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1 Introduction

The “bootstrap” has been a recurring dream in theoretical physics. It is the ambitious

aspiration that, starting from a few basic spectral assumptions, symmetries and general

consistency requirements (such as unitarity and crossing) will be powerful enough to fix

the form of the theory, with no reference to a Lagrangian. The dual models of the strong

interactions emerged as an incarnation of the S-matrix bootstrap attempts of the 1960s

and eventually led to the discovery of string theory. The bootstrap program for conformal

field theories (CFTs) in d dimensions was formulated in the early 1970s [1]. Despite impor-

tant formal developments such as the operator product expansion and the conformal block

decomposition (see e.g. the early books [2, 3]), attempts to solve CFTs in arbitrary dimen-

sions were not successful. For two-dimensional CFTs, the revolution came in the 1980s

with the discovery of many exactly-solvable “rational” models. While this is a beautiful

incarnation of the bootstrap idea, the methods that work in 2d rational CFTs1 are too

specialized to be imitated in higher dimensions, or even in two dimensions for the generic

non-rational model.

The interest in CFT in various dimensions is nowadays stronger than ever, sustained

by phenomenological questions in condensed matter physics (d = 3) and particle physics

(d = 4), as well as by more formal motivations such as the AdS/CFT correspondence and

the rich integrability structures of superconformal field theories (d ≤ 6). A pioneering

work [4] has rekindled the conformal bootstrap, turning it into a concrete computational

tool. This approach has been refined and extended in a series of papers [5–13].

The modern bootstrap starts with the simple question: in a generic theory, which

values of operator dimensions and OPE coefficients are compatible with the constraints of

crossing symmetry and unitarity for the four-point functions? There is a shift of viewpoint,

from trying to find analytic answers in a specific model to deriving (by numerical methods

if necessary) universal bounds valid for any model. As it turns out, one can derive strong

constraints already from the analysis of a single four-point function of identical scalar

operators [4]. This should be regarded as the first step in a systematic exploration of the

space of CFTs. More surprisingly, important theories such as the 3d Ising model appear

to live at interesting corners of the parameter space, sitting at “kinks” of the exclusion

1or in closely-related models such as Liouville theory
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curves [5, 12, 13]. So even the solution of some special models in d > 2 may not be too

far-fetched, after all.

In its simplest version, the revived conformal bootstrap works as follows. The four-

point correlation function 〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 of a scalar operator can be written as

a sum over conformal blocks in two different channels, by taking OPEs in two different

limits. The conformal block decompositions in either channel must sum to the same four-

point function, giving crossing-symmetry relations for the couplings and scaling dimensions.

While this was understood long ago, the main idea of [4] is that these constraints can be

put to good use by taking derivatives of the four-point function at symmetric points and

applying linear programming techniques to obtain contradictions if certain conditions for

e.g. the operator spectrum are not met. The prototypical example of a constraint that arises

in this way is an upper bound for the dimension of the first scalar primary ϕ2 appearing in

the OPE of two ϕ’s. Crossing symmetry and unitarity imply that ∆ϕ2 ≤ f(∆ϕ) for some

numerically determined function f(∆ϕ). The method admits straightforward extensions to

bounds on scaling dimensions of tensorial operators, central charges and OPE coefficients.2

In this paper we extend this program to conformal field theories with a boundary. An

Euclidean CFT in d dimensions can be defined in the half-space xd ≥ 0, with boundary

conditions at xd = 0 that preserve an SO(d, 1) subgroup of the original SO(d+1, 1) confor-

mal symmetry [19, 20]. For a given bulk CFT, different consistent boundary conditions are

usually possible. Boundary CFTs (BCFTs) are very interesting in their own right and find

diverse physical applications. They describe surface phenomena in systems near criticality,

with surface critical exponents related to the conformal dimensions of the boundary oper-

ators. In string theory, two-dimensional worldsheet BCFTs are interpreted as D-branes.

