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1 Introduction

F-theory is a powerful tool for studying holomorphic quantities of IIB string theory in

the strong coupling regime. By geometrizing the data of the 7-branes, and via its duality

with M-theory, F-theory brings the Dynkin diagrams representing gauge symmetries to

life by literally producing them inside elliptically fibered Calabi-Yau manifolds. Indeed,

the correspondence between gauge groups and geometry has been understood for a long

time [1], up to Abelian factors.

Surprisingly, Abelian factors of the gauge group are the most difficult to ‘see’ in

the geometry of the compactification.1 Moreover, some of these might acquire mass by

Stückelberg mechanism, turning them into global symmetries. In the weakly coupled

IIB picture, which contains only O7-planes and D7-branes, the following rule was estab-

lished [6–11]

Consider a stack of N D7-branes with unitary gauge group (i.e. not invariant under

the orientifold involution σ) wrapping a complex surface of class [D7], and an orientifold

image stack wrapping a surface of class σ∗[D7]. Then, the diagonal U(1) ⊂ U(N) remains

massless at gs 6= 0 if and only if [D7] = σ∗[D7] as homology classes of the compactifica-

tion threefold.

1However, see e.g. [2–5] for recent progress in the construction of geometries related to U(1)’s.

– 1 –



J
H
E
P
0
7
(
2
0
1
4
)
0
2
8

This statement begs the following question: Is it possible to detect U(1)’s directly in

an F-theory CY fourfold and to discriminate between the massive and massless ones? In

this paper, we provide an answer to this question.

Current understanding of F-theory dictates that U(1) gauge symmetries manifest them-

selves as codimension three singularities in the fourfold. Intuitively, suppose that the

Weierstrass model for the F-theory CY fourfold has the form AB = C D, for four generic

polynomials. Then, the fourfold has a codimension three singularity, a one-parameter fam-

ily of conifolds, which admits a small, Kähler resolution. The resolved fourfold will have

two new Cartier divisors D±, whose ancestors are the ideals
2 (A, C) and (A ,D). Such new

divisors will imply the existence of two new closed two-forms ω± ∈ H1,1(CY4). The 11d

SUGRA three-form C3 can then be reduced along the 4d Poincaré invariant combination

ω+ − ω− with the Ansatz C3 = (ω+ − ω−) ∧ Aµ, where Aµ is a photon in the 3d and

the T-dual 4d effective theories. Hence, the link between codimension three singularities

and U(1)’s.

This cannot be the whole story about U(1)’s, since we know that there must also be

massive photons, even in absence of background fluxes. In type IIB, if a D7-brane and

its image lie in different homology classes, a mass is generated for the corresponding U(1)

by the geometric Stückelberg mechanism [6–12]. The responsible coupling is given by the

following Chern-Simons term in the 4d effective action [13]

SStck ∼
∑

a

na
∫

R1,3

F2 ∧ c
a
2 (1.1)

where na are the coefficients in the expansion [D7] = nαDα + naDa, with Dα a basis of

even 2-forms and Da a basis of odd 2-forms, F2 is the 4d field strength on D7ℓ and ca2
are the 4d two-form dual to the axions coming from the reduction of the RR two-form

potential C2. The generated mass is proportional to the string coupling gs. This picture

can be complemented by comparing the cancellation of anomalies involving U(1)’s in type

IIB orientifolds and F-theory, as done in [14].

In [10, 12, 15, 16] it was predicted that a massive photon AIIB on a D7-stack in IIB

should lift to a C3-form in M-theory that can be decomposed as AIIB ∧ ωnh, where ωnh

is a non-harmonic two-form. Some clues were provided as to what the mechanism at play

might be, but a clear geometric picture has remained elusive until now.

In order to answer this question, it is crucial to understand how to take the weak

coupling limit of F-theory. Sen’s limit [17–19] consists in taking a particular one-parameter

family of CY fourfolds, expanding the discriminant of the elliptic fibration in terms of the

parameter ǫ, and keeping the leading term. Although this approach has proven to be very

fruitful, it is limited by the fact that the limit ǫ → 0 can only be taken after computing

the discriminant. Doing it directly in the fourfold would brutally mutilate the geometry,

washing away most of the 7-brane data. In other words, we do not have a ‘weakly coupled

F-theory fourfold’ per se.

2Throughout this paper, instead of defining a submanifold as f1 = 0 ∩ f2 = 0 ∩ . . . ∩ fn = 0, we will

simply denote its ideal as (f1, f2, . . . , fn).
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Recently, the Sen limit was re-conceived in [20] in a way that completely addresses

the issue. The basic idea is to consider the whole one-parameter family of CY fourfolds,

which is itself a CY five-fold, and blowing up the singular locus inside the central fiber at

ǫ = 0. In this way, a new fourfold emerges that has two components. One component only

sees perturbative physics, i.e. the only monodromies in the fiber are remnants of T and

−I2 ⊂ SL(2,Z).

This clean way of geometrizing Sen’s limit allows us to track the fate of a U(1) gauge

group as it undergoes its transition from the perturbative to the non-perturbative regime.

Our results can be summarized as follows:

A U(1) gauge group gives rise to a codimension three singularity in the CY fourfold,

provided there exists matter charged under this group. The singularity can always be seen

as a family of conifold singularities fibered over the charged matter curves in IIB. A U(1)

remains massless at strong coupling if and only if the corresponding singularity admits a

small, Kähler resolution.

