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operators affecting Higgs physics.
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1 Introduction

The investigation of the properties of the recently-discovered Higgs boson [1, 2] proceeded

initially by characterizing its signal strength relative to the Standard Model (SM) expec-

tation [3, 4], with many studies refining this picture to constrain deviations in the Higgs

couplings under various assumptions [5–44]. Although the signal strengths and pattern of

couplings provided some information about the spin and parity of the Higgs boson [45], it

was through the use of differential kinematic distributions that different Lorentz structures

could be probed most thoroughly [46–70]. The evidence now indicates convincingly [71–73]

that we are dealing with a spin-zero, positive-parity particle, as expected for the Higgs

boson responsible for electroweak symmetry breaking.

Moreover, there is no significant indication of any deviation of the dimension-4 cou-

plings of this particle from those expected in the SM. Studies of these couplings continue,

and are being supplemented by searches for anomalous couplings that could arise from new

physics in the electroweak sector. If this new physics is decoupled at some heavy scale,

then the effects of these interactions are cohesively captured by supplementing the SM

Lagrangian with higher-dimensional operators involving multiple fields and/or derivative

interactions in an effective field theory (EFT) framework1 [74–78].

1For a recent short review, see [79].
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Constraints on these operators have been placed for subsets of operators [80–89] and

in full global fits both before [90] and after [91–93] the Higgs discovery.2 Many strong

constraints come from electroweak precision tests (EWPT) [94–96] at LEP, and from triple-

gauge coupling (TGC) [91, 92, 97] measurements at LEP and the LHC. In the case of Higgs

observables, aside from operators contributing to couplings that are absent at tree-level in

the SM, only weaker limits are available so far. Some combinations of these operators

enter into EWPT and TGC, but the presence of a poorly constrained direction [98] in

measurements of the latter means that constraints on dimension-6 operators from Higgs

physics are complementary and not redundant within the EFT framework. Constraints

from EWPT on operators that contribute at loop level rely on assuming no unnatural

cancellations [99–105], with unambiguous bounds being far weaker [106, 107]. Thus, it is

desirable to refine as much as possible the analysis of the Higgs sector [108].

We illustrate here the power of associated H + V production and its differential kine-

matic distributions to constrain CP-conserving dimension-6 operators within the EFT

framework. In particular, we note that the distribution of the H + V invariant mass,

mV H , measured by D0 [109] and the vector-boson transverse momentum, pVT , distribution

measured by ATLAS [110] in the associated production channel V + H → V b̄b have very

low backgrounds in the higher mass and pT bins, respectively, where higher-dimension op-

erators would contribute. These searches are, therefore, ideal for constraining the boosted

signature of new physics that could arise from dimension-6 operators, despite the large

uncertainties in the total signal strength [111, 112]. Moreover, we find that the inclusion

of associated production at D0 and ATLAS removes certain degeneracies in a complete fit

to the full set of operators affecting Higgs physics.

In the following section we introduce the CP-even dimension-6 operators that affect

Higgs physics. In section 3.1 we constrain one operator using the mV H distribution of

V H → V b̄b in the V → 0-, 1- and 2-lepton sub-channels used in the D0 search, quantifying

the improvement obtained by using differential information, and we do the same using

the ATLAS pVT distribution in section 3.2. In section 4 we combine these channels and

make a multi-parameter fit to obtain global constraints from the Higgs sector. Section 5

summarizes our conclusions. Details of the analysis implementations for D0 and ATLAS

can be found in the appendices.

2 Dimension-6 operators in the Higgs sector

In the basis of [113–116], the CP-even dimension-6 Lagrangian involving Higgs doublets

may be written as

L ⊃ c̄H
2v2

∂µ
[
Φ†Φ

]
∂µ
[
Φ†Φ

]
+
g′2 c̄γ
m2
W

Φ†ΦBµνB
µν +

g2
s c̄g
m2
W

Φ†ΦGaµνG
µν
a

+
2ig c̄HW
m2
W

[
DµΦ†T2kD

νΦ
]
W k
µν +

ig′ c̄HB
m2
W

[
DµΦ†DνΦ

]
Bµν

2Ref. [93] in particular includes a full set of operators in the EWPT sector.
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+
ig c̄W
m2
W