These would be sufficient reasons to consider the boundary bootstrap, but one of the main

questions we would like to address is whether by probing the theory with a boundary one

can constrain the original bulk theory itself.3 One could in fact also go ahead and consider a

more general setup where conformal defects of all possible codimensions (boundaries being

the special case of codimension one) appear on a democratic footing.

Besides the spectrum of bulk operators and their three-point functions, which are unaf-

fected by the boundary conditions, a BCFT is characterized by additional boundary data:

the spectrum of boundary operators, their three-point functions, and the bulk-boundary

two-point functions. A correlator containing both bulk and boundary operators can be

decomposed in different channels, giving crossing-symmetry constraints that in general in-

volve both bulk and boundary data. We will focus on the simplest non-trivial type of

correlator, the two-point function of two bulk operators, which in the presence of a bound-

ary is a non-trivial function of a single conformal cross-ratio. It can be decomposed in the

bulk channel, by first fusing the two bulk operators together, or in the boundary channel,

by taking the boundary OPE of each bulk operator. See figure 1 on page 7.

2Analogous “sum rule” techniques can also be used to obtain non-trivial bounds from modular invariant

partition functions, see [14–18].
3A prototype is the the beautiful theory developed by Cardy [21, 22] in 2d rational CFTs, which relates

the set of consistent boundary conditions with the bulk spectrum and its modular transformation properties.
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Outline

The main advantage of using the boundary bootstrap to constrain bulk dynamics is the

simplicity of the setup just described. This follows from the results of section 2, where we

discuss the two-point function of bulk scalar operators: its functional form and its conformal

block decomposition in the bulk and boundary channels. The conformal blocks turn out

to be simple (hypergeometric) functions of the single cross-ratio and furthermore depend

analytically on the spacetime dimension d. This is to be contrasted with the standard

conformal blocks for four-point functions (in a theory with no boundary), which depend

on two cross-ratios and admit closed-form expressions only when d is an even integer.

In section 3 we demonstrate a remarkable simplification of the boundary bootstrap in

a few special cases, where one can explicitly solve the bootstrap equations by making an

ansatz containing only a few conformal blocks in either channel. By this route we are able

to recover one-loop results in the epsilon expansion purely from the bootstrap equations.

These methods do not straightforwardly extend to higher loops but give a nice pedagogical

illustration of the constraining power of crossing symmetry.

In section 4 we apply the linear programming techniques of [4] to the boundary cross-

ing symmetry equations for scalar two-point functions. We derive a number of general

bounds on operator dimensions and OPE coefficients. Our bounds however come with a

major caveat: while unitarity guarantees that the coefficients in the boundary conformal

block expansion are positive (since they are squares of real numbers, as in [4]), this is not

automatically the case for the bulk expansion. Indeed it is not difficult to find counterex-

amples for certain choices of boundary conditions. We need then to assume the existence

of boundary conditions where the coefficients multiplying the bulk conformal blocks are

positive. We present circumstantial evidence for this assumption in the appendices where

we show that it holds in a large number of calculable cases, for favorable choices of the

boundary conditions (the so-called “extraordinary” and “special” transitions). It would

however be more satisfactory to find a general proof.

External tensorial bulk operators are also more easily incorporated in the boundary

setup. We illustrate this in the second half of the paper, where we consider the two-point

function of two bulk stress tensors. In section 5 we discuss the different tensorial struc-

tures, the bulk and boundary conformal block decompositions and the resulting crossing

symmetry equations. We then apply the linear programming techniques in section 6 and

derive interesting bounds. As before, these results rely on certain positivity assumptions

for the coefficients of the bulk conformal blocks.

