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1 Introduction

The recent interest in rigid supersymmetric field theories on curved manifolds was sparked

by the use of supersymmetric localization [1, 2] to obtain exact results in many weakly

and strongly-coupled supersymmetric quantum field theories. Pestun [2] was the first to

use this technique to reduce the partition functions of various N = 2 theories on S4 to

finite-dimensional matrix integrals. The same technique was later generalized to supersym-

metric theories in other dimensions [3–10]. The three-dimensional generalizations [3, 4, 10]

stand out in that they provide impressive checks of the AdS/CFT duality when applied to

field theories with holographic duals. In particular, the matrix models corresponding to

various superconformal field theories dual to AdS4×X backgrounds of eleven-dimensional

supergravity provide a field theory understanding of the N3/2 scaling [11] of the number

of degrees of freedom on N coincident M2-branes [12].

The goal of this paper is to construct the holographic dual of a supersymmetric, but

non-conformal, field theory on S4. The theory we are interested in is commonly referred

to as N = 2∗ supersymmetric Yang-Mills (SYM) theory. It is a mass deformation of the

maximally supersymmetric N = 4 Yang-Mills theory which preserves N = 2 supersym-

metry. For simplicity, we take the gauge group to be SU(N). In general, one can use a

Weyl rescaling to uniquely define a conformal field theory on conformally flat manifolds

such as Sd. There is no such luxury, in general, for non-conformal field theories, where

there are many curved-space generalizations of a given theory on Rd that differ precisely

by couplings proportional to various powers of the space-time curvature. In the case of

supersymmetric field theories, however, supersymmetry suffices to fix the curvature cou-

plings [13]. In particular, there is a unique supersymmetric Lagrangian for the N = 2∗

SYM theory on S4; this Lagrangian was constructed in [2] and will be described shortly.

That the N = 2∗ SYM theory is not conformal means that we should think of it as

a renormalization group (RG) flow on S4, and not as an RG fixed point. At large N and

large ’t Hooft coupling, the supergravity dual of this theory is a “holographic RG flow”

in five Euclidean dimensions that can be foliated using S4 slices. While supersymmetric

holographic RG flows with Rd slicing have been studied extensively (see, for example, [14–

16]), there is only a relatively small amount of literature on holographic RG flows where the

dual field theory lives on a curved manifold. Refs. [17–19] constructed four-dimensional
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holographic duals of supersymmetric field theories on certain deformations of S3. The

bosonic supergravity fields that participated in these constructions were the metric and

the graviphoton U(1) gauge field. Ref. [20] considered more complicated four-dimensional

holographic RG flows that correspond to N = 2-preserving mass deformations of the N = 8

superconformal ABJM theory [21] on S3. The supergravity fields with non-trivial profiles

in these constructions were the metric and six scalar fields.

The present work can be thought of as a generalization of the construction in [20] to

one higher dimension, as both here and in [20] we are studying mass deformations of a

maximally-supersymmetric CFT on Sd, with d = 4 and d = 3, respectively. To understand

which supergravity fields are needed in our S4 example, let us first describe more precisely

the N = 2∗ SYM theory starting with N = 4 SYM. In N = 2 notation, the field content

of N = 4 SYM is given by a hypermultiplet consisting of two complex scalars Z1 and Z2

and two Weyl fermions χ1 and χ2, as well as by a vector multiplet consisting of a gauge

field Aµ, two Weyl fermions ψ1 and ψ2, and a complex scalar Z3. All these fields transform

in the adjoint representation of the SU(N) gauge group. The N = 4 SYM Lagrangian on

S4 can be obtained using conformal symmetry from the one on R4. The two differ only in

that on S4 the scalars acquire a conformal coupling to curvature:

LS4

N=4 = LR4

N=4

∣∣∣
ηµν→gµν

+
2

a2
tr
(
|Z1|2 + |Z2|2 + |Z3|2

)
. (1.1)

Here, gµν denotes the metric on a round S4 whose radius is a, and by “ηµν → gµν” we

mean that when considering the theory on S4, we should introduce a minimal coupling to

curvature. The mass deformation that gives the N = 2∗ SYM theory is a mass term for

the hypermultiplet. In flat space, this mass term would take the form

LR4

m = m2 tr
(
|Z1|2 + |Z2|2

)
+m tr (χ1χ1 + χ2χ2 + h.c.) . (1.2)

On S4, the N = 2 supersymmetry algebra receives curvature corrections, and the mass

deformation (1.2) does not preserve supersymmetry by itself. Up to a discrete choice,1 the

correct supersymmetric expression on S4 is [2]

LS4

m = LR4

m +
im

2a
tr
(
Z2

1 + Z2
2 + h.c.

)
. (1.3)

The extra term in (1.3) will play a crucial role in our work. It is important to stress that, as

mentioned above, the curvature couplings in (1.1) and (1.3) are uniquely fixed by requiring

invariance under N = 2 supersymmetry.

According to the AdS/CFT dictionary, there exists a correspondence between certain

gauge-invariant operators in the field theory and type IIB supergravity fields. To describe

the holographic dual of N = 2∗ theory, we expect that at least four bosonic bulk fields

should acquire non-trivial profiles: the bulk metric gµν , a scalar field φ dual to the bosonic

1The discrete choice corresponds to which OSp(2|4) sub-algebra of the SU(2|2, 4) superconformal al-

gebra we wish to preserve. The other choice is obtained by formally sending a → −a in (1.3) and

subsequent formulas.
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mass term Oφ in (1.2), a scalar field ψ dual to the fermionic mass term Oψ in (1.2), and

another scalar field χ dual to the operator Oχ in (1.3). Explicitly, the operators are2

Oφ = tr
(
|Z1|2+|Z2|2−2 |Z3|2

)
, Oψ = tr

(
χ1χ1+χ2χ2+h.c.

)
, Oχ = tr

(
Z2

1 +Z2
2 +h.c.

)
.

(1.4)

In N = 4 SYM, or in other words at the UV fixed point of the RG flow we want to

consider, the operators Oφ and Oχ have scaling dimension two and are part of the 20′

irrep of the SU(4) R-symmetry group, while Oψ has scaling dimension three and is part

of the 10 ⊕ 10 of SU(4), as can be seen from their expressions in terms of the matter

fields of the N = 4 theory. At the linearized level, the dual fields φ, χ, and ψ are not

only part of the excitations of type IIB supergravity around AdS5 × S5, but also part of

five-dimensional N = 8 SO(6) gauged supergravity [22–24], as can be seen from [25]. It is

therefore reasonable to assume that the whole N = 2∗ flow can be described within N = 8

gauged supergravity.

Using symmetry properties, we find that there exists a consistent truncation of N = 8

gauged supergravity containing only the bosonic fields mentioned in the previous para-

graph, namely gµν , φ, ψ, and χ. This consistent truncation appears to be new; the 5D

Lagrangian of the truncated theory is in Euclidean signature

L5D =
1

4πG5

[
−R

4
+

3∂µη∂
µη

η2
+

∂µz∂
µz̃

(1− zz̃)2 + V

]
,

V ≡ − 1

L2

(
1

η4
+ 2η2 1 + zz̃

1− zz̃
+
η8

4

(z − z̃)2

(1− zz̃)2

)
,

(1.5)

where we denoted z = (χ + iψ)/
√

2, z̃ = (χ − iψ)/
√

2, and η = eφ/
√

6, G5 is the five-

dimensional Newton constant, and L is a length scale equal to the radius of curvature of

the (Euclidean) AdS5 extremum of (1.5) that has φ = χ = ψ = 0.

The equations of motion following from (1.5) are second order in derivatives. From

the vanishing of the supersymmetry variations of the spin-3/2 and spin-1/2 fields of the

full N = 8 gauged supergravity theory, one can also find a set of BPS equations that are

first order in derivatives and that imply the second-order equations. We find that the BPS

equations have a one-parameter family of smooth solutions with S4 slicing, as expected

from the one-parameter family of field theory deformations parameterized by m. These

solutions are the holographic duals of the N = 2∗ on S4.

As a check that our supergravity solutions indeed correspond to the N = 2∗ theory,

we use holographic renormalization [26–29] to compute the S4 free energy and match that

with known field theory results. In the field theory, the S4 free energy of the N = 2∗ theory

was computed by first using supersymmetric localization to reduce the path integral on S4

to a finite dimensional matrix integral [2] and then evaluating this matrix integral in the

2The scalar mass term in (1.2) can be written in terms of the operator 1
3

(
Oφ + 2O′

)
, where Oφ is given

in (1.4) and O′ = tr
(
|Z1|2 + |Z2|2 + |Z3|2

)
. While Oφ is dual to the supergravity field φ, O′ is believed to

acquire a large anomalous dimension and is not dual to a supergravity field. We will henceforth ignore O′

because it is not visible in the supergravity approximation.
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limit of large N and large ’t Hooft coupling λ = g2
YMN [30–34]. The result is

FS4 = −N
2

2
(1 +m2a2) log

λ(1 +m2a2)e2γ+ 1
2

16π2
, (1.6)

where γ is the Euler-Mascheroni constant. The appearance of the Euler-Mascheroni con-

stant suggests that the result (1.6) was derived in a particular regularization scheme. In-

deed, the expression (1.6) is found after subtracting certain non-universal UV divergences,

and this subtraction introduces ambiguities in FS4 . However, the third derivative of (1.6)

with respect to ma,

d3FS4

d(ma)3
= −2N2ma(m2a2 + 3)

(m2a2 + 1)2
, (1.7)

is non-ambiguous, and it is this quantity that we will calculate from our supergravity

background and match to (1.7).

Note that if we take z = −z̃, or equivalently χ = 0, the Lagrangian (1.5) represents

the bosonic part of a simpler truncation of N = 8 gauged supergravity studied in [35]. In

that theory there is a flat-sliced domain wall solution of the BPS equations that is dual

to the mass-deformed N = 2∗ SYM on R4. Indeed, in the flat space limit a → ∞, the

dual operator Oχ does not appear as a deformation of the Lagrangian, and consequently

the supergravity field χ is not needed. The two scalar fields φ and ψ that remain in this

truncation are dual to the scalar and fermion mass operators in (1.2). The truncation with

χ = 0 was also used in [36] as a step towards the construction of the holographic RG flow

with S4 slicing by solving the second order equations of motion that follow from the action.

As shown in [36], the free energy of these solutions does not match the supersymmetric

localization result (1.6). The discrepancy comes from the fact that the supersymmetric

localization result relies on a Lagrangian that includes the extra mass term in (1.3), whereas

the solutions constructed in [36] do not include the third bulk scalar χ that is dual to this

mass term.

The rest of this paper is organized as follows. In section 2 we begin with a more

extensive discussion of the N = 2∗ theory on S4. In section 3 we present our supergravity

truncation and BPS equations. In section 4 we solve the system of BPS equations numeri-

cally and find a one-parameter family of regular solutions. In section 5 we use holographic

renormalization to compute the S4 free energy of the dual field theory. We end with a

discussion of our results in section 6. In the appendices we present various technical details

of the calculations summarized in the main text.

2 The N = 2∗ SYM theory on S4

The N = 2∗ SYM theory is obtained by mass deformation of the superconformal invariant

N = 4 theory. The deformation breaks the SU(2, 2|4) superconformal algebra to the

superalgebra OSp(2|4) of N = 2 Poincaré supersymmetry. Pestun [2] studied the theory

on the Euclidean signature four-sphere and applied the method of localization to calculate

the partition function Z, or equivalently the free energy F = − log |Z|, and the expectation

– 4 –
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value of a supersymmetric Wilson loop. He obtained the action and transformation rules

by time-like dimensional reduction of the N = 1 SYM theory in ten dimensions. We have

determined an equivalent form of N = 2∗ on S4 by “Wick rotation” in four dimensions.

Our general approach to Euclidean supersymmetry is described in the appendices of [20]. In

this section, we present the results and discuss the global symmetries that must be matched

in the construction of the gravity dual. Additional details are given in appendix A.

2.1 N = 4 SYM on S4 in N = 2 formulation

The fields of N = 4 SYM theory are

Aµ , X1,2,3,4,5,6 , λ1,2,3,4 . (2.1)

The Xi are six real scalars in the 6 of the R-symmetry group SO(6)R ∼= SU(4)R and the

λα are four Weyl fermions in the 4. All fields are in the adjoint of the SU(N) gauge group.

In the N = 2∗ theory the multiplet in (2.1) decomposes into one N = 2 vector multiplet

consisting of

Aµ , ψ1 = λ4 , ψ2 = λ3 , Φ = Z3 =
1√
2

(
X3 + iX6

)
, (2.2)

and one massive hypermultiplet which contains

χi = λi , Zi =
1√
2

(
Xi + iXi+3

)
, i = 1, 2 . (2.3)

We have introduced complex scalars Zi because we will describe the theory largely using

N = 1 language. As discussed in [20], fields, both fermions and bosons, that are complex

conjugate in Lorentzian signature are algebraically independent in Euclidean signature su-

persymmetry. To emphasize their independence we use the notation χ̃, Z̃i, etc. to denote

the “formal conjugates” of χ, Zi. All adjoint fields have gauge covariant derivatives (with

gauge coupling gYM = 1), e.g.

DµZ
a
i ≡ ∂µZai + fabcAbµZ

c
i , Dµχ

a
i ≡ ∇µχai + fabcAbµχ

c
i , (2.4)

in which ∇µ indicates the spinor covariant derivative on S4 and a, b, c are gauge group

indices.

The action of the massless N = 4 theory on S4 can be written as

Sm=0 =

∫
d4x
√
g
[
Lkin + LYukawa + L4

]
. (2.5)

The kinetic Lagrangian is3

Lkin =
1

4
F aµνF

µνa − ψ̃aTα σ2σ̄
µDµψ

a
α − χ̃aTi σ2σ̄

µDµχ
a
i

+DµΦaDµΦa +DµZ̃ai DµZ
a
i +

2

a2

(
Φ̃aΦa + Z̃ai Z

a
i

)
.

(2.6)

3In Euclidean signature, the “Weyl” matrices are σµ = (~σ,−iI) and σ̄µ = (~σ,+iI).
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The last bracket contains the conformal coupling of the scalars to the curvature scalar R

of the four-sphere with radius a, i.e. 2/a2 = R/6.

The Yukawa term is simply a rearrangement of the Yukawa term of N = 4 SYM as

written in terms of 4× 4 ’t Hooft matrices (see appendix A):

LYukawa =
√

2fabc
(

1

2
εαβ
(
ψaTα σ2ψ

b
β

)
Φ̃c − 1

2
εij
(
χaTi σ2χ

b
j

)
Φc

+
(
ψaT1 σ2 ψ

aT
2 σ2

)( 0 1

−1 0

)[
χb1

(
Zc2
Z̃c1

)
− χb2

(
Zc1
−Z̃c2

)])
+ h.c.

=
√

2fabc
(

1

2
εαβ
(
ψaTα σ2ψ

b
β

)
Φ̃c − 1

2
εij
(
χaTi σ2χ

b
j

)
Φc

+ (ψaT1 σ2χ
b
i)Z̃

c
i − (εijψ

aT
2 σ2χ

b
i)Z

c
j

)
+ h.c.

(2.7)

Here, and in the following, “h.c.” stands for the formal Hermitian conjugate, i.e. terms

that in the Lorentzian theory are obtained by Hermitian conjugation and are converted to

Euclidean signature via the analytic continuation detailed in [20]. In the first form (2.7),

the global symmetries of LYukawa are manifest, as we will discuss shortly. The second form

is neater.

The quartic term is also obtained directly from that of the N = 4 theory, viz.

L4 =
1

2
fabcfab

′c′
3∑

i,j=1

(
− Z̃biZ

c
i Z̃

b′
j Z

c′
j + 2Z̃bj Z̃

c
iZ

b′
j Z

c′
i

)
. (2.8)

In the N = 1 formulation with three adjoint scalars Zi, the first quartic term in (2.8) is

simply the D-term potential VD = 1
2D

aDa and the second term is the F-term potential

VF = F̃ aF a =
∑3

i=1

∣∣ ∂W
∂Zai

∣∣2 for the cubic superpotential,

W = −
√

2fabcZa1Z
b
2Z

c
3 . (2.9)

For the N = 2∗ formulation, we replace Z3 → Φ in the bilinear sums of (2.8), for example∑3
i=1 Z̃

b
iZ

c
i = Φ̃bΦc +

∑2
i=1 Z̃

b
iZ

c
i .

