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1 Introduction

The study of finite volume effects is central to many areas of theoretical physics including

Quantum Field Theory (QFT) and Statistical Physics. Understanding the volume depen-

dence of physical observables leads to efficient ways of extracting infinite volume quantities,

for example in 3+1 dimensional lattice QFT calculations. As a first step, one would like

to understand how finite volume effects influence the spectrum [1, 2]. As a second step one

can also consider composite objects like correlation functions or matrix elements of local

operators. An example is given by transition matrix elements in lattice QFT, which were

shown to possess a non-trivial volume dependence [3].
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Finite size effects are actively investigated in 1+1 dimensional Integrable QFT, where

the integrability of the models allows for an exact determination of physical quantities. For

example the exact ground state energy (the Casimir-energy) is known in terms of solutions

of certain non-linear integral equations [4–8]. Excited state energies are also known in

many cases [9–14]. The techniques developed to study the finite size spectrum of 1+1 scat-

tering theories found applications and generalizations in the framework of the AdS/CFT

correspondence as well [15].

In a Lorentz-invariant 1+1 dimensional field theory finite size effects are equivalent

to finite temperature effects, as can be seen by choosing the compact dimension to lie in

the imaginary time direction. Finite temperature correlation functions are relevant to real

world condensed matter experiments because the low-energy physics of certain materials

leads to effective field theories which are integrable in many cases [16]. This motivated the

study of finite temperature correlations in integrable QFT [17–22]. In models with diagonal

scattering the finite temperature one-point functions are given by the LeClair-Mussardo

series [18]. Even though this series has not yet been proven from first principles, it is

supported by strong theoretical arguments [20, 21, 23] and numerical checks [24]. On the

other hand, an analogous result for the finite temperature two-point function is still missing.

The corresponding formula of [18] is ill-defined at higher orders and it was criticized in [23,

25]. The leading terms of a well-defined finite temperature expansion were derived in the

works [22, 26–28], but the general pattern of the higher correction terms is not clear yet.

One way of deriving finite temperature correlations is through a finite volume regular-

ization [20–22, 26, 29]. In this approach it is essential to know the volume dependence of

the finite volume matrix elements of local operators. This problem was solved in [20, 29] to

all orders in 1/L, where it was shown that the finite volume form factors essentially coincide

with the corresponding infinite volume form factors, normalized by the appropriate density

of states in rapidity space. Exponential corrections to the asymptotic results of [20, 29]

were considered in [30], where the so-called µ-term of the form factors was derived using

finite volume bound state quantization (see also [31]).

In the present work we continue the line of research initiated in the works [20, 29, 30].

We consider a subset of the finite volume matrix elements: excited state mean values. Even

though these objects are not of direct relevance to finite temperature correlation functions,

understanding the structure of the higher exponential corrections in this special case might

help to derive results also for the off-diagonal matrix elements, which can lead to a new

way of obtaining finite temperature corrections to the two-point function.

The structure of this paper is as follows. In section 2 we collect the basic results about

finite volume QFT which will be used in the subsequent sections. In section 3 we consider

excited states in finite volume and we formulate our basic conjecture for the excited state

mean values, which takes the form of a multiple integral series where each integral runs

over a non-trivial contour in the complex plain. Sections 4 and 5 include calculations

needed to transform this result into a form where each integral runs over the real axis only.

In sections 6 and 7 we calculate our final formulas for the one-particle and two-particle

mean values. A general conjecture for higher particle number is given in section 8. Finally,

section 9 includes our conclusions. The reader who is not interested in the intermediate

steps towards our main result in section 8 (equation (8.2)) may skip sections 4,5,6 and 7.
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2 Integrable QFT in finite volume — basic ingredients

Consider a massive Integrable Quantum Field theory in finite volume L with periodic

boundary conditions. The discrete spectrum of the Hamiltonian will be denoted by |n〉L
with the n = 0 state being the vacuum. Energy levels are denoted by En(L). We as-

sume that the energy density of the vacuum is normalized to zero such that E0(L) is the

Casimir-energy which decays exponentially with the volume. In the present work we limit

ourselves to theories with diagonal scattering. Moreover, for the sake of simplicity we will

only consider models with only one particle species. The mass of the single particle will

be denoted by m.

Let S(θ) = eiδ(θ) be the scattering matrix of the theory (a pure phase in this case). It

satisfies the relations

S(θ)S(−θ) = 1 S(θ) = S(iπ − θ). (2.1)

For future use we define the derivative of the phase shift:

ϕ(θ) =
d

dθ
(−i logS(θ)) .

It follows from (2.1) that

ϕ(θ) = ϕ(−θ) = ϕ(iπ + θ). (2.2)

The finite volume ground state energy can be calculated by the Thermodynamic Bethe

Ansatz [4]. It is given by

E0(L) = −m

∫
dθ

2π
cosh(θ) log(1 + e−ε0(θ)),

where ε0(θ), the so-called pseudoenergy function is given by the solution of the non-linear

integral equation

ε0(θ) = e(θ)L−

∫ ∞

−∞

dθ′

2π
ϕ(θ − θ′) log(1 + e−ε0(θ′)), (2.3)

with e(θ) = m cosh θ being the one-particle energy and L is the volume.

In this work we are concerned with the finite volume mean values

L〈n|O(x)|n〉L, (2.4)

where |n〉L is an exact eigenstate of the finite volume Hamiltonian normalized to unity

and O(x) is a local operator of the theory, defined with the same normalization as in in-

finite volume. Translation invariance implies that the mean value does not depend on x,

therefore this variable will be omitted in the following. For the simplicity we only consider

scalar operators.

Our main goal is to derive a form factor expansion for the objects (2.4). The (infinite

volume) form factors are defined as the matrix elements of the local operator on infinite

volume multiparticle states:

FO
nm(θ′1, . . . , θ

′
n|θ1, . . . , θm) = 〈θ′1, . . . , θ

′
n|O|θ1, . . . , θm〉.

– 3 –
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The multiparticle states are equal to the in or out scattering states for a given ordering of

the rapidities:

|θ1, . . . , θm〉 =

{
|θ1, . . . , θm〉in : θ1 > θ2 > · · · > θm

|θ1, . . . , θm〉out : θ1 < θ2 < · · · < θm.

All form factors can be expressed with the elementary form factors using the crossing

relation:

FO
nm(θ′1, . . . , θ

′
n|θ1, . . . , θm) = FO

0,n+m(θ′1 + iπ, . . . , θ′n + iπ, θ1, . . . , θm). (2.5)

The above equation is valid whenever there are no coinciding rapidities, otherwise there

are also contact terms present.

In many cases the form factors have been constructed explicitly using the so-called

form factor bootstrap program. The idea of this program is to construct all form factor

functions which satisfy a certain set of equations (also called the “form factor axioms”) and

possess certain analyticity properties, and to identify the solutions describing the actual

form factors of a given operator. Here we do not review this procedure but instead refer

the reader to [32, 33]. We assume that the form factors of the local operator in question

are known (or can be calculated in principle). In the calculations presented below we use

only two of the general properties, namely the exchange axiom and the kinematical pole

property satisfied by the elementary form factors:

FO
n (θ1, . . . , θj , θj+1, . . . , θn) = S(θj − θj+1)F

O
n (θ1, . . . , θj+1, θj , . . . , θn) (2.6)

− iRes
θ=θ

′
FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn) =

(
1−

n∏

k=1

S(θ′ − θk)

)
FO
n (θ1, . . . , θn). (2.7)

These equations provide the basis for analyzing the diagonal limit of the form factors

needed to calculate the finite volume mean values.

2.1 Previous results for the mean values

In the case of the ground state mean value it is expected that the large volume limit

reproduces the infinite volume expectation value:

〈O〉L = 〈O〉+ . . . , mL ≫ 1.

The dots denote finite volume corrections which are of order e−mL. An all-order result was

found by LeClair and Mussardo in [18] where they considered the equivalent problem of

finite temperature one-point functions. They found an infinite integral series (also-called

the LeClair-Mussardo series):

〈O〉L =
∑

n

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε0(θj)


FO

2n,c(θ1, . . . , θn). (2.8)
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θ1

θn

∞∑

n=0

〈O〉L =

Figure 1. Graphical interpretation of the LeClair-Mussardo formula for the finite volume ground

state expectation values. Time runs in the vertical direction. In the horizontal direction periodic

boundary conditions are understood.

The form factors entering the integrals are the connected parts of the diagonal infinite

volume form factors:

FO
2n,c(θ1 . . . θn) ≡ finite piece of FO

2n(θ1 + iπ + η1, . . . , θn + iπ + ηn, θn, . . . , θ1).

In general the object on the r.h.s. includes terms proportional to ηj/ηk and the rule for the

connected part is to discard all these terms. For a detailed discussion of this diagonal limit

we refer the reader to [20]. Important properties of the functions FO
2n,c will be discussed in

section 5.

The physical interpretation of (2.8) is the following: in the finite volume situation the

local operator can interact with an arbitrary number of virtual particles which wind around

the finite volume. The amplitude associated to these processes is the properly defined limit

of the infinite volume form factor. The fact that the normalization factor associated to

these processes is just the product of the weight functions 1/(1+eε0(θ)) is a highly nontrivial

consequence of the integrability of the theory. The volume L only enters (2.8) through the

the pseudoenergy ε0(θ) which is the unique solution of (2.3). A graphical interpretation of

the integral series is shown in figure 1.