This paper is organized as follows: in section 2, we introduce Sen’s limit as redefined

by Clingher, Donagi and Wijnholt, which will serve as our framework. Sections 3 and 4

display the simplest examples of: a U(1) that remains massless, and one that acquires a

Stückelberg mass at gs 6= 0, respectively. In the latter, we see a curve worth of conifold

singularities admitting a small Kähler resolution at weak coupling, which becomes non-

Kähler at strong coupling.

Section 5 contains three global models of increasing levels of complexity, putting our

geometric picture to stringent tests. The first two consist of a brane/image-brane pair with

a tadpole saturating, invariant Whitney brane. In the first one, we detect a massive U(1),

whereas in the second one, a massless U(1).

In the third and most intricate model, we have two brane/image-brane pairs. The

first pair has a massless U(1), but no charged matter under it. The second pair has a

massive U(1). Naively, we shouldn’t see any massless U(1) manifestly in the strongly

coupled fourfold. However, the two by two mass matrix still predicts that a massless

linear combination of U(1)’s survives, with matter charged under it. We find that the

singularity structure of the CY fourfold perfectly reflects this behavior, thereby providing

strong support for our proposal.

2 The weak coupling limit geometrized

Let us first establish some definitions to set up the notation. We start from a smooth

Calabi-Yau fourfold X4 that is an elliptic fibration over the base manifold B3, with a

section. We describe this manifold by the Weierstrass model

y2 = x3 + xz4f + z6g , (2.1)

i.e. as a hypersurface equation in the ambient five-fold X5 = P2,3,1(OB3
⊕OB3

⊕K). Hence,

x, y, z are sections respectively of F⊗2, F⊗3 and F⊗K where F is the line bundle associated

with the projective action in the fiber direction and K is the canonical bundle of the base

– 3 –
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manifold B3. In equation (2.1), f, g are sections of K̄⊗4, K̄⊗6. They can be expressed in

terms of the sections ai ∈ K̄⊗i appearing in the Tate form of the Weierstrass model:

f = −
1

48

(

b22 − 24b4
)

g =
1

864

(

b32 − 36b2b4 + 216b6
)

where

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

. (2.2)

Sen’s weak coupling as described in [20, 21] consists in taking f and g given by (2.2)

and scaling the sections b4 and b6 as

b4 → ǫ b4 b6 → ǫ2 b6 , (2.3)

where ǫ ⊂ C. As ǫ → 0, the string coupling becomes small almost everywhere on B3. By

introducing the coordinate s = x − 1

12
b2z

2, and using the parametrization (2.3) for f and

g, one obtains (after rescaling the bi’s by a factor of four)

y2 = s3 + b2s
2 z2 + 2b4s ǫ z

4 + b6ǫ
2 z6 . (2.4)

This equation describes a family of Calabi-Yau fourfolds over the ǫ-plane. At ǫ = 0 the

fourfold has a severe degeneration. In particular the elliptic fiber degenerates over all the

points in the base manifold B3 and the information on the D7-brane locus is lost.

As explained in [20, 21], the key to taming this degeneration is to consider the whole

one-parameter family of fourfolds as a CY fivefold in its own right. One then performs

a blow-up of said fivefold at the singular locus y = s = ǫ = 0. This is accomplished by

blowing up the ambient space via the introduction of a new coordinate λ, with the following

projective C
∗ actions:

y s t z λ

3 2 0 1 0

1 1 1 0 −1

3K̄B 2K̄B 0 0 0

The SR ideal is generated by [syz], [yst], [zλ]. The blow-down map is s 7→ sλ, y 7→ yλ,

ǫ 7→ tλ.

The blown-up fivefold is described as the following hypersurface inside this ambi-

ent space:

W5 : y2 = s3λ+ z2
(

s tz2
)

(

b2 b4
b4 b6

)(

s

tz2

)

(2.5)

The fourfolds over ǫ 6= 0 are isomorphic to the original CY fourfold. However, the

fourfold over the central fiber at ǫ = 0, which represents the weak coupling limit, splits up

into two components: ǫ = tλ = 0.

In summary, the central fiber at ǫ = 0 looks like WT ∪X3
WE . Here

WT : W5 ∩ {t = 0} : y2 = s2(b2z
2 + sλ) (2.6)

WE : W5 ∩ {λ = 0} : y2 = z2
(

s tz2
)

(

b2 b4
b4 b6

)(

s

tz2

)

(2.7)
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The two components WE and WT intersect in a space X3 which can be indentified

with the double cover Calabi-Yau threefold where the perturbative IIB string theory lives:

X3 : W5 ∩ {t = 0} ∩ {λ = 0} : y2 = z2s2b2 . (2.8)

Note that, due to the SR ideal, the divisors [z] and [s] do not meet X3, so we can define

ξ = y/(sz) (2.9)

and write X3 in the standard way as

ξ2 = b2 . (2.10)

In the following, we will be interested in WE , defined by λ = 0. The SR-ideal indicates

that we can set z = 1. WE is then given by the hypersurface equation

WE : y2 = b2s
2 + 2b4s t+ b6t

2 (2.11)

in an ambient five-fold Y5, that is spanned by the base manifold B3 and the homogeneous

coordinates (s : y : t) with weights:

y s t

1 1 1

3K̄B 2K̄B 0

(2.12)

Hence, (2.11) is a bundle of quadratic equations in P
2 (a conic bundle) that describes

a P
1 fibration over B3. The P

1 fiber degenerates into two P
1’s over the discriminant locus

of the quadric

∆E ≡ det

(

b2 b4
b4 b6

)

= 0 inB3 . (2.13)

This is the locus of the D7-brane in B3. The type IIB Calabi-Yau threefold sits inside WE

at the locus t = 0. This is given by two points on the P
1 fiber, that are exchanged when

going around the locus b2 = 0 on the base B3.

