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1 Introduction

Local gauge invariance has been established as the underlying principle of all fundamen-

tal interactions. Spontaneously broken gauge invariance, together with the postulate of a

perturbative Higgs sector, is the basis of the theoretical description of electroweak interac-

tions in the Standard Model (SM) or extensions like the Minimal Supersymmetric Standard

Model (MSSM). These models have successfully passed electroweak precision tests [1] and

are in line with the discovery of a Higgs-like particle at the LHC [2, 3].

Quantum field theoretical foundations of spontaneously broken gauge theories like

renormalizability, unitarity, and gauge independence of the S-matrix have been established

in [4–8]. Later, BRS invariance and algebraic renormalization have been introduced as

elegant tools [9–11]. They were used in the all-order treatments of the renormalizability of

the SM [12–15] and the MSSM [16].

In the present paper, we focus on the scalar (Higgs) vacuum expectation values (VEVs)

and their renormalization in spontaneously broken gauge theories. In spite of their ob-

vious central role, the VEVs are no gauge invariant, physical quantities and therefore

less comprehensively studied. Like refs. [12, 13, 16], we use the approach put forward in
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ref. [17], where the VEVs are treated as background fields, similar to the background field

method [14, 15, 18–20]. We describe the renormalization of general gauge theories in this

approach, determine Feynman rules, and compute relevant renormalization constants. We

show that this framework yields several results of practical and theoretical interest in an

elegant way:

1. The renormalization transformation for a VEV v can generically be written in two

equivalent ways,1

v → v + δv =
√
Z (v + δv̄) , (1.1)

where
√
Z is the field renormalization constant of the respective scalar field and δv̄ is

an extra term, which characterizes to what extent the VEV renormalizes differently

from the field. We will show that this extra term has an elegant interpretation in

terms of the background field and can be computed easily from the background field

Feynman rules. This will also clarify why the δv̄-term does not appear in theories

with only rigid (global) invariance, and that even in local gauge theories it is only

required for particular gauges.

2. In many extensions of the SM with several Higgs doublets such as the MSSM, the

ratio of two VEVs tanβ = vu/vd is considered. The explicit MSSM calculations of

refs. [21, 22] have found a cancellation, in the notation of eq. (1.1)

δv̄u
vu
− δv̄d

vd
= finite (1.2)

at the one-loop level. Our approach will make clear that this cancellation is not gen-

eral. We will exhibit the origin of the one-loop cancellation and extend the discussion

to the two-loop level in the MSSM, NMSSM, and E6SSM. The latter two cases pro-

vide examples where eq. (1.2) is not valid (see also refs. [23, 24] for corresponding

results on the tanβ renormalization constant).

3. Finally, we compute the renormalization-group β-functions for all VEVs in the gen-

eral gauge theory and a general supersymmetric gauge theory at the one-loop and

leading two-loop level. These results complement the well-known β and γ functions

of Machacek/Vaughn [25–27] and Martin/Vaughn, Yamada, Jack and Jones [28–30]

for parameters and fields.

The outline of the present paper is the following. First, we will introduce the generic model

together with its properties and renormalization in section 2. Section 3.1 discusses the cru-

cial points of our formalism and its equivalence to the standard approach. The remainder

of section 3 gives an overview of the necessary one-loop and two-loop computations and

states our main results, the general β-functions. Finally, section 4 applies the general re-

sults to the MSSM, NMSSM, and E6SSM in order to provide the results for tanβ and the

VEV β-functions.

1In refs. [21, 22], where the second form is chosen, our δv̄ is called −δv, while our δv is not used.
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2 General gauge theory and scalar background fields

2.1 Lagrangian

The present paper investigates the renormalization of general, spontaneously broken gauge

theories. Following refs. [25, 31, 32], we write the gauge invariant Lagrangian in terms of

real scalar fields ϕa and Weyl 2-spinors ψpα as

Linv =− 1

4
FAµνF

Aµν +
1

2
(Dµϕ)a (Dµϕ)a + iψαp σ

µ
αα̇

(
D†µψ̄

α̇
)
p

− 1

2!
m2
abϕaϕb −

1

3!
habcϕaϕbϕc −

1

4!
λabcdϕaϕbϕcϕd (2.1)

− 1

2

[
(mf )pq ψ

α
pψqα + h.c.

]
− 1

2

[
Y a
pqψ

α
pψqαϕa + h.c.

]
.

Here the covariant derivatives and field strength tensor are defined as

Dµϕa =
(
δab∂µ + igTAabV

A
µ

)
ϕb, (2.2a)

Dµψpα =
(
δpq∂µ + igtApqV

A
µ

)
ψqα, (2.2b)

FAµν = ∂µV
A
ν − ∂νV A

µ − gfABCV B
µ V

C
ν , (2.2c)

with antisymmetric, purely imaginary generators TAab for the scalars; hermitian generators

tApq for the spinors; and structure constants fABC . The standard procedure in spontaneously

broken gauge theories is to shift the scalar fields by a constant (the “VEV”)

ϕa → ϕa + va, (2.3)

where va can be adjusted to the minimum of the scalar potential. After applying the

shift (2.3), the Lagrangian Linv is still invariant under both local and global gauge trans-

formations, if (ϕa + va) are transformed as a whole.