We note that although (2.8) is generally believed to be true, a rigorous proof from first

principles is not yet available. In [21] it was proven to all orders using an expansion for

finite volume form factors found in [20] and to be presented below (eq. (2.12)). However,

the relation (2.12) itself has not yet been proven (see the discussion below).

Mean values in finite volume excited states have been considered previously in [20].

This work considered the IR limit, when the states can be described with good approxi-

mation as Bethe Ansatz states. A first guess for the mean values in this approximation

could be that the mean value in a state |θ1, . . . , θK〉 is simply the diagonal form factor

FO
2K,c(θ1, . . . , θK), possibly with a normalization factor depending on L. However, the sit-

uation is more complicated. In [20] it was found that there is expansion for the mean value

where each term corresponds to a bipartite partitioning of the rapidities, where one subset

of the particles interacts with the operator and the remaining particles only influence the

normalization factor associated to this process.

– 5 –
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To be specific, consider the finite volume situation in the limit mL ≫ 1 and a multi-

particle state described by Bethe roots {θ1, . . . , θK}. They satisfy the Bethe equations

Qj = pjL+
∑

k 6=j

δ(θj − θk) = 2πIj j = 1 . . .K, Ij ∈ Z. (2.9)

And important quantity is the density of states in rapidity space, which is given by the

Jacobian of the mapping given by (2.9):

ρK(θ1, . . . , θK) = detJ jk, J jk =
∂Qj

∂θk
. (2.10)

In many non-relativistic models ρK also describes the norm of the Bethe Ansatz state and

it is called the Gaudin determinant [34, 35].

We will also need the minors of the matrix J . For a given bipartite partition

{θ1, . . . , θK} = {θ+} ∪ {θ−}

∣∣{θ+}
∣∣ = K − n and

∣∣{θ−}
∣∣ = n

we define the restricted determinant

ρ̃K−n({θ+}|{θ−}) = detJ+, (2.11)

where J+ is the sub-matrix of J corresponding to the particles in the set {θ+}. Note that

ρ̄N−n({θ+}|{θ−}) still contains information about the complementary set of rapidities {θ−}.

With these notations, the expression for the expectation value reads

〈θ1, . . . , θK |O|θ1, . . . , θK〉L =

1

ρK(θ1, . . . , θK)

∑

{θ+}∪{θ−}

FO
2n,c

(
{θ−}

)
ρ̃K−n

(
{θ+}|{θ−}

)
+O(e−µL).

(2.12)

Equation (2.12) is expected to describe the finite size effects to all orders in 1/L, beyond

which there are only exponentially small corrections. The exponent µ is a mass scale pro-

portional to m which is determined by the fusion processes in the theory [36]. As remarked

earlier (2.12) has not yet been proven, but overwhelming numerical evidence has been gath-

ered which support its validity [20, 31, 37]. The only analytical proofs available concern

the cases K = 1 and K = 2 [20].

3 Excited states

In many cases there are exact results available about the finite volume energies of the ex-

cited states. The first paper to derive TBA equations for particle-like excited states in inte-

grable QFT was [9] where the authors used analytical continuation in the volume parameter

L to cross from the ground state to excited states with zero total momentum. This proce-

dure was motivated partly by closely related ideas in Quantum Mechanics [38]. Other works

which derived excited state TBA equations include [10, 14, 39]. In the known cases the only

– 6 –
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difference between the excited state and ground state TBA is the addition of certain source

terms, or equivalently a modification of certain integral contours. This property holds also

for the various NLIE results, both in field theory and lattice models [11–13, 40, 41].

Our approach to obtain excited state mean values follows the general idea of the

papers [9, 10], namely that there exists an analytic continuation procedure which connects

the excited states (or at least a subset of them) to the ground state. Starting from the

exact result (2.8) for the ground state expectation value it is natural to expect that a

proper analytic continuation of the full integral series yields the excited state mean values.

In [9] the analytic continuation was performed in the volume parameter L. The volume

dependence of the series (2.8) is only through the pseudoenergy function ε0(θ) which is the

solution of the TBA equation (2.3). In the course of the analytic continuation certain

singularities of the pseudoenergy function cross the real line, and this results in a necessary

change of integration contour for the TBA equation. We expect that the same holds also

for the mean values. Namely, the excited state mean values will be given by equation (2.8)

such that ε0(θ) has to be replaced by the solution of the appropriate excited state TBA,

and the integration contours for the multiple integrals have to be changed accordingly.

In a generic theory a one-particle state is often represented in the excited state TBA

as a pair of complex rapidities which are complex conjugates of each other. This is closely

related to the fusion processes in the infinite volume theory. Accordingly it was observed

in [30] that the leading exponential corrections follow simply from the asymptotic for-

mula (2.12) when single particles are represented by an appropriate finite volume bound

state. This pattern of “root doubling” is expected to hold even in the exact result, which

would make the formulas quite involved, as already the one-root and two-root problems

are technically complicated, as shown below. Therefore in the remainer of this work we

only consider the sinh-Gordon model, in which excited state TBA equations of K particles

involve exactly K complex roots [39] instead of 2K roots in a typical case in models with

particle fusion. However, the analytic continuation procedure we intend to use is not estab-

lished in the sinh-Gordon model; the paper [39] employed completely different methods to

derive the excited state TBA. Therefore the remainder of this paper should be considered

as a “technical demonstration” of how the calculations proceed: we just assume that there

is a proper analytic continuation and we derive the excited state mean values accordingly.

We believe that our results are valid in the sinh-Gordon model and that analogous formulas

apply in those cases where single particles are represented by a pair of complex rapidities.

We give more remarks on this in the Conclusions.

Turning to the sinh-Gordon model we recall the results of [39]. Excited states can be

characterized by a set of integer quantum numbers {I1, I2, . . . , IK}, K ≥ 1 and a set of real

rapidities (Bethe roots) {θ̄1, θ̄2, . . . , θ̄K}.1 The excited state TBA equation reads

ε(θ) = mL cosh θ +
∑

i

logS(θ − θ̄i − iπ/2)−

∫
dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ′)). (3.1)

1We use the notation θ̄j for the rapidities entering the excited state TBA equations in order to distinguish

them from the auxiliary variables θj entering the multiple integrals for the mean values.

– 7 –
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The condition for the Bethe roots is

ε(θ̄j + iπ/2) = i(2Ij + 1)π, j = 1 . . .K, Ij ∈ Z. (3.2)

The finite size energies are then given by

E =
K∑

j=1

m cosh θ̄j −

∫
dθ

2π
m cosh(θ) log(1 + e−ε(θ)). (3.3)

The condition (3.2) can be written explicitly as

mL sinh θ̄j +
∑

k 6=j

δ(θ̄j − θ̄k) +

∫
dθ′

2π
iϕ(θ̄j − θ′ + iπ/2) log(1 + e−ε(θ′)) = 2Ijπ. (3.4)

Equations (3.4) can be interpreted as Bethe equations for the rapidities θ̄j modified by

vacuum polarization effects.

Given a state |θ̄1, . . . , θ̄K〉 we define an integration contour C which consists of the real

line and small circles clockwise around the points θ̄j + iπ/2. Then the excited state TBA

equations can be re-written as

ε(θ) = mL cosh θ −

∫

C

dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ′)) (3.5)

E = −

∫

C

dθ

2π
m cosh(θ) log(1 + e−ε(θ)), (3.6)

where we used the fact that the function (1 + e−ε(θ)) has simple zeroes at θ̄j + iπ/2,

j = 1 . . .K.

As explained above, we conjecture that the mean values of local operators in the given

state can be expressed as

〈θ̄1, θ̄2, . . . , θ̄K |O|θ̄1, θ̄2, . . . , θ̄K〉L =

∑

n

1

n!

∫

C

dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)


FO

2n,c(θ1, . . . , θn),
(3.7)

where the pseudoenergy function ε(θ) and the roots θ̄j are given as a solution of the

equations (3.1)–(3.2), and the contour C is determined by the roots θ̄j .

Although the equation above is well-defined and expected to be exact, it is not very

enlightening. The remainder of this work is devoted to the evaluation of the residues at

the points θ̄j + iπ/2 such that in our final formulas the integrals only run over the real line.

This leads to a representation where the physical meaning of the individual terms is more

transparent.

Note that evaluating all the residues the rapidities θ̄j + iπ/2 will appear as multiple

insertions in the connected form factors. This motivates the investigation of the degenerate

cases for the form factors (section 5). The reader who is not interested in the technical

details of these calculations may skip the following four sections and turn to section 8 which

presents our final result for arbitrary multiparticle states.
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4 Evaluating the residues

Here we evaluate the contour integrals in formula (3.7) and express the result as a sum of

integrals over the real line. For simplicity we only consider one-particle and two-particle

states; it is straightforward to generalize these formulas to higher particle number.

In writing down the multiple integrals we will frequently make use of the shorthand

∫
d̃θ ≡

∫
dθ

2π

1

1 + eε(θ)
.

In all formulas below it is understood that ε is the solution of the TBA equation corre-

sponding to the finite volume state in question.

4.1 One-particle states

First we consider one-particle states, ie. K = 1. In this case the excited state TBA is simply

ε(θ) = mL cosh θ + logS(θ − θ̄ − iπ/2)−

∫
dθ′

2π
ϕ(θ − θ′) log(1 + e−ε(θ′)). (4.1)

We define the function

Q̄(θ̄, L) = −iε(θ̄ + iπ/2) = mL sinh θ̄ −

∫
dθ′

2π
iϕ(θ′ − θ̄ + iπ/2) log(1 + e−ε(θ′)). (4.2)

Then the quantization condition for θ̄ is simply Q̄(θ̄) = 2π(I + 1/2).