Note that the P
1-fiber can be considered as a piece of the elliptic fiber of the full CY

fourfold. When it splits into two P
1’s, this is the local version of having a one-cycle of

the elliptic fiber collapse, hence, this is a remnant of the T-monodromy. We also still see

an orientifold monodromy −I2 that exchanges the two P
1’s. Hence, this component of the

fourfold only sees the perturbative subgroup of SL(2,Z). This is what makes this limit

appropriate for studying F-theory at weak coupling.

3 A massless U(1): brane/image-brane system

In this section, we will present the simplest example of a U(1) gauge symmetry that does

not acquire a Stückelberg mass.
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Let us start from the perturbative picture in IIB on a CY threefold X3, given by a

hypersurface of the form:

ξ2 = b2 (3.1)

with orientifold involution ξ → −ξ. The most generic D7-tadpole saturating brane must

have the form of a Whitney umbrella [22, 23]:

b24 − ξ2 b6 = 0 . (3.2)

The easiest way to create a single U(1) in IIB is to impose that b6 be a square, i.e. b6 = a23,

(equivalently a6 = 0). This case was studied in [10, 24] and dubbed the ‘U(1) restriction’.

In this case, the total brane splits into a brane and an orientifold image-brane

D7 : (b4 + ξ a3) = 0 , σ(D7) : (b4 − ξ a3) = 0, (3.3)

such that these lie in the same homology class, i.e. [D7] = σ∗[D7] ∈ H4(X3). Here, we

expect a U(1) gauge group that remains massless at non-zero string coupling gs.

Let us first analyze the weak coupling limit. From (2.11), we can determine the shape

of the ‘perturbative component’ of the central fiber, which we called WE , and write it in

the following suggestive form:

(y + a3 t) (y − a3 t) = s (b2 s+ 2 b4 t) . (3.4)

This manifold has the classic shape of a conifold, AB = C D. Indeed, there is a curve

worth of conifold singularities at the ideal (y, a3, s, b4). The curve in question is the SU(2)-

enhanced matter curve where the brane meets its image outside the O7-plane, at the

ideal (a3, b4).

The singularity is easily disposed of via the usual small resolution, by defining two

variables [x1 : x2] of a P
1, and imposing:

(

y + a3t s

b2 s+ 2 b4 t y − a3 t

)(

x1
x2

)

= 0 . (3.5)

in the ambient space Y5 × P
1 [25].

So much for the perturbative part. Now let us add the missing λs3 term to complete

the elliptic fiber of the fourfold over then central fiber at ǫ = t λ = 0. We see that the

conifold shape persists:

(y + a3 t) (y − a3 t) = s (λ s2 + b2 s+ 2 b4 t) ∩ t λ = 0 . (3.6)

Now we can easily take this factorizable form outside the central fiber, which means going

to strong coupling, and write the fourfold as

(y+a3 z
3 ǫ) (y−a3 z

3 ǫ) = s (s2+b2 s z
2+2 b4 z

4 ǫ) ⊂ X5 = P2,3,1(OB3
⊕OB3

⊕K) . (3.7)

Hence, the generic CY fourfold outside Sen’s limit still has a codimension three singularity

of conifold type that admits a small, Kähler resolution. From this we conclude that the

U(1) does not acquire a Stückelberg mass term.

– 6 –
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To construct the corresponding harmonic two-form ω+ − ω− we define the following

divisors with ideals:

Ds± : (y ± a3 z
3 ǫ, s) , and DQ±

: (y ± a3 z
3 ǫ, s2 + b2 s z

2 + 2 b4 z
4 ǫ) . (3.8)

It can be easily shown that [Ds+]− [Ds−] = [DQ−
]− [DQ+

]. Therefore, we can define the

U(1) via the Poincaré dual of [Ds+]− [Ds−]

4 A massive U(1)

We will now present the simplest example of a system that exhibits a U(1) gauge symmetry

at weak coupling that develops a mass via the Stückerberg mechanism, and show that, at

strong coupling, the singular geometry only admits a non-Kähler resolution.

4.1 The setup: two brane/image-brane pairs

In order to avoid cumbersome D7-tadpole constraints, we will use a simple non-compact

model for our geometry: B3 ≡ C
3. As it turns out, this space will perfectly capture the

essential phenomena at play.

