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1 Introduction

Strongly coupled systems are interesting both from phenomenological and theoretical per-

spectives. However, understanding their dynamics is usually quite difficult. An interesting

strategy to explore such phenomena consists of looking for an alternative, weakly coupled,

description of the same system, the so called “dual description”. Dualities have been dis-

covered and studied in many contexts and they provided a deep insight in strongly coupled

physics. Supersymmetric field theories are an useful laboratory to explore duality maps.

Seiberg duality for SQCD [1] in four dimensions and its generalizations to N = 2 three

dimensional field theories [2–8] are examples of this map. Another well known duality

for three dimensional field theories is the AdS4/CFT3 correspondence [9–11] that relates

Chern-Simons (CS) matter theories to M theory AdS4 solutions. In this case it has been

shown that there are different UV field theory descriptions of the IR theory living on M2

branes probing the same toric Calabi-Yau four dimensional cone CY4 [6, 12–15]. This

phenomenon has been named toric duality and it is the three dimensional extension of
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the previously discovered toric duality for the four dimensional field theories living on D3-

branes probing Calabi-Yau three dimensional cones CY3 [16–19]. For four dimensional field

theories toric duality coincides with Seiberg duality [20, 21].

It was shown in [6] that, for some classes of theories, toric duality for M2 branes is

a generalization of the N = 2 Seiberg-like duality of [5]. N = 2 CS-matter theories can

be further reduced to N = 1 CS-matter theories1 living on stacks of M2 branes at certain

conical singularities [26]: the so called Spin(7) cones. These theories can be obtained with

a generalized orientifold projection from parents N = 2 holomorphic theories describing

stacks of N M2 branes probing the tip of toric CY4 cones. In the geometric language this

projection corresponds to the quotient done by an anti-holomorphic involution on the CY4,

that breaks the SU(4) holonomy to Spin(7)2 [26, 29].

Inspired by the N = 2 case one may ask if there are extensions of toric (and of Seiberg-

like) duality to the N = 1 case.3 In this paper we use a geometrical approach and define a

Spin(7) duality in analogy with the toric duality of the toric CY4 case. Namely we say that

two N = 1 CS-matter theories are Spin(7) dual if they have the same classical moduli space

for one regular M2 brane and if it coincides with the Spin(7) cone of the dual geometry.

We provide a general picture to generate N = 1 Spin(7) dual pairs obtained from parent

toric dual N = 2 theories. Some control on these dualities beyond the classical level is

provided by the existence of the same AdS4 dual geometry for both the dual CFTs and by

planar equivalence.

In some cases the orientifold projects the N = 2 theory to N = 1 theories with only

unitary groups. In these cases we argue that the Spin(7) duality is also an N = 1 three

dimensional Seiberg-like duality. Indeed it corresponds to move N = 1 branes in the

Hanany-Witten [31] projected setup.

The paper is organized as follows. In section 2 we review the main aspects of the

projection of the CY4 to Spin(7) and its interpretation in terms of an orientifold. In

section 3 we state the main claim of the paper about the N = 1 Spin(7) duality and

explain the general idea behind it. In section 4 we provide some examples of dual pairs and

give some checks about the validity of the duality. In section 5 we show examples where

the Spin(7) duality can be regarded as a Seiberg-like duality. In section 6 we discuss the

extension of N = 1 Seiberg like duality to more general models. In section 7 we conclude.

To complete the paper we provide also two appendices. In appendix A we explain the

projection of the N = 2 superspace to N = 1 while in appendix B we present the N = 1

superconformal algebra.

2 From N = 2 CY4 to N = 1 Spin(7)

In this section we briefly review the non-holomorphic orbifold of the CY4 geometry that we

will use in the rest of the paper [29], and we will provide a short discussion of the associated

1See [22–25] for some recent analysis of N = 1 theories in three dimensions
2We refer the reader to [27, 28] where the reduction of M-theory on Spin(7) manifolds constructed by

this method has been considered too.
3We refer the reader to [30] for another proposal of Seiberg-like duality in N = 1 theories.
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orientifold projection in field theory.4 An interesting class of N = 2 SCFTs [10, 11]

describes the low energy dynamics of a stack of N M2 branes at the tip of a non compact

eight-dimensional CY4 real cone: C(H7), where H7 is a seven dimensional compact Sasaki-

Einstein manifold at the base of the cone.

The field theory is a quiver gauge theory. A quiver is a graph with nodes connected

by arrows. Each node represents a gauge factor U(Ni). There are also matter fields,

represented by oriented arrows. Arrows with the tip and the tail on the same node are

fields in the adjoint representation of the gauge group, arrows connecting the i-th with the

j-th node are associated to fields in the bifundamental representation. In the Lagrangian

each U(Ni) factor has CS action with integer level ki, and no Yang-Mills (YM) action.

From now on we will keep track of the CS level and the rank of the gauge group factor by

using the notation: U(Ni)ki .

These field theories are dual, in the gauge/gravity correspondence, to M-theory on the

AdS4×H7 background. In this paper we consider a particular projection of this theory that

breaks the four real supercharges down to two real supercharges.5 The resulting theory is

still a superconformal CS-matter theory, like before, but with only N = 1 supersymmetry

in three dimension. Moreover it does not have holomorphic properties: fields and super-

potential are real. It describes the low energy dynamics of N M2 branes living at the tip

of a Spin(7) cone: C(G2), where G2 is a seven dimensional compact weak G2 manifold.

These theories are dual, in the gauge/gravity correspondence to M-theory on the AdS4×G2

background.

On the geometry the projection is obtained by modding the original CY4 by the action

of an anti-holomorphic involution Θ [29]. This geometric procedure is implemented in field

theory by projecting the lagrangian using an orientifold projection [26] as we will review

in the rest of this section and in the following section.

A CY4 has a Kahler (1, 1) form J and a holomorphic (4, 0) form ω, that are left

invariant by the holonomy group of the manifold: SU(4). Following [29] we use the action

of an anti-holomorphic involution Θ to define a Spin(7) manifold. Θ acts on J and ω as

Θ : ω → ω, and Θ : J → −J , and it breaks the SU(4) holonomy to Spin(7). Using the

defining forms of the CY4 it is indeed possible to construct a closed self dual four form

Ω4 =
1

2
J ∧ J +Re(ω) (2.1)

that is left invariant under the action of Θ and hence defines a Spin(7) manifold [29]. In the

field theory it is possible to interpret a class of these quotients as an orientifold [26, 34–37].

Because there are no open strings in M-theory it is easier to define its action by looking at

the type IIA limit. Indeed the CY4 cone Y that we consider can be written as a double

fibration of a CY3 Z, over a real line, parameterized by the real coordinate σ, and a circle,

parameterized by an angle ψ [10, 11, 38–40]. The angle ψ parameterizes the M-theory

4In the next section we will report some more details on the field theory.
5In M-theory the background R

1,2×C preserves four real supercharges (N = 2 susy in three dimension),

if C is a CY4 manifold, or two real supercharges (N = 1 susy in three dimension), if C is a Spin(7)

manifold [32, 33].
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circle while σ is the expectation value of a particular combination of the D terms in field

theory. In the type IIA limit one describes the worldvolume theory of D2 branes probing

a seven dimensional manifold given by Z fibered over a line. The four form ω is locally

ω ∼ f(zi)dz1 ∧ dz2 ∧ dz3 ∧ (dσ + idψ) (2.2)

where zi are the holomorphic coordinates of Z and f(zi) is a holomorphic function. We

choose an anti-holomorphic involution Θ that acts on the M-theory circle as Θ : ψ → −ψ,

and that leaves invariant the coordinate σ. This class of quotients in M-theory can then

be interpreted as an orientifold projection [26, 34–37]. One then concludes that the field

theory living on the M2 branes at the tip of Y/Θ geometry is the IR strong coupling limit

in M-theory of the N = 1 orientifold theory living on a stack of N D2 branes in type

IIA [26]. From now on we refer to the N = 2 theories as the “parent theories”, while we

refer to the N = 1 theories as the “projected theories”.

3 Spin(7) duality: our strategy

In this section we discuss our approach to generate and check Spin(7) dualities between

N = 1 three dimensional CS-matter theories with gravity duals.

First we give some general remarks of the Spin(7) duality that we are proposing. Two

UV N = 1 field theories are Spin(7) dual if their moduli spaces coincide and they are

equivalent to the Spin(7) cone probed by one M2 brane. This duality is the analogous

of the toric duality for N = 2 theories living at the tip of toric CY4 cones. There are

some important differences between the two dualities. First in the N = 2 case the gauge

theory that lives on an M2 brane is abelian, while in the N = 1 case the theory for

a single M2 is usually non-abelian. Second, both toric and Spin(7) duality are classical

dualities. In the N = 2 case the duality is valid also at quantum level. The N = 1 theories

are not holomorphic and one may expect quantum corrections. Anyway the underlining

AdS/CFT duality provides some arguments supporting the duality also in the quantum

strongly coupled regime. Further studies are however required to understand the quantum

properties of the proposed Spin(7) duality, and we leave them for future works. A last

important remark concerns the relation between Spin(7) duality and Seiberg-like duality.

For N = 2 three dimensional CS-matter theories it has been shown that, for a particular

class of theories, the so called L̃aba
k models, some toric dualities are actually Seiberg-like

dualities [6]. In this paper we will discuss some cases in which also the Spin(7) duality is

a Seiberg-like duality.