The integration contour C in (3.7) consists of the real line and a small circle around

the point θ̄ + iπ/2. The residue of the weight function at this point is

Resθ=θ̄+iπ/2

1

1 + eε(θ)
=

(
−

∂ε(θ)

∂θ

∣∣∣∣
θ=θ̄+iπ/2

)−1

.

Evaluating the residues in the multiple integral series we write

〈θ̄|O|θ̄〉 =
∞∑

j,k=0

Ljk. (4.3)

Here Ljk represents the contributions where in the n = j+k term in the series we integrate

j times around θ̄+ iπ/2 and k times over the real line. Picking up the residues at θ̄+ iπ/2

we obtain

Ljk =
1

j!k!

∫
d̃θ1 . . . d̃θk

FO
2(j+k),c(θ̄ + iπ/2, θ̄ + iπ/2, . . . , θ1, . . . , θk)

nj
1

, (4.4)

where

n1 = (−i)
∂ǫ(θ)

∂θ

∣∣∣∣
θ=θ̄+iπ/2

= mL cosh θ̄ + ϕ(0) +

∫
dθ′

2π
iϕ(θ′ − θ̄ + iπ/2)

1

1 + eε(θ′)

(
∂ε

∂θ

)
,

(4.5)

and in the form factor above there are j insertions of θ̄ + iπ/2.

– 9 –
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It is useful to derive an integral series for the expressions (4.5). Introducing the kernel

K̂(θ, θ′) = ϕ(θ − θ′)
1

1 + eε(θ′)
(4.6)

and differentiating (3.4) one obtains

(1− K̂)
∂ε

∂θ
= mL sinh θ − iϕ(θ − θ̄ + iπ/2).

Introducing the resolvent M̂ satisfying

(1 + M̂)(1− K̂) = 1

we have

∂ε

∂θ
= (1 + M̂)

(
mL sinh θ − iϕ(θ − θ̄ + iπ/2)

) ∂ε

∂θ̄
= (1 + M̂)iϕ(θ − θ̄ + iπ/2).

Using 1 + M̂ =
∑∞

n=0K
n we obtain the integral series

n1 = ϕ(0) +mL cosh θ̄ +

∫
d̃θ iϕ(θ − θ̄ + iπ/2)(mL sinh θ − iϕ(θ − θ̄ + iπ/2))

+
∞∑

n=2

∫
d̃θ1 . . . d̃θn iϕ(θ1 − θ̄ + iπ/2)ϕ(θ1 − θ2) . . . ϕ(θn−1 − θn)×

× (mL sinh θn − iϕ(θn − θ̄ + iπ/2)).

(4.7)

The equations (4.3), (4.4) and (4.7) serve as an intermediate result for the one-particle

expectation values. Expression (4.4) involves connected diagonal form factors with multi-

ple insertions of the same rapidity. It will be shown in section 5 that these cases can be

expressed as sums of form factors with only a single insertion of θ̄ + iπ/2. Moreover, after

a resummation a remarkably simple formula is found, which reproduces the asymptotic

result following from (2.12). This is presented in section 6.

4.2 Two-particle states

In the two-particle case the excited state TBA takes the form

ε(θ) = mL cosh θ+logS(θ− θ̄1−iπ/2)+logS(θ− θ̄2−iπ/2)−

∫
dθ′

2π
ϕ(θ−θ′) log(1+e−ε(θ′)).

(4.8)

The integration contour C in (3.7) consists of the real line and two small circles around

the points θ̄1,2 + iπ/2. The residues of the weight function are

Resθ=θ̄j+iπ/2

1

1 + eε(θ)
=

(
−

∂ε(θ)

∂θ

∣∣∣∣
θ=θ̄j+iπ/2

)−1

, j = 1, 2.

Taking the derivatives we obtain

nj = −i
∂ε(θ)

∂θ

∣∣∣∣
θ=θ̄j+iπ/2

= mL cosh θ̄j + ϕ(θ̄1 − θ̄2) + ϕ(0)−

−

∫
dθ′

2π
iϕ(θ′−θ̄j − iπ/2)

1

1+eε(θ′)
∂ε

∂θ
, j=1, 2.

(4.9)
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It follows from (4.8) that the derivative of the pseudoenergy satisfies the integral equation

(1− K̂)
∂ε

∂θ
= mL sinh θ + iϕ(θ − θ̄1 − iπ/2) + iϕ(θ − θ̄2 − iπ/2), (4.10)

where the integral operator K(θ, θ′) is defined in (4.6). The explicit form of n1,2 is

nj = ϕ(0) + ϕ12 +mL cosh θ̄j

−

∫
d̃θ iϕ(θ−θ̄j−iπ/2)(mL sinh θ+iϕ(θ−θ̄1−iπ/2)+iϕ(θ−θ̄2−iπ/2))

−
∞∑

n=2

∫
d̃θ1 . . . d̃θn iϕ(θ1 − θ̄j − iπ/2)ϕ(θ1 − θ2) . . . ϕ(θn−1 − θn)×

× (mL sinh θn+iϕ(θn−θ̄1−iπ/2)+iϕ(θ−θ̄2−iπ/2)), j=1, 2.

(4.11)

Evaluating the residues in (3.7) the result can be written in the form

〈θ̄1, θ̄2|O|θ̄1, θ̄2〉L =
∑

j,k,l

Ljkl, (4.12)

where Ljkl denotes those contributions of the n = j+k+ l term of the original series where

θ̄1 + iπ/2 has been inserted j times, θ̄2 + iπ/2 has been inserted k times, and there are l

auxiliary rapidities which are integrated over. Explicitly

Ljkl=
1

j!k!l!

∫
d̃θ1 . . . d̃θl

FO
2(j+k+l),c(̄θ1+iπ/2, θ̄1+iπ/2, . . . , θ̄2+iπ/2, θ̄2+iπ/2, . . . , θ1, . . . , θl)

nj
1n

k
2

.

(4.13)

Equations (4.12), (4.13) together with (4.9) represent an explicit result for the two-particle

mean values. However, similar to the one-particle case further investigation of the degener-

ate cases of the form factors leads to a remarkably simpler formula, presented in section 7.

Eq. (4.13) motivates the study of those diagonal form factors, where there are multiple

insertions of two different rapidities.

5 Properties of the connected diagonal form factors

In this section we consider the connected evaluation of the diagonal form factors of a local

operator O. They are defined as

FO
2n,c(θ1 . . . θn) = finite piece of FO

2n(θ1 + iπ + η1, . . . , θn + iπ + ηn, θn, . . . , θ1). (5.1)

It follows from the exchange axiom (2.6) that the functions above are completely symmetric

in their variables. They are meromorphic functions on the entire complex plain and are

invariant with respect to an overall boost of the rapidities. It can be proven that they are

iπ periodic and that they inherit the clustering property: [42]

lim
Λ→∞

FO
2n+2m,c(θ1 + Λ, . . . , θn + Λ, θ′1, . . . , θ

′
m) =

1

〈O〉
FO
2n,c(θ1, . . . , θn)F

O
2m,c(θ

′
1, . . . , θ

′
m).

(5.2)

– 11 –



J
H
E
P
0
7
(
2
0
1
3
)
1
5
7

No theorems are known about the growth properties of the diagonal form factors.

However we can assume that there exists a K ∈ R+ such that for any n

∣∣FO
2n,c(θ1, . . . , θn)

∣∣ < n!Kn, θj ∈ C.

This is in accordance with all previous experience and is enough to ensure the convergence

of the series (2.8) for large enough L.

We note that the two-particle connected form factor FO
2c(θ) does not depend on θ by

Lorentz-invariance. Therefore it will be simply denoted by FO
2c in the rest of this work.

5.1 Degenerate cases

In the following we consider degenerate diagonal form factors, ie. when there are multiple

copies of the same rapidity present. We only consider those cases which are relevant for

the one-particle and two-particle mean values, namely when there are multiple copies of at

most two different rapidities.

In the calculations we will extensively make use of sets and lists of indices, therefore

it is useful to introduce a few definitions and notations for further use.

A multiset is a generalization of a set allowing members to appear more than once.

The difference between a multiset and a sequence is that in a multiset the order of the

elements does not matter, whereas in a sequence it does. Multisets of integers will be

denoted using curly braces, for example A = {a1, a2, . . . , an}. Sequences of integers will

be denoted by braces: s = (s1, s2, . . . , sn). If the explicit numbers are given then we don’t

use separation marks, for example s = (1342). Both for sequences and multisets, multiple

addition of a given number will be sometimes denoted in the superscript, for example

{1(×3)} ≡ {1, 1, 1}.

Concatenation of sequences or addition of new elements will be denoted simply by

writing down the constituents without separation marks. For example if

A = (123) and B = (31)

then

(2A1B) = (2123131).

Unions of multisets is defined as a complete addition of the elements and it will be

denoted simply by comma, for example if A = {1, 1} and B = {1, 2, 3} then

{A,B} = {1, 1, 1, 2, 3}.

The diagonal form factor evaluated on a multiset A is defined as

FO
2n,c(A) ≡ FO

2n,c(θA1 , θA2 , . . . , θAn
).