For quantization a gauge fixing is required. In QED and QCD, typical gauge fixing

terms break local gauge invariance but leave global gauge invariance intact. In contrast,

Rξ-gauges, for example, as often used in the spontaneously broken case, break even global

invariance. This breaking is crucial for the renormalization properties of va. It turns out

that these properties can be studied well by using background fields [17] instead of the

shift in eq. (2.3).

In the following we briefly introduce the setup for Rξ gauges including background

fields. In section 3.1 we will highlight its crucial points, relate it to the standard procedure,

and draw consequences. We note here only that the background formalism is a tool that

provides additional information but does not alter any results compared to the standard

approach.

We introduce real scalar background fields (ϕ̂a + v̂a); ϕ̂a is treated as a classical back-

ground field, v̂a as a constant. The combination (ϕ̂a + v̂a), by definition, has the same

gauge transformation properties as ϕa. By means of the replacement

ϕa → ϕeff
a = ϕa + ϕ̂a + v̂a (2.4)

we introduce a non-trivial ground state as well as the background field.
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Gauge fixing and Slavnov-Taylor identities require BRS transformations. The back-

ground fields transform as a BRS doublet with another background field q̂a,

sϕ̂a = q̂a, sq̂a = 0. (2.5a)

This implies that the physics content of the theory is unchanged by including the back-

ground fields [33, 34]. The BRS transformations of the scalar fields read

sϕa = −igTAabcAϕeff
b − q̂a, (2.5b)

such that ϕeff
a transforms homogeneously

sϕeff
a = −igTAabcAϕeff

b . (2.5c)

All other BRS transformations are standard [9–11] and read in our notation

sV A
µ = ∂µc

A − gfABCV B
µ c

C , (2.5d)

sψpα = −igcAtApqψqα, (2.5e)

scA =
1

2
gfABCcBcC , (2.5f)

sc̄A = BA, sBA = 0. (2.5g)

Herein, cA, c̄A, and BA denote the Faddeev-Popov ghost, Faddeev-Popov antighost, and

the Nakanishi-Lautrup auxiliary field, respectively.

If not stated otherwise, we will use Rξ gauge fixing with gauge fixing function

FA = ∂µV A
µ + igξξ′ (ϕ̂ + v̂)a T

A
abϕb. (2.6)

We will always set ξ′ = 1, but keep it as a variable because it is renormalized. The full

gauge fixing and ghost Lagrangian is then given by evaluating

Lfix, gh = s

[
c̄A
(
FA +

ξ

2
BA

)]
, (2.7a)

which yields after elimination of BA

Lfix, gh =− 1

2ξ
(∂µV A

µ )(∂νV A
ν )− c̄A�cA − gfABC(∂µc̄A)V B

µ c
C (2.7b)

− igξ′(∂µV A
µ )(ϕ̂ + v̂)aT

A
abϕb − igξξ′c̄Aq̂aTAab(ϕ + ϕ̂ + v̂)b

− g2ξξ′c̄AcB(ϕ̂ + v̂)aT
A
abT

B
bc (ϕ + ϕ̂ + v̂)c

+
1

2
g2ξξ′2(ϕ̂ + v̂)aT

A
abϕb(ϕ̂ + v̂)cT

A
cdϕd.

This modified Rξ gauge fixing preserves the rigid invariance due to the background fields.

Finally, the study of renormalization is streamlined by introducing sources K for the non-

linear BRS transformations

Lext = Kϕa sϕa +KV Aµ
sV A

µ +KcA sc
A +

[
Kψp sψp + h.c.

]
. (2.8)

In summary, the total Lagrange density is the sum of all discussed parts,

Ltot = Linv|ϕ→ϕeff + Lfix, gh + Lext. (2.9)
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2.2 Renormalization

Renormalization proceeds essentially as in the case without background fields.2 In the

usual case the divergence structure is controlled by identities such as (1) the Slavnov-Taylor

identity, expressing BRS invariance on the level of Green functions; (2) the so-called gauge

condition, fixing the BA-dependence, i.e. the Rξ gauge fixing term. All divergences can be

absorbed by a multiplicative renormalization transformation of fields and parameters. The

required form is obtained from the general classical solution of the Slavnov-Taylor identity

and the gauge condition [9–11].

Furthermore, the behaviour of Lfix, gh under rigid gauge transformations is crucial for

the renormalization of the shift v. By construction, Lfix, gh necessarily breaks local gauge

invariance. Nevertheless, some gauges like Landau gauge (ξ = 0) respect rigid gauge invari-

ance. In such cases the corresponding rigid Ward identity leads to the combined renormal-

ization of ϕ + v, i.e. the additional counterterm δv̄ in eq. (1.1) is forbidden by symmetry.

If, on the other hand, Lfix, gh breaks rigid gauge invariance then no symmetry forbids δv̄,

implying that δv̄ will in general be necessary and divergent. Without background fields we

have no control of δv̄.

With background fields, again divergences are controlled by the Slavnov-Taylor identity

and gauge-condition — but, in addition, we have one more identity at our disposal: the

rigid Ward identity expressing rigid gauge invariance in the presence of ϕ̂ and q̂. Since it

holds in the modified Rξ gauge (2.7b) we gain further information.

Going through the standard steps and taking the additional Ward identity into account

we obtain the most general structure of the divergences. The resulting renormalization

transformations required to absorb all divergences can be summarized as follows:

1. Parameter renormalization: all parameters p ∈ {g, ξ, ξ′,m2
ab, habc, λabcd, (mf )pq , Y

a
pq}

renormalize as p→ p+ δp. The shift v̂ does not.