This massless theory is invariant under transformation rules in which the spinor pa-

rameters are Killing spinors on S4. They are Weyl spinors that satisfy the equations

∇µε± = ± i

2a
σµε̃± , ∇µε̃± = ± i

2a
σ̄µε± . (2.10)

For each sign ± there are two linearly independent solutions. The explicit form of these

solutions is known [37] but is not needed for our purposes. The massless N = 4 theory

is superconformal, and thus invariant under transformations involving both signs. There

is a further doubling of the number of spinors because of N = 2 supersymmetry. It

is incorporated by adding the subscript I = 1, 2, i.e. ε± → ε±,I . We will not exhibit

the complete transformation rules because they are not needed, but the subset used to

determine the mass deformation of the action is discussed in appendix A.

– 6 –
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SU(2)V SU(2)H U(1)R

Aµ 0 0 0

Φ 0 0 +2

ψ1,2 1/2 0 +1

ψ̃1,2 1/2 0 −1

Z1,2 1/2† 1/2 0

χ1,2 0 1/2 −1

χ̃1,2 0 1/2 +1

Table 1. Charges of the fields of N = 4 SYM under subgroups of the SU(4) R-symmetry.

So far we have just rewritten the N = 4 SYM theory on S4 in a notation which incor-

porates the split into vector and hypermultiplet. The subgroup of the R-symmetry group

SU(4) that preserves this split may be denoted by SU(2)V ×SU(2)H ×U(1)R. The specific

implementation of these symmetries is discussed in appendix A; see also [38] and [39]. The

results are summarized in table 1.

The action of SU(2)V on the scalars z1,2 is flagged to indicate its special form: the

basic doublets are
(
Zc2
Z̃c1

)
and

(
Zc1
−Z̃c2

)
. All fields of the vector multiplet are SU(2)H singlets

and all fields of the hypermultiplet belong to the s = 1/2 representation. With this

information we can now understand the structure of LYukawa in (2.7). The quantities

χ1Z2 − χ2Z1 and χ1Z̃1 + χ2Z̃2 are both SU(2)H invariants. Thus LYukawa is invariant

under all global symmetries.

2.2 The mass deformation

In flat space one can introduce the hypermultiplet mass term via the N = 1 superpotential

(see (3.1) of [40])

W2∗ = −
√

2fabcZa1Z
b
2Z

c
3 +

1

2
m(Za1Z

a
1 + Za2Z

a
2 ) . (2.11)

This produces two new terms in the Lagrangian, a cubic coupling of the scalars (recall

that Φ = Z3)

L3 = −
√

2m[fabc(Z̃a1Z
b
2 − Z̃a2Zb1)Φc + h.c.] , (2.12)

and the mass term proper

Lmass = −1

2
m(χaTi σ2χ

a
i + χ̃aTi σ2χ̃

a
i ) +m2Z̃ai Z

a
i . (2.13)

The hypermultiplet mass breaks the symmetry group SU(2)V × SU(2)H × U(1)R of

the Euclidean theory on R4 and we find that there is further breaking on S4. One can

see that U(1)R is broken by the fermion mass term and that SU(2)H is broken to the

U(1)H subgroup generated by the Pauli matrix τ2.4 SU(2)V is preserved by Lmass. L3 also

4Pauli matrices are denoted by σi when they act on spacetime spinors, and otherwise by τi.
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preserves SU(2)V × U(1)H , and U(1)R is broken. The parameter m in (2.12)–(2.13) may

be real or complex. The mass term obviously breaks conformal symmetry in flat space,

but N = 2 Poincaré supersymmetry is unbroken.

On S4, the N = 2 transformation rules permit one choice of the sign in the equations

(2.10) obeyed by Killing spinors. One can choose either sign. For the upper sign in (2.10),

supersymmetry requires one additional term in the action, given by5

LS4 =
im

2a
(Zai Z

a
i + Z̃ai Z̃

a
i ) . (2.14)

In this term SU(2)V is broken to the U(1)V subgroup generated by τ2. Therefore the

global symmetry of the complete N = 2∗ theory on S4 is the Abelian product group

U(1)V ×U(1)H .

A minor generalization of (2.13) is possible. U(1)R is not a symmetry, and we may

use it to make a change of variables in the presentation. Specifically, we define χi =

e−iθχ′i, ψi = eiθψ′i, Φ = e2iθΦ′. Since U(1)R is a symmetry when m = 0, this change

affects only L3 and Lmass. The latter becomes

Lmass = −1

2
(m′χTi σ2χi + m̃′χ̃

′T
i σ2χ̃

′
i) +m2Z̃ai Z

a
i , (2.15)

where m′ = me−2iθ and m̃′ = me2iθ. N = 2 supersymmetry is maintained if we make

the same U(1)R phase change in the supersymmetry transformation rules. The role of the

parameter θ will be made clear in the holographic setup after (3.6).

2.3 Summary

In this section we have presented the action and discussed the symmetries of the N = 2∗

SYM theory on the Euclidean manifold S4. The massless theory is superconformal and

indeed just a rewrite of the well-known N = 4 theory. When so written the Lagrangian

consists of the three terms in (2.6)–(2.8). It is invariant under N = 2 transformation rules

(not given above) with Killing spinor parameters that satisfy either of the ± equations

in (2.10). The presentation is invariant under the R-symmetry group SU(2)V × SU(2)H ×
U(1)R. The mass deformation requires the two additional Lagrangian terms in (2.13)–(2.14)

or more generally (2.14)–(2.15). The transformation rules of its reduced supersymmetry

involve half the number of Killing spinors, which comprise eight real supercharges. The

global symmetry group is reduced to U(1)V ×U(1)H .

In the next section, we construct the gravity dual of the mass-deformed theory. The

dual of the undeformed theory is type IIB superstring theory on AdS5 × S5. Its low-

energy limit is type IIB supergravity, which is believed to contain the maximal gauged

N = 8 supergravity theory in five spacetime dimensions as a consistent truncation. We

will assume that the dual of the mass-deformed theory can be described within a further

consistent truncation of N = 8. In its general form it should contain three scalar fields that

source the three gauge invariant operators of the deformation in (2.14)–(2.15) (at fixed θ),

namely Z̃ai Z
a
i , e−2iθχTi σ2χi + e2iθχ̃

′T
i σ2χ̃

′
i, and Zai Z

a
i + Z̃ai Z̃

a
i . The dual description is valid

5For the lower sign one can simply change a→ −a throughout.
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in the limit N →∞ and g2
YMN � 1. In that limit the undeformed N = 4 field theory has

an additional U(1)Y symmetry whose presence was inferred [41] from the gravity dual and

which is also expected in the N = 2∗ deformation [40]. This U(1)Y symmetry is a diagonal

subgroup of the U(1)R subgroup of SO(6)R and an SO(2) subgroup of the S-duality group,

which in the limit mentioned above is enhanced from SL(2,Z) to SL(2,R). Our gravity

dual therefore should have Euclidean signature and a gauged U(1)3 symmetry.

3 Supergravity

We now describe how to construct the five-dimensional holographic dual of the N = 2∗

SYM theory on S4 presented in the previous section. As mentioned above, this holographic

dual must contain (at the very least) a non-trivial bulk profile for three bulk scalar fields

that we identify based on their transformation properties under the various symmetries.

The strategy followed in this section is to study first the relevant sector of N = 8 gauged su-

pergravity in Lorentzian signature, and then continue this analysis to Euclidean signature.

3.1 Lorentzian truncation

The ungauged N = 8 supergravity theory in five-dimensions has an E6(6) global duality

group that acts as a symmetry of the equations of motion, but not of the Lagrangian. This

theory can also be written in a description with USp(8) composite local symmetry, where

the target space for the 42 scalars can be identified with the coset E6(6)/USp(8). If the

local USp(8) acts on the E6(6) group element g by multiplication on the right, the global

E6(6) transformations act on the left:

g → hgk−1 , g, h ∈ E6(6) , k ∈ USp(8) . (3.1)

It is simplest, however, to describe this theory (and its subsequent gauging) in a particular

“symmetric” USp(8) gauge defined such that g stays invariant under (3.1) whenever h =

k ∈ USp(8). In this gauge, all the supergravity fields transform in totally anti-symmetric

symplectic traceless representations of the diagonal USp(8). These fields are: the metric

gµν , 8 gravitini ψaµ, 27 vector fields Aabµ , 48 spin-1/2 fields χabc, and 42 real scalars φabcd,

where the upper indices are fundamental USp(8) indices that run from 1 to 8.6

There are several inequivalent gaugings that one can perform by promoting part of

the global E6(6) symmetry to a local symmetry. The desired subsector of type IIB string

theory on S5 involves a gauging of the SO(6) subgroup in

SO(6)× SO(2) ⊂ USp(8) ⊂ E6(6) . (3.2)

Within E6(6), this SO(6) commutes with an SL(2,R) of which only an SO(2) subgroup

is contained in USp(8). The N = 8 gauged supergravity theory therefore has SO(6) ×
USp(8) local and SL(2,R) global invariance. Fixing the USp(8) gauge as above, it is

then straightforward to determine the SO(6) × SO(2) charges of the various supergravity

6We hope that no confusion will arise from the fact that we used a, b, c to denote SU(N) gauge indices

in the previous section. The latter will not appear in the supergravity discussion.
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fields by decomposing the USp(8) irreps listed in the previous paragraph with respect to the

SO(6)×SO(2) subgroup. One effect of the gauging is that 15 of the 27 vector fields become

the SO(6) gauge fields while the other 12 must be represented as rank-two antisymmetric

tensor fields that are charged under SO(6).

To characterize the embedding of SO(6)×SO(2) into USp(8), let Hi, with i = 1, . . . , 4,

be the Cartan elements of USp(8) defined such that the fundamental eight-component vec-

tors v±i satisfyHjv±i = ±δijv±i. Choosing the Cartan of SO(6) to be generated by rotations

in the 13, 24, and 56 planes, it is straightforward to work out that, up to equivalence, one

must have:

U(1)13 : −H1 +H2 +H3 −H4 ,

U(1)24 : H1 −H2 +H3 −H4 ,

U(1)56 : H1 +H2 −H3 −H4 ,

SO(2) : H1 +H2 +H3 +H4 .

(3.3)

where U(1)ij ∈ SO(6) corresponds to rotations in the ij plane. Another characterization of

the embedding of SO(6)× SO(2) into USp(8) is that the fundamental irrep 8 of the latter

group decomposes as 41 + 4−1 under the former. The SO(6) gauge group in supergravity

corresponds to the SO(6)R ∼= SU(4)R symmetry group of the N = 4 SYM theory described

in the previous section. Similarly, the SO(2) invariance of the supergravity theory corre-

sponds to the SO(2) “symmetry” of N = 4 SYM that emerges at large N and ’t Hooft

coupling [41] .

As discussed in the previous section, the mass deformed N = 2∗ theory on S4 is

invariant under a U(1)V ×U(1)H ×U(1)Y subgroup of SO(6)× SO(2) in the large N limit

and at large ’t Hooft coupling. The supersymmetries of the field theory transform under

U(1)V , which is the only R-symmetry in the product group. The holographic dual we

seek must reflect these symmetries. This means that the bulk scalar fields should be U(1)3

invariant, while the gravitini7 are U(1)H×U(1)Y invariant but charged under U(1)V . From

the previous analysis we identify

U(1)V : H3 −H4 ,

U(1)H : H1 −H2 ,

U(1)Y : H1 +H2 .

(3.4)

One may therefore consider the sector of N = 8 gauged supergravity that is invariant

only under U(1)H and U(1)Y . The fields that are invariant are: the metric, 4 gravitini,

5 vector fields (corresponding to the SU(2)V × U(1)H × U(1)R subgroup of SO(6)), 2

anti-symmetric tensors, 8 spin-1/2 fields, and 6 real scalars. This theory is an N = 4

gauged supergravity theory with a gravity multiplet, one vector multiplet, and gauge group

SU(2) × U(1)2. The Lagrangian of this supergravity theory is rather constrained. For

instance, the six real scalars parameterize a R×H5 target space. Vector and antisymmetric

7None of the eight gravitini of the N = 8 theory, which transform in the 8 of USp(8), are invariant

under (3.4).
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tensor fields are omitted because they have vanishing profiles in the S4-sliced solutions we

need. The bosonic Lagrangian is then8

L =
1

2κ2

[
−R+ 12

∂µη∂
µη

η2
+

4 ∂µ ~X · ∂µ ~X(
1− ~X2

)2 − V
]
,

V = − 4

L2

[
1

η4
+ 2η2 1 + ~X2

1− ~X2
− η8 (X1)2 + (X2)2(

1− ~X2
)2

]
,

(3.5)

where ~X = (X1, X2, X3, X4, X5) are five of the scalars and η is the sixth. The scalars

(X1, X2) form a doublet under the U(1)R part of the gauge group, while (X3, X4, X5) form

a triplet under SU(2)V and η is neutral. The overall normalization of the potential was

chosen such that the AdS5 extremum of (3.5), which is obtained with ~X = 0 and η = 1,

has curvature radius L. See appendix B for details on how to derive (3.5) from N = 8

gauged supergravity.

In theN = 4 supergravity theory we can use the SU(2)V ×U(1)R gauge transformations

to set, say, X2 = X4 = X5 = 0. The resulting action is

L =
1

2κ2

[
R− 12∂µη∂

µη

η2
− 4 ∂µz∂

µz∗(
1− |z|2

)2 − V
]
,

V ≡ − 4

L2

(
1

η4
+ 2η2 1 + |z|2

1− |z|2
+
η8

4

(z − z∗)2

(1− |z|2)2

)
,

(3.6)

where z = X3 + iX1 and z∗ = X3 − iX1. The fields η, z, and z∗ are invariant under

U(1)V ×U(1)H×U(1)Y , and they correspond to the three independent operators in (2.14)–

(2.15) after U(1)R was used to fix the value of θ. Changing the value of the field theory

parameter θ corresponds to a constant rotation in the (X1, X2) plane and does not yield

new physics.

As in any five-dimensional N = 4 theory, the supersymmetries can be written as

two pairs of symplectic Majorana spinors (ε1, ε3) and (ε2, ε4). Following [22], we use a

basis of five-dimensional gamma matrices γm, where m = 0, . . . , 4, that satisfy the Clifford

algebra {γm, γn} = 2ηmn = 2diag{1,−1,−1,−1,−1}, where γm, with m = 0, . . . , 3 are

pure imaginary and γ4 is pure real. In this basis, the symplectic Majorana condition is

ε3 = γ5ε
∗
1 , ε4 = γ5ε

∗
2 , (3.7)

where γ5 is defined as γ5 ≡ −iγ4. Because γ5 is pure imaginary, the conditions (3.7) imply

ε1 = −γ5ε
∗
3 and ε2 = −γ5ε

∗
4. Instead of writing the supersymmetry variations in terms of

all four spinors εi, we will use (3.7) to write the supersymmetry variations only in terms of

εi and ε∗i with i = 1, 2.

8We use the conventions of [22], in particular a mostly minus Lorentzian signature metric.
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In Lorentzian signature the vanishing of the supersymmetry variations of the spin-1/2

fields in the Majorana basis takes the form

3γµ∂µη

2η
γ5ε
∗
i −

1

2L

1 + (z∗)2 +
(
(z∗)2 − 1

)
η6

(1− |z|2)η2
εi = 0 ,

γµ∂µz

1− |z|2
γ5ε
∗
i +

1

2L

2(z + z∗) + (z − z∗)η6

(1− |z|2)η2
εi = 0 ,

(3.8)

with i = 1, 2. The vanishing of the gravitino variation takes the form

∇µεi +
z∗∂µz − z∂µz∗

2(1− |z|2)
εi +

1

6L

2(1 + z2) + η2(z2 − 1)

(1− |z|2)η2
γµγ5ε

∗
i = 0 , (3.9)

where ∇µ is the usual covariant derivative acting on a spinor, and again i = 1, 2. That

the vanishing of the supersymmetry transformations parameterized by ε1 and ε2 leads

to identical equations is a consequence of the fact that all three scalars η, z, and z∗

are invariant under U(1)V × U(1)H × U(1)Y , while the fermions are invariant only under

U(1)H ×U(1)Y and transform under SU(2)V . The U(1)V subgroup of SU(2)V acts on the

fermions by rotating ε1 and ε2 as an SO(2) doublet, so if the supersymmetry variations

with parameter ε1 vanish, then so do those corresponding to ε2.