Given a sequence of integers s we define

[s]ϕ ≡ ϕs1s2ϕs2s3 . . . ϕsn−1sn ,
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where it is understood that n is the length of s and

ϕjk = ϕ(θj − θk).

In the simplest case [11]ϕ = ϕ(0). Sometimes we will use the shorthand ϕ0 = ϕ(0).

Given a multiset A we define Sa,b(A) to be the set of all sequences, which contain every

member of A exactly once, and where the first and last elements are a and b, respectively.

It is understood that Sa,b(A) is empty when a /∈ A or b /∈ A. For example

S1,2

(
{1, 1, 2, 3}

)
= {(1132), (1312)}.

5.1.1 Multiple copies of one rapidity

The simplest degenerate case is when in the four-particle diagonal form factor the two

rapidities coincide.

Theorem 1.

FO
4c(θ, θ) = 2ϕ0F

O
2c .

Proof. Consider the form factor FO
4 (θ1, θ2, iπ+θ3, iπ+θ4) at θ1,2,3,4 → θ. In this case there

are 4 kinematical poles and no double singularities. Subtracting all four poles we obtain

the fully connected form factor2

FO
4,fc = FO

4 (θ1 + iπ, θ2 + iπ, θ3, θ4)−

−
i

θ1 − θ3
[S(θ1 − θ2)− S(θ3 − θ4)]F

O
2 (θ2 + iπ, θ4)

−
i

θ2 − θ3
[1− S(θ3 − θ4)S(θ1 − θ2)]F

O
2 (θ1 + iπ, θ4)

−
i

θ1 − θ4
[S(θ1 − θ2)S(θ3 − θ4)− 1]FO

2 (θ2 + iπ, θ3)

−
i

θ2 − θ4
[S(θ3 − θ4)− S(θ1 − θ2)]F

O
2 (θ1 + iπ, θ3).

The object above has manifestly the same exchange properties as the original form factor.

Therefore it vanishes as θ1 → θ2 or θ3 → θ4 and even the point θ1 = θ2 = θ3 = θ4 is

completely regular and continuous. Using the approximation S(ε) ≈ −1− iϕ0ε we obtain

FO
4,fc ≈ FO

4 (θ1 + iπ, θ2 + iπ, θ3, θ4)−

−
1

θ1 − θ3
(θ1 − θ2 − θ3 + θ4)ϕ0F

O
2 (θ2 + iπ, θ4)

−
1

θ2 − θ3
(θ3 − θ4 + θ1 − θ2)ϕ0F

O
2 (θ1 + iπ, θ4)

−
1

θ1 − θ4
(−θ1 + θ2 − θ3 + θ4)ϕ0F

O
2 (θ2 + iπ, θ3)

−
1

θ2 − θ4
(θ3 − θ4 − θ1 + θ2)ϕ0F

O
2 (θ1 + iπ, θ3).

2The main idea of this proof was suggested by Gábor Takács.
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The connected FF is obtained by taking θ1 → θ4 and θ2 → θ3 and subtracting the poles of

the form (θ1 − θ4)/(θ2 − θ3) and (θ2 − θ3)/(θ1 − θ4):

FO
4c(θ1, θ2) = lim

θ1→θ4
lim

θ2→θ3

[
FO
4 (θ1 + iπ, θ2 + iπ, θ3, θ4)−

−
θ1 − θ4
θ2 − θ3

ϕ0F
O
2 (θ1 + iπ, θ4)−

θ2 − θ3
θ1 − θ4

ϕ0F
O
2 (θ2 + iπ, θ3)

]
.

Using

lim
θ1,2,3,4→θ

FO
4,fc(θ1 + iπ, θ2 + iπ, θ3, θ4) = 0

we obtain

lim
θ1→θ2

FO
4c(θ1, θ2) = 2ϕ0F

O
2,c.

A similar calculation can be performed in the three-particle case when two rapidities

coincide:

Theorem 2.

FO
6c(θ1, θ1, θ3) = 2(ϕ0F

O
4c(θ1, θ3) + ϕ2

13F
O
2c).

Proof. Consider the fully connected form factor

FO
6,fc = FO

6 (θ1 + iπ, θ2 + iπ, θ3 + iπ, θ′3, θ
′
2, θ

′
1)−

−
i

θ1−θ′1

[
S(θ1−θ2)S(θ1−θ3)S(θ

′
2−θ′1)S(θ

′
3−θ′1)−1

]
FO
4 (θ2+iπ, θ3+iπ, θ′3, θ

′
2)

−
i

θ1−θ′2

[
S(θ1−θ2)S(θ1−θ3)S(θ

′
3−θ′2)−S(θ′2−θ′1)

]
FO
4 (θ2+iπ, θ3+iπ, θ′3, θ

′
1)

−
i

θ2−θ′1

[
S(θ2−θ3)S(θ

′
2−θ′1)S(θ

′
3−θ′1)−S(θ1−θ2)

]
FO
4 (θ1+iπ, θ3+iπ, θ′3, θ

′
2)

−
i

θ2−θ′2

[
S(θ2−θ3)S(θ

′
3−θ′2)−S(θ1−θ2)S(θ

′
2−θ′1)

]
FO
4 (θ1+iπ, θ3+iπ, θ′3, θ

′
1).

This object satisfies the exchange axioms and therefore it vanishes at the degenerate point.

Expanding the pre-factors to first order

FO
6,fc = FO

6 (θ1 + iπ, θ2 + iπ, θ3 + iπ, θ′3, θ
′
2, θ

′
1)

+
1

ε1
[ϕ0(ε1 − ε2) + ϕ13(ε1 − ε3)]F

O
4 (θ2 + iπ, θ3 + iπ, θ′3, θ

′
2)

−
1

θ1 − θ′2

[
ϕ13(θ1 − θ′2 − ε3) + ϕ0(θ1 + θ′1 − θ2 − θ′2)

]
FO
4 (θ2 + iπ, θ3 + iπ, θ′3, θ

′
1)

−
1

θ2 − θ′1

[
ϕ13(θ2 − θ′1 − ε3)− ϕ0(θ1 + θ′1 − θ2 − θ′2)

]
FO
4 (θ1 + iπ, θ3 + iπ, θ′3, θ

′
2)

+
1

ε2
[ϕ13(ε2 − ε3)− ϕ0(ε1 − ε2)]F

O
4 (θ1 + iπ, θ3 + iπ, θ′3, θ

′
1).
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We have to collect all those contributions which are non-singular in the limit ε1,2,3 → 0.

From the first and last line we get (already assuming θ2 → θ1)

2(ϕ0 + ϕ13)F
O
4c(θ1, θ3).

In the second and third line we use

FO
4 (θ2 + iπ, θ3 + iπ, θ′3, θ

′
1) = FO

4c(θ1, θ3) +

(
θ2 − θ′1

ε3
+

ε3
θ2 − θ′1

)
ϕ13F

O
2c

FO
4 (θ1 + iπ, θ3 + iπ, θ′3, θ

′
2) = FO

4c(θ1, θ3) +

(
θ1 − θ′2

ε3
+

ε3
θ1 − θ′2

)
ϕ13F

O
2c .

This way we obtain the contributions

−

(
2ϕ13 + 2ϕ0 − ϕ0

(
θ2 − θ′1
θ1 − θ′2

+
θ1 − θ′2
θ2 − θ′1

))
FO
4c(θ1, θ3) +

(
θ2 − θ′1
θ1 − θ′2

+
θ1 − θ′2
θ2 − θ′1

)
ϕ2
13F

O
2c .

Taking θ′1 → θ1 and θ′2 → θ2

− (2ϕ13 + 4ϕ0)F
O
4c(θ1, θ3)− 2ϕ2

13F
O
2c .

Adding all the contributions we obtain the statement of the theorem.

The higher particle case of two coinciding rapidities is given as follows.

Theorem 3. Let A = {2, 3, . . . ,m}. Then

FO
c (1, 1, A) = 2

∑

A=A+∪A−

FO
c (1, A+)

∑

s∈S1,1(1,1,A−)

[s]ϕ. (5.3)

The sum in (5.3) runs over all bi-partite partitions of the set A. For example in the case

of A = {2, 3} we have

FO
8c(1, 1, 2, 3) = 2

(
FO
6c(1, 2, 3)[11]ϕ+

+ FO
4c(1, 2)[131]ϕ + FO

4c(1, 3)[121]ϕ+

+ FO
2c(1)([1231]ϕ + [1321]ϕ)

)
.

Proof. The proof can be given following the same steps as in the three-particle case pre-

sented above.

The following theorem concerns the case when there are more than two occurrences of

θ1 in the form factor:

Theorem 4. Let B = {1(×n)} with n ≥ 2 and A an arbitrary multiset not including 1.

Then

FO
2(n+m),c(B,A) = n!

∑

A=A+∪A−

FO
c (1, A+)

∑

s∈S1,1(B,A−)

[s]ϕ, (5.4)

where |A| = m.
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Proof. For technical reasons introduce new labels to the first n rapidities as (1a, 1b, . . . ).

The degenerate form factor can be obtained by repeated use of eq. (5.3). Here for technical

reasons we distinguish the first rapidities too, therefore (5.3) can be written down without

a factor of 2, extending the summation over all possible paths starting and ending with

either of the 1’s. Then the repeated use of theorem 3 results in all possible paths starting

and ending with one of the 1’s. Removing the labels at the end results in a factor of n!.