[
Φ†T2k

←→
D µΦ

]
DνW k

µν +
ig′ c̄B
2m2

W

[
Φ†
←→
D µΦ

]
∂νBµν

+
c̄t
v2
ytΦ
†Φ Φ† · Q̄LtR +

c̄b
v2
ybΦ

†Φ Φ · Q̄LbR +
c̄τ
v2
yτ Φ†Φ Φ · L̄LτR . (2.1)

We note that c̄T corresponds to the T̂ parameter, which is constrained at the per-mille

level by EWPT, and c̄6 only affects the Higgs self-coupling, so we drop these from our

analysis. The linear combination c̄W + c̄B is related to the Ŝ parameter, which is also

bounded at the per-mille level, so we set c̄B = −c̄W . The independent set of parameters

affecting Higgs physics is thereby reduced to

c̄i ≡ {c̄H , c̄t,b,τ , c̄W , c̄HW , c̄HB, c̄γ , c̄g} . (2.2)

The other dimension-6 operators enter either in EWPT or TGC observables, but do not

affect the Higgs sector. For an analysis of the above operators and TGCs, see ref. [91, 92, 97].

A more phenomenological and experimentally transparent approach is often used in

the form of an effective Lagrangian with anomalous Higgs couplings. Experimental bounds

expressed in terms of anomalous couplings may then be related to other more theoretically-

motivated effective theories or models, which has proven to be a useful approach for EWPT

and TGCs. For example, following ref. [117], the relevant subset of the Higgs anomalous

couplings in the mass basis and unitary gauge includes

L ⊃ −1

4
g

(1)
HZZZµνZ

µνh− g(2)
HZZZν∂µZ

µνh

−1

2
g

(1)
HWWW

µνW †µνh−
[
g

(2)
HWWW

ν∂µW †µνh+ h.c.
]
, (2.3)

with the relation between these anomalous coupling coefficients and the dimension-6 coef-

ficients in our basis given by

g
(1)
hzz =

2g

c2
WmW

[
c̄HBs

2
W − 4c̄γs

4
W + c2

W c̄HW
]

g
(2)
hzz =

2g

c2
WmW

[
(c̄HW + c̄W )c2

W + (c̄HB + c̄B)s2
W

]
g

(1)
hww =

2g

mW
c̄HW

g
(2)
hww =

g

mW
(c̄W + c̄HW ) . (2.4)

We refer the reader to ref. [117] for more details and a complete list of Higgs anomalous

couplings.

We calculate the effects of the dimension-6 operators on V +H associated production by

Monte-Carlo (MC) simulations using MadGraph5 v2.1.0 [118] interfaced with Pythia [119]

and Delphes v3 [120], combined with the dimension-6 model implementation developed

in [117]. We start with c̄W as an illustrative example, switching off all other coefficients,

before considering briefly c̄HW and then the full set of coefficients (2.2) in a global fit.
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Figure 1. Simulation of the mV H distribution in (V → 2`)+(H → b̄b) events at the Tevatron after

implementing D0 cuts, obtained using MadGraph v2.1.0 interfaced with Pythia and Delphes v3,

combined with the dimension-6 model implementation developed in [117]. The solid distribution

is the SM expectation, while the red-dotted and blue-dashed lines correspond to the distributions

with c̄W =0.1 and 0.035, respectively.

3 Kinematic distributions in H + V production

3.1 The H + V invariant mass distribution measured by D0

It was pointed out in [121], see also [111, 112], that the invariant mass distribution in

H + V events could be used to discriminate between minimally-coupled JP = 0+, 0−

and graviton-like 2+ spin-parity assignments for the H particle. Subsequently, the D0

Collaboration has made available the observed H + V invariant mass distribution as well

as those expected in these scenarios [109]. Here we use their background distribution and

simulate the signal events for a SM Higgs including the effects of non-zero dimension-6

coefficients, considering separately the 2-, 1- and 0-lepton channels for the decays of vector

bosons V = Z,W± produced in association with H decaying to bb̄.