3.2 Euclidean continuation

In Euclidean signature the fields that in Lorentzian signature were related by complex

conjugation are now independent. As in section 2 we emphasize this fact by replacing the

complex conjugation symbol by a tilde, and write z̃ instead of z∗, ε̃ instead of ε∗, and so

on. The Euclidean continuation of the Lagrangian (3.6) is then

L =
1

2κ2

[
−R+

12∂µη∂
µη

η2
+

4 ∂µz∂
µz̃

(1− zz̃)2 + V

]
,

V ≡ − 4

L2

(
1

η4
+ 2η2 1 + zz̃

1− zz̃
+
η8

4

(z − z̃)2

(1− zz̃)2

)
.

(3.10)

The Euclidean continuation of the supersymmetry variations (3.8)–(3.9) requires more care.

It can be done in two steps. The first step is to stay in Lorentzian signature and go from

mostly minus to mostly plus signature. This change requires replacing γµ → iγµ and

γµ → −iγµ everywhere in (3.8)–(3.9). Note, however, that γ5 should not be replaced by

iγ5, because the symplectic Majorana condition (3.7) remains unchanged. The second step

is to rotate the time direction to Euclidean signature, which amounts to multiplying the

gamma matrix corresponding to the time direction by a factor of i, as well as relaxing

the complex conjugation condition on all the fields, as discussed above. The Euclidean

continuation of the spin-1/2 equations (3.8) is

−3iγµγ5∂µη

2η
ε̃i −

1

2L

1 + z̃2 +
(
z̃2 − 1

)
η6

(1− zz̃)η2
εi = 0 ,

− iγ
µγ5∂µz

1− zz̃
ε̃i +

1

2L

2(z + z̃) + (z − z̃)η6

(1− zz̃)η2
εi = 0 .

(3.11)
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In Lorentzian signature, the equations (3.8) are equivalent to their complex conjugates.

When continuing to Euclidean signature, however, we should also continue the complex

conjugates of (3.8), and obtain

3iγ5γ
µ∂µη

2η
εi −

1

2L

1 + z2 +
(
z2 − 1

)
η6

(1− zz̃)η2
ε̃i = 0 ,

iγ5γ
µ∂µz̃

1− zz̃
εi +

1

2L

2(z + z̃)− (z − z̃)η6

(1− zz̃)η2
ε̃i = 0 .

(3.12)

The equations (3.11) and (3.12) are now independent, and should be satisfied simultane-

ously if there is unbroken supersymmetry. Similarly, the Euclidean continuation of the

spin-3/2 equation (3.9) is

∇µεi +
z̃∂µz − z∂µz̃

2(1− zz̃)
εi +

i

6L

2(1 + z2) + η2(1− z2)

(1− zz̃)η2
γµγ5ε̃i = 0 . (3.13)

The Euclidean continuation of its complex conjugate is

γ5∇µγ5ε̃i −
z̃∂µz − z∂µz̃

2(1− zz̃)
ε̃i −

i

6L

2(1 + z̃2) + η2(1− z̃2)

(1− zz̃)η2
γ5γµεi = 0 . (3.14)

In order to have backgrounds with N = 2 supersymmetry, equations (3.11)–(3.14) must

have simultaneous solutions where the four independent four-component complex spinors

εi and ε̃i depend on eight free complex parameters.

3.3 Solution Ansatz and equations of motion

We are looking for Euclidean backgrounds that are invariant under the isometries of S4.

The metric and the scalars should therefore take the form

ds2 = L2e2A(r)ds2
S4 + dr2 , η = η(r) , z = z(r) , z̃ = z̃(r) , (3.15)

for some function A(r). A convenient frame is

ei = LeAêi , e5 = dr , (3.16)

where the êi, i = 1, . . . 4, form a frame on the S4 of unit radius. The non-zero components

of the spin connection are

ωij = ω̂ij , ωi5 = −ω5i = LA′eAêi , (3.17)

where ω̂ij is the spin connection on the unit radius S4.
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The equations of motion following from the Lagrangian (3.10) are

6A′′ + 12A′2 +
4z′z̃′

(1− zz̃)2
+

12η′2

η2
+ V − 6

L2
e−2A = 0 ,

η′′ + 4A′η′ − η′2

η2
− η2

24
∂ηV = 0 ,

4z′′ + 16A′z′ +
8z̃

1− zz̃
z′2 − (1− zz̃)2∂z̃V = 0 ,

4z̃′′ + 16A′z̃′ +
8z

1− zz̃
z̃′2 − (1− zz̃)2∂zV = 0 ,

12A′2 − 12η′2

η2
− 4z′z̃′

(1− zz̃)2
+ V − 12

L2
e−2A = 0 .

(3.18)

3.4 The BPS equations

With the Ansatz (3.15)–(3.16), the spin-1/2 variations (3.11)–(3.12) take the form
1 + z̃2 +

(
z̃2 − 1

)
η6 3iLηη′(1− zz̃)

−3iLηη′(1− zz̃) 1 + z2 +
(
z2 − 1

)
η6

2(z + z̃) + (z − z̃)η6 −2iLz′η2

2iLz̃′η2 2(z + z̃)− (z − z̃)η6


(
εi
ε̃i

)
= 0 . (3.19)

This system of equations has non-trivial solutions only if the 4 × 2 matrix in (3.19) has

rank 1, or in other words only if all its 2× 2 minors vanish. This condition requires

z′ =
3η′(zz̃ − 1)

[
2(z + z̃) + η6(z − z̃)

]
2η [η6 (z̃2 − 1) + z̃2 + 1]

,

z̃′ =
3η′(zz̃ − 1)

[
2(z + z̃)− η6(z − z̃)

]
2η [η6 (z2 − 1) + z2 + 1]

,

(η′)2 =

[
η6
(
z2 − 1

)
+ z2 + 1

] [
η6
(
z̃2 − 1

)
+ z̃2 + 1

]
9L2η2(zz̃ − 1)2

.

(3.20)

The first equation comes from the minor constructed from the first and third row of (3.19);

the second equation comes from the second and fourth rows; and the last equation comes

from the top two rows.

Next we should consider the spin-3/2 variations (3.13)–(3.14) in the case where the

index µ points along the S4 directions. The equations take the form of the generalized

eigenvalue problem

∇̂µ

(
εi
ε̃i

)
=


1
2LA

′eA
ieA

6

2(1 + z2) + η6(1− z2)

(1− zz̃)η2

ieA

6

2(1 + z̃2) + η6(1− z̃2)

(1− zz̃)η2
−1

2LA
′eA

 γ5γ̂µ

(
εi
ε̃i

)
, (3.21)

where γ̂µ ≡ êmµ γm, and ∇̂µ is the covariant derivative on S4.

We expect that εi and ε̃i should be linear combinations of the Killing spinors on S4

with r-dependent coefficients. One way to write the Killing spinor equation is

∇̂µζ± = ±1

2
γ5γ̂µζ± . (3.22)
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This equation has four linearly independent complex solutions for each sign. In fact, ζ+

and ζ− can be related through ζ− = γ5ζ+. Since the equations (3.19) and (3.21) do not

mix ζ+ and ζ−, let us take (
εi
ε̃i

)
=

(
ai(r)

ãi(r)

)
ζ± . (3.23)

Then (3.21) becomes LA′eA ∓ 1
ieA

3

2(1 + z2) + η6(1− z2)

(1− zz̃)η2

ieA

3

2(1 + z̃2) + η6(1− z̃2)

(1− zz̃)η2
−LA′eA ∓ 1


(
εi
ε̃i

)
= 0 . (3.24)

This equation needs to hold together with (3.19). Thus, to have non-trivial solutions for

εi and ε̃i, one should impose two more equations in addition to (3.20). Constructing 2× 2

matrices from the first / second row of (3.24) and the second / first row of (3.19), and

requiring that the determinants of those matrices vanish, we obtain

L
η′

η
=

[
1 + z2 + η6(z2 − 1)

]
(LA′ ∓ e−A)

2(1 + z2) + η6(1− z2)
,

L
η′

η
=

[
1 + z̃2 + η6(z̃2 − 1)

]
(LA′ ± e−A)

2(1 + z̃2) + η6(1− z̃2)
.

(3.25)

We have therefore derived five first order equations (three in (3.20) and two in (3.25))

for four functions (A, η, z, and z̃). Quite remarkably, these equations are consistent

with each other and with the second order equations (3.18)! Moreover, one can obtain

an algebraic equation for A by solving (3.25) for η′ and plugging the result into the last

equation in (3.20). The algebraic equation is

e2A =
(zz̃ − 1)2

[
η6
(
z2 − 1

)
+ z2 + 1

] [
η6
(
z̃2 − 1

)
+ z̃2 + 1

]
η8 (z2 − z̃2)2 , (3.26)

which holds regardless of the sign choice in (3.25).

Putting things together, our independent BPS equations are (3.20) and (3.26). We

will solve these equations numerically in the next section.

4 Solution to the BPS equations

The BPS equations (3.20) and (3.26) can be solved systematically in the UV and IR

asymptotic regions. In the UV, we find a two-parameter family of solutions, parameterized

by a mass (or source) parameter µ and a vev-parameter v. Requiring smoothness of the

IR solution allows for a one-parameter family of solutions. Interpolation from the IR to

the UV allow us to fix v in terms of µ numerically: and from the numerics, we extract an

analytic formula for v = v(µ). This result is an important ingredient for matching the S4

free energy, identified as the on-shell action in the bulk, to the same quantity as computed

from the field theory.
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4.1 UV asymptotics

In the coordinates used in the metric (3.15), the UV region is at large r, where at leading

order the metric should approach H5 (Euclidean AdS5),

ds2
5 = dr2 + L2 sinh2

(
r

L

)
ds2
S4 . (4.1)

This means that we have e2A = 1
4e

2r/L + O(1) as r → ∞. We set the AdS5 scale L = 1

for simplicity; it is easily restored by sending r → r/L in all the formulas presented below.

The scalar η approaches 1 while z and z̃ vanish at a rate that can be found by linearizing

their BPS equations. Solving the BPS equations (3.20) and (3.26) iteratively, order by

order in the asymptotic expansion as r →∞, we find

e2A =
e2r

4
+

1

6
(µ2 − 3) +O

(
r2 e−2r

)
,

η = 1 + e−2r

[
2µ2

3
r +

µ(µ+ v)

3

]
+O

(
r2 e−4r

)
,

1

2
(z + z̃) = e−2r

[
2µ r + v

]
+O

(
r2 e−4r

)
,

1

2
(z − z̃) = ∓µ e−r ∓ e−3r

[
4

3
µ
(
µ2 − 3

)
r +

1

3

(
2v(µ2 − 3) + µ(4µ2 − 3)

)]
+O

(
r2 e−5r/L

)
.

(4.2)

Here µ and v are integration constants, and the choice of sign in the last equation cor-

responds to a choice of sign in (3.25). We emphasize that z and z̃ are not each other’s

conjugates because the model is Euclidean.

4.2 IR asymptotics

One expects that at some value r = r∗ of the radial coordinate, the S4 shrinks to zero

size. We can also solve the BPS equations approximately close to r = r∗, where we require

that the solution is smooth. Specifically, the warp factor e2A starts out as (r − r∗)2 for

small r − r∗, while the scalars approach constant values. Taking η = η0 at r = r∗ for

some constant η0, the BPS equations imply that both z and z̃ approach constant values

determined by η0. The BPS equations can be solved successively for higher powers in small

r−r∗; since the BPS equations are invariant under flipping the sign of r−r∗, the expansion

only depends on even powers of r − r∗. We find

e2A = (r − r∗)2 +
7η12

0 + 20

81η4
0

(r − r∗)4 +O
(
(r − r∗)6

)
,

η = η0 −
(
η12

0 −1

27η3
0

)
(r − r∗)2

[
1−
(

85+131η12
0

810η4
0

)
(r−r∗)2 +O

(
(r−r∗)4

)]
,

1

2
(z + z̃) =

√
η6

0 − 1

η6
0 + 1

[
η6

0

η6
0 + 2

− 2η8
0(4η6

0 + 5)

15(η6
0 + 2)2

(r − r∗)2 +O
(
(r − r∗)4

)]
,

1

2
(z − z̃) = ∓

√
η6

0 − 1

η6
0 + 1

[
2

η6
0 + 2

+
η2

0(3η12
0 − 10η6

0 − 20)

15(η6
0 + 2)2

(r − r∗)2 +O
(
(r − r∗)4

)]
.

(4.3)
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Figure 1. Plots of the numerical solutions for A(r), η(r), and 1
2

(
z(r) ± z̃(r)

)
for η0 =

{1.05, 1.10, 1.15, 1.20} (orange to black). The functions z and z̃ are real in this case. Note that the

scalar fields are plotted as a function of A as defined in (3.15) and not as a function of the radial

coordinate r.

Here, η0 and r∗ are the only free parameters, and the sign in the last equation is correlated

with the choice of sign in (3.25). We have determined the IR expansion up to O((r−r∗)14),

but we only display the first few terms here.

4.3 Matching UV onto IR

From now on we will focus on solving the BPS equations corresponding to the lower choice

of signs in (3.22)–(4.3). One can obtain the solutions corresponding to the upper choice of

signs by simply interchanging z with z̃.

The BPS equations can be solved numerically over the whole range of r. In doing

so, it is convenient to use the fact that these equations are invariant under shifting r by

a constant, and set r∗ = 0. The IR solution (4.3) then has only one free parameter η0.

One can integrate the BPS equations numerically by shooting from near r = 0 with input

parameter η0 towards the UV at r →∞. After obtaining this solution, one can shift back

r → r + r∗ and compare the numerical solution to the UV asymptotics (4.2), from which

one can extract the functions r∗(η0), µ(η0), and v(η0).

As can be seen from the IR asymptotics (4.3), when η0 > 1 the functions z(r) and z̃(r)

are both real, while for η0 < 1, z(r) and z̃(r) are pure imaginary. In both cases, A(r) and

η(r) are real. See figure 1 for a few examples of numerical solutions in the case η0 > 1 and

figure 2 for a few examples in the case η0 < 1. Note that e2A approaches e2r/4 at large r

and that it vanishes at some radial coordinate r∗(η0).
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Figure 2. Plots of the numerical solutions for A(r), η(r), and 1
2i

(
z(r) ± z̃(r)

)
for η0 =

{0.95, 0.90, 0.85, 0.80} (orange to black). The functions z and z̃ are pure imaginary in this case.

Again the scalar fields are plotted as a function of A as defined in (3.15).

0.4 0.6 0.8 m

-0.8

-0.6

-0.4

-0.2

0.2

v
h0>1

2 4 6 8 m/i

-50

-40

-30

-20

-10

vêi h0<1

Figure 3. v(µ) as a function of µ for both η0 > 1 (left) and η0 < 1 (right). The orange curve is

obtained numerically, while the black curve is a plot of the analytical relation (4.4). Note that for

η0 < 1 both µ and v are pure imaginary.

From the numerics, we were able to extract the following relation between v and µ:

v(µ) = −2µ− µ log(1− µ2) . (4.4)

See figure 3. In the next section we will use this relation to show that the S4 free energy

of our solutions matches the corresponding quantity as computed from field theory.
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5 Calculation of the free energy

In the AdS/CFT correspondence, the free energy of the field theory is encoded in the on-

shell action. However, the action integral evaluated on a classical solution diverges at large

values of the radial coordinate. The method of holographic renormalization is a systematic

technique to determine the infinite counterterms needed to extract finite predictions for

field theory observables. These counterterms are universal. They must cancel divergences

for all solutions of the equations of motion of a given bulk theory, not just the BPS solu-

tions. However, the procedure leaves open the possibility of finite counterterms, which can

be important because the radial cutoff used is not necessarily compatible with supersym-

metry. Incompatibility can be detected within the gravity dual if the vacuum energy of a

Lorentz invariant, BPS state fails to vanish. This situation was first encountered in [29]

and more recently in [20]. The second case is a close analogue of the present study; it

involved four-dimensional Euclidean domain wall solutions of extended supergravity, dual

to deformations of the ABJM theory on S3. The extra finite counterterm found in [20]

was essential to the agreement between the supergravity results and the dual field theory.