2. Field renormalization: all fields transform multiplicatively with appropriate
√
Z fac-

tors. In particular, the renormalization transformations of interest are

ϕa →
√
Zabϕb, (2.10a)

(ϕ̂ + v̂)a →
√
Zab

√
Ẑbc(ϕ̂ + v̂)c, (2.10b)

q̂a →
√
Zab

√
Ẑbcq̂c. (2.10c)

Eq. (2.10b) is a consequence of the unbroken rigid gauge invariance, and eq. (2.10c)

stems from the fact that q̂a is the BRS transformation of ϕ̂a. The BRS sources K

transform with inverse
√
Z factors, in particular

Kϕa →
(√

Z
−1
)
ba
Kϕb . (2.11)

2In particular cases, such as the SM and the MSSM in refs. [12, 13, 16], the background fields were

essential in order to control the U(1)em Ward identity. In the MSSM an even more complicated background

field structure has been used to allow for on-shell renormalization conditions separating unphysical from

physical degrees of freedom. Here, however, we are concerned with the generic situation and minimal

subtraction, where the background fields are optional.
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The above mentioned relations prohibit an additional v̂ counterterm and simplify the coun-

terterm structure of the two-point function between Kϕ and q̂.

Before moving on to the next section, we impose a further constraint on the theories

we consider. We require that the theories possess some additional symmetry, at least at

the dimension 4 level, that enforces the field renormalization for the real scalar fields to be

diagonal

√
Zab →

√
Z(a)δab and

√
Ẑab →

√
Ẑ(a)δab. (2.12)

As an example, in the MSSM and NMSSM this symmetry is realized by the so-called

Peccei-Quinn (PQ) symmetry [35] (only softly broken by the so-called µ-term), whereas in

the E6SSM the additional U(1)N gauge group plays this role.3

3 General results

3.1 Equivalence and general consequences for δv

The purpose of this section is to emphasize and exploit the features of the approach ex-

plained above in section 2 and explain its equivalence to the standard approach.

In the standard approach, without background fields, the most generic renormalization

transformation of the scalar fields with shifts reads as

ϕa + va →
√
Zab (ϕb + vb + δv̄b) , (3.1a)

whereas we have, from eqs. (2.4), (2.10a) and (2.10b),

ϕeff
a →

√
Zab

(
ϕb +

√
Ẑbc(ϕ̂ + v̂)c

)
. (3.1b)

For the calculation of Green functions the background field has to be set to zero, ϕ̂ = 0.

Hence, the comparison of eq. (3.1a) and eq. (3.1b) yields the following identification between

the two formalisms:

va + δv̄a =
√
Ẑabv̂b, (3.2)

and equivalently

va = v̂a, (3.3a)

δv̄a =
(√

Ẑ − 1
)
ab
v̂b =

1

2
δẐabv̂b +O(~2), (3.3b)

δva
(1.1)
=
(√

Z
√
Ẑ − 1

)
ab
v̂b =

1

2

(
δZ + δẐ

)
ab
v̂b +O(~2). (3.3c)

The advantage of this method is that one possesses more information about the renor-

malization properties of the shift v̂. First, the field renormalization Ẑ is a dimension zero

3In these models these symmetries and eq. (2.12) are the reason why no off-diagonal kinetic counterterms

like δZHuHdεij(D
µHu)i(DµHd)j (where i, j are SU(2) indices and εij is antisymmetric) are necessary, in

spite of their gauge invariance. Note that eq. (2.12) does not forbid introducing additional, finite off-diagonal

Z-factors e.g. for defining mass eigenstate fields as discussed in detail e.g. in ref. [16].
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Kϕa

cA

ϕb
= gTAab ,

(a) Γϕb,c
A,Kϕa

q̂a
c̄A

ϕb
= ξξ′gTAab ,

(b) Γϕb,q̂a,c̄
A

q̂a Kϕb
= − i

2δẐ
(1)
ba

(c) Γq̂a,Kϕb

Figure 1. Feynman rules for
√
Ẑ determination.

quantity which is at most logarithmic divergent. Second, the shift-counterterm δv̄a is linear

in the shift itself and otherwise determined by Ẑ. Third, Ẑ is the field renormalization

of the background field, meaning that it appears not only in eq. (3.1b) but also in other

Green functions and, thus, can be directly evaluated by certain diagrams.

To elaborate on the last point, consider the computation of
√
Ẑ. It turns out that√

Ẑ is the only renormalization constant appearing in the two point function Γq̂a,Kϕb ,

Lext = −Kϕa q̂a + · · · RT→ −Kϕa

√
Ẑabq̂b + · · · , (3.4)

leading to the Feynman rules in figure 1 (wherein the cross denotes the one-loop countert-

erm δẐ). Hence,
√
Ẑ can be directly determined from the divergence to that two point

function. Of course, Γq̂a,Kϕb is an unphysical Green function, which highlights its role as

technical tool. However, the point is that very few Feynman diagrams with well localized

origin contribute to it. The only coupling of the field q̂ to propagating fields is the term

∼ c̄q̂ϕ in Lfix, gh (see figure 1(a)), which stems from BRS invariance. Its coefficient must

be the same as the one of the (ϕ̂+ v̂)ϕ-term in the gauge fixing function FA. Similarly, the

term ∼ Kϕcϕ is determined by inserting the BRS transformation sϕ in Lext, see eq. (2.8)

and figure 1(b). Most important, all the mentioned Feynman rules are proportional to the

gauge coupling g, hence,
√
Ẑ is (at one-loop level) proportional to two powers of gauge

couplings with coefficients fixed by BRS invariance. In contrast, all dimensionless couplings

can contribute to the field renormalization constant
√
Z.