In appendix A we present a brief derivation of the conformal blocks for a scalar two-

point function. The remaining two appendices are dedicated to a discussion of a large num-

ber of solutions to the crossing symmetry equations: we consider scalar two-point functions

in appendix B and stress-tensor two-point functions in appendix C. These solutions offer

partial justification of our positivity assumptions in sections 4 and 6. We also consider an in-

teresting two-point function in Liouville theory (with ZZ boundary conditions) that interpo-

lates between all the minimal models. We discuss how the analogous bulk four-point func-

tion helps to explain a few features of the “kinks” observed in the bulk results of [5, 12, 13].
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2 Boundary crossing symmetry for scalars

In this section we introduce the general setup of boundary CFT and derive the crossing

symmetry equations for the two-point function of bulk scalar operators. For background

material on BCFTs see [19, 22–25], and especially the paper by McAvity and Osborn [26],

whose results we borrow at several points in this and subsequent sections.

2.1 Scalar two-point function

Let us start by deriving the form of the scalar two-point function in the presence of a

boundary, a classic result dating back to [19]. We will use standard Euclidean coordinates

xµ = (x1, . . . , xd) and consider the half-space defined by xd > 0, the coordinates tangential

to the boundary are denoted ~x. It will be useful to embed this physical space in a higher

dimensional space as the so-called null projective cone [27, 28]. Consider Minkowski space

in d+2 dimensions in lightcone coordinates denoted by PA = (P+, P−, P 1, . . . P d). The

null projective cone is defined as,

PAPA = 0 with PA ∼ λPA . (2.1)

The map from the null projective cone to our physical space is given by

xµ =
Pµ

P+
. (2.2)

One easily finds that the usual SO(d+1, 1) Lorentz group of the d+2-dimensional Minkowski

space becomes the conformal group of the d-dimensional Euclidean space. The null pro-

jective cone provides a linearization of the action of the conformal group.

As we mentioned above, the presence of a boundary at xd = 0 breaks the symme-

try group to SO(d, 1). In the null projective cone this breaking can be implemented by

introducting a fixed vector V with components

V A = (0, . . . , 0, 1) , (2.3)

and restricting ourselves to those Lorentz transformations that leave V A invariant. The

residual conformal transformations for the coordinates xµ are easily obtained from the

linear transformations of the PA coordinates.

Let us now consider scalar fields that are homogeneous functions of the coordinates,

O(λP ) = λ−∆O(P ) , (2.4)

where ∆ is the conformal dimension of the field O. The physical CFT scalar operator is

defined as

O(x) = (P+)∆O(P ) . (2.5)

The two-point function of O should be invariant under SO(d, 1) and consistent with (2.4).

The only SO(d, 1) invariants that can be formed with two coordinates and the fixed vector

V A are

P1 · P2, V · P1, and V · P2. (2.6)

– 4 –
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The two-point function must then be of the form

〈O1(P1)O2(P2)〉 =
1

(2V · P1)∆1(2V · P2)∆2
f(ξ), (2.7)

where f(ξ) is an arbitrary function of the conformal invariant,

ξ =
−P1 · P2

2(V · P1)(V · P2)
. (2.8)

In physical coordinates,

ξ =
(x1 − x2)

2

4xd1x
d
2

. (2.9)

We see that the limit ξ → 0 corresponds to bringing the operators close together while the

limit ξ → ∞ amounts to bringing the operators close to the boundary. It will be useful to

introduce a function G(ξ) = ξ(∆1+∆2)/2f(ξ), the two-point function then becomes

〈O1(x1)O2(x2)〉 =
1

(2xd1)
∆1(2xd2)

∆2
ξ−(∆1+∆2)/2G(ξ). (2.10)

For two identical (canonically normalized) operators limξ→0G(ξ) = 1, since we need to

recover the usual two-point function far away from the boundary. Although using the null

projective cone is somewhat of an overkill for the scalar two-point function, this formalism

will become essential for the tensor calculations of section 5.

2.2 The boundary bootstrap

Much like a four-point function for a CFT without a boundary, one can decompose the

correlation function (2.10) into conformal blocks. In this case there exist two different

decompositions (or channels) and we review both of them below.