In the following we provide a step by step illustration of our strategy to obtain N = 1

pairs, and to check the validity of the Spin(7) duality. We start by introducing in some

details the N = 2 parent theories living on N M2 branes at the tip of a CY4 cone, and

discuss their moduli space. A discussion on the orientifold projection to N = 1 in field

theory follows. Then we explain our general strategy to obtain the moduli space of N = 1

field theories and to match the moduli space and the geometry of N = 1 field theory dual

pairs. We conclude with a discussion on the relation between Spin(7) duality and Seiberg-

like duality. More details could be found in [6, 10, 11, 26]. From now on we will refer to
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the N = 2 field theory as the ”parent theory”, while we will call the N = 1 theory the

”projected theory”.

The L̃aba
ki

N = 2 CS-matter theories. The N = 2 parents theories we consider

are three dimensional extensions of Laba four dimensional quiver gauge theories [41–43],

introduced in [10, 11]. They are CS-matter theories with a product of U(Ni) gauge groups

and CS levels ki, with i = 1, . . . a + b, with pairs of bifundamental-antibifundamental

connecting each pair of consecutive U(Ni) and possibly adjoint fields. Every field appears

twice in the superpotential with opposite sign, such that every F -term is an equality

between two monomials with the same sign. From now on we will refer to these theories

as L̃aba
ki . Examples of the L̃aba

ki quivers are given in figure 1 and 2.

These are the low energy theories living on M2 branes at particular CY4 singularities

that are the double fibration of the Laba CY3 singularity over a segment parameterized by

σ and a circle parameterized by ψ. In the UV they have a simple type IIB description in

terms of branes [9, 31, 44, 45].

Brane setup and dualities. The L̃aba
ki theories can be engineered as a stack of D3

branes on a circle ending on a set of (1, pi) five-branes, where i = 1, . . . , a+ b: Ni D3s for

every interval between a (1, pi) and a (1, pi+1) five-brane. This construction corresponds

to a circular quiver with a + b gauge groups and a pair bifundamental-antibifundamental

connecting each pair of consecutive nodes that are actually the type IIB strings stretching

through the i-th five-branes. TheN D3 branes are extended along the directions (x0, x1, x2)

and the direction x6 compactified on a circle. The NS5 and the D5 branes, that recombine

into the five-branes, are divided in two sets. In the first case one NS is extended along

(x0, x1, x2, x3, x4, x5) and the corresponding pi D5 are extended along (x0, x1, x2, x4, x5, x7).

In the second case one NS is extend-end along (x0, x1, x2, x3, x8, x9) and the corresponding

pi D5 are extended along (x0, x1, x2, x7, x8, x9). There are a (1, pi) five-branes of the first

type and b five-branes of the second type. The SCFT lives in the (x0, x1, x2) directions

common to all the branes. The NS branes and the corresponding D5 branes get deformed

in (1, pi) five-branes at angles tan θi ≃ pi. The Chern-Simons levels are associated with

the relative angle of the branes in the (3, 7) directions, they are ki = pi − pi+1, such that∑
i ki = 0. When the (1, pi) and the (1, pi+1) five-branes are parallel there is a massless

adjoint field associated to the i-th gauge group. In the minimal phase there are b−a nodes

with an adjoint fields and 2a nodes without the adjoint.

By exchanging two consecutive (non parallel) five-branes one has a local transformation

on the quiver, that corresponds to a Seiberg-like duality in field theory. If this action is

performed on the i-th gauge group we have the transformation [6]

U(N)ki−1
→ U(N)ki+ki−1

U(N)ki → U(N + |ki|)−ki (3.1)

U(N)ki+1
→ U(N)ki+ki+1

It is possible to demonstrate in full generality that this local transformation preserves the

moduli space [6]: CY4 moduli space associated to the same dual supergravity background.
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Moduli space. The moduli space of these theories is the set of values of the scalar

fields that solve the zero condition for the bosonic potential. This boils down to solve the

following set of equations.

∂Xab
W = 0

Da(X) =
kaσa
2π

σaXab −Xabσb = 0

(3.2)

where W is the superpotential, Xab are scalar components of the bifundamental fields

between the U(Na) and the U(Nb) factor of the gauge group,6 Da(X) is a real function of

the bifundamental fields that corresponds to the usual D-terms, and σa are the real scalar

components of the vector multiplet for the U(Na) factors.

For N M2 branes at the tip of the cone, without fractional branes, we have: Na =

Nb = N . The moduli space is then simply the N -times symmetric product of the moduli

space for one brane. For one regular M2 brane, the gauge group is simply U(1)G. The

moduli space is found by imposing the set of three equations in (3.2) and by quotienting

by the appropriate gauge group factors. It is important to notice that in the abelian case

the third equation in (3.2) simply imposes: σa = σ, while one of the D-term equations

is redundant, because
∑

a ka =
∑

aDa(X) = 0. Then we are left with G − 1 linearly

independent equations. One of these equations can be written along the direction of the

CS levels and it fixes the value of σa = σ, while the remaining G− 2 are orthogonal to this

direction and equate the G − 2 linear combinations of D terms to zero. We should then

quotient by the associated G− 2 U(1) factors, while the U(1) corresponding to the D-term

orthogonal to the CS is broken to Zgcd{ka} = Zk and only imposes an additional discrete

quotient. The moduli space of an N = 2 CS-matter theory is then in general a Zk quotient

of a CY4 cone Y , where k is the maximum common divisor of the CS levels [10, 11].

The analysis of the moduli space of the dual pairs generated using the transforma-

tion (3.1) for the L̃aba
ki theories was done in [6] and it was shown that these models have

the same moduli space and are toric dual. The main claim of this paper is that simi-

lar dualities exist in the N = 1 case, when the dual geometry is described by a Spin(7)

manifold obtained as explained in section 2. To support this claim we provide a coherent

geometrical and brane-orientifold construction. The CY4 moduli space of two toric dual

N = 2 theories is projected on the same Spin(7).

We first show how to compute in the N = 1 case the moduli space for a single M2

brane probing a Spin(7) cone. This is the non-holomorphic quotient of the original CY4.

We then check that the two N = 1 theories, claimed to be Spin (7) dual, obtained by

projecting the parent N = 2 theories, have the same moduli space.

6With some abuse of notation we will often use the same symbol: Xab to refer both to the superfield or

to its lowest scalar component. We hope that the reader will not get confused. What we meant should be

clear from the context.
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Field theory projection to N = 1. As explained in section 2 the Spin(7) cone is

obtained by quotienting the CY4 Y by the anti-holomorphic involution Θ. This corresponds

to a real orbifold of Y in M-theory and it acts as an orientifold on the dual field theory. In

this subsection we briefly discuss the action of the projection on the field theory lagrangian,

while in the next subsection we show that the moduli space of the projected theory is

actually the Spin(7) geometry [26].

There are two interesting classes of orientifold projections. In the first class the ori-

entifold action identifies the gauge groups with themselves, projecting the unitary U(N)

groups of the N = 2 parent theory to orthogonal O(2N) and/or symplectic SP (2N) groups

in the N = 1 projected theory.7 In the second class the orientifold action instead iden-

tifies pairs of U(N) gauge group factors of the N = 2 parent theory projecting them to

a single U(2N) group in the N = 1 projected theory. It is important to underline that

the orientifold acts in general as an anti-holomorphic involution on the matter fields in the

lagrangian and it breaks the holomorphic structure of the N = 2 theory, preserving only

N = 1 supersymmetry.

In the first class, where the projection identifies the a-th group with itself, the orien-

tifold acts on the gauge and matter fields as:

Aa
µ → −Ωa(A

a
µ)

TΩ−1
a

Xab → ΩaX
∗
abΩ

−1
a

σa → Ωaσ
T
a Ω

−1
a

Da → ΩaD
T
a Ω

−1
a (3.3)

where Ωa could be either the identity or the symplectic matrix. When Ωa = I2N it projects

the unitary to an orthogonal group, if instead Ωa = J2N it projects the unitary to a

symplectic group.

In the second class, where instead the projection identifies pairs of groups, ai ↔ bi,

the orientifold acts on the gauge and matter fields as:

Aa
µ → −Ωab(A

b
µ)

TΩ−1
ab

Xa1a2 → Ωa1b1X
∗
b1b2

Ω−1
a2b2

σa → Ωabσ
T
a Ω

−1
ab

Da → ΩabD
T
b Ω

−1
ab (3.4)

where, as before, the Ωab matrix could be either the identity or the symplectic matrix.

In both cases, because A and σ have different transformation rules, the N = 2 vector

multiplet is broken to the sum of the N = 1 vector multiplet and the real N = 1 matter

multiplet. Moreover it is manifest in (3.3) and (3.4) that the involution breaks the holo-

morphic structure of the superpotential. The details on the N = 1 lagrangian are reported

in appendix A.

7Please observe that the standard orientifold procedure implies that we should double the ranks of the

gauge groups and the CS-levels before quotienting the theory. Here we use the convention SP (2)k = SU(2)2k
for the symplectic cases.
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It is maybe important to remind that the action for which we quotient the N = 2

theory is a symmetry of the theory itself.

The moduli space of N = 1 theories and Spin(7) duality. As discussed above we

have a Spin(7) duality if the proposed pair of field theories have the same moduli space for

one M2 brane: the Spin(7) cone obtained as the non-holomorphic quotient of the CY4 cone

moduli space of the parent theories. Here we sketch our strategy to compute the moduli

space and verify the Spin(7) duality.