As a special case of the above theorem we obtain the result for the completely degen-

erate case:

FO
2n,c(1, 1, . . . , 1) = n!ϕ(0)n−1FO

2,c. (5.5)

5.1.2 Multiple copies of two rapidities

Theorem 5. Let A = {1(×n), 2(×m)} with n,m ≥ 2. Then

FO
2(n+m),c(A) = n!m!


FO

4c(1, 2)

ϕ12

∑

s∈S1,2(A)

[s]ϕ + FO
2c(1)

∑

s∈S1,1(A)

[s]ϕ + FO
2c(2)

∑

s∈S2,2(A)

[s]ϕ


 .

Proof. There are two ways to calculate this diagonal case. We can apply theorem 4 first to

the 1’s, then to the 2’s, or the other way around. Performing the steps in the first way, it

is easy to see that the only contributions to the coefficient of FO
2c(1) are those given above.

The coefficient of FO
2c(2) can be obtained by performing the two steps in the second way.

In order to obtain the coefficient of FO
4c(1, 2) we attach extra labels to the num-

bers as {1a, 1b, . . . , 2a, 2b, . . . }. We obtain terms of the form [1B1]ϕ[2C2]ϕ, where A =

{1, 1, 2, 2, B, C} and C consists only of 2’s (B may include both 1’s and 2’s) and terms of

the form [1B1]ϕ such that A = {1, 1, 2, B}. For the terms in the first case we use the identity

[1B1]ϕ[2C2]ϕ =
[1B12C2]ϕ

ϕ12
,

whereas in the second case we have

[1B1]ϕ =
[1B12]ϕ
ϕ12

.

This way we obtain a summation over all paths starting with one of the 1’s and ending

with one of the 2’s. Finally removing the labels we obtain a factor of n!m!.

Finally we consider the case when there are a multiple 1’s and 2’s and an arbitrary

number of other rapidities.

Theorem 6. Let A = {1(×n), 2(×m), B} with B = {3, 4, . . . , k + 2} such that |B| = k. The

degenerate form factor is equal to

FO
2(n+m+o),c(A) =n!m!

∑

B=B+∪B−

(
FO
c (1, 2, B+)

ϕ12

∑

s∈S̃1,2(A\B+)

[s]ϕ+

+ FO
c (1, B+)

∑

s∈S1,1(A\B+)

[s]ϕ+FO
c (2, B+)

∑

s∈S2,2(A\B+)

[s]ϕ

)
,

(5.6)
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where S̃1,2(A) is the sum of all paths consisting of the elements of A, which start with 1,

end with 2, and the first number after the rightmost 1 is 2. For example

S̃1,2({1, 1, 2, 2, 3}) = {(12312), (13122), (13212), (11232)}.

Proof. The theorem can be proven along the lines of the previous proof. The coefficients

of the form factors FO
c (1, B+) and FO

c (2, B+) are easily obtained by performing the steps

of theorem 4 first for the 1’s, then for the 2’s, or the other way around, respectively.

In order to obtain the coefficients of the form factors FO
c (1, 2, B+) we first perform the-

orem 4 for the 1’s and then for the 2’s. This way we obtain terms of the form [1C1]ϕ[2D2]ϕ
with A \ B+ = (1, 1, 2, 2, C,D) such that D contains no 1, and terms of the form [1C1]ϕ
with A \B+ = (1, 1, 2, C). Using again the identities

[1C1]ϕ[2D2]ϕ =
[1C12D2]ϕ

ϕ12
, [1C1]ϕ =

[1C12]ϕ
ϕ12

we obtain the desired statement.

6 One-particle expectation values

In this section we calculate the one-particle mean value (4.3)–(4.4) using the results of the

previous section for the degenerate form factors.

It follows from (2.12) that the asymptotic result is

〈θ̄|O|θ̄〉 =
FO
2,c

mL cosh θ̄
+ 〈O〉. (6.1)

It is instructive to first obtain this asymptotic formula, neglecting all exponential cor-

rections. This is presented in the following subsection. The exact result with all terms

included is calculated in subsection 6.2.

6.1 All orders in 1/L

In the asymptotic approximation we only keep the contributions with k = 0 from (4.3)–

(4.4). These are the terms which do not contain the weight function 1/(1 + eε(θ)) ∼ e−mL:

〈θ̄|O|θ̄〉 = 〈O〉+
∞∑

j=1

1

j!

1

nj
1

FO
2j,c(θ̄, θ̄, . . . , θ̄). (6.2)

In this approximation n1 is

n1 = mL cosh θ̄ + ϕ(0) +O(e−mR).

The relation (5.5) is used to sum up the second term in (6.2) as

∞∑

j=1

1

j!

(
1

mL cosh θ̄ + ϕ(0)

)j

FO
2j,c(θ̄, θ̄, . . . , θ̄) =

=
FO
2,c

mL cosh θ̄ + ϕ(0)

∞∑

j=1

(
ϕ(0)

mL cosh θ̄ + ϕ(0)

)j−1

=
FO
2,c

mL cosh θ̄
.

(6.3)
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Putting together (6.2) and (6.3) we obtain indeed (6.1). It is interesting that a resummation

of an infinite number of terms was required to obtain this simple formula.

6.2 Exponential corrections

Here we consider all terms in (4.3)–(4.4). The notations used in the following calculation

are given at the beginning of subsection 5.1.

A given Ljk can be evaluated using the statement (5.4) for the degenerate form factors

as

Ljk =
1

k!

∫
d̃θ2 . . . d̃θk+1 n−j

1 ×

×
∑

Ak=A−∪A+

FO
2(1+|A+|),c(θ̄ + iπ/2, A+)

∑

s∈S11(1(×j),A−)

[s]ϕ,

where we assumed j > 1, Ak = {2, 3, . . . , k + 1} and we identified θ1 = θ̄ + iπ/2.

Summing up all terms, grouping them according to the subset A+ and using the

symmetry in the variables the mean value can be cast in the form

〈θ̄|O|θ̄〉 = 〈O〉ε +

∑∞
l=0

1
l!

∫
d̃θ2 . . . d̃θl+1 FO

2(1+l),c(θ̄ + iπ/2, θ2, . . . , θl+1)

N1
(6.4)

with

〈O〉ε =
∑

n

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)


FO

2n,c(θ1, . . . , θn), (6.5)

and
1

N1
=

1

n1
+

∞∑

j=2

∞∑

l=0

n−j
1

1

l!

∫
d̃θ2 . . . d̃θl+1

∑

s∈S11(1(×j),2,3,...,l+1)

[s]ϕ. (6.6)

Here the first term 1/n1 comes from those contributions where there is only a single inser-

tion of θ̄ + iπ/2. The infinite sum comes from the terms with multiple insertions.

On a sequence s we define the function

[s]1 = n
−(m(1,s)−1)
1

∫
d̃θ2 . . . d̃θls−m(1,s)+1 [s]ϕ. (6.7)

Here ls denotes the total length of the sequence and m(1, s) denotes the multiplicity of 1

in s. For example

[11231]1 =
1

n2
1

∫
d̃θ2d̃θ3 ϕ11ϕ12ϕ23ϕ31.

It is easy to see that under multiplication this function behaves as

[1A1]1 × [1B1]1 = [1A1B1]1, (6.8)

where A and B are arbitrary finite sequences.

Let P1,1 be the set of finite sequences with the following properties: s ∈ P1,1 if
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1. Either s = (1(×j)) with some j ≥ 2 or s is a permutation of the sequence

(1(×j), 2, 3, . . . , k)

with some j, k ≥ 2

2. s starts and ends with 1.

3. When numbers other than 1 are present, they appear in increasing order.

The first few examples are given below:

P1,1 = {(11), (111), (121), (1111), (1121), (1211), (1231),

(11111), (12111), (11211), (11121), (11231), (12131), (12311), (12341), . . . }.

With these notations (6.6) can be written as

n1

N1
= 1 +

∑

s∈P1,1

[s]1. (6.9)

Note that the property 3 in the definition of P1,1 was needed to remove a factor of 1/l!

from the expression (6.6).

Equation (6.9) presents an explicit representation of N1, however it is possible to derive

a simpler form. Let T1,1 be the subset of P1,1 containing only those sequences in which 1

appears only twice, at the beginning and at the end:

T1,1 = {(11), (121), (1231), (12341), . . . }.

It can be considered the set of the “connected” components of P1,1.

Theorem 7. Inverting (6.6) gives

N1

n1
= 1−

∑

s∈T1,1

[s]1. (6.10)

Proof. It needs to be proven that

∑

s∈P1,1

[s]1 −
∑

s∈T1,1

[s]1 =


 ∑

s∈T1,1

[s]1




 ∑

s∈P1,1

[s]1


 .

In this form the l.h.s. consists of the sum of all allowed sequences in which the number 1 is

present at least 3 times. Given an arbitrary such sequence s it is possible to reconstruct it

as s = 1A1B1 such that (1A1) ∈ T1,1 and (1B1) ∈ P1,1. This provides a bijection between

the elements on the l.h.s. and all possible products on the r.h.s. and using (6.8) we obtain

a complete equality of the two sides.
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Explicitly expanding (6.10) we obtain

N1 = n1 − ϕ(0)−

∫
d̃θ2 ϕ(θ2 − θ̄ − iπ/2)2

−

∫
d̃θ2d̃θ3 ϕ(θ2 − θ̄ − iπ/2)ϕ(θ2 − θ3)ϕ(θ3 − θ̄ − iπ/2)− . . .