In summary, the method of background fields together with BRS and rigid invariance

provides the following features: the VEV counterterm δv̄a from eq. (1.1) is given by
√
Ẑ,

see eq. (3.3b). Hence it is proportional to the VEV itself, and its divergence is given by a

dimension zero quantity and at most logarithmic divergent. The relevant field renormal-

ization Ẑ can be determined by a single two point function to which few, specific Feynman

rules contribute.
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3.2 Field renormalization of scalar fields and background fields

This section will serve for the one- and leading two-loop renormalization computations. All

calculations are performed in Rξ gauge and the MS/DR scheme.4

3.2.1 One-loop

The one-loop results for the divergent parts of Z and Ẑ will be provided in this section

together with a brief overview of the relevant diagrams.

The scalar field renormalization constant
√
Z is given by the derivative of the scalar

self-energy with respect to external momentum squared. At one-loop, there are ten (one-

particle irreducible) diagrams and renormalization works as usual by requiring

+ = finite. (3.5)

According to refs. [25, 32], the results are well-known; in our notation they are given by

δabδZ
(1)(a) =

1

(4π)2

[
g2 (3− ξ)C2

ab(S)− Y 2
ab(S)

]
· 1

ε
(3.6a)

= γ
(1)
ab (S) · 1

ε
, (3.6b)

where D = 4− 2ε in dimensional regularization, γ
(1)
ab (S) is the one-loop anomalous dimen-

sion, and we introduced the following group invariants (for the scalar representation S)

C2
ab(S) = TAacT

A
cb , Y 2

ab(S) =
1

2

(
Y a
pqY

∗b
pq + Y ∗apq Y

b
pq

)
. (3.7)

As described above, the new renormalization constant
√
Ẑ can be determined easily

because it appears as the counterterm Feynman rule for Γq̂a,Kϕb . There exists only one

diagram in one-loop order. Hence, requiring

q̂a Kϕb
+

q̂a Kϕb
= finite (3.8)

leads to the result

δabδẐ
(1)(a) =

1

(4π)2
2g2ξξ′C2

ab(S) · 1

ε
. (3.9)

4DR denotes modified minimal subtraction in regularization by dimensional reduction. There is no

difference between the two schemes in any of the calculations carried out here.

– 8 –



J
H
E
P
0
7
(
2
0
1
3
)
1
3
2

q̂a Kϕb

(a)

q̂a Kϕb

(b)

q̂a Kϕb

(c)

q̂a Kϕb

(d)

q̂a Kϕb

(e)

q̂a Kϕb

(f)

q̂a Kϕb

(g)

q̂a Kϕb

(h)

q̂a Kϕb

(i)

Figure 2. Feynman diagrams for full two-loop computation of δẐ. Note that figure 2(f) and 2(g)

are power-counting finite. Furthermore, figure 2(h) is zero as the contained vertex counterterm

vanishes due to non-renormalization of Lfix, gh.

3.2.2 Two-loop

At the two-loop level, a similar computation of the two-loop self energy determines δZ(2). It

is convenient to express the two-loop renormalization parameter in terms of the anomalous

dimension γ(S) and β functions

1

2
δZ

(2)
ab =

1

4
γ

(2)
ab (S) · 1

ε
+

1

8

[
γ(1)
ac (S)γ

(1)
cb (S) +

∑
x

β(1)(x)
(
∂xγ

(1)
ab (S)

)]
· 1

ε2
, (3.10)

wherein x ∈ {g, ξ, ξ′, Y a
pq, Y

∗a
pq }. The calculations have been performed in refs. [25, 32] and

the anomalous dimension for the scalar fields (in DREG) is given as

γ
(2)
ab (S) =

1

(4π)4

{
g4C2

ab(S)

[(
35

3
− 2ξ − 1

4
ξ2

)
C2(G)− 10

6
S2(F)− 11

12
S2(S)

]
(3.11)

− 3

2
g4C2

ac(S)C2
cb(S) +

3

2
H2
ab(S) + H̄2

ab(S)− 10

2
g2Y 2F

ab (S)− 1

2
Λ2
ab(S)

}
,

where the group invariants C2(G), S2(F), S2(S), Λ2
ab(S), H2

ab(S), H̄2
ab(S), and Y 2F

ab (S) are

defined as in ref. [32].

Likewise, the two-loop value of δẐ(2) is determined by the two-loop part of Γq̂a,Kϕb .

The relevant diagrams for the full two-loop corrections to Γq̂a,Kϕb are shown in figure 2.

Here, figure 2(a)–2(d) contain all insertion of one-loop self-energies (shaded circles) and cor-

responding one-loop counterterms (crosses). On the other hand, figure 2(e)–2(g) display

– 9 –
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the exchange of intermediate fields and figure 2(h)–2(i) provide the one-loop vertex coun-

terterms. The inspection of the diagrams leads to the conclusion that each contribution

is either proportional to g4 or g2Y Y †. Hence, terms with a different coupling structure

cannot enter δẐ(2). In contrast, δZ(2) contains terms proportional to λ2 ↔ Λ2
ab(S) or

(Y Y †)2 ↔ H2
ab(S), H̄2

ab(S).