The moduli space for one M2 brane is obtained by setting N = 1 in all the gauge

group factors. It is important to underline that finding the N = 1 moduli space for one

M2 brane is in general a difficult task. Indeed, first of all, even for one brane the gauge

group is in general non abelian: namely it is the product of SU(2), U(2) and O(2) gauge

groups, and hence the equation defining the moduli space are two by two matrix equations.

Moreover the moduli space of an N = 1 field theory in three dimension is real and non-

holomorphic and hence one cannot use the powerful tools of the algebraic complex geometry.

Following [26] we proceed as follows. We provide an ansatz for the two by two matrices

describing the matter fields of the N = 1 theory in terms of the complex scalar fields of

the N = 2 parent theory for one M2 brane. It follows that the zero potential condition

for the N = 1 theory reproduces exactly the same equations of the parent theory (3.2) in

terms of the ansatz fields. We then verify that the ansatz exhausts the vacuum space of

the N = 1 theory, i.e. that there are no other connected flat directions.

The moduli space is obtained by quotienting by the action of the gauge group. The

ansatz we use is perfectly suited for this scope. Indeed, as we will explicitly see in the

following examples, our ansatz breaks the gauge group down to its abelian subgroup: a

bunch of SO(2)s plus the discrete non-holomorphic Θ. The SO(2)s that leave the ansatz

invariant act as the U(1)s of the parent theory on the ansatz fields. Hence the quotient

by the SO(2)s exactly reproduces the CY4 Y cone quotiented by the additional discrete

action Zk associated to the CS levels. The remaining discrete action Θ is generated by the

parity inversion σ3 ∈ O(2) and the element iσ3 of SU(2) and U(2). This last action exactly

generates the needed anti-holomorphic involution to obtain the Spin(7) cone as explained

in section 2.

By following this procedure we systematically check that the moduli spaces for one

M2 brane for pairs of theories, claimed to be dual, are the same and that they coincide

with the Spin(7) cone obtained by the anti-holomorphic involution on the CY4 cone of the

associated parent theories.

In the near horizon limit the AdS/CFT correspondence provides some arguments to

support the fact that the dual pairs of theories previously constructed are actually two

equivalent UV descriptions of the same IR strong coupling fixed point, dual to M-theory

on AdS4 × G2 background.

Relation with Seiberg-like duality. When the orientifold action leaves unitary groups

we can sometimes argue that the Spin(7) duality is a Seiberg-like duality. In this case

we can think to a type IIB brane setup that is locally N = 2, but globally N = 1.

Supersymmetry is broken to N = 1 because of the orientifold on some gauge group or on

– 8 –
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O(2N)−2k U(2N)2k SP (2N)−k

Q1 ✷ ✷ ✷

Q̃1 ✷ ✷ ✷

Q2 ✷ ✷ ✷

Q̃2 ✷ ✷ ✷

Table 1. Representations of the bifundamental fields under the gauge groups.

some bifundamental fields not involved in the duality. In this case we can move consecutive

(1, pi) branes and locally reproduce the same transformation as in (3.1). We claim that

the resulting theory is Seiberg-like dual to the first theory. Indeed it has been obtained by

applying the usual rules for brane exchange and brane creation.

A first check of the duality is that the N = 1 theory obtained by moving the branes is

indeed exactly the theory that we would have obtained instead projecting the Seiberg-like

dual theory of the parent N = 2 theory, closing in this way the circle of dualities.

4 Examples

In this section we study examples of Spin(7) dualities between pairs of three dimensional

gauge theories along the lines explained in the previous section. We adopt the following

strategy. First we introduce the N = 1 conjectured dual pairs and then we show that these

models describe the same IR physics.

We show that two conjectured N = 1 dual theories can be obtained by projecting

two L̃aba
ki N = 2 toric dual models. These N = 2 models are toric quiver gauge theories

associated to CY4 singularities. By projecting these dual pairs with the anti-holomorphic

involution introduced in section 2 we obtain N = 1 dual pairs that reproduce the same

Spin(7) geometry. These models are Spin(7) dual.

First we present a very simple example. It is a toy model, where the Spin(7) duality

actually coincides with a parity transformation, that should however help the comprehen-

sion of our strategy. In the second example we increase the complexity studying a more

intricate example of Spin(7) duality.

4.1 First example

The first Seiberg-like dual pair that we consider consists of N = 1 CS matter theories with

three gauge groups as presented in figure 1. The gauge groups are

O(2N)−2k × U(2N)2k × SP (2N)−k (4.1)

and four bifundamental fields Q1, Q̃1, Q2 and Q̃2 transforming under the gauge groups as

table 1.
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The N = 1 superpotential is

W = −Q1JQ̃∗
1Q

∗
1JQ̃1 + Q̃∗

1Q
∗
2Q̃

∗
2Q

∗
1 −Q∗

2Q̃2Q2Q̃∗
2 − Q̃2Q1Q̃1Q2

−
k

π
(R2

SP +R2
O −R2

U ) +RO

(
Q†

1Q1 +QT
1 Q

∗
1 − Q̃1Q̃

†
1 − Q̃∗

1Q̃
T
1

)

+RU

(
Q̃†

1Q̃1 −Q1Q
†
1 − Q̃†

2Q̃2 +Q2Q
†
2

)

+RSP

(
Q̃2Q̃

†
2 − JQ̃∗

2Q̃
T
2 J −Q†

2Q2 + JQT
2 Q

∗
2J

)
(4.2)

We claim that this model is Spin(7) dual to another N = 1 CS matter theory with gauge

groups:

O(2N)2k × U(2N)−2k × SP (2N)k (4.3)

with four bifundamental fields Qdi, Q̃di, i = 1, 2, as in figure 1, and the N = 1 dual

superpotential coincides with (4.2) with k → −k. These two models can be obtained by

projecting two toric dual parent N = 2 theories.

N = 2 parents. The parent N = 2 theories are denoted as L̃222
ki

theory. There are two

possible quivers associated to this singularity, each with four gauge groups. One has eight

bifundamentals and quartic couplings and the second one has eight bifundamentals and

two adjoints. Here we analyze the moduli space for one M2 brane, where the gauge group

is simply U(1)4. The moduli space for the U(N) case is the N -times symmetric product

of the moduli space for a single brane.

At this point of the discussion we specify a choice of CS levels useful to perform the

orientifold. We choose the levels as ~k = (k,−k, k,−k). The N = 2 superpotential for the

first phase is

WI = Q12Q23Q32Q21 −Q23Q34Q43Q32 +Q34Q41Q14Q43 −Q41Q12Q21Q14 (4.4)

The equations of motion are solved by

Q12Q21 = Q34Q43 , Q23Q32 = Q14Q41 (4.5)

The operators gauge invariant with respect to the gauge factors orthogonal to the CS

vector are

x1 = Q12Q21 x2 = Q23Q32 x3 = Q34Q43 x4 = Q14Q41

x5 = Q12Q34 x6 = Q21Q43 x7 = Q23Q41 x8 = Q32Q14 (4.6)

They are related by

x1x3 = x21 = x5x6 x2x4 = x22 = x7x8 (4.7)

These equations define the CY4 Y that has to be mod by the Zk along the direction of

the CS.
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−k0

0

Toric

Duality

Toric

Duality

Spin(7)

Duality

Projection Projection

(d) (e)

(c)(b)(a)

SO(2) U(2)
   2k   −2k

SP(2)
   −k

U(2) SP(2)SO(2)
    −2k   2k    k

Figure 1. This picture represents schematically the relation between toric duality and Spin(7)

duality. The models in (a), (b) and (c) represent three toric dual phases. In the cases (a) and

(c) the orientifold projection acts by folding the quiver, along the dashed red lines. By projecting

these models to N = 1 Spin(7) cones we obtain the phases (d) and (e), that are related by Spin(7)

duality.

The second quiver is represented in figure 1 (b). It has superpotential

WII = Q12Φ2Q21 −Q32Φ2Q23 +Q23Q34Q43Q32 +Q34Φ4Q43 −Q14Φ4Q41 +Q41Q12Q21Q14

(4.8)

The U(1) gauge groups have CS levels ~k = (−k, 0, k, 0). One can check that this model

describes the same CY4 geometry (4.7) of the original theory, and the two phases are toric

dual. One can build another dual phase with superpotential (4.4). The U(1) gauge groups

have CS levels ~k = (−k, k,−k, k). The quiver is represented in 1 (c). This is the other

parent theory that we have to project to obtain the Spin(7) dual phase.

The next step consists of studying the orientifold projection of the dual models repre-

sented in figure 1 (a) and (c) to N = 1 and check the Spin(7) duality between the models

represented in figure 1 (d) and (e).

Projection to N = 1. We start by analyzing the first case. The anti-holomorphic

involution on the coordinates is

x1 → −x∗2 x2 → x∗1 x3 → −x∗4 x4 → x∗3

x5 → x∗8 x6 → x∗7 x7 → −x∗6 x8 → −x∗5 (4.9)

this action does not have fixed points, except the origin, on the CY4 geometry (4.7).

The anti-holomorphic involution acts on the gauge fields and on the scalars σi as

A1
µ → −Ω(A3

µ)
TΩ−1 A2,4

µ → −Ω2,4(A
2,4
µ )TΩ−1

2,4

σ1 → ΩσT3 Ω
−1 σ2,4 → Ω2,4σ

T
2,4Ω

−1
2,4

(4.10)
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The anti-holomorphic involution acts on the bifundamental as

Q41 → Ω4Q
∗
43Ω

−1 Q14 → ΩQ∗
34Ω

−1
4 Q43 → Ω4Q

∗
41Ω

−1 Q34 → −ΩQ∗
14Ω

−1
4

Q23 → −Ω2Q
∗
21Ω

−1 Q32 → −ΩQ∗
12Ω

−1
2 Q12 → −ΩQ∗

32Ω
−1
2 Q21 → Ω2Q

∗
23Ω

−1

(4.11)

The transformation corresponds to an orientifold projection, sending σ → σ and the

angle ψ → −ψ. Moreover this transformation is a symmetry of the N = 2 lagrangian.