Substituting the explicit representation (4.7) for n1 results in

N1 = mL

(
cosh θ̄ +

∫
d̃θ iϕ(θ − θ̄ + iπ/2) sinh θ

+
∞∑

n=2

∫
d̃θ1 . . . d̃θn iϕ(θ1 − θ̄ + iπ/2)ϕ(θ1 − θ2) . . . ϕ(θn−1 − θn) sinh θn

)
.

(6.11)

This is our final formula for the normalization factor in (6.4).

6.3 Interpretation of the result

Consider the function Q̄(θ̄) defined in (4.2). Taking the total derivative with respect to θ̄

dQ̄

dθ̄
= mL cosh θ̄ +

∫
dθ′

2π
iϕ(θ′ − θ̄ + iπ/2)

1

1 + eε(θ′)

(
∂ε

∂θ
+

∂ε

∂θ̄

)
. (6.12)

Here it is understood that the pseudoenergy function ε(θ) also depends on θ̄ through the

source term in (3.1).

Differentiating (3.4)

(1− K̂)

(
∂ε

∂θ
+

∂ε

∂θ̄

)
= mL sinh θ (6.13)

with K(θ, θ′) = ϕ(θ − θ′). Inverting the integral equation and substituting into (6.12)

∂Q̄

∂θ̄
= mL

(
cosh θ̄ +

∫
d̃θ iϕ(θ − θ̄ + iπ/2) sinh θ

+

∞∑

n=2

∫
d̃θ1 . . . d̃θn iϕ(θ1 − θ̄ + iπ/2)ϕ(θ1 − θ2) . . . ϕ(θn−1 − θn) sinh θn

)
=

= N1.

(6.14)

In other words, the normalization factor obtained in the previous subsection coincides with

the exact total derivative of the quantization condition for the rapidity θ̄. This is analogous

to the asymptotic result (2.12), which involves the derivatives of the (asymptotic) Bethe

equations.

To conclude this section we present the one-particle result in a compact formula:

〈θ̄|O|θ̄〉L =

=
∞∑

n=0

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)


FO

2n,c(θ1, . . . , θn)

+

(
∂Q̄

∂θ̄

)−1 ∞∑

n=0

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)


FO

2(n+1),c(θ̄+iπ/2, θ1, . . . , θn).

(6.15)
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The infinite series in the second line above is a result of the terms Ljk with j = 0 and it has

exactly the same form as the original LeClair-Mussardo series; the only difference is that

the excited state pseudoenergy function is used in the weight functions. The third line is

an analogous series, with the two differences being the presence of the rapidity θ̄ + iπ/2

and the normalization factor which is of order 1/L.

7 Two-particle expectation values

Here we perform the partial summation of the expansion (4.12)–(4.13) for the two-particle

mean-value. The asymptotic result following from (2.12) is

〈θ̄1, θ̄2|O|θ̄1, θ̄2〉L = 〈O〉+

+
FO
4c(θ̄1, θ̄2)+FO

4c(θ̄1)(mL cosh θ̄2+ϕ12)+FO
4c(θ̄2)(mL cosh θ̄1+ϕ12)

ρ2(θ̄1, θ̄2)
,

(7.1)

with

ρ2(θ̄1, θ̄2) = m2L2 cosh θ̄1 cosh θ̄2 +mL(cosh θ̄1 + cosh θ̄2)ϕ12.

The summation procedure to obtain this asymptotic result is already involved and is pre-

sented in the following subsection. The evaluation of the exact result (4.12)–(4.13) with

all exponential corrections included is presented in subsection 7.2.

7.1 All orders in 1/L

Dropping the exponential corrections amounts to summing up the terms with l = 0

in (4.12). This leads to

〈θ̄1, θ̄2|O|θ̄1, θ̄2〉 =
∞∑

j,k=1

Ljk0 =

= 〈O〉+
∞∑

m=1

1

m!

2∑

i1...im=1

FO
2m,c(θ̄i1 , θ̄i2 , . . . , θ̄im)

ni1ni2 . . . nim

,

(7.2)

where the normalization factors in this approximation are

1

nj
≡ Resθ=θ̄j

1

1 + eε(θ)
=

1

mL cosh θ̄j + ϕ(0) + ϕ(θ̄1 − θ̄2)
+O(e−mR), j = 1, 2.

Let us denote by Lj the sum of the terms which include j rapidities in total:

Lj =
∑

k+l=j

Lkl0.
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The first few cases can be evaluated using theorem 5 explicitly as

L1 = FO
2c

(
1

n1
+

1

n2

)

L2 = FO
2c

(
ϕ0

n2
1

+
ϕ0

n2
2

)
+ FO

4c(1, 2)
1

n1n2

L3 = FO
2c

(
ϕ2
0

n3
1

+
ϕ2
0

n3
2

+
ϕ2
12

n2
1n2

+
ϕ2
12

n2
2n1

)

+ FO
4c(1, 2)

(
ϕ0

n2
1n2

+
ϕ0

n2
2n1

)

L4 = FO
2c

(
ϕ3
0

n4
1

+
ϕ3
0

n4
2

+
2ϕ2

12ϕ0

n3
1n2

+
2ϕ2

12ϕ0

n3
2n1

+
2ϕ2

12ϕ0

n2
2n

2
1

)

+ FO
4c(1, 2)

(
ϕ2
0

n3
1n2

+
ϕ2
0

n3
2n1

+
ϕ2
0 + ϕ2

12

n2
1n

2
2

)
.

All terms in this series can be obtained by an auxiliary problem. Let Ai, i = 0 . . .∞

a series of 2× 2 matrices satisfying the recursion relation

Ai+1 =

(
1
n1

0

0 1
n2

)
+

(
ϕ0

n1

ϕ12

n1
ϕ12

n2

ϕ0

n2

)
Ai, A0 = 0. (7.3)

Theorem 8. The summation of the series Lj to a given order k is given by

k∑

j=0

Lj = Tr

[(
FO
2c

FO
4c(1,2)
2ϕ12

FO
4c(1,2)
2ϕ12

FO
2c

)
Ak

]
. (7.4)

Proof. The matrix multiplication in (7.3) generates the sum over all possible paths con-

sisting of the numbers 1 and 2. It also generates the proper normalization factors which

appear in (7.2). The statement of the theorem then follows from theorem 5.

Given that L is large enough the expressions in (7.4) are convergent and

∞∑

j=0

Lj = Tr

[(
FO
2c

FO
4c(1,2)
2ϕ12

FO
4c(1,2)
2ϕ12

FO
2c

)
A∞

]
, with A∞ = lim

j→∞
Aj . (7.5)

The limiting matrix A∞ can be obtained from (7.3) as

A∞ =

(
I −

(
ϕ0

n1

ϕ12

n1
ϕ12

n2

ϕ0

n2

))−1(
1
n1

0

0 1
n2

)
=

1

ρ2

(
mL cosh θ̄2 + ϕ12 ϕ12

ϕ12 mL cosh θ̄1 + ϕ12

)
. (7.6)

Putting together (7.5) and (7.6) leads to the desired statement (7.1).

7.2 Exponential corrections

Here we use theorem 6 to evaluate the expansion (4.12)–(4.13). The terms will be grouped

according to the indices j and k.
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The terms with no insertions of the external rapidities are L0,0,l with l = 0 . . .∞:

∞∑

l=0

L0,0,l ≡ 〈O〉ε =
∑

n

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)


FO

2n,c(θ1, . . . , θn). (7.7)

The terms L1,0,l, L0,1,l and L1,1,l are simply

L1,0,l =
1

n1

1

l!

∫
d̃θ3 . . . d̃θl+2 FO

2(1+l),c(θ̄1 + iπ/2, θ3, . . . , θl+2)

L0,1,l =
1

n2

1

l!

∫
d̃θ3 . . . d̃θl+2 FO

2(1+l),c(θ̄2 + iπ/2, θ3, . . . , θl+2)

L1,1,l =
1

n1n2

1

l!

∫
d̃θ3 . . . d̃θl+2 FO

2(2+l),c(θ̄1 + iπ/2, θ̄2 + iπ/2, θ3, . . . , θl+2).

The terms Lj,0,l and L0,j,l with j ≥ 2, ie. those with multiple insertions of either one

of θ̄1,2 + iπ/2 can be evaluated using theorem 4:

Lj,0,l =
1

k!

∫
d̃θ3 . . . d̃θk+2 n−j

1 ×

×
∑

Ak=A−∪A+

FO
2(1+|A+|),c(θ̄1 + iπ/2, A+)

∑

s∈S11(1(×j),A−)

[s]ϕ,

where we assumed j > 1, Ak = {3, . . . , k + 2} and in the notation for the sequences we

identified θ1 ≡ θ̄1 + iπ/2.

Similarly

L0,j,l =
1

k!

∫
d̃θ3 . . . d̃θk+2 n−j

2 ×

×
∑

Ak=A−∪A+

FO
2(1+|A+|),c(θ̄2 + iπ/2, A+)

∑

s∈S22(2(×j),A−)

[s]ϕ,

with θ2 ≡ θ̄2 + iπ/2.

The terms Lj,1,l can also be evaluated using theorem 4:

Lj,1,l =
1

k!