Implementation details of the simulation can be found in appendix A. Summing the

cross-section times efficiency over the 0-, 1- and 2-lepton channels, we obtain the following

signal strength as a function of c̄W for V H → V b̄b at D0,

µHb̄b ' 1 + 29c̄W ,

indicating a strong dependence of the signal strength on the coefficient of the dimension-6

operator, which compensates for the relatively large error bar in the D0 measurement of

this channel. We find that the best-fit signal strength µHb̄b = 1.2±1.2 reported by D0 [109]

yields the following 95% CL bounds in a χ2 fit:

c̄W ∈ [−0.15, 0.09] .

More information can be obtained from the differential kinematic distribution for H + V

production by considering the measurements in bins in mV H , which affords full sensitivity

– 4 –
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Figure 2. The one-dimensional fit to the parameter c̄W (left panel) and to c̄HW (right panel).

In each panel, the dashed-red line corresponds to the constraint from the 0-, 1- and 2-lepton D0

mV H distribution including all bins, the dashed-blue line to the 0-, 1- and 2-lepton ATLAS pVT
distribution using the last bin only, the dashed-black is the combination of CMS and ATLAS signal

strengths in all channels except V H, and the solid-black is the combination of all the above.

to c̄W via the differential information available in the invariant mass distribution, particu-

larly in the higher-mass bins where the signal-to-background ratio increases most rapidly.

The invariant mass distribution found in our simulation is plotted for the 2-lepton case in

figure 1 for various values of c̄W . As expected, the effect of the dimension-6 operator is to

generate a larger tail at high invariant masses than in the SM.

We include the information from signal strength and differential distribution by con-

structing a χ2 function with a contribution from each mV H bin. We treat the errors

provided as Gaussian, neglecting any correlations between bins as this information is not

available. Since the sensitivity of the distribution analysis is largely driven by the last bin,

the sensitivity of the limit to correlations is minimal. The resulting improved bounds are

c̄W ∈ [−0.11, 0.06] . (3.1)

The χ2 distribution from this constraint is shown as the dashed-red line in the left panel

of figure 2.

This limit, using differential information, is better than the more inclusive observable

µHV by 15-20 %. A better understanding of the tail in the kinematic distribution could

improve considerably this limit. However, the Tevatron analysis is limited by statistics,

whereas the LHC experiments benefit from increased energy, which expands the available

phase space and hence enhances the effect of anomalous couplings, with the prospect also

of future improvements in statistical significance. The study of constraints from Run 1 of

the LHC at 8 TeV is the subject of the next section.

3.2 The vector-boson transverse-momentum distribution measured by AT-

LAS

The fact that dimension-6 operators generate a larger tail at higher invariant masses by

modifying the production kinematics implies greater sensitivity at the LHC, where the

higher energy opens up the available phase space. Since the V +H invariant mass distri-

bution is not available, we make use here of the transverse momentum of the vector boson,
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Figure 3. The invariant mass (left panel) and transverse momentum (right panel) distributions

for LHC Run 1 at 8 TeV, calculated with LO and NLO QCD and compared with the effects of an

effective operator.

pVT , measured by ATLAS. However, the pVT distribution is more affected by NLO QCD

corrections than is the V + H invariant mass distribution [122]. We present in figure 3

the results of an NLO calculation using MCFM [123–125]. Although the pVT distribution

is more sensitive to NLO corrections, the constraint on the coefficient of an effective op-

erator that we can obtain with LHC Run 1 data at 8 TeV is still quite insensitive to the

QCD higher order corrections. However, this will be an important effect when reaching

c̄W ∼ O(10−3). Since such effects tend to broaden the pVT distribution in the SM, the

inclusion of NLO would only strengthen the bounds reported here and as such will not

modify our conclusions, which are reached under conservative assumptions.

Details of the cuts implemented for the 0-,1- and 2-lepton ATLAS analysis can be

found in appendix B. Figure 4 is an example of the pTV distribution for the 2-lepton signal

in the bins used by the ATLAS search, for various values of c̄W .