Indeed one can check that the superpotential is sent into its complex conjugate and that the

D-terms transform consistently with the constraint Da = ka
2πσa. From now on we fix Ω4 =

I2N and Ω2 = J2N , and the projected gauge theory is O(2N)−2k × U(2N)2k × SP (2N)−k.

This is precisely the gauge symmetry of the N = 1 theory that we want to obtain.

The dual phase can be obtained analogously. The projection is obtained by flipping

the sign of each CS level. This does not affect the ansatz but only the D terms.

Calculation of the N = 1 moduli space. The next step consists of calculating the

moduli space for a single M2 brane and show that they coincide. In this case even for the

single brane the gauge group is non abelian, O(2)−2k × U(2)2k × SP (2)−k.

We choose an ansatz for the N = 1 fields Q1, Q̃1, Q2 and Q̃2 in terms of the N = 2

bifundamentals as

Q1 =
Q12 +Q∗

32

2
I +

Q12 −Q∗
32

2i
J Q̃1 =

Q21 +Q∗
23

2
I +

Q21 −Q∗
23

2i
J

Q̃2 =
Q41 + iQ∗

43

2
I +

Q41 − iQ∗
43

2i
J Q2 =

Q14 − iQ∗
34

2
I +

Q14 +Q∗
34

2i
J (4.12)

The ansatz (4.12) exactly reproduces the equations of motion (3.2) of the parent N = 2

theory. Moreover this ansatz exhausts the vacuum space of the N = 1 theory. Indeed we

checked that by fluctuating around the solution there are not other flat directions.

There are four residual abelian gauge factors on the moduli space, SO(2) ∈ O(2),

SO(2) ∈ SP (2) and U(1)2 ∈ U(2). They act on the ansatz fields exactly as the U(1)4

gauge group in the N = 2 case. One can observe that one of them acts trivially, two

combinations are used to mod the moduli space and the last factor is broken to Z2k by the

CS. In this way the moduli space exactly reproduces the geometry (4.7) modded by Z2k as

in the parent theory.

However there is still a residual discrete symmetry, Θ, generated by σ3 in O(2) and

iσ3 in SU(2) and U(2). It corresponds to the antiholomorphic involution. The moduli

space of the N = 1 theory is then the Spin(7) quotient geometry Y/Θk, where Θk is the

combination of Θ in (4.9) with Z2k, and Y is the CY4 in (4.7).

The analysis of the dual phase is similar. The moduli space of the two N = 1 theories

are coincident and this supports the Spin(7) duality for this first simple example. Observe

that the duality can be understood as a parity transformation k → −k. Although the

simplicity of this duality, we studied this toy model because we believe that it could be

useful for the reader to understand our general picture.
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4.2 Second example

Let us now provide a more involved and interesting example of Spin(7) duality. In this case

we consider N = 1 models with only orthogonal or symplectic gauge groups. We consider

a case with four gauge groups. We distinguish two possibilities

{
(I) O(2N)2k ×O(2N)0 ×O(2N)−2k ×O(2N)0
(II) SP (2N)k × SP (2N)0 × SP (2N)−k × SP (2N)0

(4.13)

In the rest of the section we study the case I but everything can be easily generalized to

the case II. The N = 1 superpotential is8

W = Q12Q23Q32Q21 −Q23Q34Q43Q32 +Q34Q41Q14Q43 −Q41Q12Q21Q14

+R1(Q12Q
T
12 −QT

21Q21 +Q14Q
T
14 −QT

41Q41)

+R2(Q21Q
T
21 −QT

12Q12 +Q23Q
T
23 −QT

32Q32)

+R3(Q32Q
T
32 −QT

23Q23 +Q34Q
T
34 −QT

43Q43)

+R4(Q43Q
T
43 +QT

34Q34 −Q41Q
T
41 +QT

14Q14)

+
k

2π
(R2

1 −R2
3) (4.14)

The Spin(7) dual theories have gauge groups

{
(I) O(2N)−2k ×O(2N)2k ×O(2N)−2k ×O(2N)2k
(II) SP (2N)−k × SP (2N)k × SP (2N)−k × SP (2N)k

(4.15)

Here we still restrict to the first case. The N = 1 superpotential becomes

W = Q14Q44Q41 −Q12Q22Q21 +Q32Q22Q23 −Q23Q34Q43Q32 +Q34Q44Q43

+R1(Q12Q
T
12 −QT

21Q21 +Q14Q
T
14 −QT

41Q41)

+R2(Q21Q
T
21 −QT

12Q12 +Q23Q
T
23 −QT

32Q32)

+R3(Q32Q
T
32 −QT

23Q23 +Q34Q
T
34 −QT

43Q43)

+R4(Q43Q
T
43 +QT

34Q34 −Q41Q
T
41 +QT

14Q14)

+
k

2π
(R2

4 −R2
1 +R2

2 −R2
3) (4.16)

In the rest of this section we study this duality as before. First we provide the N = 2 dual

parents, then we study the projection to N = 1 and show that the moduli spaces match,

supporting the Spin(7) duality.

N = 2 parents. In this case the parent theories are L̃222
ki

models in the N = 2 case. The

dual phase is obtained by dualizing the first gauge group. The quiver and the superpotential

coincide with the ones studied in subsection 4.1.

8With abuse of notation we keep the same notation as before for the the matter fields Qij even if both

indices i and j refer now to the fundamental representation because the gauge group is now real.
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We study here the moduli space for one M2 brane where the gauge group is U(1)4 gauge

group. The CS levels are ~k = (k, 0,−k, 0). The gauge invariant combinations, orthogonal

to the CS vector, are

x1 = Q12Q21 = Q34Q43 x2 = Q23Q32 = Q14Q41

y1 = Q12Q23 y2 = Q21Q32 y3 = Q34Q41 y4 = Q43Q14 (4.17)

They are related by

x1x2 = y1y2 = y3y4 (4.18)

These equations define the CY4 Y that has to be mod by the Zk.

The U(1) gauge groups of the toric dual N = 2 phase have CS levels ~k = (−k, k,−k, k).

The gauge invariant combinations, orthogonal to the CS vector, are

x1 = Q12Q21 = Q23Q32 = Q44 x2 = Q34Q43 = Q14Q41 = Q22

y1 = Q12Q34 y2 = Q21Q43 y3 = Q23Q41 y4 = Q32Q14 (4.19)

They are related by

x1x2 = y1y2 = y3y4 (4.20)

These equations define the CY4 Y that has to be mod by the Zk. The moduli space of the

two theories is then the same and they are indeed toric dual.

In the rest of this section we project the theories to N = 1 to obtain the two models

discussed above. We check that they reproduce the expected N = 1 phases and compute

the classical moduli space with our usual procedure. Eventually we match the two moduli

spaces, supporting the Spin(7) duality.

Projection to N = 1 of the electric phase. We choose the anti-holomorphic involu-

tion as

x1 → −x∗1 , x2 → −x∗2 , x3 → −x∗3 , x4 → −x∗4

y1 → −y∗1 , y2 → −y∗2 , y3 → −y∗3 , y4 → −y∗4 (4.21)

this action has a real four dimensional locus of fixed points on the CY4 geometry (4.20).

On the fields Qij this anti-involution becomes

Q12 → −Ω1Q
∗
12Ω

−1
2 Q21 → Ω2Q

∗
21Ω

−1
1 Q23 → Ω2Q

∗
23Ω

−1
3 Q32 → −Ω3Q

∗
32Ω

−1
2

Q34 → −Ω3Q
∗
34Ω

−1
4 Q43 → Ω4Q

∗
43Ω

−1
3 Q41 → Ω4Q

∗
41Ω

−1
1 Q14 → −Ω1Q

∗
14Ω

−1
4

(4.22)

Here Ωi = I2 or J2 means that we project on an orthogonal or symplectic group. By

choosing Ωi = I2N the gauge groups become O(2N) with ~k = (2k, 0,−2k, 0) while choosing

Ωi = I2N we have a product of SP (2N) gauge groups with ~k = (k, 0,−k, 0) . Also in this

case the anti-holomorphic action is a symmetry of the full lagrangian. The transformation

corresponds to an orientifold projection, sending σ → σ and the angle ψ → −ψ.
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Moduli space of the N = 1 electric phase. Here we compute the moduli space for

a single M2 brane. We choose the ansatz for the N = 1 fields as

Qij = Re(Qij)I + Im(Qij)J (4.23)

Once we plug these projection in the superpotential (4.14) they reproduce the equations

of motion (3.2) of the N = 2 case. Moreover this ansatz exhausts the vacuum space of the

N = 1 theory.

There are four residual abelian SO(2) gauge factors on the moduli space that act as

the U(1) gauge groups in the N = 2 case. One of them acts trivially, two combinations

are used to mod the moduli space and the last factor is broken to Z2k by the CS. There

is still a residual discrete symmetry, Θ, generated by σ3 in O(2) that corresponds to the

antiholomorphic involution. The moduli space is the Spin(7) quotient Y/Θk, where Θk is

the combination of the Θ action (4.21) with Z2k, and Y is the CY4 in (4.18).