∫
d̃θ3 . . . d̃θk+2

1

nj
1n2

×

×
∑

Ak=A−∪A+

(
FO
2(2+|A+|),c(θ̄1 + iπ/2, θ̄2 + iπ/2, A+)

∑

s∈S11(1(×j),A−)

[s]ϕ

+ FO
2(1+|A+|),c(θ̄1 + iπ/2, A+)

∑

s∈S11(1(×j),2,A−)

[s]ϕ

)
,

where again Ak = {3, . . . , k + 2}. An analogous expression holds for the terms L1,j,l with

the role of the numbers 1 and 2 interchanged.
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Finally theorem 6 yields the terms with multiple insertions of both external rapidities:

Lj,k,l =
1

l!

∫
d̃θ3 . . . d̃θl+2

1

nj
1n

k
2

×

×
∑

Al=A−∪A+

(
FO
2(1+|A+|),c(θ̄1 + iπ/2, A+)

∑

s∈S11(1(×j),2(×k),A−)

[s]ϕ

+ FO
2(1+|A+|),c(θ̄2 + iπ/2, A+)

∑

s∈S22(1(×j),2(×k),A−)

[s]ϕ

+
1

ϕ12
FO
2(2+|A+|),c(θ̄1+iπ/2, θ̄2+iπ/2, A+)

∑

s∈S̃12(1(×j),2(×k),A−)

[s]ϕ

)
,

with Al = {3, . . . , l + 2}.

Adding all the terms above and grouping them according to the form factor content

we obtain the expansion

〈θ̄1, θ̄2|O|θ̄1, θ̄2〉L = 〈O〉ε+

+

∑∞
l=0

1
k!

∫
d̃θ3 . . . d̃θk+2 FO

2(1+k),c(θ̄1 + iπ/2, θ3, . . . , θk+2)

N1

+

∑∞
k=0

1
k!

∫
d̃θ3 . . . d̃θk+2 FO

2(1+k),c(θ̄2 + iπ/2, θ3, . . . , θk+2)

N2

+

∑∞
k=0

1
k!

∫
d̃θ3 . . . d̃θk+2 FO

2(2+k),c(θ̄1 + iπ/2, θ̄2 + iπ/2, θ3, . . . , θk+2)

N12
,

(7.8)

where the normalization factors are

1

N1
=

1

n1
+

∞∑

j=2

∞∑

l=0

1

nj
1

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S11(1(×j),3,...,l+2)

[s]ϕ

+
∞∑

j=2

∞∑

k=1

∞∑

l=0

1

nj
1n

k
2

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S11(1(×j),2(×k),3,...,l+2)

[s]ϕ, (7.9)

1

N2
=

1

n2
+

∞∑

j=2

∞∑

l=0

1

nj
2

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S22(2(×j),3,...,l+2)

[s]ϕ

+
∞∑

j=2

∞∑

k=1

∞∑

l=0

1

nj
2n

k
1

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S22(1(×k),2(×j),3,...,l+2)

[s]ϕ (7.10)
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and finally

1

N12
=

1

n1n2
+

∞∑

j=2

∞∑

l=0

1

nj
1n2

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S11(1(×j),3,...,l+2)

[s]ϕ

+
∞∑

j=2

∞∑

l=0

1

n1n
j
2

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S22(2(×j),3,...,l+2)

[s]ϕ

+
1

ϕ12

∞∑

j=2

∞∑

k=2

∞∑

l=0

1

nj
1n

k
2

1

l!

∫
d̃θ3 . . . d̃θl+2

∑

s∈S̃12(1(×j),2(×k),3,...,l+2)

[s]ϕ.

(7.11)

The double and triple sums in the previous three formulas can be simplified dramat-

ically. However, first we have to introduce new notations motivated by the expressions

above.

Let Ra,b, a, b = 1, 2 be four sets of finite sequences with the following properties:

s ∈ Ra,b if

1. Either s = (1(×j)) or s = (2(×j)) with some j ≥ 2, or s is a permutation of the

sequences

(1(×j), 2(×k))

with some j ≥ 1, k ≥ 1, or

(1(×j), 2(×k), 3, . . . , l)

with some j + k ≥ 2 and l ≥ 3.

2. s starts with a and ends with b.

3. When numbers other than 1 and 2 are present, they appear in increasing order.

The difference between the sets Ra,b and the set P1,1 introduced in section 6.2 is that in

the sequences in Ra,b the number 2 can appear multiple times at arbitrary positions and

only the ordering of the numbers greater than 2 is constrained.

It is useful to introduce a shorthand for the integrals entering (7.9)–(7.11). We define

[s]12 = n
−m(1,s)
1 n

−m(2,s)
2 ns(ls)

∫
d̃θ3 . . . d̃θls−l(1,s)−l(2,s) [s]ϕ, (7.12)

where m(1, s) and m(2, s) denote the multiplicity of the numbers 1 and 2 in s, respectively

and ls is simply the length of s (therefore s(ls) denotes the last element of the sequence).

For example

[21321]12 =
1

n1n2
2

ϕ2
12

∫
d̃θ3 ϕ23ϕ13.

This function satisfies

[aAb]12 × [bBc]12 = [aAbBc]12 (7.13)

for every a, b, c = 1, 2 and A,B being arbitrary finite sequences.
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With these notations the first two normalization factors in (7.8) can be expressed as

1

N1
=

1

n1
+

1

n1

∑

s∈R1,1

[s]12 (7.14)

1

N2
=

1

n2
+

1

n2

∑

s∈R2,2

[s]12. (7.15)

It is also possible to obtain a compact formula for N12 expressed as a simple sum. We

define R̃1,2 to be the subset of R1,2 which includes sequences where the first number after

the rightmost 1 is 2. The first few sequences are

R̃1,2 =
{
(12), (112), (122), (1112), (1122), (1222), (1232), (1312), . . .

}
.

Theorem 9.
1

N12
=

1

ϕ12

1

n2

∑

s∈R̃1,2

[s]12. (7.16)

Proof. The idea of the proof is to show that each term in (7.11) corresponds to one of the

elements of R̃1,2 and that (7.16) provides the correct normalization factors.

The first term in (7.11) corresponds to the sequence (12) ∈ R̃1,2. We have by definition

1

n1n2
=

1

ϕ12

[12]ϕ
n1n2

.

Concerning the second term in the r.h.s. of (7.11) note that if s ∈ S11(1
(×j), 3, . . . , l+2)

then the sequence (s2) satisfies

(s2) ∈ S̃12(1
(×j), 2, 3, . . . , l + 2), [s2]ϕ = ϕ12[s]ϕ.

Similarly, if s ∈ S22(2
(×j), 3, . . . , l + 2) then the sequence (1s) satisfies

(1s) ∈ S̃12(1, 2
(×j), 3, . . . , l + 2), [1s]ϕ = ϕ12[s]ϕ.

These two cases give the sequences of R̃1,2 in which the number 2 (or 1) appears only once,

respectively.

Finally the the last line of (7.11) yields all the remaining sequences, where both 1 and

2 appear at least twice.

Using the definition (7.12) we obtain the statement of the theorem.

We introduce the four sets of sequences Ta,b with a, b = 1, 2:

Ta,b ≡ {(ab), (a3b), (a34b), (a345b), . . . }. (7.17)

Consider the auxiliary problem

Ai+1 =

(
1
n1

0

0 1
n2

)
+M ×Ai A0 = 0 (7.18)
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with

M =

(∑
s∈T1,1

[s]12
∑

s∈T1,2
[s]12∑

s∈T2,1
[s]12

∑
s∈T2,2

[s]12

)
.

This recursion relation generates all sequences of integers which are elements of the

sets Ra,b.

Theorem 10. The limiting matrix A∞ has the following diagonal elements:

(A∞)1,1 =
1

N1
(A∞)2,2 =

1

N2
. (7.19)

Proof. The statement of the theorem follows from the property (7.13).

Theorem 11. The off-diagonal element (A∞)1,2 is

(A∞)1,2 =
n1

n2

1

ϕ12

∑

s∈T1,2

[s]12
∑

s∈R̃1,2

[s]12. (7.20)

Proof. The iterative procedure gives

(A∞)1,2 =
1

n2

∑

s∈R1,2

[s]12.

A given sequence s ∈ R1,2 can be written as

s = (A1C2B),

such that if A is not empty then it starts with 1, if B is not empty then it ends with 2,

and neither B nor C contain any 1’s. Using the identity

[A1C2B]12 =
n1

ϕ12
[A12B]12[1C2]12

we obtain an exact bijection between the two sides of (7.20).

We introduce the quantities

Nϕ ≡ n1

∑

s∈T1,2

[s]12

and

Nj ≡ nj(1−Mj,j)−Nϕ j = 1, 2. (7.21)

The explicit form of Nϕ is

Nϕ = ϕ(θ̄1 − θ̄2) +

∫
d̃θ ϕ(θ − θ̄1 − iπ/2)ϕ(θ − θ̄2 − iπ/2)+

+
∞∑

n=2

∫
d̃θ1 . . . d̃θn ϕ(θ1 − θ̄1 − iπ/2)ϕ12 . . . ϕn−1,n ϕ(θn − θ̄2 − iπ/2).

(7.22)
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On the other hand, using the definitions (7.21) and (7.18) and the explicit form of n1,2

given by (4.11) we obtain the integral series

Nj = m cosh θ̄j +

∫
d̃θ iϕ(θ − θ̄j + iπ/2)m sinh θ+

+
∞∑

n=2

∫
d̃θ1 . . . d̃θn iϕ(θ1 − θ̄j + iπ/2)ϕ12 . . . ϕn−1,n m sinh θn

with j = 1, 2.