Let C3 have coordinates (x1, x2, x3). In order to do IIB string theory, we need to define

a CY double cover. In this case, we will take

X3 : ξ
2 = 1 + x1 x2 ⊂ C

4 (4.1)

where the ambient C4 has coordinates (ξ, x1, x2, x3), and ξ → −ξ is the orientifold involu-

tion. We will put one D7 brane at x1 = 0, and the other one at x2 = 0. Each one of these

branes actually splits into a brane/image-brane pair with ideals:

D7i : (xi, ξ − 1) , D7′i : (xi, ξ + 1) , for i = 1, 2 . (4.2)

Since X3 is smooth, these divisors are Cartier, and hence each can locally be defined by a

single equation. For instance, if we take the patch U where ξ + 1 6= 0, then we can rewrite

the equation for the threefold as:

X3|U : ξ − 1 =
x1 x2
ξ + 1

(4.3)

and define the D71 by the single equation x1 = 0. However, globally, we cannot single out

theD71 from its image by a single equation. We always need two equations: (ξ−1, x1). This

simple fact is a local remnant of the fact that, in a compact setting, the D71 and its image

lie in different homology classes. To be clear, our claim is the following: because the D71
and the D7′1 cannot separately be defined globally by one equation intersected with (4.1),

then, in a compactification of this model, [D7] 6= σ∗[D7] ∈ H4(X3). See appendix A for

proof of this claim. Since the same applies to the D72, we expect a U(1) × U(1) gauge

group that will become massive at non-zero gs.

Let us start at weak coupling by looking at WE . In this case, we have

b2 = 1 + x1 x2 , b4 = x1 x2 , and b6 = x1 x2 , (4.4)

– 7 –
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such that ∆E ≡ b24 − b2 b6 = −x1 x2. Then, WE takes the simple form:

(y + s) (y − s) = x1 x2 (s+ t)2 . (4.5)

The singular locus is at the ideal (y, s, x1, x2). Indeed, since each brane in this model

intersects its image only at the O7-plane, there is no charged matter, as there is no anti-

symmetric U(1) matter. Hence, we can only detect the relative linear combination U(1)2−1

at the SU(2)-enhanced matter curve given by (x1, x2). This curve carries the bifundamen-

tal matter charged under this relative group. In this weak coupling limit, we see that this

curve worth of conifold singularities admits a small resolution, as it has the form AB = CD.

This is consistent with the fact that, in the limit gs → 0, the expected mass goes to zero: at

ǫ = 0, there are two independent six-cycles in WE , (y± s, x1) and (y± s, x2), that generate

two massless U(1)’s by expanding C3.

Now, to move away from the weak coupling limit, we simply add the missing λ s3 term,

and then export this out of the central fiber. This amounts to setting the hypersurface

equation to:

(y + s z) (y − s z) = x1 x2 z
2 (s+ z 2ǫ)2 + s3 . (4.6)

The fourfold is still singular at (y, s, x1, x2). So, in this sense, we still detect the U(1)2−1.

However, we have lost our nice AB = CD form and thereby the possibility to do the

standard small resolution.3 In fact, we will now prove that this curve worth of conifold

singularities only admits a non-Kähler small resolution.4 Moreover, due to the lost of the

factorization AB = CD at finite ǫ, the six-cycles (y± s, x1) and (y± s, x2) disappear from

H4(X4,Z) and the corresponding U(1)’s are no more massless.

4.2 Non-Kähler resolution

In this subsection, we will show that the relative U(1)2−1, which is expected to acquire a

Stückelberg mass, gives rise to a fibration of conifolds over the matter curve (x1, x2), where

the two different branes species meet, such that the singularity only admits a non-Kähler

small resolution.

Let us first simplify the form of our fourfold (4.6). The only singularity is at

(y, s, x1, x2). We can therefore restrict to the patch where s + ǫ z2 6= 0, and set that

factor to one, since (y, s, z) form a P
2
3,2,1. Now our singularity is simply:

y2 − s2 = x1 x2 + s3 , (4.7)

whereby the cubic term spoils the typical resolvable conifold shape, but does not actually

affect the singularity, since it is of higher order.

In order to see how the non-Kähler resolution comes about, let us first look at the

standard conifold from a slightly different perspective. Consider the same hypersurface as

before, but dropping the cubic term, and suppressing the coordinate x3:

y2 − x1 x2 = s2 ⊂ C
4 , with coordinates (y, s, x1, x2) (4.8)

3A similar discussion can be found in [26].
4It also admits a large Kähler resolution, which necessarily breaks the CY condition.
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We can view this threefold as a fibration of deformed A1-singularities over the s-plane,

whereby only the central fiber at s = 0 is singular. The two inequivalent small resolutions

consist in blowing up the threefold at the ideals (y±s, x1). After doing this, we still have a

fibration of deformed A1-surfaces over the s-plane, but now the central fiber has a resolved

A1-surface. As is well-known, and can be deduced from the hyper-Kähler structure of K3

surfaces, resolving is equivalent to deforming for ADE surface singularities.

At any rate, this new threefold has exactly one compact two-cycle: in the central

fiber, it is given by the exceptional P1. Outside the central fiber, it is described by the non-

holomorphic sphere given by the real slice of (4.8) (we assume we have rescaled coordinates

to make s real, which is always possible):

ℜ(y)2 + ℜ

(

1

2
(x1 − x2)

)2

+ ℜ

(

1

2i
(x1 + x2)

)2

= s2 ⊂ R
3 , (4.9)

where the R
3 has coordinates (ℜ(y),ℜ(1

2
(x1 − x2)),ℜ(

1

2i
(x1 + x2)) and ℜ(s) is the radius

of the sphere.