The magnetic phase. In this case we choose the anti-holomorphic involution as (4.21).

On the fields Qij this anti-involution becomes

Q12 → −Ω1Q
∗
12Ω

−1
2 Q21 → Ω2Q

∗
21Ω

−1
1 Q23 → Ω2Q

∗
23Ω

−1
3 Q32 → −Ω3Q

∗
32Ω

−1
2

Q34 → −Ω3Q
∗
34Ω

−1
4 Q43 → Ω4Q

∗
43Ω

−1
3 Q41 → Ω4Q

∗
41Ω

−1
1 Q14 → −Ω1Q

∗
14Ω

−1
4

Q22 → −Ω2Q
∗
22Ω

−1
2 Q44 → −Ω4Q

∗
44Ω

−1
4

(4.24)

where Ωi and the ansatz for the bifundamentals are chosen as before. Also the adjoints

become Qii = Re(Q11)I2 + Im(Qii)J2 and they do not contribute to the D-terms. The

ansatz reproduces the equations of motion (3.2) of the N = 2 case and it exhausts the

vacuum space of the N = 1 theory.

There are four residual abelian SO(2) gauge factors on the moduli space that act as in

the N = 2 case. One of them acts trivially, two combinations are used to mod the moduli

space and the last factor is broken to Z2k by the CS. There is still a residual discrete sym-

metry, Θ, generated by σ3 in O(2) that corresponds to the antiholomorphic involution. As

in the electric phase the moduli space for the magnetic phase is the Spin(7) quotient Y/Θk,

where Θk is the combination of the Θ action (4.21) with Z2k, and Y is the CY4 in (4.18).

The two geometries coincide and this confirms that the two N = 1 theories are

Spin(7) dual.

As already remarked the Spin(7) duality is insensitive to the presence of fractional

branes. The choice of equal rank, 2N , for each gauge factor in the examples studied above

comes naturally from the orientifold projection. However the Spin(7) duality would have

been valid also for different choices of ranks for the projected theories. In the next section

we explore the possibility to fix the ranks, and hence the number of fraction branes, using

Seiberg-like dualities.

5 Spin(7) duality as Seiberg like duality

For N = 2 CS-matter theories in [6] it has been shown that some toric dualities between

L̃aba
k theories are actually three dimensional Seiberg-like dualities. Namely that the two
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different field theories not only have the same moduli space, but they are actually two

different descriptions of the same IR conformal field theory that is holographic dual to

the M theory background: AdS4 × H7. It is maybe worth to underline the principal

differences between toric (and similarly Spin(7)) duality and Seiberg-like duality. Toric

duality is essentially the statement that the moduli space for one regular brane is the same

for the dual pairs of theories. Seiberg-like duality is instead a non-abelian statement valid

for the set of regular and fractional branes at the tip of a CY4 or Spin(7) cone. Indeed,

as we have previously explained, for N = 2 L̃aba
ki

theories the Seiberg-duality transforms

the gauge groups as in (3.1). Anyway, in toric duality, the extra shift in the rank of the

dual gauge group does not play any role. Indeed the moduli space for one M2 brane

is obtained by setting N = 1 in all the gauge group factors and disregarding the rank

difference among the various gauge group factors: only regular M2 branes can explore the

geometry transverse to the brane, while the fractional branes are stacked at the singularity

and do not contribute to the moduli space. Moreover for N = 2 the moduli space of N

regular branes is simply the N times symmetric product of the moduli space for one brane.

In analogy with the N = 2 case, in this section we study examples of Spin(7) dual

N = 1 pairs of theories that are also Seiberg-like dual.

5.1 Example

Let us illustrate in detail a specific example to explain our general philosophy. We consider

a three dimensional N = 1 CS-matter theory with four gauge groups

U(2N)2k × U(2N)−2k × U(2N)0 × U(2N)0 (5.1)

and N = 1 superpotential:

W = Q11Q12Q21Q
∗
11 −Q12Q23Q32Q21 +Q23Q34Q43Q32 −Q34Q

∗
44Q44Q43

+Q∗
11Q

∗
12Q

∗
21Q11 −Q∗

12Q
∗
23Q

∗
32Q

∗
21 +Q∗

23Q
∗
34Q

∗
43Q

∗
32 −Q∗

34Q44Q
∗
44Q

∗
43

+R1(Q12Q
†
12 −Q†

21Q21[Q11,Q
†
11]) +R2(Q21Q

†
21 −Q†

12Q12 +Q23Q
†
23 −Q†

32Q32)

+R3(Q23Q
†
23 −Q†

32Q32 +Q43Q
†
43 −Q†

34Q34) +R4(Q34Q
†
34 −Q†

43Q43 + [Q44,Q
†
44]

+
k

2π
(R2

1 −R2
2) (5.2)

We claim that this theory is Seiberg-like dual to another N = 1 CS-matter theory with

gauge group and CS levels:

U(2N)0 × U(2(N + |k|))2k × U(2N)−2k × U(2N)0 (5.3)

and N = 1 superpotential

W = Q11(Q12Q21−X11X
∗
11)−Q12Q23Q32Q21+Q33(Q32Q23−Q34Q43)+Q34X44X

∗
44Q43

+Q∗
11(Q

∗
12Q

∗
21−X ∗

11X11)−Q∗
12Q

∗
23Q

∗
32Q

∗
21+Q∗

33(Q
∗
32Q

∗
23−Q∗

34Q
∗
43)+Q∗

34X
∗
44X44Q

∗
43

+R1(Q12Q
†
12 −Q†

21Q21 − [Q11,Q
†
11]) +R2(Q21Q

†
21 −Q†

12Q12 +Q23Q
†
23 −Q†

32Q32)

+R3(Q23Q
†
23 −Q†

32Q32 +Q43Q
†
43 −Q†

34Q34) +R4(Q34Q
†
34 −Q†

43Q43 − [Q44,Q
†
44]

+
k

2π
(R2

2 −R2
3) (5.4)

– 16 –



J
H
E
P
0
7
(
2
0
1
4
)
0
8
2

We start showing that the two models can be obtained by projecting two toric dual N =

2 parent theories of the L̃444
k family. Then we study the projection and compute the

N = 1 moduli space for one M2 brane: namely when all the gauge groups are U(2). By

comparing the result in the two phases we show that the two models are indeed Spin(7)

dual. Eventually we show that the brane description supports the claim that the two

models are also Seiberg-like dual.

N = 2 parents. The quivers for the parent theories are represented in figure 2. They

have eight gauge groups, each associated to a U(Ni)ki factor. We choose the ranks as

Ni = N . In the first case represented in figure 2 (a) there is a pair bifundamental antibi-

fundamental connecting each pair of consecutive nodes. The N = 2 superpotential is

W = Q12Q23Q32Q21 −Q23Q34Q43Q32 +Q34Q45Q54Q43 −Q45Q56Q65Q54

+Q56Q67Q76Q65 −Q67Q78Q87Q76 +Q78Q81Q18Q87 −Q81Q12Q21Q18 (5.5)

We choose the CS levels as ~k = (−k, k, 0, 0, 0, 0, k,−k). Let us analyze the N = 2 moduli

space for one M2 regular brane, namely for the U(1)4 gauge group. After solving the F-

term equations the operators gauge invariant with respect to the gauge factor orthogonal

to the CS vector are

x1 = Q12Q21 = Q34Q43 = Q56Q65 = Q78Q87

x2 = Q23Q32 = Q45Q54 = Q67Q76 = Q81Q18

y1 = Q12Q23Q34Q45Q56Q67Q78Q81

y2 = Q18Q87Q76Q65Q54Q43Q32Q21

t1 = Q12Q87 t2 = Q21Q78 (5.6)

They are related by

x41x
4
2 = y1y2 t1t2 = x21 (5.7)

These equations define the CY4 Y that has to be modded by the Zk action.

The second parent is obtained by acting with two Seiberg-like dualities on U(N2) and

U(N7) respectively. The dual quiver is represented in figure 2 (c). In this case there are

four extra adjoint fields. The ranks of the dualized groups are

Ñ2 = N1 +N3 −N2 + |k2| = N + |k| , Ñ7 = N6 +N8 −N7 + |k7| = N + |k| (5.8)

while all the other ranks remain the same. The CS levels of the dual phase are ~k =

(0,−k, k, 0, 0, k,−k, 0). The dual N = 2 superpotential is

W = Q11(Q12Q21−Q18Q81)−Q12Q23Q32Q21+Q33(Q32Q23−Q34Q43)+Q34Q45Q54Q43

−Q45Q56Q65Q54+Q66(Q65Q56−Q67Q76)+Q67Q78Q87Q76−Q88(Q87Q78−Q81Q18)

(5.9)

Let us analyze the N = 2 moduli space for one M2 regular brane, namely for the U(1)4

gauge group. Where, as previously explained, we disregarded the presence of fractional
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(d) 0−2k2k0
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Figure 2. The models in (a), (b) and (c) represent three L444 toric dual phases. In the cases

(a) and (c) the orientifold projection acts by folding the quiver, along the dashed red lines. By

projecting these models to N = 1 Spin(7) cones we obtain the phases (d) and (e), that are related

by Spin(7) duality. These models are also Seiberg-like dual.

branes, because they are stacked at the origin and they do not explore the moduli space.