We see that the number of events in the last (overflow) bin increases rapidly with

c̄W . Since the background overwhelms any signal in the lower bins, henceforth we focus

exclusively on this overflow bin where the signal-to-background ratio is highest. A χ2 fit

to the observed data gives the 95% CL range

c̄W ∈ [−0.07, 0.07] ,

which improves upon the D0 constraint (3.1), as expected. The contribution to the χ2

function from this constraint is shown as the dashed blue line in the left panel of figure 2.

For comparison, using the signal strength given for each of the 0-, 1- and 2-lepton channels,

which grow with c̄W as

µ2−lepton ' 1 + 23c̄W

µ1−lepton ' 1 + 32c̄W

µ0−lepton ' 1 + 33c̄W ,

– 6 –
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Figure 4. Simulation of the pVT distribution in (V → 2`)+(H → b̄b) events at the LHC after imple-

menting ATLAS cuts, as obtained using MadGraph v2.1.0 interfaced with Pythia and Delphes v3,

combined with the dimension-6 model implementation developed in [117]. The solid distribution is

the SM expectation, and the red-dotted and blue-dashed lines correspond to the distributions with

c̄W =0.1 and 0.05, respectively.

we find the 95% CL range

c̄W ∈ [−0.09, 0.03] ,

which is comparable to that using only the last bin of the pTV differential distribution.

We emphasise that only the leading linear dependence on the dimension-6 coefficient

is kept in our fit. Including the quadratic term could appear to give tighter constraints as

it allows the signal to grow faster with increasing c̄W , but such bounds are spurious since

it is not consistent to include a dependence on c̄2
W without also introducing dimension-

8 operators whose effects are formally of the same order. In the example given above,

including the quadratic term would reduce the bounds to [ -0.06 , 0.03] for the signal-

strength fit and [−0.04, 0.04] for the binned fit. This sensitivity to higher-order effects

indicates the level to which we may trust these constraints. At the current level of precision,

the differences in the bounds between the linear and quadratic fits are larger than any

uncertainties in background distributions or MC simulations.

Full results of one-dimensional fits for c̄W are summarized on the left plot in figure 2.

In addition to the dashed red line corresponding to the analysis of the D0 mV H distribution

and the dashed blue line corresponding to the ATLAS pVT distribution discussed above, the

dashed black line is the combination of CMS and ATLAS signal strengths including all

channels except V H, and the solid black line is the combination of all the above. The right

panel of figure 2 shows the corresponding one-dimensional constraints on c̄HW , where we

see that the addition of the differential information is less important than for c̄W .

– 7 –
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4 Global constraints from signal strengths and differential distributions

Following these examples, we now combine the information from associated production

measurements in the H → b̄b final state by D0 and ATLAS together with the signal

strengths in the H → γγ, γZ,WW,ZZ and ττ search channels measured by CMS and

ATLAS. We first constrain the dimension-6 coefficients individually, setting to zero all

other coefficients, and then include the full set of coefficients (2.2) in a global fit.

The decay widths for H → Z∗Z(∗) → 4l, H →W ∗W (∗) → lνlν, H → f̄f , H → gg and

H → γγ have dependences on the dimension-6 coefficients that are given in [126, 127]. The

dimension-6 operators also affect the vector boson fusion (VBF) production mode. Using

the standard VBF cuts used at the LHC 8-TeV analysis, namely mjj > 400 GeV, pjT >

20 GeV, |ηj | < 4.5 and ∆ηjj > 2.8, we find

σ(pp→ V ∗V ∗jj → hjj)

σ(pp→ V ∗V ∗jj → hjj)SM
' 1− 8.30(c̄W + tan2θw c̄B)− 6.9(c̄HW + tan2θw c̄HB)− 0.26c̄γ .

We confront these predictions with the likelihoods for the total signal strengths µ given

by ATLAS and CMS in a particularly useful form [128] as a 2-dimensional χ2 grid of

µggF, tth vs µVBF,AP. For ATLAS we use the likelihoods made publicly available for diboson

final states in [129] and the 2-dimensional H → ττ likelihood given in [130]. The CMS

likelihoods for the H → γγ,WW ∗, ZZ∗ and ττ channels are taken from [131]. We assume

gluon fusion and VBF to be the dominant production modes in all these channels, with

associated production only entering the fit through the differential distributions of the D0

and ATLAS b̄b final states.3 The H → Zγ likelihood is reconstructed from the expected

and observed 95% CL signal strength using the method of [132].