Since the resolved conifold is Kähler, we can compute the volume of the exceptional

P
1 by integrating the Kähler form J on it. If this P

1 were the boundary of a three-chain

Σ3, then Stokes theorem would imply that

Vol(P1) =

∫

P1

J =

∫

Σ3

dJ 6= 0 , (4.10)

which would imply that the Kähler form is not closed, contradicting the assumption that

the resolution is Kähler.

How do we prove that P1 6= ∂Σ3 for some Σ3? In this situation, any such three-chain

would be shaped like a family of spheres, ending on the P
1 at one extreme, and pinching

off somewhere, like the tip of a cigar. However, in this geometry, the family of spheres

extends over the whole s-plane from the origin all the way to infinity, and never pinches

off. Hence, any three-chain would always have at least two boundaries: one at the origin,

and one at infinity. This invalidates the use of Stokes theorem as above.

Now we are ready to face our singularity from (4.7). First, we take a small neighbor-

hood of the singularity, such that we can neglect the cubic term. There, we recover the

standard form of the conifold, which we can resolve. Since birational tranformations are

local operations, we can always resolve in one neighborhood, and then patch the geome-

try together. So, locally, it looks like we can again claim that there are no three-chains

bounding the exceptional P1. However, if we again look at our geometry as a fibration of

deformed A1-singularities over the s-plane:

s2 (s+ 1) = y2 − x1 x2 , (4.11)

we see that, at the locus s = −1, the A1-fiber is singular again. This means that the

non-holomorphic two-sphere collapses over this point, even though we are not at a singular

point of the threefold. Therefore, one can define a three-chain Σ3 as the family of spheres

over the interval s ∈ [1, 0], such that ∂Σ3 = P
1 at s = 0. Therefore, by Stokes’ theorem,

we have shown that dJ 6= 0.
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To apply this to our fourfold, all we do is fiber everything over the curve parametrized

by x3. Over each point of this curve lies a P
1 that is a boundary. Hence, the fourfold has

been resolved to a non-Kähler manifold.

We are now ready to make our general claim, which was anticipated in the introduction:

U(1) gauge symmetries manifest themselves as fibrations of conifold singularities over

matter curves in IIB, provided these curves host matter charged under the U(1). In the

weak coupling limit of Clingher, Donagi and Wijnholt, these singularities will always admit

a small, Kähler resolution. If the U(1) remains massless at strong coupling, then the full-

fledged CY fourfold admits a small, Kähler resolution. If it develops a Stückelberg mass

term, then it will only admit a small, but non-Kähler resolution (as conjectured in [12]).

We will see by way of examples that this structure prevails in various brane setups.

5 Globally defined examples

In this section, we move on to more intricate global models: one with a massive U(1),

a related model with a massless U(1), and finally a model with one massive and one

massless U(1).

5.1 A massive U(1)

We can easily generalize our previous example to a setup with one brane/image-brane pair

carrying a U(1) that acquires mass, and a Whitney brane that has no gauge group, but

simply saturates the D7-tadpole. We can now work in generality over compact manifolds.

Let X3 be a CY threefold given by a hypersurface of the form:

ξ2 = b2 ≡ a21 + σ ã2 , (5.1)

where a2 = σ ã2, and σ = 0 is the locus of the brane/image-brane pair. Note that X3

will have conifold singularities at the locus given by the ideal (ξ, a1, σ, ã2) that cannot be

resolved crepantly without breaking the orientifold involution [27]. It is also possible to

have models where these points are excised from the geometry [28, 29].

We place a split I1 brane at σ = 0, and an orientifold invariant brane at σ η2 − b2 χ,

for some σ and χ of appriopriate degree, such that

∆E = b24 − b2 b6 = σ (σ η2 − b2 χ) . (5.2)

This means we are setting b4 = σ η and b6 = σ χ. Putting this into the equation for the

perturbative part of the CY fourfold WE (2.11), we get the following form:

(y + a1 s) (y − a1 s) = σ (ã2 s
2 + 2 η s t+ χ t2) . (5.3)

This fourfold has a curve worth of conifold singularities at the ideal (y, s, σ, χ). The curve

in question is the matter curve (σ, χ), where the two brane systems intersect.

The two branes also intersect in a non-generic way over a curve in the O7-plane at

(σ, b2). Naively, one would expect an SO(4) enhancement from the IIB perspective. How-

ever, such a group is missing from the Tate classification of singularities. We expect that
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the non-perturbative splitting of the O7-plane will prevent such an enhancement. Indeed,

the corresponding singularities at (y, a1, σ, ã2 s
2 + 2 η t s+ χ t2) are washed away at strong

coupling. This form of quantum splitting has been studied in several cases in [30].

The fourfold has the classic AB = CD shape that admits a small, Kähler resolution,

so we conclude that there is a U(1) gauge group. Indeed, the brane at σ splits into a

brane/image-brane D7σ/D7′σ pair at (σ, ξ ± a1).

These two branes do not lie in the same class in H4(X3), see appendix A. Hence, we

expect the U(1) to develop a Stückelberg mass. By going to the strong coupling regime,

the fourfold now takes the form:5

(y + a1 s) (y − a1 s) = s3 + σ (ã2 s
2 + 2 η s ǫ+ χ ǫ2) , (5.4)

which is still singular at (y, s, σ, χ). Note, however, that we have lost the ability to perform

a small, Kähler resolution. However, a small, non-Kähler resolution is possible, just as it

the previous example. This is the F-theoretic manifestation of the Stückelberg mass.