After solving the F-term equations the gauge invariant operators orthogonal to the CS

vector are

x1 = Q12Q21 = Q33 = Q45Q54 = Q66 = Q78Q87 = Q81Q18

x2 = Q11 = Q23Q32 = Q34Q43 = Q56Q65 = Q67Q76 = Q88

y1 = Q12Q23Q34Q45Q56Q67Q78Q81

y2 = Q18Q87Q76Q65Q54Q43Q32Q21

t1 = Q23Q76 t2 = Q32Q67 (5.10)

and they are related by

x41x
4
2 = y1y2 , t1t2 = x22 (5.11)

These equations define the CY4 Y that has to be mod by the Zk. Equations (5.7) for the

first phase and equations (5.11) for the second phase are equivalent: the two theories are

indeed Seiberg and toric dual and they have the same moduli space for one regular brane.

Here we study the projection of the two phases to obtain the two N = 1 theories introduced

above.

Projection to N = 1 of the electric theory. In the first case the anti-holomorphic

involution on the coordinates is

x1 → x∗1 x2 → −x∗2 y1 → y∗2 y2 → y∗1 t1 → t∗1 t2 → t∗2 (5.12)

This action has a real four dimensional locus of fixed points on the CY4 (5.7) and it

represents an orientifold projection that sends σ → σ and ψ → −ψ. The associated
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orientifold action on the fields is

Q12 → Ω1Q
∗
87Ω

−1
2 Q21 → Ω2Q

∗
78Ω

−1
1 Q23 → −Ω2Q

∗
76Ω

−1
3 Q32 → Ω3Q

∗
67Ω

−1
2

Q34 → −Ω3Q
∗
65Ω

−1
4 Q43 → Ω4Q

∗
56Ω

−1
3 Q45 → Ω4Q

∗
54Ω

−1
4 Q54 → Ω4Q

∗
45Ω

−1
4

Q56 → Ω4Q
∗
43Ω

−1
3 Q65 → −Ω3Q

∗
34Ω

−1
4 Q67 → Ω3Q

∗
32Ω

−1
2 Q76 → −Ω2Q

∗
23Ω

−1
3

Q78 → Ω2Q
∗
21Ω

−1
1 Q87 → Ω1Q

∗
12Ω

−1
2 Q81 → Ω1Q

∗
18Ω

−1
1 Q18 → Ω1Q

∗
81Ω

−1
1

Q11 → −Ω1Q
∗
11Ω

−1
1 Q33 → Ω3Q

∗
33Ω

−1
3 Q66 → Ω6Q

∗
66Ω

−1
6 Q88 → −Ω8Q

∗
88Ω

−1
8

(5.13)

This action is a symmetry of the N = 2 lagrangian. The superpotential is sent into its

complex conjugate and once again the D-terms transform consistently with the constraint

Da = ka
2πσa. The gauge groups after the projection become U(2N) and the CS vector is

~k = (−2k, 2k, 0, 0).

Projection to N = 1 of the magnetic theory. In the dual case the anti-holomorphic

involution on the coordinates is still given by (5.12). On the matter fields is implemented as

Q12 → Ω1Q
∗
87Ω

−1
2 Q21 → Ω2Q

∗
78Ω

−1
1 Q23 → −Ω2Q

∗
76Ω

−1
3 Q32 → Ω3Q

∗
67Ω

−1
2

Q34 → −Ω3Q
∗
65Ω

−1
4 Q43 → Ω4Q

∗
56Ω

−1
3 Q45 → Ω4Q

∗
54Ω

−1
4 Q54 → Ω4Q

∗
45Ω

−1
4

Q56 → Ω4Q
∗
43Ω

−1
3 Q65 → −Ω3Q

∗
34Ω

−1
4 Q67 → Ω3Q

∗
32Ω

−1
2 Q76 → −Ω2Q

∗
23Ω

−1
3

Q78 → Ω2Q
∗
21Ω

−1
1 Q87 → Ω1Q

∗
12Ω

−1
2 Q81 → Ω1Q

∗
18Ω

−1
1 Q18 → Ω1Q

∗
81Ω

−1
1

Q11 → −Ω1Q
∗
11Ω

−1
1 Q33 → Ω3Q

∗
33Ω

−1
3 Q66 → Ω6Q

∗
66Ω

−1
6 Q88 → −Ω8Q

∗
88Ω

−1
8

(5.14)

This action as a real four dimensional locus of fixed points on the CY4 and it represents

an orientifold projection that sends σ → σ and ψ → −ψ. This action is a symmetry of the

N = 2 lagrangian. The superpotential is sent into its complex conjugate and once again

the D-terms transform consistently with the constraint Da = ka
2πσa. The gauge groups

after the projection become U(2N) and the CS vector is ~k = (0,−2k, 2k, 0).

Moduli space of the electric N = 1 theory. Here we study the moduli space for a

single M2 brane. In the projected theory the gauge group is then a product of U(2) factors

and the fields are two by two matrices. To solve the zero potential condition for the scalar

components of the fields of the N = 1 theory we use the ansatz

Q12 = −
Q12 −Q∗

87

2
σ2 +

Q12 +Q∗
87

2i
σ1 , Q21 = −

Q21 +Q∗
78

2
σ2 +

Q21 −Q∗
78

2i
σ1

Q23 =
Q23 −Q∗

76

2
σ2 −

Q23 +Q∗
76

2i
σ1 , Q32 =

Q32 −Q∗
67

2
σ2 +

Q32 +Q∗
67

2i
σ1

Q34 = −
Q34 −Q∗

65

2
σ2 −

Q34 +Q∗
65

2i
σ1 , Q43 = −

Q43 +Q∗
56

2
σ2 +

Q43 −Q∗
56

2i
σ1 (5.15)

For the other fields we have

Q11 =
σ1 + iσ2

2
Q∗

81 +
σ1 − iσ2

2
Q18 , Q44 =

σ1 − iσ2
2

Q∗
45 +

σ1 + iσ2
2

Q54 (5.16)
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where now the σi are the two by two Pauli matrices, while the Qij are complex numbers.

By inserting this ansatz in the N = 1 superpotential (5.2) we verify that it reproduces

the equations of motion (3.2) of the parent N = 2 theory. Moreover we explicitly verified

that this ansatz exhausts the vacuum space condition.

To complete the analysis of the moduli space for the N = 1 theory it is important

to analyze the action of the gauge groups. The ansatz breaks the gauge group down to

its abelian component. There are indeed eight residual U(1) abelian gauge factors on the

moduli space, an U(1)2 in each U(2). They act on the Qij as in the N = 2 case. We can

check this explicitly as follows.

Q12 →

(
eiφ1 0

0 e−iφ8

)
Q12

(
eiφ7 0

0 e−iφ2

)
, Q21 →

(
e−iφ7 0

0 eiφ2

)
Q21

(
e−iφ1 0

0 eiφ8

)

Q23 →

(
e−iφ7 0

0 eiφ2

)
Q23

(
e−iφ3 0

0 eiφ6

)
, Q32 →

(
eiφ3 0

0 e−iφ6

)
Q32

(
eiφ7 0

0 e−iφ2

)

Q34 →

(
eiφ3 0

0 e−iφ6

)
Q34

(
eiφ5 0

0 e−iφ4

)
, Q43 →

(
eiφ5 0

0 e−iφ4

)
Q43

(
eiφ3 0

0 e−iφ6

)

Q11 →

(
eiφ1 0

0 e−iφ8

)
Q11

(
eiφ1 0

0 e−iφ8

)
, Q44 →

(
e−iφ4 0

0 eiφ5

)
Q44

(
e−iφ4 0

0 eiφ5

)

(5.17)

where φi are the phases of the U(1)s. They are equivalent to

Q12 → ei(φ1−φ2)Q12, Q21 → ei(φ2−φ1)Q21, Q23 → ei(φ2−φ3)Q23, Q32 → ei(φ3−φ2)Q32

Q34 → ei(φ3−φ4)Q34, Q43 → ei(φ4−φ3)Q43, Q45 → ei(φ4−φ5)Q45, Q54 → ei(φ5−φ4)Q54

Q56 → ei(φ5−φ6)Q56, Q65 → ei(φ6−φ5)Q65, Q67 → ei(φ6−φ7)Q67, Q76 → ei(φ7−φ6)Q76

Q78 → ei(φ7−φ8)Q78, Q87 → ei(φ8−φ7)Q87, Q81 → ei(φ8−φ1)Q81, Q18 → ei(φ1−φ8)Q18

(5.18)

One can observe that one of them acts trivially, six combinations are used to mod the

moduli space and the last factor is broken to Z2k by the CS and consequently they reproduce

exactly the the N = 2 CY4 geometry (5.7) quotiented by the same Z2k action. Actually

there is still a residual discrete symmetry, Θ, generated by iσ3 in U(2). It corresponds to

the antiholomorphic involution (5.12) for which we need to mod out the geometry. The

moduli space is then the Spin(7) quotient Y/Θk, where Θk is the combination of Θ with

Z2k. In this way the moduli space of the electric phase of the N = 1 theory is exactly the

Spin(7) geometry obtained by the anti-holomorphic involution on the CY4 of the parent

N = 2 theory.