Thus holographic renormalization is a necessary preliminary to the extraction of the free

energy. In this section we summarize the procedure of holographic renormalization for the

action of interest. A more detailed and systematic treatment is presented in appendix C.

The calculation of the infinite counterterms closely follows [28, 29], but the derivation of

the finite counterterm is considerably more subtle than in previous cases.

The starting point is the 5D bulk action9

S = S5D + SGH =

∫
d5x
√
GL5D −

1

2

∫
∂M

√
γK , (5.1)

where L5D was given in (1.5), SGH is the Gibbons-Hawking term and K is the trace of

the second fundamental form. We rewrite the Lagrangian in (1.5) in terms of canonically

normalized fields by writing

η = eφ/
√

6 , z =
1√
2

(
χ+ iψ

)
, z̃ =

1√
2

(
χ− iψ

)
, (5.2)

and obtaining

S5D =

∫
M
d5x
√
G

{
− 1

4
R+

1

2
(∂φ)2 +K

(
1

2
(∂χ)2 +

1

2
(∂ψ)2

)
+ V

}
, (5.3)

with K =
(
1 − 1

2(χ2 + ψ2)
)−2

. The contraction of the 5D Einstein equation gives an

expression for the Ricci scalar R,

R = 2K((∂χ)2 + (∂ψ)2) + 2(∂φ)2 +
20

3
V , (5.4)

and using this expression in the action (5.3), we find S5D →
∫
M d5x

√
G
(
− 2

3V
)
. This

simple result conceals considerable detail, as we will see.

9We will temporarily set 4πG5 = 1 to reduce clutter in the formulas below. We will restore this important

normalization factor later in this section.
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To facilitate the near-boundary analysis, the 5D metric is written in Fefferman-Graham

form as

ds2 = Gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
gij(x, ρ) dxidxj . (5.5)

In terms of the radial variable ρ, related by ρ = e−2r to the radial coordinate r used in

sections 3 and 4, the AdS5 boundary is at ρ = 0. Note that we have fixed the scale of AdS5

(or H5) by setting L = 1 in (4.1). The fields of a general solution of equations of motion

behave near the boundary as

gij = g0 ij + ρ g2 ij + ρ2
[
g4 ij + h1 ij log ρ+ h2 ij (log ρ)2

]
+ . . . ,

φ = ρ log ρ
(
φ0 + φ2 ρ+ φ4 ρ log ρ

)
+ ρ
(
φ̃0 + φ̃2 ρ

)
+ . . . ,

χ = ρ log ρ
(
χ0 + χ2 ρ+ χ4 ρ log ρ

)
+ ρ
(
χ̃0 + χ̃2 ρ

)
+ . . . ,

ψ = ψ0 ρ
1/2 + ψ2 ρ

3/2 log ρ+ ψ̃0 ρ
3/2 + . . . .

(5.6)

The independent data for the scalar fields are the non-normalizable modes (or “sources”)

φ0, χ0, ψ0 and the normalizable modes (or “vevs”) φ̃0, χ̃0, ψ̃0.10 Since we are interested in

S4-invariant solutions, we choose the boundary metric g0 ij to describe a round four-sphere

with radius 1/2,

g0ij =
1

4
gunit,ij . (5.7)

This value of the radius is compatible with the asymptotic normalization chosen in (4.2).

The asymptotic equations of motion determine the non-leading coefficients in (5.6) in terms

of the independent data. The results for the first few subleading coefficients are given

in (C.18), (C.21), (C.22), and (C.23). Non-asymptotic information on the solution, such as

a regularity condition in the interior, is needed to relate “source” and “vev” coefficients.

The BPS equations are first order. The asymptotic data of a BPS solution are of

course compatible with (5.6), but contain fewer independent coefficients. From the UV

expansion (4.2) we see that the parameter µ determines the “sources”

ψ0 = −i
√

2µ , φ0 = −
√

2

3
µ2 , χ0 = −

√
2µ , (5.8)

and the second parameter v determines the “vevs”. In the full solution in section 4, we

required regularity in the interior, so that v becomes the function of µ in (4.4).

The next steps in the holographic renormalization procedure are

1. Insert the general form of an asymptotic solution (5.6) in the action (5.1) with the

radial integral
∫
d5x →

∫
d4x

∫
ε dρ cutoff near the boundary, ρ = ε → 0, and SGH

evaluated at ε. After integration one finds a set of 1/ε2, 1/ε, and log ε divergences

whose coefficients are given solely in terms of the “sources”, g0, ψ0, χ0, and φ0.

10The words “sources” and “vevs” are used rather imprecisely here. As we will show later, the renormal-

ized one-point functions involve both the “source” and “vev” coefficients.
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2. Invert the field expansion (5.6) and express the divergences in the action (5.1) in

terms of the bulk fields evaluated at the cutoff surface ρ = ε and in terms of the

induced metric γij = gij/ε (as opposed to expressing these divergences in terms of

the asymptotic coefficients that appear in (5.6)).

3. The counterterm action that should be added to the action (5.1) is simply the negative

of the divergences found in step 2. We find that the result is

Sct=

∫
∂Mε

d4x
√
γ

[
3

2
+

1

8
R[γ] +

1

2
ψ2 +

(
1 +

1

log ε

)(
φ2 + χ2

)
(5.9)

− log ε

{
1

32

[
R[γ]ijR[γ]ij −

1

3
R[γ]2

]
+

1

4
ψ2γψ −

1

24
R[γ]ψ2 − 1

6
ψ4

}]
,

where R[γ]ij and R[γ] are the Ricci tensor and Ricci scalar, respectively, of the

induced metric γij .

There are other five-dimensional holographic flows in the literature that involve super-

gravity scalars dual to dimension 2 and 3 operators in the dual field theory, such as the

GPPZ [14], FGPW [15], Coulomb branch [16], and Pilch-Warner [35] flows. It is inter-

esting to note that, when expressed using canonically normalized scalars, all terms in the

counterterm action (5.9), except the final ψ4 log ε, appear in the same form with the same

coefficients in these models. Only the last term in (5.9) is model-dependent in the sense

that its coefficient (here 1/6) is sensitive to details of the scalar potential.

Let us now consider finite counterterms. If supersymmetry is preserved in the vacuum

state of a supersymmetric field theory in flat space, the vacuum energy must vanish. This

means that the renormalized on-shell action of the dual gravity theory must vanish when the

boundary metric is Lorentz invariant and operator sources are constant on the boundary.

This criterion may be tested when the dual supergravity theory has flat-sliced BPS domain

walls, i.e. solutions with metric ds2 = dr2 + e2A(r)δijdx
idxj , that are controlled by a

superpotential. In five-dimensional supergravity, the superpotential is a real function of

the fields. For a theory with several real scalars φi and target space metric Kij(φ), the

superpotential W (φ) is related to the potential V (φ) by

V =
1

2
Kij∂iW ∂jW −

4

3
W 2 . (5.10)

In this case the BPS equations of flat sliced walls take the form (for a single scalar field

see [42, 43] and the reviews in [44, 45]) of simple gradient flow equations that are compat-

ible with the Lagrangian equations of motion. Further, the action integral for flat sliced

solutions can be rearranged by the Bogomolnyi maneuver into the form

S=

∫
d4x

∫ r0
(
e4A

[
−3

(
A′−2

3
W

)2

+
1

2
Kij

(
φi′−Kil∂lW

)(
φj ′−Kjm∂mW

)]
− d

dr

(
e4AW

))
,

(5.11)

where r0 is a UV cutoff. When the flow equations (e.g. A′ = 2
3W and φi′ = Kil∂lW ) are

satisfied, i.e. for a BPS solution, the on-shell action vanishes, except for the surface term
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evaluated at the cutoff r0. Supersymmetry requires this term to be cancelled, so one must

add to the action a supersymmetry counterterm,

SW =

∫
d4x e4A(r0)W

(
φi(r0)

)
. (5.12)

This surface term contains the infinite counterterms of (5.9) (evaluated for the r-dependent

fields of flat-sliced domain walls) plus finite counterterms needed for supersymmetry (if any)

plus terms which vanish as r0 →∞.

There is one problem with this scenario for our model; there is no superpotential W

that obeys (5.10) for our potential (1.5) in its complete form with three scalars φ, χ, ψ.

The reason is that the integrability condition needed to convert the BPS equations (3.20)

into gradient flow form is not satisfied. (We show this in appendix C.2.1.) Alternatively,

one can show that flat-sliced solutions of the BPS equations with all three scalars turned

on do not satisfy the equations of motion.

We now show how to overcome the problem of not having an exact superpotential.

The strategy is first to study two consistent truncations of our model which do have planar

domain walls and superpotentials.11 Second, we show that an approximate superpotential

is sufficient for the analysis. Let us begin with the two truncated models:

• Set χ(r) ≡ 0 and retain η(r), ψ(r). In this truncation our model reduces to the trun-

cation of N = 8 supergravity studied by Pilch and Warner [35]. The superpotential,

expanded to the order needed to include all infinite and finite terms as r0 →∞, is

Wa =
3

2
+ φ2 +

1

2
ψ2 +

√
2

3
φψ2 +

1

4
ψ4 . (5.13)

The first three terms contribute divergent counterterms when Wa is inserted in (5.12).

In appendix C.2.2, we determine the UV behavior of BPS domain wall solutions and

show that the infinite terms of (5.12) agree with (5.9). The last term of (5.13) gives

the extra finite counterterm required by supersymmetry.

• Set ψ(r) ≡ 0 and retain η(r), χ(r). This truncation of our model appears to be new.

The exact superpotential is expanded as

Wb =
3

2
+ φ2 + χ2 , (5.14)

and contributes divergent terms in (5.12). In appendix C.2.3, we show that these are

in agreement with (5.9). In this truncation there is no residual finite counterterm.

The results in the two truncations are relevant to our complete model because the

planar domain wall solutions for each of the two truncations are also solutions of the

equations of motion of the complete model. In this spirit, we note that the union of Wa

and Wb, namely

Wa∪b =
3

2
+ φ2 +

1

2
ψ2 + χ2 +

√
2

3
φψ2 +

1

4
ψ4 , (5.15)

11In appendix D we give the analytic solution of the BPS flow equations with R4 slicing for both

truncations.
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provides an approximate superpotential12 for the potential of the complete model when

expanded to the order necessary to produce all the divergent counterterms of (5.9). Specif-

ically, Wa∪b is related to

Va∪b = −3− 2φ2 − 2χ2 − 3

2
ψ2 − 1

2
ψ4 , (5.16)

by (5.10) (with the target space metric K in (5.3)) if we drop terms that are higher

order in the fields and therefore vanish as r0 → ∞. Va∪b is the expansion of the exact

potential of (3.6) with asymptotically negligible terms dropped. It has already been shown

that (5.12) with Wa∪b inserted reproduces the correct infinite counterterms of planar BPS

domain walls of the two truncations, but the additional finite term

Sfinite =

∫
d4x
√
γ

1

4
ψ4 =

∫
d4x
√
g0

1

4
ψ4

0 , (5.17)

is required by supersymmetry.

Universality then implies that this term must be included for all solutions of the equa-

tions of motion of the full theory, and therefore for the S4-sliced domain walls of interest

here. The major conclusion of this argument is that the renormalized action

Sren = S5D + SGH + Sct + Sfinite , (5.18)

with the actions as in (5.1), (5.3), (5.9), and (5.17), should be used to derive the renormal-

ized free energy of our S4-sliced BPS solutions.

We now return to our main task, namely the calculation of the free energy F . We show

in appendix C.3 that the derivative of F with respect to the common source parameter µ

of the asymptotic fields is13

dF

dµ
=
N2

2π2

∫
d4x
√
g0

(
〈Oψ〉

∂ψ0

∂µ
+ 〈Oφ〉

∂φ0

∂µ
+ 〈Oχ〉

∂χ0

∂µ

)
. (5.19)

The one-point functions 〈O〉 in the dual field theory are computed by taking derivatives

of the action Sren in (5.18) with respect to the sources. Holographic renormalization en-

sures that these one-point functions are finite. For example, the one-point function of the

dimension-three operator is14

〈Oψ〉 = lim
ε→0

1

ε3/2
1
√
γ

δSren

δψ
= −2ψ2 − 2ψ̃0 . (5.20)

12The Z2 reflection symmetries in χ, ψ forbid “mixed” terms such as χψ2. Other terms, such as χ2ψ2,

are negligible at the boundary.
13Here we have restored the factor of 1/4πG5 in the normalization of the five-dimensional supergravity

action. When this factor is expressed in terms of the ten-dimensional Newton constant in type IIB super-

gravity compactified on S5 one finds 1/4πG5 = N2/2π2, where N is the number of units of D3-brane flux,

or equivalently the rank of the gauge group in the dual N = 4 SYM theory [29].
14Without the finite counterterm Sfinite, the one-point function 〈Oψ〉 would have included an additional

term −ψ3
0 .
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The holographic calculation of the one-point function for dimension-two operators requires

an extra log ε factor, so one finds

〈Oφ〉 = lim
ε→0

log ε

ε

1
√
γ

δSren

δφ
= 2φ̃0 . (5.21)

Similarly, 〈Oχ〉 = 2χ̃0.

Now we use the asymptotic data (5.8) and (C.59) for our solution to express the one-

point functions as

〈Oψ〉
∂ψ0

∂µ
=

N2

2π2

(
4µ+

8

3
µ3 − 8v(µ) +

8

3
µ2 v(µ)

)
,

〈Oφ〉
∂φ0

∂µ
=

N2

2π2

(
− 8

3
µ3 − 8

3
µ2 v(µ)

)
, (5.22)

〈Oχ〉
∂χ0

∂µ
=

N2

2π2

(
− 4v(µ)

)
.

Adding these three expressions to obtain the free energy (5.19), we note that the µ3 and

µ2 v(µ) terms cancel, so that

dF

dµ
=

N2

2π2
vol0(S4)

(
4µ− 12v(µ)

)
= N2

(
1

3
µ− v(µ)

)
. (5.23)

The volume factor vol0(S4) is produced by the integral in (5.19). In the last step we used

that this is the volume of the round four-sphere described by the metric g0. It has radius

1/2, so

vol0(S4) =
1

24
× 8π2

3
=
π2

6
. (5.24)

As we discussed in the Introduction, we must take three derivatives of the free en-

ergy (1.6) to obtain an unambiguous result in the field theory. Taking two more µ-

derivatives of dF/dµ in (5.23), the linear term in µ is eliminated and we find

d3F

dµ3
= −N2 v′′(µ) = − 2N2 µ (3− µ2)

(1− µ2)2
. (5.25)

In the second step, we used (4.4) to evaluate v′′(µ). The result (5.25) for d3F/dµ3 exactly

matches the field theory result (1.7) after identifying µ = ±ima.

We end this section with a few of comments on the match with the field theory. First,

note that without the finite counterterm 1
4ψ

4 provided by the supersymmetric countert-

erm (5.17), the coefficient of the µ3 term in 〈Oψ〉 would have been −4
3µ

3 and thus the

cubic terms in µ would not have cancelled in dF/dµ. This term would then survive in

d3F/dµ3 and create a mismatch with the field theory result (1.7). Second, we argue in

appendix C.3 that finite counterterms cannot contribute any v-dependence to dF/dµ; they

can only contribute to the µ or µ3 terms. Thus even without computing the finite coun-

terterm 1
4ψ

4 required by supersymmetry, we have a perfect match of d5F/dµ5 with the

field theory result.