For the purpose of the present paper we restrict ourselves to the Yukawa-enhanced

contributions of order g2Y Y †. They are obtained from requiring

q̂a Kϕb
+

q̂a Kϕb

δZ(1)
+

q̂a

δẐ(2)

Kϕb
= finite, (3.12)

where the crosses denote counterterm contributions from the indicated renormalization

constants. The result reads as

δẐ(2)(a)|g2Y 2(S) δab =
1

(4π)4
g2ξξ′TAacY

2
cd(S)TAdb

[
1

ε2
− 1

ε

]
. (3.13)

3.3 Results for δv in generic models

The decomposition of δva in eq. (3.3c) leads to an equivalent decomposition of the β-

function for va

β(va) = µ∂µva = [γab(S) + γ̂ab(S)] vb, (3.14)

where µ is the MS/DR renormalization scale, γ(S) is the anomalous dimension of the scalar

field,

γab(S) =
(
µ∂µ
√
Z
−1

ac

)√
Zcb, (3.15)

and γ̂(S) the analogous quantity for
√
Ẑ.

Hence, our main results for VEV renormalization constants and β and γ functions in

the MS and DR schemes can be summarized as

δv(1)
a =

1

(4π)2

[
g2

(
3− ξ

2
+ ξξ′

)
C2
ab(S)− 1

2
Y 2
ab(S)

]
vb ·

1

ε
, (3.16a)

β(1)(va) =
1

(4π)2

[
g2
(
3− ξ + 2ξξ′

)
C2
ab(S)− Y 2

ab(S)
]
vb, (3.16b)

γ
(1)
ab (S) =

1

(4π)2

[
g2 (3− ξ)C2

ab(S)− Y 2
ab(S)

]
, (3.16c)

γ̂
(1)
ab (S) =

1

(4π)2
2g2ξξ′C2

ab(S), (3.16d)

at one-loop level, and

β(2)(va) = γ
(2)
ab (S)vb −

1

(4π)4
2g2ξξ′TAacY

2
cd(S)TAdbvb +Rabvb, (3.17a)

γ̂
(2)
ab (S) = − 1

(4π)4
2g2ξξ′TAacY

2
cd(S)TAdb +Rab (3.17b)
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at two-loop level. Here Rab contains all 1/ε-pole contributions from
√
Ẑ proportional to

g4. We remind the reader that ξ′ = 1, but it is kept as a variable in order to visualize the

origin of the different terms.

3.4 Results for δv in general SUSY models

Our results can now be specialized to general supersymmetric (SUSY) models with spon-

taneous gauge symmetry breaking. For supersymmetric models with or without soft SUSY

breaking the results will be the same, since the general results (3.16)–(3.17) depend only

on dimensionless couplings. We do not need to specify soft SUSY breaking terms explicitly,

even though the later examples will be realistic models with softly broken SUSY.

The application to general supersymmetric models requires one to take gauginos λA

into account. The generic supersymmetric Lagrangian in Wess-Zumino gauge with non-

abelian gauge interactions contains the standard kinetic terms for complex scalar fields φa,

their SUSY Weyl-spinor partners ψa, gauge fields V A, and their SUSY Weyl-spinor partner

λA. Besides a scalar potential with φn interactions for n ∈ {1, 2, 3, 4}, the Lagrangian

contains two sets of Yukawa-type interactions

LSUSY = −1

2

[
ψαpψqαWpq + h.c.

]
−
√

2g
[
λ̄Aα̇ ψ̄

α̇
p T

A
pqφq + h.c.

]
+ · · · , (3.18)

where Wpq denotes derivatives of the superpotential W. Following ref. [28] the superpo-

tential (formulated in chiral superfields Φ) is given by

W =
1

3!
Y pqrΦpΦqΦr +

1

2!
µpqΦpΦq + LpΦp. (3.19)

Gaugino couplings are special in the sense that their form is given by the gauge coupling

strength g times group generator. Hence, those Yukawa-type couplings contribute to the

g2 part of γ. The results can be expressed in terms of γ and β for the complex scalar fields

φa. We obtain

γ(1)
aa (S)

∣∣∣
SUSY

=
1

(4π)2

[
g2 (1− ξ)C2

aa(S)− 1

2
Y 2
aa(S)

]
, (3.20a)

γ̂(1)
aa (S)

∣∣∣
SUSY

=
1

(4π)2
2g2ξξ′C2

aa(S), (3.20b)

β(1)(va)
∣∣∣
SUSY

=
1

(4π)2

[
g2
(
1− ξ + 2ξξ′

)
C2
aa(S)− 1

2
Y 2
aa(S)

]
va, (3.20c)

with the standard convention Y 2
ab(S) = (Y pqaY ∗pqb + Y ∗pqaY pqb)/2. Note two changes here

compared to the general results in eqs. (3.16): first, the g2 pre-factor has changed from

(3 − ξ) to (1 − ξ) due to the Gaugino couplings. Second, the overall normalization of the

Yukawa couplings is different compared to the eq. (2.2a) and gives rise to the factor 1/2

in front of Y 2
ab(S). Furthermore, we do not observe a change of the one-loop γ̂ in a generic

SUSY theory because Yukawa couplings do not contribute to it.