Moduli space of the magnetic N = 1 theory. Here we study the moduli space

for a single M2 brane in the dual phase. Also in this case the gauge group for the N = 1

projected theory is the product of U(2) factors, where, as before we disregarded the presence

of additional fractional branes, that do not explore the moduli space. To solve the zero
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potential condition for the N = 1 theory we consider the ansatz for the scalar components

of the N = 1 projected bifundamental fields

Q12 =
Q12 −Q∗

87

2
σ2 −

Q12 +Q∗
87

2i
σ1 , Q21 =

Q21 −Q∗
78

2
σ2 +

Q21 +Q∗
78

2i
σ1

Q23 =
Q23 −Q∗

76

2
σ2 +

Q23 +Q∗
76

2i
σ1 , Q32 = −

Q32 +Q∗
67

2
σ2 +

Q32 −Q∗
67

2i
σ1

Q34 = −
Q34 −Q∗

65

2
σ2 +

Q34 +Q∗
65

2i
σ1 , Q43 =

Q43 +Q∗
56

2
σ2 +

Q43 −Q∗
56

2i
σ1

(5.19)

and

Q11 =
σ1 + iσ2

2
Q∗

81 +
σ1 − iσ2

2
Q18 , Q44 =

σ1 − iσ2
2

Q∗
45 +

σ1 + iσ2
2

Q54 (5.20)

For the adjoints we have

X11 =
Q∗

88 −Q11

2
I +

Q∗
88 +Q11

2
σ3 , X33 =

Q∗
33 +Q66

2
I −

Q∗
33 −Q66

2i
σ3 (5.21)

By inserting this ansatz on the N = 1 superpotential (5.4) we verified that the ansatz

exactly reproduces the equations of motion (3.2) of the parent N = 2 theory. Moreover we

verified that ansatz exhausts the vacuum space.

To compute the moduli space we still need for the residual gauge symmetries. There

are eight residual U(1) abelian gauge factors on the moduli space, an U(1)2 in each U(2).

They act as in the N = 2 case. We can check this explicitly as follows:

Q12 →

(
e−iφ8 0

0 eiφ1

)
Q12

(
e−iφ2 0

0 eiφ7

)
, Q21 →

(
eiφ2 0

0 e−iφ7

)
Q21

(
eiφ8 0

0 e−iφ1

)

Q23 →

(
eiφ2 0

0 e−iφ7

)
Q23

(
eiφ6 0

0 e−iφ3

)
, Q32 →

(
e−iφ6 0

0 eiφ3

)
Q32

(
e−iφ2 0

0 eiφ7

)

Q34 →

(
e−iφ6 0

0 eiφ3

)
Q34

(
e−iφ4 0

0 eiφ5

)
, Q43 →

(
eiφ4 0

0 e−iφ5

)
Q43

(
eiφ6 0

0 e−iφ3

)

Q11 →

(
eiφ1 0

0 e−iφ8

)
Q11

(
eiφ1 0

0 e−iφ8

)
, Q44 →

(
e−iφ4 0

0 eiφ5

)
Q44

(
e−iφ4 0

0 eiφ5

)

X11 →

(
eiφ1 0

0 e−iφ8

)
X11

(
e−iφ1 0

0 eiφ8

)
, X33 →

(
e−iφ3 0

0 eiφ6

)
X33

(
eiφ3 0

0 e−iφ6

)

(5.22)

and these are equivalent to the N = 2 action

Q12 → ei(φ1−φ2)Q12, Q21 → ei(φ2−φ1)Q21, Q23 → ei(φ2−φ3)Q23, Q32 → ei(φ3−φ2)Q32

Q34 → ei(φ3−φ4)Q34, Q43 → ei(φ4−φ3)Q43, Q45 → ei(φ4−φ5)Q45, Q54 → ei(φ5−φ4)Q54

Q56 → ei(φ5−φ6)Q56, Q65 → ei(φ6−φ5)Q65, Q67 → ei(φ6−φ7)Q67, Q76 → ei(φ7−φ6)Q76

Q78 → ei(φ7−φ8)Q78, Q87 → ei(φ8−φ7)Q87, Q81 → ei(φ8−φ1)Q81, Q18 → ei(φ1−φ8)Q18

Q11 → Q11, Q33 → Q33, Q66 → Q66, Q88 → Q88

(5.23)
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One of them acts trivially, six combinations are used to mod the moduli space and the last

factor is broken to Z2k by the CS. We hence obtain exactly the CY4 moduli space (5.11)

quotiented by the same Z2k of the parent N = 2 theory. Actually there is still a residual

discrete symmetry, Θ, generated by iσ3 in U(2) that acts on the moduli space exactly

as the anti-holomorphic involution (5.12). The moduli space is then the Spin(7) quotient

Y/Θk, where Θk is the combination of Θ with Z2k. In this way we computed the Spin(7)

geometry obtained by the anti-holomorphic involution on the CY4. It coincides with the

geometry of the other N = 1 theory introduced above.

The two Spin(7) geometries Y/Θk computed by projecting the toric dual parent theo-

ries coincide, and we conclude that the two N = 1 models are Spin(7) dual. We conclude

this section by arguing that in this case the Spin(7) duality is actually a Seiberg-like duality.

Brane construction and Seiberg-like duality. In this case we can support the duality

between the two N = 1 theories by using the brane construction. One can observe from

figure 2 that the orientifold projection in this case folds the quiver by identifying pairs of

U(N) gauge groups. At the level of type IIB brane description the orientifolded theory is

locally N = 2. We can then exchange without problem the (1, pi) branes at the boundaries

of the D3s associated to the second gauge group of the projected N = 1 theory. This

operation generates the Seiberg-dual phase exactly as in the parent theory, where the

Seiberg duality is implemented at the same time on the two identified gauge groups. The

|pi−pi+1| fractional branes, created during the exchange, modify the dual ranks Ñ2, and we

have Ñ2 = 2(N + |k|). The CS levels transform as discussed above and the superpotential

transforms according to the usual rules of Seiberg-like duality.9 We conclude that in this

case the Spin(7) duality is a Seiberg-like duality.

5.2 An infinite family

In this section we propose a generalization of the Seiberg-like duality discussed above, for

an infinite family of N = 1 gauge theories. The two dual phases are represented in figure 3

(c) and (d). They can be obtained by projecting the L̃aba
ki theories represented in figure 3

(a) and (b). We fix both a and b to be even. We choose the CS levels of the model in

figure 3 (a) as: 



ki = k i = a− 1 i = a+ 2

ki = −k i = a i = a+ 1

ki = 0 otherwise

(5.24)

We can describe the geometry of these models in a unified way. The gauge invariant

operators orthogonal to the CS vector are

x1 = Q12Q21 = Q34Q43 = · · · = Q2a−1,2aQ2a,2a−1 = Q2a+1,2a+1 = · · · = Qb+a,b+a

x2 = Q23Q32 = Q45Q54 = · · · = Q2a,2a+1Q2a+1,2a+1 = Q2a+1,2a+2Q2a+2,2a+1 = . . .

. . . = Qb+a−1,b+aQb+a,b+a−1 = Qb+a,1Q1,b+a

y1 = Q12Q23 . . . Qb+a,1, y2 = Q1,b+aQb+a,b+a−1 . . . Q21

t1 = Qa−1,aQa+2,a+1, t1 = Qa+1,a+1Qa,a−1 (5.25)

9We will come back to this issue in section 6.
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2a

2a+1

...

...

a+2

a+3 a+1

1 ...

b+a... a−2

a−1

a

1 ...

b+a... a−2

a−1

a

2a

2a+1

...

...

a+3 a+1a+2

1 ...

b+a...

a−1a−2 a

1 ...

b+a...

a−1a−2 a

(b)(a)

(d)(c)

Projection

Toric

Duality

Spin(7)

Duality

Projection

Figure 3. The models in (a) and (b) represent two Laba toric dual phases with both a and b even.

The orientifold projection acts by folding the quiver, along the dashed red lines. By projecting

these models to N = 1 Spin(7) cones we obtain the phases (c) and (d), that are related by Spin(7)

duality. These models are also Seiberg-like dual.

The CY4 Y geometry that has to be mod by the Zk is

y1y2 = xa1x
b
2 , t1t2 = x22 (5.26)

We choose the anti-holomorphic involution by generalizing the choice of section 5.1. On

the Y coordinates it is

x1 → x∗1 x2 → −x∗2 y1 → y∗2 y2 → y∗1 t1 → t∗1 t2 → t∗2 (5.27)

This action has fixed points and it can be translated on the vector and matter multiplets

as usual. It sends σ → σ and ψ → −ψ and it hence acts as an orientifold projection on the

quiver field theory. It can indeed be realized quotienting by an antiholomorphic orientifold

symmetry of the N = 2 lagrangian that identifies i-th group with the i+(a+ b)/2-th. The

rank of each gauge group and the CS level are doubled after the identification. Finally we

obtain the N = 1 theory represented in figure 3 (c).

We choose to dualize this family by acting on nodes a − 1 and a + 2. Other choices

are possible. The quiver is depicted in figure 3 (b). The new CS levels are





ki = −k i = a− 1 i = a+ 2

ki = −k i = a− 2 i = a+ 3

ki = 0 otherwise

(5.28)

This theory has the same CY4 geometry Y as before. One can verify that, by implementing

the same anti-holomorphic involution on the coordinates as before, we obtain the quiver in

figure 3 (d).

We computed the Spin(7) geometries Y/Θk of both the N = 1 models and we showed

that they coincide. This confirms that they are Spin(7) dual. As in the subsection 5.1

the Spin(7) duality is also in this case a Seiberg-like duality. Indeed one can embed the
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N = 1 theories in a IIB brane setup and observe that locally the Seiberg-like duality can

be performed ignoring the effect of the orientifold.

6 Comments on N = 1 Seiberg-like duality

As discussed in the previous section in some cases we can claim that the proposed Spin(7)

duality coincides with three dimensional Seiberg-like duality for N = 1 theories. We used

a brane description to support this idea.