The result of the signal strength fit for all channels excluding b̄b at ATLAS and CMS

gives the following 95% CL range for c̄W , setting all other coefficients to zero:

c̄W ∈ [−0.05, 0.06] .

Including the ATLAS pTV and D0mV H information discussed in the previous section reduces

this range to

c̄W ∈ [−0.03, 0.01] .

The improvement of the limit on a single operator is significant. Furthermore the impor-

tance of using as many inputs as possible becomes clear when one includes several operators

simultaneously [89]. For example, allowing the coefficient c̄HW to vary simultaneously with

c̄W introduces a possible degeneracy in the fit, as shown in the upper left panel of figure 5.

We see that the D0 mV H data alone constrain essentially just one linear combination of

c̄W and c̄HW , and a similar effect occurs in the upper right panel where the result of a

2-parameter fit to just the ATLAS pVT data is shown. However, the correlation coefficients

are somewhat different, so that combining the two sets of data breaks the degeneracy to

some extent, as seen in the lower left panel of figure 5. Finally, in the lower right panel

3The signal strength information is also included in the differential distribution through the normalisation

of the heights of each bin to the total number of signal events.
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Figure 5. Regions in the (c̄W , c̄HW ) planes allowed at the 68 (95) (99)% CL (in lighter shading and

bounded by dotted, dashed and solid lines, respectively) in fits to the D0 mV H data alone (upper

left panel), the ATLAS pVT data alone (upper right panel), the combination of these data (lower left

panel) and a global fit using also signal-strength information from CMS and ATLAS (lower right

panel).

of figure 5 the degeneracy between c̄W and c̄HW is completely removed when the D0 and

ATLAS associated production data are combined with the signal strength data from the

other channels. This is primarily because, of the two operators considered here, only c̄W
enters in the H → γγ decay width.

Finally we consider the full set of 8 dimension-6 operators listed in (2.2), setting

cb = cτ ≡ cd, including a linear dependence on these coefficients in the ATLAS and

CMS signal strengths, combined with the differential distribution information of H + V

associated production at ATLAS and D0 discussed in section 3. The result of a scan

over the 8-dimensional parameter space is represented by the marginalized ∆χ2 in solid

black in figure 6. The blue dashed line in figure 6 is the result of the 8-parameter fit

using only ATLAS and CMS signal strengths without H+V → V b̄b associated production

information. We see that omitting associated production yields no significant constraints

on any of the operators aside from c̄g.
4

4The bi-modal distribution of c̄g is due to the linear dependence on the coefficient of the gluon production

cross-section rescaling, which is not allowed to go negative and so is responsible for the two minima in the

best fit.
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Figure 6. Marginalized ∆χ2 from a scan over the 8-dimensional parameter space (2.2) using the

differential distribution information about H + V associated production from D0 and ATLAS as

well as the ATLAS and CMS signal strengths (solid black line) and dropping the information from

the kinematic distributions (blue dashed line).

The scan over the 8-dimensional parameter space including the kinematical information

from H + V production yields the 95% CL bounds summarized in the black error bars of

figure 7. Also shown in green in figure 2 are the 1-dimensional constraints obtained by

switching on one operator at a time with all others set to zero. We omit ct, cd and cH in

this and the previous figure, as no meaningful constraints are found for these coefficients.
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Figure 7. The 95% CL ranges allowed in a global fit to the dimension-6 operator coefficients listed

in (2.2) (black), and the 95% CL ranges allowed for each operator coefficient individually, setting

the others to zero (green). The upper axis is the corresponding sensitivity to the scale Λ/
√
c in

TeV where c̄ ≡ c v
2

Λ2 . Note that c̄γ,g are shown ×100 for which the upper axis should therefore be

read ×10.

We may also express the bounds obtained here in terms of the Higgs anomalous cou-

plings as parametrized in (2.3). Our results are displayed in figure 8 using the same colour

coding as in figure 7.