5.2 A massless U(1)

Let us now move away from the split I1 Ansatz by allowing the threefold to have a

generic form

ξ2 = b2 , for generic b2 , (5.5)

and take a system with a brane/image-brane pair, where both branes are homologous, plus

a so-called Whitney brane. For simplicity, let us take the brane/image-brane pair such

that it doesn’t self-intersect away from the O7-plane:

b24 − b2 b6 = (η21 − ξ2) (η22 − ξ2 χ2) . (5.6)

We see that the first factor splits into (η1± ξ), which gives rise to a U(1). In fact, this case

is akin to the so-called U(1)-restriction of [10], except that the split brane is not alone.

The second factor is orientifold invariant, and has a Z2 gauge group [22]. This system is

achieved by choosing:

b4 = η1 η2 , b6 = η21 χ2 + η22 − b2 χ2 . (5.7)

Plugging this Ansatz into WE (2.11), we get

y2 = b2 s
2 + 2 η1 η2 s t+ (η21 χ2 + η22 − b2 χ2) t

2 , (5.8)

which can be re-written in the following suggestive form:

(y + η2 t+ η1 s) (y − η2 t− η1 s) = (s2 − χ2 t
2) (b2 − η21) . (5.9)

Here, we clearly recognize a family of conifold singularities. Note, however, that the base of

this family isn’t the matter curve in B3 given by the ideal (η21 − b2, η
2
2 − b2 χ2), but instead

over a (η21−b2, s
2−χ2 t

2). The first equation clearly describes the brane/image-brane pair.

The second one seems to describe a blown-up version of the Whitney brane.

5To avoid cluttering, we suppress factors of z, since all singularities are located away from z = 0.
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Since the singularity has the standard factorizable form, we can perform a small, Kähler

resolution on it, thereby detecting the U(1) gauge group. Based on the analysis of [12], we

expect this U(1) to remain massless at strong coupling. However, if we add the s3 term to

this model and write the non-perturbative F-theory fourfold

(y + η2 ǫ+ η1 s) (y − η2 ǫ− η1 s) = (s2 − χ2 ǫ
2) (b2 − η21) + s3 , (5.10)

we see that we have spoiled the usual form that admits a small, Kähler resolution.6 It

would thus seem that we have run into a contradiction. The way out of this paradox is

to realize that there is more than one way of exiting the central fiber in this family of CY

fourfolds. Alternatively, one might say that there are different ways of reaching a weak

coupling limit, as was explored for instance in [31, 32]. In this particular case, instead of

simply adding s3, we should add s (s2 − χ2 ǫ
2), yielding

(y + η2 ǫ+ η1 s) (y − η2 ǫ− η1 s) = (s2 − χ2 ǫ
2) (s+ b2 − η21) . (5.11)

Now our non-perturbative, full-fledged F-theory fourfold still has the family of conifold

singularities, but admits a small, Kähler resolution.

Variation. For a slight variation of this model, let us see what happens if we choose

χ2 ≡ ψ2
2. Then this model will exhibit three small-resolvable conifold curves, only two of

which are independent:

(y + η2 ǫ+ η1 s) (y − η2 ǫ− η1 s) = (s+ b2 − η21) (s+ ψ2 ǫ) (s− ψ2 ǫ) . (5.12)

This correlates perfectly with our expectations from IIB theory:

• We have two brane/image-brane pairs. The first one meets its own orientifold image

only on the O7-plane. Hence, there is no matter charged under its diagonal U(1)1.

• The second one does have an SU(2)-enhancement when it intersects its own im-

age at the ideal (η2, ψ2), which lies outside the O7-plane. From this we expect

matter charged under the symmetric representation of U(1)2. Since in this case,

[D72] = σ∗[D72], we expect this group to remain massless. In the fourfold, we see

the associated two-form for this U(1)2 as the Poincaré dual of D+ −D− for

D± : (y ± (η2 ǫ+ η1 s) , s+ ψ2 ǫ) . (5.13)

• Finally, the matter curve where the two brane systems intersect, contains matter

charged under the bifundamental group U(1)2−1, which we see via the divisors:

D± : (y ± (η2 ǫ+ η1 s) , s+ b2 − η21) . (5.14)

6Moreover the manifold does not develop a conifold singularity along a curve, but just a point singularity.

This deformation is not preserving the matter content.
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5.3 U(1)massless × U(1)massive

Here we will see the most intricate example so far: two brane/image-brane systems such

that [D7i] 6= σ∗[D7i] for i = 1, 2. However, the D71 meets its image only on the O7-plane,

whereas the D72 meets its image along an SU(2)-enhancements. We expect the correspond-

ing (diagonal) U(1)’s to get non-zero masses through the geometric Stückelberg mechanism.

However, by inspecting the corresponding axionic coupling in the type IIB effective

action one obtains that there is one massless combination of these two U(1)’s. This massless

U(1) should be visible also away from the weak coupling limit.