In this section we translate this brane description in a field theoretical language. We

propose a procedure to obtain the Seiberg-like dual in the N = 1 case. We provide the

transformation rules on the superpotential, on the field content and on the gauge groups

by extracting them from the example in subsection 5.1.

We can summarize the procedure as follows. First the gauge invariant operators of

the electric theory appear as mesons in the magnetic theory. Then the ranks of the gauge

groups and the CS levels transform as in (3.1). Moreover we distinguish three terms in

the dual N = 1 superpotential. The first term is a holomorphic contribution that we call

Wholo. It is cubic and involves the coupling of the dual quarks with the mesons. The second

part is non holomorphic, and it is obtained from the N = 1 superpotential after a proper

substitution of the electric quarks with the mesons. In the case of the Spin(7) duality this

term corresponds to the N = 2 superpotential of the parent theory, projected to N = 1.

The last term is obtained by coupling the dual R fields with the D terms. The masses of

the R fields are proportional to the dual CS levels.

In the first part of the section we show that these rules reproduce the dual theory

studied in subsection 5.1. Then we apply this procedure to one N = 1 theory with U(Nc)k
gauge group, Nf flavors and a quartic, non holomorphic, superpotential. This theory is

not associated to a CY4 and we cannot use the Spin(7) duality. In any case we propose a

possible Seiberg-like dual description. We obtain a dual U(Nf + |k| −Nc)−k gauge theory

with Nf flavors and the same quartic, non holomorphic, superpotential.

6.1 Revisiting the L̃444
ki

theory

Here we reconsider the models studied in section 5.1. We start from the electric theory,

with superpotential (5.2).

Here we follow the procedure sketched above to obtain the dual phase. First we identify

the group to dualize. This group and its neighbours are modified as (3.1). Then we can

build the dual superpotential. We start from the holomorphic term:

Wholo = X11Q12Q21 + X33Q32Q23 + X13Q32Q21 + X31Q12Q23 + h.c. (6.1)

The next step consists of contracting the fields charged under the dualized gauge groups

into mesons Xij . They are

(
X11 X13

X31 X33

)
=

(
Q12Q21 Q12Q23

Q32Q21 Q32Q23

)
(6.2)
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We substitute the mesons in the first two lines of (5.2) and integrate them out the massive

fields. This procedure reproduces the first two lines of (5.4). The other terms of (5.4)

are obtained by reintroducing the D-terms and the R fields. The mass terms for Ri are

obtained by transforming the CS levels with the usual rule (3.1). In this way we reproduced

the dual theory discussed in section 5.1.

6.2 U(N)k SQCD with quartic superpotential

Even if we derived the rules of the N = 1 Seiberg-like duality from a specific set of theories,

describing M2 branes probing Spin(7) singularities, we can try to push further in the field

theoretical direction. Here we apply these rules to a SQCD like model, that does not have

a known AdS4 dual. We propose a dual version of U(2Nc)2k SQCD with 2Nf flavors and

a non-holomorphic quartic superpotential

W = QQ̃Q∗Q̃∗ +
k

2π
R2 +R

(
QQ† − Q̃†Q̃

)
(6.3)

We study the dual of the non-holomorphic superpotential (6.3) and the quarks are N = 1

complex scalar superfields. The dual theory is obtained by applying the rules explained

above in the case of the quiver gauge theories. The dual gauge group is expected to be

U(2Nf − 2Nc + 2|k|)−2k. There are 2Nf dual flavors and the meson M = QQ̃. The

holomorphic part of the dual superpotential is

Wholo =Mqq̃ +M∗q∗q̃∗ (6.4)

By considering the deformation QQ̃Q∗Q̃∗ =MM∗ we can integrate out the meson M . By

turning on the contributions of the D terms and of the R field, with kCS = −2k we have

W = qq̃q∗q̃∗ −
k

2π
R̃2 + R̃

(
q̃q̃† − q†q

)
(6.5)

As in the quartic N = 2 SQCD in three dimensions or the quartic N = 1 SQCD in

four dimensions we observe that our procedure predicts the self duality for N = 1 three

dimensional CS-SQCD with a quartic interaction. Anyway, in general, this theory is not

superconformal and moreover it is not protected against quantum corrections. It would be

interesting to provide some checks of this duality, by engineering a brane realization and by

computing the Witten index, by first lifting the moduli space in both phases consistently.

We leave this analysis to future investigations.

7 Discussion and further developments

In this paper we proposed a generalization of N = 2 toric duality for M2 branes prob-

ing toric CY4 singularities to N = 1 models of M2 branes probing Spin(7) singularities.

We called this generalization Spin(7) duality. This proposal has been supported by the

AdS/CFT correspondence. Indeed we matched the moduli space of N = 1 Spin(7) dual

models by orientifolding N = 2 toric dual pairs. In some cases, with the help of the brane
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picture, we argued that the Spin(7) duality is also a Seiberg-like duality. Finally we pro-

posed a generalization of this N = 1 Seiberg-like duality for models without a known AdS

dual description.

The main problem in the study of a supersymmetric, but non holomorphic, duality

is its validity at quantum level. In the near horizon limit the AdS/CFT correspondence

provides some arguments to protect the validity of the duality beyond the classical level.

The strongly coupled phases of the dual pair of theories are conjectured to describe the QFT

of M2 branes probing the same Spin(7) cone. By considering the near horizon geometry

the models are superconformal invariant and represent two dual descriptions of the same

singularity that should hence be valid in the strong coupling region. Planar equivalence

moreover supports the duality between the pairs for large N.

However other checks are necessary. For example one should compute the Witten

index [46–48] to match the number of supersymmetric vacua. Moreover it would be in-

teresting to study other partition functions, by localizing the N = 1 models on more

complicate manifolds, like the three sphere S3 . In the N = 2 case [49, 50] toric duality

on the three sphere has been checked for the L̃aba
ki theories in [51–54]. A generalization

of this analysis to Seiberg-like duality for these theories appeared in [55]. In the N = 1

case the calculations may be very involved, because of the absence of holomorphy and of a

continuous R-symmetry, but they can potentially provide strong checks of the dualities.

Another interesting aspect regards other possible models. Here we discussed only

vector like models, but there are also N = 2 chiral models with an AdS4 dual [14]. They

correspond to quiver gauge theories with vector-like bifundamentals and chiral flavors. It

should be interesting to extend the orientifold projection to these models and study the

Spin(7) duality for those cases.
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A N = 1 formalism

In this appendix we quickly report some known results about the N = 1 superspace

obtained by setting to zero some of the Grassmann variables of the N = 2 case in three di-

mensions.
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First we start by reviewing the N = 2 case. There are two possible multiplets involved

in a U(N) quiver, the vector multiplet and the bifundamental chiral multiplet. In a quiver

with G nodes the a-th vector multiplet Va contains a three dimensional gauge field Aµ,

a two component Dirac spinor and two real scalars, σa and Da. A chiral bifundamental

Xab connecting the a-th and the b-th node (if a = b we have a chiral field in the adjoint

representation) than consists of two complex scalars and a two dimensional Dirac spinor.

The N = 1 superspace is obtained by decomposing the N = 2 case in two copies of N = 1

and by projecting out one of them [56–58]. The decomposition is obtained by splitting the

θ variables and the super-derivatives as

θα = θ1α + iθ2α , Dα =
1

2
(D1α + iD2α) , Dα =

1

2
(D1α − iD2α) (A.1)

and the projection to N = 1 is performed by setting θ2 = 0 in the lagrangian. In terms

of superfields the N = 2 vector multiplet decomposes into a N = 1 spinor superfield Γa
α

and an N = 1 auxiliary real scalar superfield Ra. The chiral multiplet Xab decomposes

into two N = 1 real scalar superfields, Re(Xab) and Im(Xab) that can be combined into a

single complex scalar superfield Yab.

By acting on the N = 2 lagrangian the N = 1 superpotential has three different

contributions. They are

ka
8π
SN=2
CSa

→ −
ka
4π

∫
d2θ1R

2
a

−

∫
d4θX†

abe
−VaXabe

Va →

∫
d2θ1

(
YabY

†
abRa − Y †

abYabRb

)

∫
d2θW (Xab + c.c. →

∫
d2θ1 (W (Yab) +W (Y ∗

ab))

B N = 1 superconformal algebra

In this appendix we provide the generic structure of the superconformal algebra in three

dimensional N = 1 theories [59, 60].

We define the two dimensional Gamma matrices γµ, µ = 0, 1, 2, satisfying the relations

γµγν = ηµν + iǫµνργρ (B.1)

with ηµν = (1,−1,−1). The three dimensional N = 1 superconformal algebra is

[Pµ, Pν ] = [Pµ, Q] = [kµ, kν ] = [D,Mµν ] = [D,D] = [Kµ, S] = 0

[Mµν , Pλ] = i(ηµνPν − ηνλPµ), [Mµν ,Mλρ] = i (ηµλMνρ−ηµρMνλ−ηνλMµρ+ηνρMµλ) ,

{Q,Q} = 2γµPµ, [Mµν , Q] = i
2γ[µγν]Q, [Mµν ,Kλ] = i(ηµλKν − ηνλKµ),

{S, S} = 2γµKµ, [Mµν , S] =
i
2γ[µγν]S, [Pµ,Kν ] = 2i(Mµν + ηµνD),

[Pµ, S] = −γµQ, [Kµ, Q] = −γµS, {Q,S} = −i
(
2D + γ[µγν]Mµν

)
,

[D,Pµ] = −iPµ, [D,S] = i
2S, [D,Kµ] = iKµ, [D,Q] = − i

2Q

(B.2)
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