5 Conclusions

With Higgs property measurements consistent with SM expectations, and no clear sign of

new physics from Run I of the LHC, it is natural to consider the SM as an effective theory

supplemented by dimension-6 operators whose effects are suppressed by the scale of new

physics. In this model-independent approach it is particularly interesting to consider a

complete set of operators that minimizes any assumptions on the Wilson coefficients one

chooses to include, thus providing truly universal bounds if one accepts the framework of

the SM and decoupled new physics.

In this analysis we considered the set of CP-even operators that affect the Higgs sector

at tree-level. Certain operators contain derivative interactions that modify the kinematics

in H + V associated production, modifying in particular the tail in the differential dis-

tribution of the V + H invariant mass and the vector boson transverse momentum. We

simulated the V + H → V bb̄ process at D0 and found greater sensitivity to dimension-6

operators using the differential invariant mass distribution than using only signal strength

information in this channel. Since the higher energies of the LHC enlarge the available

– 11 –
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Figure 8. The 95% CL ranges allowed in a global fit to the anomalous Higgs couplings listed

in (2.4) (black), and the 95% CL ranges allowed for each coupling individually, setting the others

to zero (green).

phase space for boosted new physics, observations of the same process by ATLAS and

CMS are expected to be more sensitive than D0 to the effects of dimension-6 operators, as

we have confirmed here. Moreover, including kinematic distributions from both Tevatron

and LHC can help remove degeneracies in multi-parameter fits.

Including differential distributions of associated production with the signal strength

from other channels, we have performed a scan of the 8-dimensional parameter space of

the CP-even dimension-6 operator coefficients and placed 95% CL bounds. Without the

use of associated production information, there are degeneracies that give flat directions in

the fit. These could otherwise be eliminated using measurements of TGCs. However, this

may introduce model-dependent assumptions as TGCs, despite their greater sensitivity

compared to Higgs measurements, also contain a poorly constrained direction due to a

partial cancellation among contributions to e+e− → W+W−. Thus the use of associated

Higgs production complements other ingredients in global fits to a complete set of operators.

As better measurements of TGCs at the LHC become available it will be interesting to fully

explore this complementarity, which we intend to address in future work. This information

will grow in importance when higher-energy LHC data are analyzed, since the increased

phase space will further improve the sensitivity to dimension-6 operators.

Note added. We thank A. Knochel and the authors of ref. [137] for pointing out to us

that the previous version of this paper underestimated the ATLAS pTV constraints due to

a misinterpretation of the expected number of SM events in table 5 of ref. [110], which

actually corresponds to a best fit signal strength of 0.2. Normalising instead to a signal
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strength of 1.0 yields improved constraints competitive with those of LEP, in agreement

with comparable results in [137].
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A D0 H + V analysis

A.1 pp̄→ Zh→ ll̄bb̄

The event selection for the 2-lepton channel is taken from [133]. The basic cuts for di-

electrons are pT > 15, |η| < 15 and at least one electron with |η| < 1.1, and for di-

muons are pT > 10 GeV, |η| < 2 and at least one muon with pT > 15GeV, |η| < 1.5.

The muons have an isolation cut that requires them to be separated from all jets by

∆R =
√

∆η2 + ∆φ2 > 0.5.

The “pretag” cuts are then applied to keep only events with 70 < Mll < 110 GeV and

at least two jets having pT > 20 GeV and |η| < 2.5. The final selection step is b-tagging

the jets according to “loose” and “tight” categories, with at least one tight and one loose

b-tagged jet. We simulate this double-tagged (DT) requirement by using the efficiencies

reported as a function of pT in [134]. Fitting to figure 6a and 6b in that reference yields

the following formula for the loose and tight efficiencies ε:

εloose = aloosee
− pT

600 tanh(0.020pT + 0.77) ,

εtight = atighte
− pT

360 tanh(0.029pT + 0.34) ,

where the coefficients aloose = 0.79, atight = 0.70 in the region |η| < 1.5 and aloose =

0.67, atight = 0.58 for |η| > 1.5, the efficiency being fairly flat as a function of η in these

regions.