(7.23)

With these notations the limiting matrix A∞ can be obtained as

A∞ = (I −M)−1

(
1
n1

0

0 1
n2

)
=

1

N1N2 + (N1 +N2)Nϕ

(
N2 +Nϕ Nϕ

Nϕ N1 +Nϕ

)
. (7.24)

Putting together (7.8), (7.19), (7.16) and (7.20) we obtain our final formula

〈θ̄1, θ̄2|O|θ̄1, θ̄2〉L = 〈O〉ε +
1

N1N2 + (N1 +N2)Nϕ

{

+ (N2 +Nϕ)
∞∑

k=0

1

k!

∫
d̃θ1 . . . d̃θk FO

2(1+k),c(θ̄1 + iπ/2, θ1, . . . , θk)

+ (N1 +Nϕ)
∞∑

k=0

1

k!

∫
d̃θ1 . . . d̃θk FO

2(1+k),c(θ̄2 + iπ/2, θ1, . . . , θk)

+
∞∑

k=0

1

k!

∫
d̃θ1 . . . d̃θk FO

2(2+k),c(θ̄1 + iπ/2, θ̄2 + iπ/2, θ1, . . . , θk)
}
.

(7.25)

7.3 Interpretation of the result

The quantities N1, N2 and Nϕ defined above appear to be dressed versions of the elements

of the Jacobian of the two-particle Bethe equations. In the following we show that they

are indeed the appropriate total derivatives of the two-particle quantization conditions as

defined by the excited state TBA.

We define

Q̄j = −iε(θ̄j + iπ/2), j = 1, 2,

and

Kjk ≡
∂Q̄j

∂θ̄k
.

Here it is understood that a total derivative has to be taken, including the dependence of

the pseudoenergy function on the roots θ̄1,2.

The diagonal elements of the Jacobian are given by

Kjj = mL cosh θ̄j+ϕ(θ̄1−θ̄2)−

∫
dθ′

2π
iϕ(θ′−θ̄j−iπ/2)

1

1 + eε(θ′)

(
∂ε

∂θ
+

∂ε

∂θ̄j

)
, j = 1, 2.

For the off-diagonal elements

Kjk = −ϕ(θ̄j − θ̄k)−

∫
dθ′

2π
iϕ(θ′ − θ̄j − iπ/2)

1

1 + eε(θ′)
∂ε

∂θ̄k
, j 6= k.
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It follows from (4.8) that the derivatives of the pseudoenergy satisfy

(1− K̂)
∂ε

∂θ̄j
= −iϕ(θ − θ̄j − iπ/2), j = 1, 2 and

(1− K̂)
∂ε

∂θ
= mL sinh θ + iϕ(θ − θ̄1 − iπ/2) + iϕ(θ − θ̄2 − iπ/2).

Inverting the integral operator K̂ and comparing with the explicit formulas (7.22)–

(7.23) we find

Kjk ≡
∂Q̄j

∂θ̄k
=

(
N1 +Nϕ −Nϕ

−Nϕ N2 +Nϕ

)
.

Therefore our final result (7.25) is indeed a “dressed version” of the asymptotic re-

sult (7.1), where instead of single form factors an appropriate integral series appears, and

the derivatives of the asymptotic Bethe equations have been replaced by the total deriva-

tives of the exact excited state quantization conditions.

8 Conjecture for the general multiparticle case

The results of the previous two sections suggest a simple generalization to the higher

particle case. We formulate our conjecture below.

First it is useful to define a dressing function as follows. Given a certain diagonal form

factor FO
2k(θ̄1, . . . , θ̄k) its “dressed version” is defined as

DO
ε (θ̄1, . . . , θ̄k) ≡

∞∑

n=0

1

n!

∫
dθ1
2π

. . .
dθn
2π


∏

j

1

1 + eε(θj)




× FO
2(n+k),c(θ̄1 + iπ/2, . . . , θ̄k + iπ/2, θ1, . . . , θn).

(8.1)

The physical interpretation of this “dressing” is simply the addition of virtual particles

which wind around the finite volume exactly one time. The imaginary shift of iπ/2 corre-

sponds to the euclidean rotation of the particle world lines. A graphical interpretation of

the dressing operation is shown in figure 2. The pseudoenergy ε(θ) is not defined at this

stage, it is simply a parameter of the dressing operation.

Define the derivative matrix of the excited state quantization conditions and its deter-

minant as

Kjk =
∂Q̄j

∂θ̄k
ρ̄K(θ̄1, . . . , θ̄K) = detKjk.

For a given bipartite partition of the rapidities

{θ̄1, . . . , θ̄K} = {θ̄+} ∪ {θ̄−}∣∣{θ̄+}
∣∣ = K − n and

∣∣{θ̄−}
∣∣ = n

define the restricted determinant

ρ̄K−n({θ̄+}|{θ̄−}) = detK+,

where K+ is the sub-matrix of K corresponding to the particles in the set {θ̄+}.
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θ̄1 ... θ̄k

θ̄1 ... θ̄k

∞∑

n=0

Dε−−→

θ̄1 ... θ̄k

θ̄1 ... θ̄k

θ1

θn

Figure 2. Graphical interpretation of the “dressing operation” Dε. Time runs in the vertical

direction. In the horizontal direction periodic boundary conditions are understood.

With these notations, our conjectured expression for the exact finite volume mean

values reads

L〈θ̄1, . . . , θ̄K |O|θ̄1, . . . , θ̄K〉L =

=
1

ρ̄K(θ̄1, . . . , θ̄K)

∑

{θ̄+}∪{θ̄−}

DO
ε

(
{θ̄−}

)
ρ̄K−n

(
{θ̄+}|{θ̄−}

)
, (8.2)

where it is understood that the pseudoenergy ε entering the dressing operation is the solu-

tion of the excited state TBA corresponding to the state |θ̄1, . . . , θ̄K〉L. The above equation

is a generalization of the one-particle and two-particle results (6.15) and (7.25). Also, it

can be regarded as the dressed version of the asymptotic formula (2.12).

9 Conclusions

In this paper we studied excited state mean values in finite volume integrable QFT. Al-

though our ideas are general and should be applicable to arbitrary models with diagonal

scattering, for technical reasons we restricted ourselves to theories with only one particle

species. Moreover, we only considered the sinh-Gordon model because of the simplicity of

its excited state TBA equations.

Our main results are (6.15) and (7.25) for the one-particle and two-particle mean val-

ues. In the previous section we also presented the formula (8.2) which is a conjectured

generalization to arbitrary higher particle numbers.

Our calculations were based on two important conjectures. First of all, the basis for

the present work is the LeClair-Mussardo integral series for the ground state mean val-

ues. Although this series is generally accepted to be true, a rigorous derivation from first

principles is not yet known. The LM series was proven in [21] using the finite volume

expansion (2.12). The present work shows that a derivation in the other direction is also

possible: the result (2.12) follows from the LM series as a result of the analytic continuation

and an appropriate summation procedure. It is interesting that neither the LM series nor

the expansion (2.12) have been proven from first principles yet.
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Our second assumption was that there is an analytic continuation procedure which

connects a subset of the excited states to the ground state. This lead to the intermediate

result (3.7). Although such an analytic continuation has been established for certain mod-

els, and it is believed to exist in other models as well, the general existence has not been

proven. Moreover it is not known if it exists in the case of the sinh-Gordon model, which

was our primary example.

In order to justify our results a number of checks can be performed. These include

• A careful investigation of the IR limit. In the sinh-Gordon model we calculated the

first exponential corrections of order e−mR by an independent method and found

agreement with the first terms of the IR expansion of (6.15) and (7.25). This calcu-

lation will be presented elsewhere.

• Considering the trace of the energy-momentum tensor: O = Θ = Tµ
µ . In this case

there is an exact relation

〈n|Θ|n〉L =
En

L
+

dEn

dL
(9.1)

valid for arbitrary finite volume states. The right hand side of this equation can be

evaluated using the known excited state TBA. On the other hand, the l.h.s. can also

be evaluated using our integral series and the known form factors of Θ [18]. We per-

formed this comparison and found an exact agreement. This provides an important

consistency check of our calculations. The calculation itself is a simple generalization

of the corresponding calculation presented in [18] for the ground state mean value.

• The investigation of the UV limit. Calculating the mL → 0 limit of all the integrals

in the infinite series and summing up the leading contributions it should be possible

to recover matrix elements calculated in the conformal limit. We leave this problem

to further research.

The technical details of the calculation show that once it is established how to repre-

sent individual particles in the excited state TBA then the rule to get the mean values is

to substitute the complex rapidities into formulas of the form (8.2). One-particle states

are typically represented as complex conjugate pairs of rapidities, possibly of a particle of

different type. In these cases the complex conjugate pairs have to be substituted into (8.2);

this way a one-particle mean value will be given by our two-particle formula. This is in

complete accordance with the findings of [30] which used essentially the same idea to obtain

the leading exponential correction, the so-called µ-term. The study of such cases will be

pursued in a future publication.

We find it remarkable that our final results for the one-particle and two-particle mean

values (eqs. (6.15) and (7.25)) are relatively simple and intuitive compared to the cum-

bersome way in which they were derived from the starting point (3.7). Also, it is quite

remarkable that the normalization factor in the final formula is simply the total derivative

(or Jacobian) of the exact quantization condition for the Bethe roots. This calls for an

alternative derivation of the present results.
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