– 24 –



J
H
E
P
0
7
(
2
0
1
4
)
0
0
1

5.1 Further comments

The match between the field theory expression for d3F/dµ3 and our holographic computa-

tion is related to the fact that on general grounds in a supersymmetric theory d3F/dµ3 is

independent of the regularization scheme, as long as this scheme does not itself break su-

persymmetry. (If the renormalization scheme breaks supersymmetry, then d3F/dµ3 would

be scheme-dependent, but d5F/dµ5 would still be universal.) That d3F/dµ3 is free of

renormalization-scheme ambiguities can be shown through the following argument. If one

studies a superconformal field theory on S4 in the presence of a small distance cutoff ε, the

free energy takes the form

F = α2
a2

ε2
+ α0 − aanom log

a

ε
+O(ε/a) , (5.26)

where the coefficients α2 and α0 multiply non-universal UV divergences,15 and aanom is

the a-anomaly coefficient, which is universal. For instance, in the case of N = 4 SYM,

a free field computation shows that aanom = N2 − 1. For our N = 2∗ deformation of

the N = 4 theory, the S4 free energy is not only a function of the radius of the sphere

a and the UV cutoff ε, but also of the mass parameter m. The coefficients α2 and α0

in (5.26) can now depend on the dimensionless combination m2ε2. At small ε, we can

expand α2 = α̃2 +m2ε2β2 + O(m4ε4) and α0 = α̃0 + O(m2ε2), for some constants α̃2, α̃0,

and β2 that are renormalization scheme-dependent. The non-universal contributions to

FS4 then take the form

α̃2
a2

ε2
+ α̃0 + β2m

2a2 . (5.27)

It follows that the quantity

d3F

d(ma)3
, (5.28)

is non-ambiguous, because after taking three derivatives with respect to ma, the non-

universal contribution (5.27) vanishes. Consequently, if we identify µ = ±ima, we conclude

that d3F/dµ3 is non-ambiguous in a supersymmetric theory.

Notice that the free energy displayed in (1.6) has a branch cut singularity when m2a2 =

−1.16 Restricting to pure imaginary values of ma, one can understand this singularity as

the onset of a tachyonic instability, where the field theory path integral diverges. To get

a feel for how this singularity arises, one can consider the theory of a free complex scalar

Z = (A + iB)/
√

2 with the same mass as the complex scalars Z1 and Z2 in our N = 2∗

15In a non-supersymmetric theory, FS4 would also contain a more singular non-universal UV divergent

contribution α4a
4/ε4. In a supersymmetric theory, however, the coefficient α4 vanishes provided that one

employs a supersymmetric regularization scheme.
16It was noticed in [2, 39] that precisely at this mass value there are cancellations in the supersymmetric

localization computation. In the large N limit and at large ’t Hooft coupling it can be seen that the free

energy vanishes. We thank J. Russo and K. Zarembo for comments on this issue.
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SYM theory as given in (1.1)–(1.3). In other words, the mass term in the S4 Lagrangian

for the complex scalar Z is:17

Lscalar =
1

2

[(
2

a2
+ i

m

a
+m2

)
A2 +

(
2

a2
− im

a
+m2

)
B2

]
=

1

2a2

[
(1 + ima)(2− ima)A2 + (1− ima)(2 + ima)B2

]
.

(5.29)

If we restrict to pure imaginary values of ma, it is not hard to see that the squared mass

of A is positive for −1 < ima < 2 and of B when −2 < ima < 1. Thus there are tachyon

thresholds at ma = ±i, which is precisely where the free energy has branch points!

6 Discussion

In this paper we have performed a precision test of holography in a non-conformal setup.

We first found the five-dimensional supergravity solution dual to the N = 2∗ theory on

S4 and then calculated the on-shell supergravity action after carefully implementing holo-

graphic renormalization to cancel all divergent terms. The result for the third derivative

of the free energy F with respect to the mass is in perfect agreement with the field theory

calculation in [31–33], which used the matrix integral arising from the path integral local-

ization formula of Pestun [2] to compute the partition function of the theory. In the matrix

model calculations in the dual field theory [30–34] it was assumed that the instantons do

not contribute to the partition function at large N and large λ. The fact that our super-

gravity result for the partition function matches the one in field theory should serve as

strong evidence for this assumption. More generally it would be interesting to understand

when instantons are important in the ’t Hooft limit, both from field theory and holography

(see [47] for a recent discussion in the current context).

One of the lessons from our analysis is that constructing the gravity dual of a non-

conformal theory on a curved manifold is a nontrivial task. Even if such a curved manifold

is conformal to R4 (as is S4), the field theory action may contain new couplings that in the

five-dimensional holographic description correspond to additional bulk fields developing

nontrivial space-time dependence. Thus even if the gravity dual of a given supersym-

metric theory on R4 is known, finding the gravity dual of the same theory defined in a

supersymmetric way on S4 requires “starting from scratch”.

There is a simple generalization of the construction we presented here. One can con-

sider N = 2 quiver gauge theories which are orbifold generalizations of N = 2∗ SYM.

One way to obtain these theories is to first take a Zk orbifold18 of N = 4 SYM preserving

N = 2 supersymmetry as described in [48, 49] and then deform the resulting superconfor-

mal quiver gauge theory by equal mass terms for all the hypermultiplets. One can study

this class of orbifold theories on S4 in much the same way as N = 2∗ and compute their

17Different squared masses for A and B are to be expected for a supersymmetric field theory on S4. A

similar situation occurs for the chiral multiplet on AdS4, see [46].
18To describe the orbifold action consider the SO(6) R-symmetry of N = 4 SYM as acting on R6 with

coordinates xi with i = 1, . . . , 6. Then the orbifold acts as simultaneous rotations by angle 2π/k in the

(x1, x2) and (x3, x4) planes, while leaving x5 and x6 unchanged.
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free energy in the large N and large ’t Hooft coupling limit [47]. The result is that the free

energy of the Zk orbifold theory with gauge groups U(N) is given by

FZk(U(N)) = kFN=2∗(U(N)) . (6.1)

Here FN=2∗(U(N)) is the free energy on S4 of N = 2∗ SYM with gauge group U(N) as

written in (1.6). It is not hard to reproduce (6.1) from our supergravity solution. First

one should uplift our solution of five-dimensional gauged supergravity to a solution of the

ten-dimensional type IIB supergravity. While this is not an easy task (and is beyond the

scope of this paper), we will not need the details of the full ten-dimensional solution to

extract the relevant information concerning the Zk orbifold. The only relevant fact about

the (unorbifolded) ten-dimensional background is that it has a Zk symmetry (which is a

subgroup of U(1)H) that acts within the internal directions. The Zk orbifold will decrease

the volume of the internal space by a factor of k. Upon compactification of the resulting

orbifolded solution to five dimensions, one finds that the five-dimensional Newton constant,

G5, is proportional to the volume of the (orbifolded) internal space [50]. Since the five-

dimensional gravitational action is proportional to 1/G5 and the holographic calculation

of the free energy reduces to evaluating the renormalized gravitational on-shell action, we

find that the holographic calculation yields the same result for the free energy as in (6.1).

As mentioned above, an interesting problem that we have left unsolved is the uplift

of our solution to type IIB supergravity. Having the explicit form of this solution at

hand would allow for a holographic calculation of expectation values of Wilson, ’t Hooft,

and dyonic loop operators, as well as of expectation values of supersymmetric surface

operators. One could also probe the solution with branes as was done in [40, 51]. The

uplift of the holographic dual of N = 2∗ on R4 was found in [35]. The Pilch-Warner

solution has an internal manifold with the same topology as S5 and an SU(2) × U(1)

isometry reflecting the global symmetry of the dual field theory. Most importantly it has

a nontrivial profile for the ten-dimensional axion-dilaton as a function of the spacetime

radial variable. The uplift of our solution to ten dimensions will also have such a nontrivial

axion-dilaton profile. However, the internal manifold will have only a U(1)×U(1) isometry

due to the reduced symmetry of the N = 2∗ theory on S4. One can use the uplift formulae

of [35] to find the ten-dimensional metric and axion-dilation for this solution. Finding the

ten-dimensional metric is in principle straightforward once the five-dimensional solutions

is known. The nontrivial problem is to find the R-R and NS-NS fluxes along the directions

of the topological S5. We postpone this problem for future work.

The Pilch-Warner solution in type IIB was later generalized in [52] to include more

general distributions of D3-branes. It will be interesting to study similar generalizations

to N = 2 solutions with an S4 boundary. A supergravity solution dual to pure N = 2

SYM on R4 was found in [53, 54]. It will be most interesting to find the corresponding

BPS supergravity solution with an S4 boundary and calculate the free energy of the dual

field theory. The result should then be compared with the field theory calculation in [31]

performed using path integral localization.

It was found in [33] that theN = 2∗ theory on S4 undergoes an infinite number of phase

transitions at large N as one varies the ’t Hooft coupling λ = g2
YMN . Our supergravity
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solution is dual to N = 2∗ on S4 with both N and λ large. It will be very interesting to

understand the nature of the phase transitions observed in field theory from the dual type

IIB string theory. For that purpose one will probably need to find the α′ corrections to the

type IIB uplift of our five-dimensional supergravity solution.

Another interesting avenue for further explorations is to study gravitational dual solu-

tions to N = 1 supersymmetric field theories on S4 and other curved manifolds. It is known

how to put such field theories on various curved manifolds while preserving N = 1 super-

symmetry [13]. To the best of our knowledge there are no exact results known from path

integral localization for N = 1 theories and thus holography may provide some valuable

insights into their structure. A particularly interesting example which will be amenable

to analysis using the techniques we employed in the current work is the gravity dual of

N = 1∗ on S4. The five-dimensional supergravity solution should be a generalization of

the GPPZ flow [55], and its type IIB uplift should be similar to the Polchinski-Strassler

solution [56].
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A Supersymmetry on S4

A.1 N = 4 SYM expressed in N = 1 component fields

The Lagrangian of N = 4 SYM theory on Euclidean R4 can be expressed in terms of the

fields Aµ, λα, λ̃α, Xi with α = 1, . . . , 4, i = 1, . . . , 6. It has manifest SU(4)R symmetry, and

is given by19

L =
1

4
(F aµν)2 − λ̃aTα σ2σ̄

µDµλ
a
α +

1

2
(DµX

a
i )2

− 1

2
(fabcCαβi (λaTα σ2λ

b
β)Xc

i + h.c.) +
1

4
fabcfab

′c′Xb
iX

c
jX

b′
i X

c′
j .

(A.1)

19The Lorentzian action is given in (23.1) of [45], although the ’t Hooft matrices of (23.2) must be modified

as indicated below.
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The 4× 4 anti-symmetric matrices Ci are

C1 =

(
0 σ1

−σ1 0

)
, C2 =

(
0 −σ3

σ3 0

)
, C3 =

(
iσ2 0

0 iσ2

)
,

C4 = −i

(
0 iσ2

iσ2 0

)
, C5 = −i

(
0 1

−1 0

)
, C6 = −i

(
−iσ2 0

0 iσ2

)
,

(A.2)

and σi are the usual Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)

Eqs. (2.6)–(2.8) in the main text can be derived as follows. First we rewrite the theory in

terms of N = 1 component fields: Aµ, λ
a = λa4, χ

a
i = λai , Zi = (Xi+iXi+3)/

√
2, i = 1, 2, 3.

Using the explicit form of the Ci matrices, one can with due care transform the Yukawa

term in (A.1) to the form

LYukawa =
√

2fabc
(

(λaTσ2χ
b
i)Z̃

c
i −

1

2
εijk(χ

aT
i σ2χ

b
j)Z

c
k

)
+ h.c. . (A.4)

Equation (2.7) of the main text can then be obtained by the substitutions λ → ψ1, λ3 →
ψ2, Z3 → Φ.

The quartic term in (A.1) can also be rewritten in terms of chiral scalars Zi, Z̃i with

a little help from the Jacobi identity. One finds

L4 =
1

2
fabcfab

′c′
(
− Z̃biZ

c
i Z̃

b′
j Z

c′
j + 2Z̃bj Z̃

c
iZ

b′
j Z

c′
i

)
. (A.5)

The two terms displayed are exactly the D-term potential, VD = DaDa/2, and the F -

term potential, VF = F̃ aF a, of an N = 1 supersymmetric theory with three adjoint chiral

multiplets and superpotential W = −
√

2fabcZa1Z
b
2Z

c
3 .

A.2 Symmetries of the N = 2∗ theory on S4

As discussed in section 2, the SU(4)R symmetry of the N = 2 theory is broken to SU(2)V ×
SU(2)H × U(1)R by the split into N = 2 vector and hypermultiplets. To define these

symmetries explicitly it is useful to begin with the SU(4) transformation properties of

the matrices (A.2). Suppose that Uα
α′ is a unitary matrix in the fundamental of SU(4)

and Λij is the corresponding orthogonal matrix in the fundamental of SO(6). The group

transformation of the Ci matrices is

Cαβi Uα
α′Uβ

β′ = ΛijC
α′β′

j . (A.6)

By definition, the hypermultiplet fermions χi are in the fundamental of the SU(2)H sub-

group, and the vector multiplet fermions ψα are in the fundamental of SU(2)V . These

subgroups and U(1)R act on the fermions via the following 4× 4 unitary matrices:(
I 0

0 Uv

)
,

(
Uh 0

0 I

)
,

(
eiθI 0

0 e−iθI

)
. (A.7)
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The matrices Cαβi transform in the fundamental of SO(6) and the sum CiXi is an invariant.

If U = I + iT + . . ., then to first order in the Hermitian generator T , (A.6) reduces to

i(T TCi + CiT ) = λijCj , with λji = −λij . (A.8)

One can study this infinitesimal transformation for generators T = σi of SU(2)v and SU(2)H
for the various matrices Ci. One soon verifies the R-symmetry properties of the scalars

stated in section 2.

A.3 Massive N = 1 chiral multiplets on S4

As stated at the beginning of section 2, we do not give full details on the derivation of the

component form of the Euclidean N = 2∗ theory, because there is considerable information

on the process in the appendices of [20]. Nevertheless we now give readers a closer look

at the simpler subsystem of a free massive hypermultiplet on S4. Actually we start here

with the even simpler case of a pair of N = 1 chiral multiplets. Assuming that the chiral

multiplets are conformally coupled to curvature, the action on S4 is:

SEuc
chiral =

∫
d4x
√
g

[
gµν∂µZ̃i∂νZi − χ̃Ti σ2 σ̄

µ∇µχi − F̃iFi +
2

a2
Z̃iZi

]
. (A.9)

It is invariant under the transformation rules:

δZi = −εTσ2 χi , δZ̃i = −ε̃Tσ2 χ̃i ,

δχi = σµ∂µZiε̃+

(
Fi +

i

a
Zi

)
ε , δχ̃i = σ̄µ∂µZ̃iε+

(
F̃i +

i

a
Z̃i

)
ε̃ ,

δFi = −ε̃Tσ2 σ̄
µ∇µχi , δF̃i = −εTσ2σ

µ∇µχ̃i .

(A.10)

The spinors ε and ε̃ are Killing spinors on S4 that satisfy (2.10) with the upper sign. (Note

that we have dropped gauge indices on the fields and subscripts on the Killing spinors

because they are not needed.)

It is straightforward to demonstrate invariance if we organize things to focus on the

corrections needed to accommodate the S4 geometry rather than the more common case of

flat R4. These are the 1/a and 1/a2 terms above. Consider first the proof of supersymme-

try in flat space with conventional transformation rules, but allow the spinor parameters

ε(x), ε̃(x) to be arbitrary functions. Of course supersymmetry holds for constant ε, ε̃, so

the result must be an integral involving only ∂µε(x). Indeed the result is

δSR4 = −
∫
d4x[J̃ µT∂µε̃+ h.c.] = −

∫
d4x[χ̃Ti σ2σ̄

µσν∂νZi ∂µε̃(x) + h.c.] , (A.11)

where J µ is (a chiral component of) the Noether supercurrent. (See (6.24) of [45] for this

type of expression and its derivation in flat space.) On S4 this expression “covariantizes” to

δSS4 = −
∫
d4x
√
g[χ̃Ti σ2σ̄

µσν∂νZi∇µε̃(x) + h.c.]→ i

a

∫
d4x
√
g[χ̃Ti σ2σ̄

ν∂νZiε+ h.c.] .