As a remark, we stress again that γ is the anomalous dimension of the component

field φ in Wess-Zumino gauge, which is different from the corresponding quantity for a
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superfield Φ in a supersymmetric gauge (see ref. [36] for an explicit one-loop comparison).

The latter can be found in ref. [28], but are not relevant in this analysis.

The same considerations are valid at two-loop level and lead to a corresponding change

in γ(2)(S) as well as in γ̂(2)(S). However, the g2Y Y † part of γ̂(2)(S), in which we are

interested in, receives no SUSY contributions, because the gauginos couple via a gauge

coupling and, thus, contribute merely to g4 terms of γ̂(2)(S). The generic result of eq. (3.17)

is altered in a SUSY theory only by a factor of 1/2 due to the different normalization of

the Yukawa couplings. We obtain

γ̂(2)
aa (S)

∣∣∣
SUSY

= − 1

(4π)4
g2ξξ′TAacY

2
cd(S)TAda + R̃aa, (3.21a)

β(2)(va)
∣∣∣
SUSY

= γ(2)
aa (S)va −

1

(4π)4
g2ξξ′TAacY

2
cd(S)TAdava + R̃aava. (3.21b)

Note that R is altered to R̃ because the term ∼ g2Y Y † leads to a g4 contribution due to

the Gaugino coupling.

4 Application to concrete SUSY models

The aim of this section is to apply the results from section 3 to the MSSM and non-

minimal supersymmetric models. We discuss the validity of eq. (1.2) and provide new,

explicit results for the NMSSM and E6SSM. For this application, we need to generalize

our results to product gauge groups, see ref. [25], and we use model-specific expressions for

the Yukawa couplings.

4.1 MSSM

The MSSM [37] contains two Higgs doublets Hu, Hd with opposite hypercharge YHu/2 =

−YHd/2 = 1/2. Our calculations are based upon the following superpotential5

WMSSM = µHd ·Hu − yeijHd · LiĒj − ydijHd ·QiD̄j − yuijQi ·HuŪj . (4.1)

Applying eq. (3.20) is in agreement with the known results for the divergent renormalization

constants (and equivalent the β-functions)

β
(1)
MSSM(vu)

vu
=

1

(4π)2

[(
1− ξ + 2ξξ′

)( 3

20
g2

1 +
3

4
g2

2

)
−Nc Tr

(
yuyu†

)]
= γ(1)

uu +
1

(4π)2
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)
, (4.2a)

β
(1)
MSSM(vd)

vd
=

1

(4π)2

[(
1− ξ + 2ξξ′

)( 3

20
g2

1 +
3

4
g2

2

)
−Nc Tr

(
ydyd†

)
− Tr

(
yeye†

)]
= γ

(1)
dd +

1

(4π)2
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)
. (4.2b)

5The dot product A ·B = εijAiBj denotes the SU(2) invariant product with antisymmetric εij .
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Here gY and g2 are the U(1)Y and SU(2)L gauge couplings, and g1 is GUT-normalized

g1 =
√

5/3gY . Nc is the number of colours.

The quantity tanβ is defined as

tanβ =
vu
vd
, (4.3)

and renormalization yields

δ tanβ(1) = tanβ

(
δv

(1)
u

vu
−
δv

(1)
d

vd

)
, (4.4a)

β(1)(tanβ) = tanβ
(
γ(1)
uu − γ

(1)
dd + γ̂(1)

uu − γ̂
(1)
dd

)
. (4.4b)

There are two cancellations in this difference. First, the contribution from the γ̂’s, equiv-

alent to δv̄ in eq. (1.1), cancels. The reason is that both doublets have the same SU(2)L
and U(1)Y quantum numbers, up to a sign. Hence, eq. (1.2) is valid at the one-loop level

and for the β-function the simplified result

β
(1)
MSSM(tanβ) = tanβ

(
γ(1)
uu − γ

(1)
dd

)
(4.5)

holds. Second, even within this difference, the gauge coupling terms cancel, leaving

β
(1)
MSSM(tanβ)

tanβ
= − 1

(4π)2

[
Nc Tr

(
yuyu†

)
−Nc Tr

(
ydyd†

)
− Tr

(
yeye†

)]
. (4.6)

Obviously, both cancellations are group theoretical coincidences. As a remark, these results

also provide further insight into the accidental gauge independence of tanβ as discussed

in ref. [38]. Going away from Rξ-gauges, tanβ becomes gauge dependent at the one-loop

level [38, 39].

At two-loop level, the β-functions for the up and down type VEVs are given by

β
(2)
MSSM(vu)

vu
= γ(2)

uu −
1

(4π)4
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)[
Nc Tr

(
yuyu†

)]
+Ru, (4.7a)

β
(2)
MSSM(vd)

vd
= γ

(2)
dd −

1

(4π)4
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)[
Nc Tr

(
ydyd†

)
+ Tr

(
yeye†

)]
+Rd. (4.7b)

Here Ru,d represent all contributions from δẐ(2) ∼ g4 which we have not considered.

