed as

1 1 2 1 2.2 1 2¢4
Putting this in (D.25) we have
4
T
= —Cr. D.2
C 10 CT ( 7)

D.3 d=6

In 6d it is rather easy to see why only the Bs coefficient gets picked up by the 2 pt functions.
If we look at the structures of the anomalies then only I3 has a structure of the form

Iy ~ C%92C . (D.28)

This makes I3 to start at the order O(h?) and contributes in the 2 pt function. While all
the other anomalies start at O(h®) and thus do not contribute.

In 6d the only contribution to the two point function comes from the term I3 ~
C®4H2C peq, since the other anomalies start at O(h3). Thus from (D.5) we have

118, (Tap () T (0)) = 4B3 AL, 10285 (x) = AL Cr L

abe abcdmﬂaug- (D-29)
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In 6d we regularize as

1 Loyl 2 2 1 4
The term on the r.h.s. for 6d can be reduced to 843:—14 = —4m30?6%(z) and hence the r.h.s.
becomes

1 1,1 =
Thus in 6d we have
3
s
110, (Tap(2)Teq(0)) = 4B3 AT, 16265(x) = mAfbchT0256(w)- (D.32)
Hence we have
3

E n/s for general R? theories

We will calculate the ratio of the shear viscosity to the entropy density for four derivative
theory of gravity in d = 4 where d is the boundary dimension. We want to express the
ratio in terms of the field theory variables as to etc. This analysis can be extended for
general higher derivative theories of gravity in arbitrary dimensions. To proceed we will
follow the analysis of [69] where the horizon is first constructed perturbatively and then
the pole method was used to extract the shear viscosity. We first consider the metric as
L2 d2? 3 f(2)

- dt? + (day + p(t)dwa)? + dal +drk| . (E.1)

ds?® = =
Af(2)(1=2)?  I[2(1-2) | [

where ¢(t) = e~ is the fluctuation and
f(2) =22+ for? + f3z3 + ... (E.2)

We consider the general R? action given by
5 12 Lt abed ab 2
S = d l\/ﬁ R+ ﬁ + 7()\1R Ropea + NoRP Ry, + A3R ) . (E3)

To obtain the coefficients f2, f3 we plug in (E.2) into the equations of motion for the
action (E.3) and solve perturbatively near the horizon. The solution for f,, taking L =

Ly/ foo given by,
1
L= foot 34220+ 10X3)f2 = 0. (E.4)
The expression for ¢; is given by

1
1672

c1 = [1 — 2foo<)\1 + 2Xo + 10)\3)] (E5)
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We also express cg = I’E—lﬁ foo. The shear viscosity and entropy density in terms of these
couplings are given by

n = C1[8A2 4+ Ao + 43 — 20A0 A3 — 6422 + 1201 (\a + 2X3) + V/F],

2 9 (E.6)
5 = Co[16A7 + Ag 4 4X3 + 20A2)3 + 4801 A3 — 20X )3 — 6423 + V/F],
. . o3 £3/2 r3f3/2 B
where the normalizations are Cy = i and C1 = DT and we have set L = 1.
P P

F = (201 + do + 223)[(2A1 + A2 + 2X3) (1 — 1201 — 169 — 52)3)?
— 16(A1 + A2+ 2X3) (2202 — Ao (1 — 12X9) — 2X3 + 62 03 + T0A2 (E.7)
— 201 (1 — 19X9 — 58)3))] .

The corresponding expression for t9 is d = 4 is given by

£y = 24cq _ 24\ foo ' (E.8)
c1+4cs 1+ 2(A — 22 — 10A3) fo
Note that in the limit A1, Ao, A3 — 0 we retrieve the result
n 1
- = E.9
s Ar (E-9)

Note also that it is possible to make 7/s arbitrarily small by tuning the values of As’. For
example for A\ = 0.31517, A9 = A3 = —1, we have

n 1.1x107°

Here the constraints arising from (e) > 0 are satisfied.
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