(A.12)

– 30 –



J
H
E
P
0
7
(
2
0
1
4
)
0
0
1

The last expression is valid for Killing spinors, as needed for our work on supersymmetry

on S4. (Note σ̄µσν σ̄µ = −2σ̄ν .) It must be canceled to gain invariance, and the conven-

tional transformation δχ must be modified by adding the (iZi/a)ε term in (A.10). This

modification generates the new term

(δS)′ = −
∫
d4x
√
g

[
χ̃Ti σ2σ̄

µ∇µ
(
i

a
Zi ε

)
+ h.c.

]
= − i

a

∫
d4x
√
g[χ̃Ti σ2σ̄

µ(∂µZi ε+ Zi∇µε) + h.c.] . (A.13)

The first term cancels (δS)′ above; in the second term we use the Killing spinor equation

to obtain

(δS)′′ =
2

a2

∫
d4x
√
g[χ̃Ti σ2ε̃ Zi + h.c.] . (A.14)

To cancel this, the term 2Z̃iZi/a
2 is added to the Lagrangian. Its δZ̃i and δZi variations

cancel (δS)′, and supersymmetry on S4 is established.20

A.4 The superpotential sector

We now introduce a general N = 1 superpotential W (Zi). This superpotential leads to the

following action on S4:

SW = −
∫
d4x
√
g

[
FiWi +

1

2
(χTi σ2 χj)Wij −

i

a
(3W −WiZi)

]
. (A.15)

Derivatives of W are denoted by subscripts. As above, we focus on the 1/a terms that are

S4 corrections to the result for flat Euclidean space. In flat space, the variation of the first

two terms with general spinors ε(x) is

δSW ;R4 =

∫
d4xWi (χTi σ2σ

µ∂µε̃) , (A.16)

in which the quantity contracted with ∂µε is the change in the supercurrent due to W .

Using S4 Killing spinors and adding the 1/a correction to δχ, (A.16) becomes

δSW |1st 2 terms =

∫
d4x
√
g

[
Wi (χTi σ2σ

µ∇µε̃)−Wijχ
T
i σ2

(
i

a
Zjε

)]
=
i

a

∫
d4x
√
g

[
2Wi (χTi σ2ε)−Wij(χ

T
i σ2Zjε)

]
.

(A.17)

This undesired residuum requires further modification of the action, namely the addition of

the term proportional to i/a in (A.15). Its variation is δ(3W −WiZi) = (2Wi−WijZj)δZi
which neatly cancels (A.17). Note that the order 1/a modification of the action vanishes

for a purely cubic superpotential, due to the superconformal invariance of this case.

20It may appear that we have been a little careless in our “jump” to the Noether form of δSR4 . It is

justified if the flat space calculations are organized to avoid second derivatives of ε(x). Avoiding second

derivatives is always possible using partial integration.
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A similar discussion can be given for the “formal conjugate” superpotential W̃ (Z̃i).

The action

SW̃ = −
∫
d4x
√
g

[
F̃iW̃i +

1

2
(χ̃Ti σ2 χ̃j)W̃ij −

i

a
(3W̃ − W̃iZ̃i)

]
, (A.18)

is invariant under the transformation rules (A.10). It is significant that invariance holds

even when the functions W (Zi) and W̃ (Z̃i) are completely unrelated. One should also note

that the i/a correction terms of (A.15) and (A.18) are not complex conjugates of each other

even when W and W̃ are.

The chiral multiplet on S4 was also discussed in section 2 of [13]. The relation of the

actions (A.9) and (A.15) to those of [13] is quite simple (for a flat Kähler target space). One

can see that they are related by redefinition of the F auxiliary field; F ′ of that reference is

related to ours by F ′ = F − i
aZi.

A.5 The N = 2 massive multiplet and its supersymmetry algebra

In the special case of the quadratic superpotential W = m(Z2
1 +Z2

2 )/2, the theory discussed

above possesses N = 2 supersymmetry. With auxiliary fields eliminated, the action on S4

takes the form

SEuc
chiral =

∫
d4x
√
g

[
∂µZ̃i∂µZi − χ̃Ti σ2 σ̄

µ∇µχi (A.19)

+

(
2

a2
+m2

)
Z̃iZi +

im

a

(
ZiZi + Z̃iZ̃i

)
− m

2

(
χTi σ2χi + χ̃Ti σ2χ̃i

)]
.

If we substitute Zi = (Ai + iBi)/
√

2, the scalar mass term becomes

V =
1

2

[(
2

a2
+m2 +

im

a

)
AiAi +

(
2

a2
+m2 − im

a

)
BiBi

]
. (A.20)

Note the distinct mass values for scalars and pseudoscalars. The same occurs for the chiral

multiplet on AdS4; see [46]. The parameter m can be complex, and the presence of complex

scalar masses is one indication that the correlation functions of the theory on S4 do not

obey reflection positivity [13].

Let us write down the transformation rules, using N = 2 Killing spinors εi, i = 1, 2.

The δ1 set are just a rewrite of (A.10) with Fi = −mZ̃i:

δ1Zi = −εT1 σ2 χi , δ1χi = σµ∂µZiε̃1 +

(
−mZ̃i +

i

a
Zi

)
ε1 ,

δ1Z̃i = −ε̃T1 σ2 χ̃i , δ1χ̃i = σ̄µ∂µZ̃iε1 +

(
−mZi +

i

a
Z̃i

)
ε̃1 .

(A.21)

The δ2 transformations are obtained by making a finite U(1)V rotation, specifically

exp(−iτ2θ/2) with θ = π, on the scalars in the δ1 set. Fermions are inert under U(1)V .

This prescription gives

δ2Zi = −εij ε̃T2 σ2 χ̃j , δ2χi = −εij
[
σµ∂µZ̃j ε̃2 +

(
−mZj +

i

a
Z̃j

)
ε2

]
,

δ2Z̃i = −εijεT2 σ2 χj , δ2χ̃i = −εij
[
σ̄µ∂µZjε2 +

(
−mZ̃j +

i

a
Zj

)
ε̃2

]
.

(A.22)
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Since U(1)V is a symmetry of the theory, no further calculation is needed to confirm

invariance under (A.22).

It is of some interest to study the commutator algebra of N = 2 supersymmetry

to check for possible modification due to the geometry of S4. The commutator of two

transformations with the same N = 2 index (i.e. k = 1 or k = 2 with no sum) is:

[δk, δ
′
k]Zi = (εTk σ2σ

µε̃′k − εT
′

k σ2σ
µε̃k)∂µZi ,[

δk, δ
′
k

]
χi = (εTk σ2σ

µε̃′k − εT
′

k σ2σ
µε̃k)∇µχi −

i

4a
(εTk σ2σ

[µσ̄ν]ε′k)σ[µσ̄ν]χi .
(A.23)

The spinor bilinear εkσ2σ
µε̃′k is a conformal Killing vector on S4, but the combination

(εTk σ2σ
µε̃′k − εT

′
k σ2σ

µε̃k) that appears in the commutator is an actual S4 Killing vector.

Thus the commutator gives an infinitesimal isometry of the sphere, as expected.

Note that the fermion calculation requires a gentle Fierz rearrangement and holds only

when the fermion equation of motion is satisfied. The last term, proportional to i/a, may

be interpreted as a local frame rotation.

The commutator [δ1, δ
′
2] is more interesting; the result is[

δ1, δ
′
2

]
Zi = εij(ε

T
1 σ2ε

′
2 + ε̃T1 σ2ε̃

′
2)

(
mZj −

i

a
Z̃j

)
,

[
δ1, δ

′
2

]
χi = εij(ε

T
1 σ2ε

′
2 + ε̃T1 σ2ε̃

′
2)mχj .

(A.24)

The m term is just the usual central charge for a massive hypermultiplet; see [38]. In fact

it is a transformation of U(1)H . The i/a term is an S4 modification of the algebra. It is an

infinitesimal U(1)V transformation which is not central, but rather a genuine R-symmetry.

An analogue occurs in the N = 2 deformation of the ABJM theory on S3 constructed

in [4].

The N = 2 transformations for the free hypermultiplet extend to the interacting

N = 2∗ theory. Two new features occur. First (as expected), the derivatives on the

right side of (A.23) become gauge covariant derivatives. Second, one finds in (A.24) a

field-dependent gauge transformation involving the scalar Φa of the gauge mutliplet. The

interacting version of (A.24) is[
δ1, δ

′
2

]
Zai = εij(ε

T
1 σ2ε

′
2 + ε̃T1 σ2ε̃

′
2)

(
mZaj −

i

a
Z̃aj

)
+
√

2fabc(εT1 σ2ε
′
2Φ̃b + h.c.)Zc ,

[
δ1, δ

′
2

]
χai = εij(ε

T
1 σ2ε

′
2 + ε̃T1 σ2ε̃

′
2)mχaj +

√
2fabc(εT1 σ2ε

′
2Φ̃b + h.c.)χci .

(A.25)

B Consistent truncation

B.1 Consistent truncation with 6 scalars

Let us explain how to obtain the scalar part of the N = 4 supergravity theory21 as a

consistent truncation of N = 8 gauged supergravity, following the notation of [22]. In

21It should be possible to write down this N = 4 gauged supergravity theory in a more canonical form

as in [57, 58]. Since the gauge group of the N = 4 supergravity theory is SU(2) × U(1) × U(1) it should

not be possible to describe it in the formalism of [57] and one should resort to the more general treatment

in [58]. We will not discuss the details of this canonical construction here.
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doing so, it is more convenient to fix the local USp(8) symmetry by making a different

gauge choice from the symmetric USp(8) gauge described in the main text, such that the

SO(6) × SO(2) symmetry is made more explicit. Let I, J , K, with values 1–6, denote

SO(6) indices, and α, β, with values 1, 2 denote SO(2) indices. The 42 scalars of the

five-dimensional theory are parameterized as follows:

• 20 scalars are represented as a real traceless symmetric tensor ΛIJ . These scalars

transform in the 20′ of SO(6), and so do the dual bosonic bilinear operators in the

N = 4 SYM theory.

• 20 scalars are parameterized by a real tensor ΣIJKα, which is totally anti-symmetric

in the indices IJK. These scalars transform in 10 ⊕ 10 of SO(6) and the dual

operators are fermionic bilinears in N = 4 SYM.

• 2 scalars are parameterized by a real traceless symmetric tensor Λαβ and are dual to

the complexified gauge coupling of the N = 4 theory.

The SO(6) generators are real anti-symmetric matrices ΛIJ , and the SO(2) generator is

represented as a real anti-symmetric matrix Λαβ.

We are looking for the scalars that are invariant under U(1)H×U(1)Y . We take U(1)H
to be generated by

U(1)H : λIJ =



0 0 1 0 0 0

0 0 0 −1 0 0

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (B.1)

U(1)Y is a diagonal combination between the rotations in the 56 plane generated by

U(1)56 : λIJ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


, (B.2)

and the SO(2) rotations.

There are 6 scalar fields that are invariant under U(1)H ×U(1)Y . We have

ΛIJ =



−α+ β γ1 0 γ2 0 0

γ1 −α− β γ2 0 0 0

0 γ2 −α+ β −γ1 0 0

γ2 0 −γ1 −α− β 0 0

0 0 0 0 2α 0

0 0 0 0 0 2α


, (B.3)
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Λαβ = 0, and

ΣIJ52 = −ΣIJ61 = χ1



0 0 1 0 0 0

0 0 0 −1 0 0

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


,

ΣIJ51 = ΣIJ62 = χ2



0 0 −1 0 0 0

0 0 0 1 0 0

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

(B.4)

Defining

η = eα , ~X =
tanh(

√
β2 + γ2

1 + γ2
2 + χ2

1 + χ2
2)√

β2 + γ2
1 + γ2

2 + χ2
1 + χ2

2

(
χ1 χ2 β γ1 γ2

)
, (B.5)

and following [22], one arrives at the Lagrangian

L =
1

2κ2

[
−R+ 12

∂µη∂
µη

η2
+

4 ∂µ ~X · ∂µ ~X(
1− ~X2

)2 − V
]
,

V = −g2

[
1

η4
+ 2η2 1 + ~X2

1− ~X2
− η8 (X1)2 + (X2)2(

1− ~X2
)2

]
.

(B.6)

The gauge coupling g is related to the radius of the AdS5 extremum of (B.6) through

g = 2/L. As described in the main text, our three-scalar truncation (3.5) is obtained

from (B.6) by setting X2 = X4 = X5 = 0 and z = X3 + iX1.

B.2 Supersymmetry variations

In the notation of [22], the supersymmetry variations of the spin-1/2 fields are

δχabc =
√

2

[
γµPµabcd −

1

L
Adabc

]
εd , (B.7)

and those of the spin-3/2 fields are

δψµa = ∇µεa +Qµa
bεb −

1

3L
Wabγµε

b . (B.8)

Here, the indices a, b, and c are fundamental USp(8) indices that run from 1 to 8, and can

be raised and lowered with a real antisymmetric matrix Ωab = i(Γ0)ab as in Xa = ΩabX
b.
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We choose the SO(7) gamma matrices as in appendix C.1 of [15], namely,

Γ1 = σ3 ⊗ σ0 ⊗ σ2 ,

Γ2 = −σ3 ⊗ σ2 ⊗ σ3 ,

Γ3 = σ3 ⊗ σ2 ⊗ σ1 ,

Γ4 = σ1 ⊗ σ3 ⊗ σ2 ,

Γ5 = σ1 ⊗ σ2 ⊗ σ0 ,

Γ6 = σ1 ⊗ σ1 ⊗ σ2 ,

Γ0 = iΓ1Γ2Γ3Γ4Γ5Γ6 .

(B.9)

The supersymmetry parameters that are invariant under U(1)H ×U(1)Y are then

εa =
(
−ε2 ε4 ε1 ε3 ε4 ε2 −ε3 ε1

)
,

εa =
(
ε4 ε2 −ε3 ε1 ε2 −ε4 −ε1 −ε3

)
.

(B.10)

The symplectic Majorana condition ε = γ5(iΓ0)ε∗ implies

ε3 = γ5ε
∗
1 , ε4 = γ5ε

∗
2 , (B.11)

as in (3.7). With this at hand it is straightforward to use (B.7) and (B.8) to work out the

supersymmetry variations presented in (3.8)–(3.9).

C Holographic renormalization

In this appendix, we provide a detailed description of the holographic renormalization

procedure outlined in section 5.

C.1 Infinite counterterms

We begin with a derivation of the infinite counterterms needed to obtain a finite on-shell

action and finite correlation functions. Here, as in section 5, we set 4πG5 = 1 to simplify

the expressions; the overall normalization is restored in section C.3.

C.1.1 Setup

The Euclidean action for our model is S = S5D + SGH with

S5D =

∫
M
d5x
√
G

{
− 1

4
R+

1

2
K̂ Gµν∂µη∂νη +KGµν∂µz∂ν z̃ + V

}
, (C.1)

with K = (1− zz̃)−2 and K̂ = 6/η2. The scalar potential is

V = −
(
η−4 + 2η2 1 + zz̃

1− zz̃
+
η8

4

(z − z̃)2

(1− zz̃)2

)
. (C.2)

The Gibbons-Hawking action SGH will be discussed in section C.1.4.
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For the purpose of studying holographic renormalization (see for example [28, 29]) we

perform the field redefinition (5.2) to canonical fields with definite mass. The action (C.1)

then takes the form (5.3).

As described in section 5, it is useful for the near-boundary analysis to write the 5D

metric as

ds2 = Gµνdx
µdxν =

dρ2

4ρ2
+

1

ρ
gij(x, ρ) dxidxj . (C.3)

In these coordinates, the AdS5 boundary is at ρ = 0. The mass m of a scalar field and the

scale dimension ∆ of its dual field theory operator are related by22 ∆ = 2 +
√

4 +m2. A

field φ∆ with ∆ > 2 approaches the AdS5 boundary at the rate φ∆ ∼ φ∆,0(x) ρ2−∆/2. For

∆ = 2, there is a logarithmic term of the form φ2 ∼ φ2,0(x) ρ ln ρ.

To implement holographic renormalization we place a lower cutoff ρ = ε → 0 on the

radial integral in the action (5.3). When a solution of the classical equations of motion is

inserted, we obtain the on-shell action. The radial integral then diverges at the leading rate

1/ε2 which comes from the integral
∫
ρ=ε dρ

√
G ∼

∫
dρ ρ−3. This and subleading divergences

of order 1/ε and log ε must be cancelled by the counterterms. The goal of this section is

to construct these counterterms and use them to perform holographic renormalization of

our model.