Let us choose the bi such that we have two branes plus their images in the weak

coupling type IIB setup:

b2 = a21 + ã2σ , b4 = a1a3 + ã4σ , b6 = a23 . (5.15)

Correspondingly ∆E = σ (2a1a3ã4 − ã2a
2
3 + σ ã24). The Calabi-Yau threefold is of the type

necessary for having split U(1)’s:

X3 : ξ2 = a21 + σ ã2 (5.16)

The D7-locus D7σ at σ = 0 splits into the two branes at ξ − a1 = 0 and ξ + a1 = 0. The

locus D7D: 2a1a3ã4 − ã2a
2
3 + σ ã24 = 0 also splits into a brane and its image when it is

intersected with the X3 equation, even though it is not manifest [29]. In order to see this,

we work over the function field of X3, where we notice that:

(2a1a3ã4 − ã2a1a
2
3 + σ ã24) =

1

σ
(a1a3 + ã4 σ + ξ a3) (a1a3 + ã4 σ − ξ a3) , (5.17)

which is clearly reducible.

The fourfold WE can be written as:

WE : (y − s a1 − t a3)(y + s a1 + t a3) = σ s (ã2s+ 2ã4t) (5.18)

The manifold has the form AB = CDE and correspondingly has a number of conifold

singularities. In particular they are at the ideals (y, a3, s, ã4), (y, a3, s, σ) and (y, a1s +

a3t, ã2s + 2ã4t, σ). From a perturbative type IIB analysis one can compute what is the

number of massless U(1)’s in this configuration. Both loci D7σ and D7D are made up

of a brane and its image in different homology classes in X3. Hence, as explained at the

beggining, after a suitable normalization, we expect the linear combination U(1)σ +U(1)D
to remain massless at strong coupling.

In F-theory, the massless U(1)’s are related to the new non-Cartier divisors that arise

when we have the factorized conifold singularity. In this example, the weak coupling

fourfold WE has the particular factorized form AB = CDE. This implies two independent

such cycles (compatible with 4d Poincaré invariance), that we can choose to be:

ωσ
+ − ωσ

− with ωσ
± : y ± (a1s+ a3t) = σ = 0 , (5.19)

ωD
+ − ωD

− with ωD
± : y ± (a1s+ a3t) = ã2s+ 2ã4t = 0 . (5.20)
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These are the six-cycles related to the two U(1)’s that are indeed massless at gs → 0.

We expect that a combination of the six-cycles survive the deformation away from weak

coupling. It is not difficult to understand what is happening, by looking at the equation of

the fourfold away from weak coupling. It can be descibed as

(y − s a1 z − ǫ a3 z
3)(y + s a1 z + ǫ a3 z

3) = s
(

s2 + σ (ã2s z
2 + 2ã4 ǫ z

4)
)

. (5.21)

In this case, we see only one independent non-Cartier divisor, which we can associate to

the massless U(1) combination:

ω+ − ω− with ω± : y ± (a1s z + a3 ǫ z
3) = s2 + σ (ã2s z

2 + 2ã4 ǫ z
4) = 0 . (5.22)

This interpretation is supported by the fact that in the weak coupling limit, the six-cycles

ω± split into ωσ
± + ωD

± . Away from weak coupling, the fourfold has still three curves of

conifold singularities. We can only perform a small resolution which leaves a remaining

point-like singularity in this case. It has the form ab+ cd+ e2 = 0 and permits no (Kähler)

crepant resolution. We expect this point-like singularity to be related to the massive

combination and have a non-Kähler resolution.

6 Discussion

In this paper, we have provided a geometric picture for understanding Abelian gauge

symmetries, and discriminating massive from massless ones. We find that all U(1)’s that

do not decouple, i.e. such that there is matter charged under them, manifest themselves as

one-parameter families of conifold singularities of the perturbative fourfold WE , admitting

small, Kähler resolutions. Codimension three singularities admit such resolutions provided

there is a non-Cartier divisor.

The simplest example is when WE is a hypersurface of the form AB = C D. Here,

a non-Cartier divisor would be the ideal (A,C). However, it may happen that this form

is not manifest. For instance, one might discover that, although WE does not have this

form, it admits a non-Cartier divisor that is simply not a complete intersection. However,

by working over the function field of B3, one should still be able to bring the fourfold to

the AB = C D form.

At strong coupling, the U(1) will remain massless if and only if the full-fledged fourfold

retains the form AB = C D. This means concretely, that one should be able to add a

polynomial of leading term s3 without spoiling the form. Therefore, if WE : AB = C D

with A a monic polynomial in s of degree d ≤ 2, then we can always add s3−dA, such that

the Weierstrass equation will be

W : A (B + s3−d) = C D , (6.1)

which still admits a small, Kähler resolution.

In this paper, we have constructed setups with purely Abelian gauge groups, in order

to convey our message most efficiently. When dealing with non-Abelian singularities, one

must beware of the following subtlety: take a stack D7G, with an U(N) gauge group, such
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that the diagonal U(1) is expected to be massive, and a flavor stack D7f . By resolving

the codimension two singularity over the 7-brane, one notices that the codimension three

singularity over the enhanced matter curves (D7G, D7f ) is automatically resolved. This

would appear to contradict our claim that such singularities do not admit crepant, Kähler

resolutions. From the IIA perspective, such a Cartan resolution corresponds to separating

two of the D6-branes, D61 and D62 of the stack D6G along the T-duality circle. The

enhancement we see represents the fact that, while these two branes are also being separated

about the origin of the coordinate system, the ‘flavor’ braneD6f is staying put at the origin.