Finally we set the Delphes ECAL and HCAL resolutions as functions of energy E to

0.01E + 0.2
√
E + 0.25 and 0.050E + 0.8

√
E respectively. The same expression is used for

the ECAL electron energy resolution.

After running our simulation we obtain the number of signal events by multiplying the

cross-section given by MadGraph with the efficiency after cuts and reweighting by a k-factor

of 1.5 as an overall normalization. We find the resulting number of pretag and DT signal

events for a SM Higgs to be 8.6 and 3.1 respectively, in agreement with the numbers listed

in table 3 of [133]. We have also verified that we reproduce well the distribution of H + V

invariant masses for the SM Higgs signal given by D0 in figure 2c of [73].
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A.2 pp̄→Wh→ lνbb̄

We implement the cuts listed in [135] by requiring one electron (muon) with pT > 15 and

|η| < 2.5 (2.0), and by requiring two jets with pT > 20 GeV and |η| < 2.5. The muon

is required to be isolated from all jets by ∆R > 0.5. Finally, the transverse mass MW
T ,

defined as 2plT /ET (1 − cos∆φ(l, /ET )), must satisfy MW
T > 40GeV − 0.5/ET . This defines

the pretag events with the b-tag cut then applied as described previously. Running the

simulation with the cross-section times efficiency reweighted by a k-factor of 1.7 gives good

agreement with the expected numbers of pretag and final events given in table 1 of [135].

A.3 pp̄→ Zh→ νν̄bb̄

Following [136], we select events containing two jets with pT > 20 GeV and |η| < 2.5, whose

opening angle is ∆φ < 165◦, and apply a missing transverse energy cut /ET > 40 GeV. The

jets are furthermore required to have the scalar sum of the their transverse momenta larger

than 80 GeV. We also reject events with an isolated muon or electron having pT > 15 GeV.

We verified that the resulting numbers of events both before and after b-tag cuts agree

within errors with the numbers given in table 1 of [136] without any reweighting.

B ATLAS H + V analysis

The implementation of this analysis follows the cuts given in [110].

B.1 pp̄→ Zh→ ll̄bb̄

We select events with exactly 2 muons (electrons) satisfying |η| < 2.5 (2.47) and 83 <

Mll < 99 GeV. A missing transverse energy cut of Emiss
T is applied. There must be only

2 b-tagged jets with the higher-pT jet > 45 GeV and pT > 20 GeV for the other jet, and

both with |η| < 2.5. Finally we place a ∆R cut on the angle between the two jets which

varies depending on the pVT bin (see table 2 in [110]). The transverse momentum pVT of the

vector boson is reconstructed using the vector sum of the transverse components of the two

leptons.

We simulate events at the 8 TeV LHC with the resulting distribution in the pVT bins

used by ATLAS. We reweight the cross-section so as to normalise the number of signal

events in each bin to the expected SM count from table 5 of [110].

B.2 pp̄→Wh→ lνbb̄

In this sub-channel we select exactly one muon (electron) with |η| < 2.5(2.47) and ET >

25 GeV. The missing transverse energy requirement is Emiss
T > 25 (50) for pVT less (greater)

than 200 GeV. The invariant transverse mass mW
T is required to be less than 120 GeV, and

for pVT < 160 GeV it must also be greater than 40 GeV. The pVT transverse momentum is in

this case the vector sum of the transverse components of the lepton and missing ET . The

jet requirements are the same as for the 2-lepton case, and we have normalised our number

of events after simulation in the same way as above.
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B.3 pp̄→ Zh→ νν̄bb̄

Here we require no leptons that pass the other criterias and a large missing transverse

energy of Emiss
T > 120 GeV with pmiss

T > 30 GeV and an angle between the two of ∆φ < π/2.

The azimuthal angle between the Emiss
T and the vector sum of the jets must be ∆φ > 4.8,

as well as ∆φ > 1.5 with the nearest jet. The other jet cuts and ∆R requirements as

a function of pVT are also the same here, with the pVT identified as the ETmiss. We again

normalize the number of signal events to the SM expectation from table 5 of [110].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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