It simplifies the analysis of the on-shell action to exclude ab initio all contributions

to the curly bracket
{
. . .
}

in (5.3) that vanish faster than ρk with k > 2 (to within

logarithms). It is thus sufficient to expand the potential (C.2) as a truncated power series

V = −3− 2φ2 − 2χ2 − 3

2
ψ2 +

c

4
ψ4 + . . . , (C.4)

where c = −2 for our potential (C.2). We choose to keep c general in the analysis since

this allows us to compare with other holographic models. It follows from the scalar poten-

tial (C.4) that the model contains two fields φ and χ with m2 = −4, and thus ∆ = 2, and

one field ψ with m2 = −3 and ∆ = 3.

The “+ . . . ” in (C.4) denotes terms that vanish faster than O(ρ2) asymptotically and

therefore do not give divergences. Note that the terms χψ2, χφ, φψ2 have the same

asymptotic falloff rate as ψ4, but they do not appear in the series expansion for our po-

tential (C.4). There is a basic reason for the absence of χψ2 and χφ, namely that the

symmetry χ→ −χ of our model prohibits them. The absence of φψ2 is more interesting:

its presence is inconsistent with having a source term falloff ψ0(x) ρ1/2 for ψ. This can be

seen from an asymptotic analysis of the φ equation of motion.

C.1.2 Bulk EoMs

The five-dimensional equations of motion of the scalars in (5.3) are

2Gφ =
∂V

∂φ
, (C.5)

K2Gψ + ∂µK∂
µψ − 1

2

∂K

∂ψ

(
(∂χ)2 + (∂ψ)2

)
=
∂V

∂ψ
, (C.6)

K2Gχ+ ∂µK∂
µχ− 1

2

∂K

∂χ

(
(∂χ)2 + (∂ψ)2

)
=
∂V

∂χ
, (C.7)

22We fix the scale of AdS5 by setting L = 1.
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and the Einstein equation is

Rµν = 2

[
K∂µχ∂νχ+K∂µψ∂νψ + ∂µφ∂νφ+

2

3
GµνV

]
. (C.8)

We now use the metric Ansatz (C.3) to express the five-dimensional equations of motion

in terms of the metric gij and ρ. To rewrite the scalar equations of motion (C.5)–(C.7), we

decompose the scalar Laplacian 2G as (with primes denoting ρ-derivatives)

2GΦ = ρ2gΦ + 4ρ2Φ′′ − 4ρΦ′ + 2ρ2Φ′
(

log(g)
)′
, (C.9)

and also use the expressions

∂µK∂
µψ = 4ρ2K ′ψ′ + ρgij∂iK∂jψ , (∂ψ)2 = 4ρ2(ψ′)2 + ρgij∂iψ∂jψ . (C.10)

In the asymptotic expansion, the terms with ∂i-derivative or χ′ will be subleading, so we

drop them in the following. The scalar equations of motion (C.5)–(C.7) are then written as

ρ2gφ+ 4ρ2φ′′ − 4ρφ′ + 2ρ2φ′
(

log(g)
)′ − ∂V

∂φ
= 0 , (C.11)

K
[
ρ2gψ+4ρ2ψ′′−4ρψ′+2ρ2ψ′

(
log(g)

)′]
+2ρ2∂K

∂ψ
ψ′2− ∂V

∂ψ
+(subleading) = 0 , (C.12)

The χ EoM is similar to (C.12), but for the purpose of determining the counterterms in

section C.1.3 we need only the ψ EoM (C.12).

The Ricci tensor decomposes as follows

−Rij [G] = −Rij [g] + ρ
[
2g′′ij − 2(g′g−1g′)ij + Tr(g−1g′)g′ij

]
− 2g′ij − Tr(g−1g′)gij +

4

ρ
gij ,

−Rρρ[G] =
1

2
Tr(g−1g′′)− 1

4
Tr(g−1g′g−1g′) +

1

ρ2
.

(C.13)

(We do not need the (i, ρ) components of the Einstein equations.) The last term on

the r.h.s. of each expression in (C.13) can be written as a cosmological constant term
4
ρgij = −2 2

3ρV0 gij with V0 = −3 the value of the scalar potential (C.2) for φ = χ = ψ = 0.

The r.h.s. of the Einstein equation (C.8) can then be written as

ρ
[
2g′′ij − 2(g′g−1g′)ij + Tr(g−1g′)g′ij

]
−Rij − 2g′ij − Tr(g−1g′)gij

= −2

[
∂iφ∂jφ+K∂iψ∂jψ +K∂iχ∂jχ+

2

3ρ
gij
{
V − V0

}]
,

(C.14)

(with Rij = Rij [g]) and

1

2
Tr(g−1g′′)− 1

4
Tr(g−1g′g−1g′) = −2

[
(φ′)2 +K(ψ′)2 +K(χ′)2 +

1

6ρ2

{
V − V0

}]
. (C.15)

These decompositions of the Einstein equations (C.14) and (C.15) were previously given

in (3.16) and (3.18) of [28]. However, we note three differences:
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1. on the l.h.s. of the ij-Einstein equation (C.14), we have −2g′ij whereas in (3.16)

of [28] this term enters with a “+”. The minus sign is an important correction for

fixing the relation between coefficients in the asymptotic expansion of the fields and

the metric.

2. an overall factor of 1/2 is missing from the l.h.s. of (3.18) of [28] compared with

(C.15). Again, this correction is important for matching the asymptotics.

3. the curvature conventions in the present paper differ from those in [28] by a minus

sign; so to compare our equations with those in [28] one must take Rijkl → −Rijkl.

To summarize, we have rewritten the five-dimensional equations of motion (C.5)–(C.8)

using the metric Ansatz (C.3). The results, (C.12), (C.14), and (C.15), will be used in the

next section.

C.1.3 Asymptotic expansion

The expansion of the metric and scalar fields near the boundary of AdS5 was given in (5.6).

We now fix some of the coefficients in this expansion using the EoMs in the previous section:

• Start with the Einstein equation (C.14). At leading order, Rij [g] = Rij [g0] ≡ R0 ij .

Also, we have g′ij = g2 ij + . . . and V −V0 = −3
2ρψ

2
0 + . . .. Expanding to order O(ρ0),

we get from (C.14) that

R0 ij − 2g2 ij − Tr(g−1
0 g2) g0 ij = 2g0 ijψ

2
0 . (C.16)

Taking the trace with gij0 , we find

Tr(g−1
0 g2) = −1

6
R0 −

4

3
ψ2

0 . (C.17)

Plugging this back into (C.16), we have a solution for g2 ij :

g2 ij = −1

2

(
R0 ij −

1

6
R0 g0 ij

)
− 1

3
ψ2

0 g0 ij . (C.18)

This agrees with the result obtained in the GPPZ model, see appendix A.2 of [29].

Note that the Kähler metric K and the quartic interaction in V play no role in this

result. It is useful to record the trace

Tr(g−1
0 g2g

−1
0 g2) =

1

4

(
Rij0 R0 ij −

2

9
R2

0

)
+

1

9
R0ψ

2
0 +

4

9
ψ4

0 . (C.19)

• The ψ EoM (C.12) does receive corrections from K. The first non-trivial term is

O(ρ3/2) and it involves ψ0, g0 and g2 as well as ψ2; we solve it for ψ2 to find

ψ2 = −1

4
20ψ0 −

1

4
Tr(g−1

0 g2)ψ0 +
c+ 2

4
ψ3

0 . (C.20)

The term 1
2ψ

3
0 comes from K. (It is absent in the GPPZ model [29].) Using (C.17),

we can eliminate Tr(g−1
0 g2) from (C.20) to get

ψ2 = −1

4
20ψ0 +

1

24
R0 ψ0 +

1

12

(
10 + 3c

)
ψ3

0 . (C.21)
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• The χ EoM determines the coefficients χ4, χ2, and χ̃2 at leading order. However, we

do not need those for the purpose of determining the counterterms. The reason is

that χ enters the action quadratically, so only the χ2 ∼ ρ2χ2
0 + . . . in the potential

matters and it only involves the leading source term χ0.

• The φ EoM (C.11) similarly determines φ4, φ2, and φ̃2 at leading order, but again we

do not need them. The argument for terms quadratic in φ in the potential is as for

χ. The term φψ2 would affect counterterms, but it is not present in the potential.

(See the discussion at the end of section C.1.1.)

• Finally, the ρρ-component of the Einstein equations gives at leading orders—

O
(
ρ0(log ρ)2

)
, O
(
ρ0 log ρ

)
, and O

(
ρ0
)

—three conditions that allow us to solve for

the three components of the O(ρ2)-part of the metric expansion:

Tr(g−1
0 h2) = −4

3
φ2

0 −
4

3
χ2

0 ,

Tr(g−1
0 h1) = −8

3
φ0φ̃0 −

8

3
χ0χ̃0 − 2ψ0ψ2 , (C.22)

Tr(g−1
0 g4) =

1

4
Tr(g−1

0 g2g
−1
0 g2)− 2

3
φ2

0 −
4

3
φ̃2

0 −
2

3
χ2

0

−4

3
χ̃2

0 −
c+ 6

12
ψ4

0 + ψ0ψ2 − 2ψ0ψ̃0 .

For the purpose of determining the divergent part of the on-shell action, we do not need

to go further in the expansion of the fields and EoMs. We end this section by presenting

the expansion of
√
g to the order we need it:

√
g =

√
g0

[
1 + ρ

1

2
Tr(g−1

0 g2) + ρ2

(
1

2
Tr(g−1

0 g4) +
1

2
log ρTr(g−1

0 h1) +
1

2
(log ρ)2Tr(g−1

0 h2)

+
1

8

(
Tr(g−1

0 g2)
)2 − 1

4
Tr(g−1

0 g2g
−1
0 g2)

)
+ . . .

]
. (C.23)

We are now ready to use these results to evaluate the on-shell action.

C.1.4 On-shell action and counterterms

As noted around (5.4), the trace of the Einstein equation allows us to rewrite the ac-

tion (5.3) as S5D =
∫
M d5x

√
G
{
− 2

3V (φ, ψ, χ)
}

. Next, we use
√
G =

√
g 1

2ρ3 as well as the

asymptotic expansions (5.6) of the fields. The result of the small-ρ expansion must then be

integrated over ρ down to the near-boundary surface at ρ = ε:
∫
d5x →

∫
d4x

∫
ε dρ. The

result of the expansion, before using the constraints from the EoMs, is

S5D =

∫
∂Mε

d4x
√
g0

[
1

2ε2
+

1

2ε

(
Tr(g−1

0 g2) + ψ2
0

)
+O

(
(log ε)3

)]
. (C.24)

We do need to keep track of the log-divergent terms, but for simplicity we do not display

them until (C.28). The 5D action S = S5D + SGH also includes the Gibbons-Hawking

boundary action SGH. It is

SGH = −1

2

∫
∂M

√
γK = −1

2

∫
∂M

1

ρ2

√
g
(

4− ρ ∂ρ log g
)
. (C.25)
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In the second equality, we used K = −2ρ∂ρ log
√
γ and γij = 1

ρgij . The asymptotic expan-

sion of the metric gives ∂ρ log g = Tr(g−1
0 g2) + . . . , and after using (C.23) the divergent

contributions are

SGH = −
∫
∂Mε

d4x
√
g0

1

ε2

(
2 +

1

2
εTr(g−1

0 g2) +O
(
ε0
))

. (C.26)

Adding the actions (C.24) and (C.26) one is left with

S = S5D + SGH

=

∫
∂Mε

d4x
√
g0

[
− 3

2ε2
+

1

2ε
ψ2

0 − (log ε)3 1

6

(
Tr(g−1

0 h2) +
4

3
φ2

0 +
4

3
χ2

0

)
−(log ε)2 1

4

(
Tr(g−1

0 h1) +
8

3
φ0 φ̃0 +

8

3
χ0 χ̃0 + 2ψ0 ψ2

)
(C.27)

−(log ε)
1

2

{
Tr(g−1

0 g4) +
1

4

(
Tr(g−1

0 g2)
)2 − 1

2
Tr(g−1

0 g2g
−1
0 g2)

−2Tr(g−1
0 h2) +

4

3
φ̃2

0 +
4

3
χ̃2

0 +
1

2
ψ2

0 Tr(g−1
0 g2) + 2ψ0ψ̃0 −

c

6
ψ4

}]
,

plus finite terms. Next we impose the EoM constraints we found in section C.1.3 for

the coefficients of the asymptotic expansions of the fields. It follows from (C.22) that

the coefficients of the (log ε)3- and (log ε)2-terms vanish. The other terms also simplify

significantly and after omitting finite terms, we have

S = S5D + SGH

=

∫
∂Mε

d4x
√
g0

[
− 3

2ε2
+

1

2ε
ψ2

0 (C.28)

−(log ε)
1

2

(
1

32

[
Rij0 R0 ij −

1

3
R2

0

]
− φ2

0 − χ2
0 +

1

8
ψ020ψ0 −

1

48
R0 ψ

2
0

)]
.

The next step in the procedure of holographic renormalization is to rewrite the diver-

gences (C.28) in terms of the fields at the cutoff, not just the asymptotic components. The

desired counterterm action is then minus the result of this rewrite. We find

Sct =

∫
∂Mε

d4x
√
γ

[
3

2
+

1

8
R[γ] +

1

2
ψ2 +

(
1 +

1

log ε

)(
φ2 + χ2

)
− log ε

{
1

32

[
R[γ]ijR[γ]ij −

1

3
R[γ]2

]
+

1

4
ψ2γψ

− 1

24
R[γ]ψ2 −

(
5

12
+

1

8
c

)
ψ4

}
+ finite

]
.

(C.29)

Most of these terms are standard in similar models, for example the Coulomb branch

flow and the GPPZ flow studied in [29]. The effect of the quartic term ψ4 in the scalar

potential enters only in the term with coefficient c in (C.29); the only effect of the target

space metric on the counterterm action is in the c-independent coefficient 5
12 of ψ4. In our

model, c = −2, so the coefficient of the ψ4 log ε counterterm is 1/6. This is the result for

the infinite counterterm action given in (5.9).
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C.2 Finite counterterms from supersymmetry

As we discussed in section 5 in addition to the infinite counter terms one calculates using

holographic renormalization, there may also be finite counterterms required by supersym-

metry. Here we provide the detailed derivation of such a term for our model.

C.2.1 No superpotential for our bulk theory

The Bogomolnyi machinery requires that the scalar potential is quadratically related to

a superpotential W which is a real function for BPS RG flows in five-dimensional super-

gravity. In our gravity theory there are three scalars η, z, and z̃ with target space metrics

ĝηη = K̂(η) = 6/η2 and ĝzz̃ = K(z, z̃) = 1/(1 − zz̃)2. The action and scalar potential are

given in (C.1) and (C.2). If a superpotential W (η, z, z̃) exists, it should be related to V by

V =
1

2
K̂−1(∂ηW )2 +K−1∂zW∂z̃W −

4

3
W 2 . (C.30)

The Bogomolnyi manipulations will then inform us that the scalar fields of BPS solutions

satisfy the first order flow equations: ( ′ indicates the derivative with respect to the radial

coordinate r):

η′ ≡ H = K̂−1∂ηW , z′ ≡ Z = K−1∂z̃W , z̃′ ≡ Z̃ = K−1∂zW . (C.31)

These are gradient flow equations in a 3-dimensional target space with the indicated inverse

metric components. Since the ordinary derivatives commute, the flow equations (C.31) are

mutually consistent only when the following three integrability conditions hold

∂z(KZ) = ∂z̃(KZ̃) , ∂z̃(K̂H) = ∂η(KZ) , ∂z(K̂H) = ∂η(KZ̃) . (C.32)

Using the BPS equations from section 3 the second integrability condition requires the

vanishing of

∂η(KZ)− ∂z̃(K̂H) =
3η3(z2 − z̃2)

[
(2 + η6)z + (2− η6)z̃

]
(1− zz̃)2

[
1− η6 + (1 + η6)z2

]1/2[
1− η6 + (1 + η6)z̃2

]3/2 . (C.33)

It is clear that this integrability condition fails and thus our full system does not possess

a superpotential W . However, there is a way out of this difficulty. One can show that all

integrability conditions are obeyed if one makes either of the two restrictions z̃ = ±z. Thus

we find two truncations of our system for which the Bogomolnyi analysis is valid. Let us

do the analysis.