By fibering the M-theory circle over the intervals [D61, D6f ] and [D6f , D62], we see two

P
1’s. From the perspective of IIB on R

3 × S1, we are switching on a Wilson line A2 −A1,

along the Cartan of the gauge group. This necessarily breaks the bifundamental U(1)

between the gauge and the ‘flavor’ stack, even though we are forced to keep Af = 0 due to

its mass. Resolving the codimension three singularity, on the other hand, corresponds to

displacing the D6f relative to the D6G stack, or, alternatively, to switching on a Wilson

line along Af . Hence, our claim is unaffected by this subtlety.

Finally, our results provide a starting point to describe massive U(1)’s explicitly in

F-theory. An interesting direction to explore would be the construction of fluxes along

such massive gauge groups, by inspecting how the harmonic two-form that detects the

massive U(1) at ǫ = 0 can be extended to a non-harmonic two-form in the fourfold at

strong coupling.
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A Rigidity implies [D7] 6= σ
∗[D7]

The most easily conceived orientifold involutions on a CY threefoldX3 typically act trivially

on the even homologies H2 ∗(X3), so that h1,1− = 0. However, many interesting cases with

h1,1− 6= 0 have been explored, for instance in [28, 33, 34]. In these models, it is possible

for a non-invariant D7-brane to have an orientifold image which is in a different homology

class. In such cases, the associated U(1) gauge groups acquire Stückelberg mass terms, as

explained in [12].

Let σ be a holomorphic involution giving rise to O7/O3-planes. There will necessarily

be a single coordinate or polynomial, call it ξ, such that σ : ξ 7→ −ξ. Then, a typical

non-invariant divisor will have the form η+ ξ ψ = 0, such that its image lies at η− ξ ψ = 0.

However, since both equations can be seen as deformations of each other, the respective

divisors will lie in the same homology class. The only way to achieve a divisor/image-

divisor pair D/σ(D), such that [D] 6= σ∗[D] ∈ H2(X3), is by considering non-complete

intersections with X3. The easiest conceivable model is constructed by imposing that X3
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be given by a hypersurface of the form:

ξ2 = a21 + σ1 σ2 (A.1)

where (a1, σ1, σ2) are polynomials. In this case, the divisors σi = 0 for i = 1, 2 are each

reducible, with their two components at

Di : (σi, ξ + a1) , σ(Di) : (σi, ξ − a1) . (A.2)

Let us assume that the locus (ξ, a1, σ1, σ2) is empty so that X3 is smooth. In the

language of [29], that corresponds to excising E6-points in SU(5)-models. Now both divisors

are Cartier, so they are locally cut out by a single equation inside X3, but not globally. In

what follows, we will now prove that [Di] 6= σ∗[Di] in three steps.

(1) If [Di] is rigid ⇒ [Di] 6= σ
∗[Di]. The first we prove that if least one of the Di

is rigid, then [Di] 6= σ∗[Di] for both i = 1, 2. To each divisor class [Di] is associate a line

bundle Li, and each representative is given by the zero locus of a section si. Every line

bundle admits a ‘zero section’ s ≡ 0, but it may or may not admit non-trivial holomorphic

sections. Suppose thatDi and σ(Di) are in the same divisor class. Then they are associated

to two different sections sa, sb of the same line bundle Li. But then, one can construct

a one-parameter family of section and hence divisors by considering linear combinations

a sa + b sb = 0, where (a, b) ∼ (λ a, λ b) define a P
1. Therefore, Di cannot be rigid.

(2) If, say [D1] 6= σ
∗[D1] is rigid, then [D2] 6= σ

∗[D2]. From the defining equation

of X3, ξ
2 = a21 + σ1 σ2, we can easily deduce some equalities. Since

ξ + a1 = 0 ∩ X3
∼= ξ + a1 = 0 ∩ σ1 σ2 = 0 , (A.3)

the class [ξ + a1] = [D1] + [D2] ⊂ H4(X3). On the other hand, the two polynomials ξ ± a1
are sections of the same line bundle K̄. Therefore, we have

[ξ + a1] = [ξ − a1] ⇒ [D1] + [D2] = σ∗[D1] + σ∗[D2] . (A.4)

Therefore, [D1] 6= σ∗[D1] ⇒ [D2] 6= σ∗[D2], as claimed. Now, all we need to prove is that

at least one of the Di is rigid.

(3) At least one of the Di is rigid. Suppose for simplicity7 that [D1] 6= [D2]. Define

Lσi
as the line bundle corresponding to σi. Note that Lσi

= Li ⊗ σ∗(Li). Let ξ± = ξ ± a1.

Then, the respective equations for the divisors can be written in matrix form:

D1 :

(

ξ+ σ2
σ1 ξ−

)(

1

δ1

)

= 0 , D2 :

(

ξ+ σ1
σ2 ξ−

)(

1

δ2

)

= 0 , (A.5)

where δi ∈ Γ(K ⊗Lσi
). These δi are deformation parameters that allow the divisors Di so

move in families. The particular case we started with had δi ≡ 0, but if K ⊗ Lσi
admits

a non-zero section, then Di will not be rigid. However, by equation (A.1), we have the

identity Lσ1
⊗Lσ2

= K̄2, which implies K⊗Lσ1
= (K⊗Lσ2

)−1. This means that, at most,

only one of the two δi can be non-zero. For instance, if K ⊗ Lσ1
has a non-zero section,

then its dual line bundle cannot have one. Therefore, at least one of the two Di is rigid.

7The case [D1] = [D2] is more subtle, but the answer will be the same. For simplicity, we will focus on

the more generic case.
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