In the bulk channel we simply substitute the bulk OPE in the two-point function (2.10).

For two identical scalar operators the bulk OPE takes the form (omitting tensor indices

for simplicity):

O(x)O(y) =
1

(x− y)2∆
+
∑

k

λkC[x− y, ∂y]Ok(y) , (2.11)

where k labels conformal primary fields. The differential operators C[x− y, ∂y] are deter-

mined by the (bulk) conformal symmetry and the couplings λk can be taken to be real [4].

We emphasize that this OPE is a local property of the bulk CFT and therefore unaffected

by the presence of a boundary. On the other hand, whereas in the absence of any bound-

aries only the identity operator gets a non-zero one-point function (and all other terms in

the OPE therefore drop out of the two-point function of O), this is no longer the case once a

boundary is present. Using the null projective cone it is easily demonstrated that boundary

conformal invariance allows for one-point functions of scalar operators of the form:

〈O(x)〉 = aO
(2xd)∆

, (2.12)

with a coefficient aO whose magnitude is unambiguous as we have normalized the oper-

ator using the first term in (2.11). One-point functions for operators with spin are not

– 5 –
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allowed by conformal invariance, see section 5.2 below. Substituting now (2.11) in (2.10)

and using (2.12) one arrives at the bulk channel conformal block decomposition:

G(ξ) = 1 +
∑

k

λkak fbulk(∆k; ξ) , (2.13)

where the bulk conformal blocks fbulk(∆k; ξ) can be determined by working out the expres-

sion:

C[x− y, ∂y]
1

(yd)∆k
. (2.14)

This computation was performed in [26], with the result that (see appendix A for a new

derivation)

fbulk(∆k; ξ) = ξ∆k/2
2F1

(

∆k

2
,
∆k

2
;∆k + 1− d

2
;−ξ

)

. (2.15)

Equations (2.13) with the explicit expression (2.15) summarize the bulk block decompo-

sition of the two-point function. Notice that the blocks are naturally defined as a series

expansion around ξ = 0, which is when the two operators approach each other. Con-

vergence of the OPE away from the boundary however implies that the conformal block

decomposition should converge for all physical values of ξ, that is for all 0 < ξ < ∞.

In the boundary channel we use the bulk-to-boundary OPE where a bulk operator is

written as an infinite sum over boundary operators. For a scalar operator this OPE takes

the form:

O(x) =
aO

(2xd)∆
+
∑

l

µlD[xd, ∂~x]Ôl(~x) , (2.16)

where the index l runs over boundary primary fields, the differential operators D[xd, ∂~x] are

again completely determined by (boundary) conformal symmetry and the couplings µl are

again assumed to be real. The first term in (2.16) corresponds to the one-point function

of O(x) and represents the contribution of the boundary identity operator. Subsequent

operators all have to be scalars by boundary Lorentz invariance. Notice also that in equa-

tion (2.16) we used a hat to denote operators living on the boundary (and such operators

obviously can depend only on ~x).

The constraints of boundary conformal invariance for the correlation functions of

boundary operators Ô(~x) are exactly the same as those of ordinary conformal invariance in

d− 1 dimensions. This implies in particular that boundary operators cannot get one-point

functions and their two-point functions take the canonical form,

〈Ô(~x)Ô(~y)〉 = 1

|~x− ~y|2∆ , (2.17)

which also provides a normalization for boundary operators. Combining now (2.16)

and (2.10) and using (2.17) one arrives at the boundary channel conformal block decom-

position:

G(ξ) = ξ∆

(

a2O +
∑

l

µ2
l fbdy(∆l; ξ)

)

, (2.18)

– 6 –
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∑

k

=
∑

l
k

l

Figure 1. Two-point function crossing symmetry in boundary CFT.

where the boundary conformal blocks fbdy(∆l; ξ) can now be determined from:

D[xd, ∂~x]D[yd, ∂~y]
1

|~x− ~y|2∆ . (2.19)

Just as for the bulk blocks, this computation was done in [26] (and rederived in appendix A),

fbdy(∆; ξ) = ξ−∆
2F1

(

∆,∆+ 1− d

2
; 2∆ + 2− d;−1

ξ

)

. (2.20)

The boundary blocks have a good series expansion when both operators approach the

boundary, that is around ξ = ∞.