C.2.2 Bogomolnyi analysis with the constraint z̃ = −z

We carry out the Bogomolnyi analysis for flat Euclidean signature domain walls. The

metric and its scalar curvature are

ds2 = dr2 + e2A(r)δijdx
idxj , R = −4(2A′′ + 5A′2) . (C.34)

The constraint implies that z is pure imaginary, so we set z = −z̃ = iψ(r)/
√

2. We work

with the fields ψ(r) and η(r) and use the canonical φ = 1√
6

ln η when appropriate. It will be
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justified below that one can make this Ansatz for the system directly in the action (C.1).

Thus we begin with the reduced action23

S =

∫
dr d4x e4A(r)

[
−3A′2 + +

1

2
K̂η′2 +

1

2
Kψ′2 + V

]
, (C.35)

with G(η) = 6/η2, K(ψ) = 4/(2− ψ2)2, and

V (η, ψ) = −
[
η−4 + 2η2 2 + ψ2

2− ψ2
− η8 2ψ2

(2− ψ2)2

]
= −3− 1

2
(4φ2 +3ψ2)− 1

2
ψ4 + . . . . (C.36)

The simple but central technical point of the discussion is that the superpotential

W = η−2 +
1

2

2 + ψ2

2− ψ2
η4 (C.37)

is related to V of (C.36) by the BPS relation24

V =
1

2

(
K̂−1(∂ηW )2 +K−1(∂ψW )2

)
− 4

3
W 2 . (C.38)

We insert the relation (C.38) in the action (C.35), complete squares, and partially integrate

to find the desired Bogomolnyi form

S =

∫ r0

dr d4x

(
e4A

[
− 3

(
A′ − 2

3
W

)2

+
1

2
K̂
(
η′ + K̂−1∂ηW

)2

+
1

2
K
(
ψ′ +K−1∂ψW

)2 ]− d

dr

(
e4AW

))
. (C.39)

The quadratic factors above are the BPS equations for flat-sliced domain walls.25 When

the BPS equations are satisfied, the on-shell action reduces to the boundary term. To

preserve supersymmetry this must be cancelled by adding the counterterm

SW =

∫
d4x e4AW , (C.40)

in which fields are evaluated at the cutoff r0. If this is not done there would be a residual

cosmological constant in a supersymmetric and Lorentz invariant state of the boundary

theory.26 In turn these flat-sliced BPS equations also imply second order equations (ob-

tained by applying ∂/∂r and using (C.38)) that are the limit as z̃ → −z of the equations

of motion of the full theory with flat slicing. This argument makes clear that theory with

23The boundary term in the partial integration of R is cancelled by the Gibbons-Hawking action.
24One can observe that the same potential and superpotential occurred in the 5D N = 2 supergravity

theory whose BPS solutions were studied in [35]. The correspondence with our fields is ρ = η, cosh(2χ) =

(2 + ψ2)/(2− ψ2).
25We have checked this by an explicit calculation of the supersymmetry variation of the N = 8 five-

dimensional supergravity.
26The Bogomolnyi argument is essentially the same for Lorentz and Euclidean signature.
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the constraint z̃ = −z imposed is a consistent truncation. We expand SW in a power series

in the canonical fields

SW =

∫
d4x
√
γ

(
3

2
+ φ2 +

1

2
ψ2 +

√
2

3
φψ2 +

1

4
ψ4 + . . .

)
, (C.41)

and observe (using (5.6) with ρ = e−2r) that the first four terms are infinite as r0 →∞, the

ψ4 term is finite, while omitted terms vanish. Consistent truncation implies universality

in the following precise sense: i) the infinite part of SW must agree with Sct of (C.29) for

field configurations of flat-sliced BPS domain walls, and ii) the finite term 1
4ψ

4 must be

added to Sct to obtain the complete counterterm needed for all supersymmetric solutions

of the equations of motion.

To prove the first assertion, we write the difference Sct − SW with the near-boundary

expansions of (5.6) included and with terms in (C.29) that do not contribute for flat-sliced

BPS domain walls excluded. This difference is

Sct − SW =

∫
d4x
√
γ

(
φ2

0 +
1

6
ψ4

0 −
√

2

3
φ0 ψ

2
0

)
log ε+ finite . (C.42)

The asymptotic expansion of the BPS equations is quite simple:

φ′ = −∂φW = −
(

2φ+

√
2

3
ψ2

)
, ψ′ = −∂ψW = −

(
1

2
ψ + 2

√
2

3
φψ

)
. (C.43)

Near the boundary we can neglect the nonlinear term in the ψ′ equation but not in the φ′

equation. Therefore the leading behavior of ψ(r) is ψ = ψ0 e
−r. Including this in the φ′

equation we find the solution φ =
[
−
√

2
3ψ

2
0 r + φ̃0

]
e−2r. Since r0 = −1

2 log ε, this means

that the φ0 = ψ2
0/
√

6. When these results are inserted in (C.42), the infinite term log ε

vanishes as “predicted” above.

The physics of the analysis above is quite simple. The quantity ψ0 is the source for

a fermion bilinear and thus a fermion mass. The quantity φ0 is the source for a scalar

bilinear and thus a (mass)2. Supersymmetry fixes the quadratic relation between these

sources which we found by solving the BPS equations.

Operationally, the most important result of this section is the last term of (C.41). It

is the finite counterterm

Sfinite =

∫
d4x
√
γ

1

4
ψ4 , (C.44)

which must be added to the infinite counterterms of (C.29) to obtain a renormalized on-

shell action which incorporates the requirement of global supersymmetry. We will do this

in section C.3.

C.2.3 Bogomolnyi analysis with the constraint z̃ = z

The story of the z̃ = +z = χ/
√

2 truncation is very similar to the previous one, so we will

be brief. The scalar potential V (η, z, z̃) of the full theory now reduces to

V = −
(
η−4 + 2η2 2 + χ2

2− χ2

)
≈ − 3− 1

2

(
4φ2 + 4χ2

)
+ . . . , (C.45)
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so we now have a consistent truncation consisting of two scalars, each dual to an operator

of scaling dimension two. The superpotential that gives rise to V via

V =
1

2

(
K̂−1(∂ηW )2 +K−1(∂χW )2

)
− 4

3
W 2 , (C.46)

now with K = 4/(2− χ2)2, is

W =
1

2
η4 +

2 + χ2

2− χ2
η−2 ≈ 3

2
+ φ2 + χ2 + . . . . (C.47)

Omitted terms in the expansions in (C.45) and (C.47) are not needed for renormalization.

The Bogomolnyi manipulations are again easily performed. The BPS equations are

A′ =
2

3
W , χ′ = −K−1∂χW , φ′ = −∂φW . (C.48)

The residual surface term is again cancelled by

SSUSY =

∫
d4x e4AW =

∫
d4x e4A

(
3

2
+ φ2 + χ2 + . . .

)
. (C.49)

The infinite-counterterm action of (C.29) gives

Sct =

∫
d4x
√
γ

[
3

2
+

(
1 +

1

log ε

)(
φ2 + χ2

)]
, (C.50)

so in this case the difference Sct − SSUSY amounts to

Sct − SSUSY ∼
1

log ε

(
φ2 + χ2

)
∼
(
φ2

0 + χ2
0

)
. (C.51)

Solving the BPS equations (C.48) for φ and χ at leading order gives φ0 = χ0 = 0. So

again we find that the Bogomolnyi machinery gives a boundary term that produces the

infinite counterterms correctly for the flat sliced domain walls. The physics is quite simple.

Supersymmetry dictates that there can be no sources for bilinear scalar operators unless a

fermion bilinear is also sourced.

The upshot of the analysis presented above, and of that in section 5, is that although

our full model does not admit a superpotential, holographic renormalization only requires

the use of an approximate potential in which we only keep terms that are divergent or finite

near the boundary. The approximate potential has a superpotential Wa∪b given in (5.15)

and the corresponding counterterm Ssusy =
∫
d4x
√
γ Wa∪b contains the infinite and finite

counterterms compatible with supersymmetry. Up to terms that vanish on the boundary,

we have Ssusy = Sct + Sfinite with Sfinite given in (C.44). We use Sren = S5D + SGH + Ssusy

to compute the free energy.

C.3 The free energy

In the holographic description, the on-shell action encodes the free energy F of the field

theory. We calculate the derivative of F with respect to the source-term parameter µ:

dF

dµ
=

dSren

dµ
=

d

dµ

∫
d4x
√
γ Lren =

∫
d4x

∑
fields Φ

δ(
√
γ Lren)

δΦ

dΦ

dµ
. (C.52)
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The variation of the action with respect to the fields give the one-point functions via

δ(
√
γLren)

δψ
= ε3/2

√
γ 〈Oψ〉+ . . . ,

δ(
√
γLren)

δφ
=

ε

log ε

√
γ 〈Oφ〉+ . . . ,

δ(
√
γLren)

δχ
=

ε

log ε

√
γ 〈Oχ〉+ . . . ,

δ(
√
γLren)

δγij
=

1

2
ε
√
γ 〈Tij〉+ . . . .

(C.53)

The expression for 〈Tij〉 can be found in (3.13) of [29]. Subleading terms in the small

ε-expansion are indicated with “+ . . . ”.

Next, consider the field derivatives dΦ
dµ in (C.52). For our scalar fields, we find

dψ

dµ
= ε1/2

dψ0

dµ
+O(ε3/2) ,

dφ

dµ
= ε(log ε)

dφ0

dµ
+O(ε2) , (C.54)

and similarly for dχ/dµ. We also need to vary the metric. Since γij = 1
ε gij = 1

ε (g0 ij +

εg2 ij + . . .) = γ0 ij + εγ2 ij . . . and g0 is independent of µ, we have

dγij

dµ
= −ε γikγjl dγ2 kl

dµ
= −ε2 gik0 g

jl
0

dg2 kl

dµ
+ . . . . (C.55)

Now, with the help of (C.53), (C.54), and (C.55), the expression (C.52) becomes

dF

dµ
=

dSren

dµ
=

∫
d4x
√
γε2
(
〈Oψ〉

∂ψ0

∂µ
+ 〈Oφ〉

∂φ0

∂µ
+ 〈Oχ〉

∂χ0

∂µ
− 1

2
ε 〈Tij〉gik0 g

jl
0

dg2 kl

dµ

)
.

(C.56)

The contribution from the metric variation is suppressed by an extra power of ε compared

to the other terms. Thus taking the limit ε→ 0 we find

dF

dµ
=

∫
d4x
√
g0

(
〈Oψ〉

∂ψ0

∂µ
+ 〈Oφ〉

∂φ0

∂µ
+ 〈Oχ〉

∂χ0

∂µ

)
. (C.57)

This is the expression (5.19) used in section 5.

The parameter µ controls the source rate falloff of our fields as ρ→ 0. Using χ =
√

2 z+

and ψ = −i
√

2 z− with z± = 1
2(z± z̃), one finds from the asymptotic expansion of our BPS

solution (4.2) that

ψ0 = −i
√

2µ , φ0 = −
√

2

3
µ2 , χ0 = −

√
2µ . (C.58)

The subleading coefficients in the asymptotic expansion are

ψ2 = −i
√

2µ
2

3
(3− µ2) , ψ̃0 = −i

√
2

1

3

[
2v(µ2 − 3) + µ(4µ2 − 3)

]
,

φ̃0 =

√
2

3
µ(µ+ v) , χ̃0 =

√
2v .

(C.59)

The boundary metric g0 ij is that of a round four-sphere with radius 1/2 and from the

explicit form of the solution we extract the subleading contribution g2µν :

g0 =
1

4
gunit , g2 =

1

6
(µ2 − 3) gunit . (C.60)
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A simple consistency check is that the above results for Tr(g−1
0 g2) and ψ2 satisfy the

conditions (C.17) and (C.21). To see this, use R0 = 4×RunitS4 = 48.

Using the results for the one-point functions summarized in section 5 in (C.57) one

obtains the result (5.23) for dF/dµ that is then used to match the field theory free energy.

The finite counterterm was essential in our analysis but suppose we did not want to rely

on the Bogomolnyi method and the universality argument to fix this finite counterterm.

To this end it is instructive to consider all possible candidate finite counterterm operators

(with
√
γ implicit)

contribution to dF
dµ :

Rij [γ]Rij [γ] , (R[γ])2 , ψ2γψ , 0

R[γ]ψ2 , (log ε)−1Rφ , (log ε)−2χ2 O(µ)

(log ε)−2φ2 , (log ε)−1ψ2φ , ψ4 O(µ3)

On the right, we indicate their contributions to dF/dµ. The first two terms in the first

line do not contribute at all because they are independent of the scalar fields and ψ2γψ

does not contribute because it vanishes for our solution. The rest of the possible finite

counterterms can only change the coefficients of the terms proportional to µ and µ3 in

dF/dµ in (5.23); they cannot contribute any dependence on the “vev” parameter v(µ), in

particular they cannot affect the last term v(µ) in dF/dµ. This means that if we take four

more µ-derivatives, we get a result completely independent of finite counterterms. Thus,

d5F/dµ5 is independent of ambiguities of finite counterterms, so even without fixing those,

we can compare d5F/dµ5 to the field theory result and obtain a perfect match.

D Analytic solutions with flat slicing

We were not able to solve analytically the general system of BPS equations with S4 slicing

in section 3.4 and we had to resort to numerics to extract the physics. If one studies the

system of BPS equation in R4, however, one finds that it is consistent with equations of

motion only if z = ±z̃. In this case there are analytic solutions to the BPS equations which

we present below.

D.1 The solution for z = z̃

The BPS equations for z = z̃ with R4 slicing can be derived either directly from the

supersymmetry variation of the five-dimensional N = 8 supergravity theory or via the

Bogomolnyi trick as in (C.48). The explicit result is (we set L = 1)

z′ = −2z

η2
,

η′ =
η6(1− z2)− z2 − 1

3η(z2 − 1)
,

A′ =
η4

3
+

2

3η2

(
1 + z2

1− z2

)
.

(D.1)
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One can solve this system of equations analytically by eliminating z(r) from the first

equation and then integrating explicitly the other two to find

η6 =
1− z2

1 + z2 + C1z
, A =

1

6
log

[
(1− z2)2(1 + z2 + C1z)

z3

]
+ C2 , (D.2)

where C1 and C2 are integration constants. Using (D.2) in the first equation of (D.1) one

can solve for z(r) in quadratures.27 It is clear that the solution develops a singularity at

z = ±1. The nature of the singularity is controlled by the constant C1 and can be studied

by using the criterion of [59]. This singularity is of the same kind as the ones observed

in the Coulomb branch RG flows in [16]. In fact our solution is a generalization of the

Coulomb branch flows in [16]. The difference between our solution and those of [16] is that

we have two scalars in the 20′ turned on, as opposed to the single scalar used in [16], and

the flow preserves N = 2 supersymmetry whereas the solutions in [16] preserve N = 4.

D.2 The solution for z = −z̃

For z = −z̃ = iψ/
√

2 our truncation reduces to the one studied in [35]. We can therefore

derive the Pilch-Warner solution [35] dual to the N = 2∗ SYM on R4. Again the BPS

equation for z = −z̃ with R4 slicing can be derived either directly from the supersymmetry

variation of the five-dimensional N = 8 supergravity theory or via the Bogomolnyi trick.

The result is

z′ = −zη4 ,

η′ =
η6(z2 − 1) + z2 + 1

3η(z2 + 1)
,

A′ =
2

3η2
+
η4

3

(
1− z2

1 + z2

)
.

(D.3)

One can again eliminate z(r) from the first equation and then integrate explicitly the other

two to find the solution of Pilch-Warner [35]

η6 =
1− z4 − 4z2 log z + C1z

2

(1 + z2)2
, A = log

[
1 + z2

z
η2

]
+ C2 , (D.4)

where C1,2 are integration constants. The solution is singular for z2 = −1 (or alternatively

ψ2 = 2) but the singularity is physical and well-understood [40, 51].
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