However, it is clear that in the MSSM Ru = Rd holds because the Higgs doublets have

(up to a sign) the same quantum numbers with respect to all gauge groups. Our results

are in agreement with ref. [23] if one simplifies the generation matrices y
d/u/e
ij to complex

numbers yd/u/e.

The above result now implies that the g2
2 and g2

1 proportional parts of the divergent

δ tanβ are not zero if the Yukawa couplings are different. Instead, we can write

β
(2)
MSSM(tanβ)

tanβ
= γ(2)

uu − γ
(2)
dd +

1

(4π)2
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)
β

(1)
MSSM(tanβ)

tanβ
(4.8)

The second term is equivalent to a violation of eq. (1.2) at O(g2Y Y †). Note that Ru−Rd
vanishes in the MSSM as remarked earlier.
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4.2 NMSSM

The NMSSM is a non-minimal SUSY model that attempts to solve the µ problem of the

MSSM by introducing an additional gauge singlet S, which has a non-zero VEV vs. The

modified superpotential, see for example ref. [40], reads as

WNMSSM =WMSSM(µ = 0) + λSHd ·Hu +
1

3
κSSS +

1

2
µsSS + ζS. (4.9)

The one-loop β-functions are given by

β
(1)
NMSSM(vs)

vs
= − 1

(4π)2
2
(
|λ|2 + |κ|2

)
, (4.10a)

β
(1)
NMSSM(vu,d)

vu,d
=
β

(1)
MSSM(vu,d)

vu,d
− 1

(4π)2
|λ|2. (4.10b)

The consequences of the singlet S for the Higgs VEVs are a change in the anomalous

dimensions γuu, γdd due to the additional Yukawa coupling λ, whereas the γ̂uu, γ̂dd are

unchanged as S is a gauge singlet. In addition, the quantities (
√
Ẑs − 1) and γ̂ss van-

ish, because an additional counterterm for vs is forbidden by the rigid invariance for S.

Therefore, the one-loop β-function for tanβ reads

β
(1)
NMSSM(tanβ) = β

(1)
MSSM(tanβ), (4.11)

and eq. (1.2) holds.

Similarly, the changes in β(2)(vu,d,s) are

β
(2)
NMSSM(vu)

vu
= γ(2)

uu −
1

(4π)4
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)[
Nc Tr

(
yuyu†

)
+ |λ|2

]
+Ru, (4.12a)

β
(2)
NMSSM(vd)

vd
= γ

(2)
dd −

1

(4π)4
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)[
Nc Tr

(
ydyd†

)
+ Tr

(
yeye†

)
+ |λ|2

]
+Rd,

(4.12b)

β
(2)
NMSSM(vs)

vs
= γ(2)

ss . (4.12c)

Again, Ru = Rd because the gauge groups of NMSSM and MSSM are identical.

For the tanβ two-loop β-function we obtain a result reminiscent of the MSSM eq. (4.8)

β
(2)
NMSSM(tanβ)

tanβ
= γ(2)

uu − γ
(2)
dd +

1

(4π)2
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)
β

(1)
MSSM(tanβ)

tanβ
. (4.13)

Note that γ and R refer to the NMSSM quantities, i.e. they differ from the MSSM quan-

tities. Nevertheless, the difference Ru −Rd still vanishes in the NMSSM.

4.3 E6SSM

The E6SSM is based on the direct product gauge group SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)N .

Among the several Higgs doublet fields {Hu,i}i=1,2,3 and {Hd,i}i=1,2,3 only the third gener-

ation (i.e. i = 3) of up- and down-type Higgs acquire a non-zero VEV vu,d [41]. The U(1)N
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charges of the Higgs fields are given as NHu,i/2 = −2 and NHd,i/2 = −3. Similarly, there

are three generations of SM-group singlets Si, which carry U(1)N charge NSi/2 = 5, and

only S3 has a non-zero VEV vs. Following ref. [41] and using the same convention as in

the MSSM, the approximated E6SSM superpotential can be written as

WE6SSM ≈− yeijHd,3 · LiĒj − ydijHd,3 ·QiD̄j − yuijQi ·Hu,3Ūj (4.14)

+ λiS3Hd,i ·Hu,i + κiS3XiX̄i.

The superfields Xi, X̄i describe exotic colored matter and transform as triplet/anti-triplet

under SU(3), as singlet under SU(2)L and have U(1)Y and U(1)N quantum numbers

YXi/2 = −1/3, YX̄i/2 = 1/3, NXi/2 = −2, NX̄i
/2 = −3.

For β(vu,d) and β(vs) we obtain a similar expression as in the MSSM/NMSSM with

one profound difference: the U(1)N charge difference leads to a non-vanishing contribution.

The Casimir eigenvalue leads to (N/2)2 contributions and, thus, the one-loop β-functions

read

β
(1)
E6SSM(vs)

vs
=

1

(4π)2

[
g2
N

(
1− ξ + 2ξξ′

)(NS

2

)2

− 2 Tr
(
λλ†
)
−Nc Tr

(
κκ†
)]

, (4.15a)

β
(1)
E6SSM(vu,d)

vu,d
=
β

(1)
MSSM(vu,d)

vu,d
+

1

(4π)2

[
g2
N

(
1− ξ + 2ξξ′

)(NHu,Hd

2

)2

− |λ3|2
]
. (4.15b)

In contrast to the NMSSM, the SM-singlet S3 has a non-vanishing γ̂ss-contribution due to

the U(1)N gauge coupling.

For tanβ those one-loop results yield

β
(1)
E6SSM(tanβ)

tanβ
=

1

(4π)2

{
g2
N

(
1− ξ + 2ξξ′

) [(NHu

2

)2

−
(
NHd

2

)2
]

(4.16)

−
[
Nc Tr

(
yuyu†

)
−Nc Tr

(
ydyd†

)
− Tr

(
yeye†

)]}
.

As a consequence, both MSSM one-loop cancellations do not occur in the E6SSM: neither

the γ̂-terms nor the gauge-coupling terms within γ drop out because of the different Higgs

U(1)N charges. Eq. (4.16) is in agreement with the result of ref. [24] obtained from finiteness

of the renormalized Yukawa couplings.

As a further application, we present the two-loop results for β(tanβ) in the E6SSM.

First, the VEV β-functions read at two-loop level

β
(2)
E6SSM(vs)

vs
= γ(2)

ss −
1

(4π)4
ξξ′
(
NS

2

)2

g2
N

[
2 Tr

(
λλ†
)

+Nc Tr
(
κκ†
)]

+Rs, (4.17a)

β
(2)
E6SSM(vu)

vu
= γ(2)

uu −
1

(4π)4
ξξ′

(
3

10
g2

1 +
3

2
g2

2 +

(
NHu

2

)2

g2
N

)[
Nc Tr

(
yuyu†

)
+|λ3|2

]
+Ru,

(4.17b)
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β
(2)
E6SSM(vd)

vd
= γ

(2)
dd −

1

(4π)4
ξξ′

(
3

10
g2

1 +
3

2
g2

2 +

(
NHd

2

)2

g2
N

)
(4.17c)

×
[
Nc Tr

(
ydyd†

)
+ Tr

(
yeye†

)
+ |λ3|2

]
+Rd.

Unlike the MSSM and NMSSM case, Ru 6= Rd in the E6SSM as the Higgs doublets have

different U(1)N quantum numbers. Furthermore, the contributions from kinetic mixing of

the U(1)Y and U(1)N groups [42] are not relevant for the O(g2Y Y †) contributions we have

explicitely given.

Second, for tanβ follows at two loop

β
(2)
E6SSM(tanβ)

tanβ
= γ(2)

uu − γ
(2)
dd +

1

(4π)2
ξξ′
(

3

10
g2

1 +
3

2
g2

2

)
β

(1)
MSSM(tanβ)

tanβ
(4.18a)

− 1

(4π)4
ξξ′g2

N

{(
NHu

2

)2

Nc Tr
(
yuyu†

)
−
(
NHd

2

)2 [
Nc Tr

(
ydyd†

)
+ Tr

(
yeye†

)]}

− 1

(4π)4
ξξ′g2

N

[(
NHu

2

)2

−
(
NHd

2

)2
]
|λ3|2 +Ru −Rd.

Note the structure of eq. (4.18a): the second term corresponds to the MSSM O(g2Y Y †)

term from eq. (4.8), whereas the second and third line represent further violations of

eq. (1.2) due to the U(1)N couplings.

5 Conclusions

We computed the MS/ DR β-function for VEVs in general gauge theories and general

SUSY gauge theories (Wess-Zumino gauge) up to Yukawa-enhanced two-loop contributions.

These results complement the β-functions of refs. [25–30]. In addition, we provided the

β-functions for tanβ in the MSSM, NMSSM, and E6SSM up to this order in general Rξ
gauge. These β-functions are required in renormalization group studies of spontaneously

broken gauge theories, and they can be implemented in computer codes, e.g. in spectrum-

generator generators like SARAH [43, 44] or many existing MSSM or NMSSM spectrum

generators.

Our results have been obtained by using the elegant approach of ref. [17], which is

interesting in its own right. In the past, this approach has been applied in more abstract

contexts, but we have shown that it also facilitates calculations and provides qualitative

understanding. We therefore close by summarizing this approach and its consequences.

• The VEVs v are promoted to background fields. As a consequence, Rξ gauge fixing

can be formulated without breaking global gauge invariance.

• The renormalization of the VEVs is completely determined by the field renormal-

ization of the fields and background fields. The VEV counterterm can be expressed
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in terms of the dimension-zero field renormalization constants
√
Z and

√
Ẑ, and

(
√
Ẑ − 1)v̂ replaces δv̄ from eq. (1.1).

• The β-function of the VEV is similarly composed of the anomalous dimensions γ(S)

and γ̂(S) of the fields and background fields, see eq. (3.14).

• The approach leads to additional information since the new renormalization constant√
Ẑ appears in the Lagrangian in a well-defined manner. As a consequence, its

computation requires to evaluate the Green function Γq̂a,Kϕb , which is unphysical

but very simple to compute.

• The vertices in figure 1(a), 1(b) contributing to Γq̂a,Kϕb loop corrections are dictated

by BRS-invariance and, thus, are restricted to gauge couplings. In particular, non-

trivial q̂-vertices can only arise from eq. (2.7a) and are thus linked to the gauge fixing

term. Gauges such as Landau gauge, where FA is independent of ϕ̂, do not lead to

such q̂-vertices and have
√
Ẑ = 1 and δv̄ = 0.

• The cancellation in tanβ, eq. (1.2), as observed in refs. [21, 22], is a group theoretic

coincidence and can be understood from the general expression for γ̂.
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