The boundary block decomposition is summarized by equations (2.18) and (2.20). The

convergence of the bulk-boundary OPE away from other operator insertions implies that

this conformal block decomposition should converge for all 0 < ξ < ∞ as well.

The statement of crossing symmetry is nothing more than the fact that the two de-

compositions (2.13) and (2.18) should agree,

G(ξ) = 1 +
∑

k

λkak fbulk(∆k; ξ) = ξ∆

(

a2O +
∑

l

µ2
l fbdy(∆l; ξ)

)

. (2.21)

A pictorial representation of this equation is shown in figure 1. The aim of this paper is

to explore how equation (2.21) can be used to constrain the space of boundary conformal

field theories.

3 The boundary bootstrap in the epsilon expansion

In this section we demonstrate that in a few special cases it is possible to obtain an analytic

solution of the crossing symmetry equation (2.21). As we will see below, in this way we can

in fact bootstrap the outcome of a one-loop computation and recover the order ǫ critical

exponents of the Wilson-Fisher fixed point! This is possible because our solutions turn

out to have only one or two blocks in either channel and equation (2.21) reduces to a

finite-dimensional linear system. This should be constrasted with the conformal block

decomposition for the bulk four-point function, whose asymptotic properties dictate that

it always decomposes into an infinite number of conformal blocks [4], which makes the

problem much harder. The results in this section therefore highlight the relative simplicity

of the boundary bootstrap program. At higher orders in the epsilon expansion, the problem

becomes infinite-dimensional even in the boundary case, and more powerful methods will

have to be developed.

– 7 –
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3.1 The simplest bootstrap

Let us begin our exploration of the constraining power of the crossing symmetry equa-

tion (2.21) by considering the following question: is it possible to satisfy crossing symmetry

with just a single block in either channel? It turns out that this question can be answered

affirmatively and leads to a rederivation of the free-field theory two-point functions. In

formulas, our question becomes whether there exists a solution to the equation

1 + λaη fbulk(η; ξ) = ξ∆
(

a2O + µ2 fbdy(η
′; ξ)
)

, (3.1)

for all ξ and with unknowns λaη, η,∆, a2O, µ
2 and η′. We use η and η′ to denote the

dimensions of the single bulk and boundary operator, respectively.

In order to find a solution we will expand both sides in ξ. The bulk conformal

blocks (2.15) have a natural series expansion in powers of ξ around ξ = 0, which is when

we bring the two points close together. On the other hand, the boundary conformal blocks

of equation (2.20) are naturally defined via a series expansion around ξ = ∞ where both

points approach the boundary.

Now, using standard hypergeometric transformation formulas (see for example [29]),

we can expand a boundary block around ξ = 0,

fbdy(η
′; ξ) = c1(1 + . . .) + c2ξ

1−d/2(1 + . . .) , (3.2)

with the dots representing subleading integer powers of ξ and c1 and c2 certain constants.

Substituting this expansion into (3.1) and simply matching the powers of ξ to those possibly

appearing on the left hand side of (3.1), we directly find that:

∆ = ∆φ ≡ d

2
− 1 , η = 2∆φ = d− 2 . (3.3)

This is our first non-trivial result: the scaling dimension ∆ has to be that of a free field φ

and the value of η reflects the simple free-field bulk OPE, φ× φ = 1+ φ2.

Our next step is to notice that the bulk block with η = 2∆φ becomes particularly

simple,

fbulk(2∆φ; ξ) =

(

ξ

ξ + 1

)∆φ

, (3.4)

and expanding now both sides of (3.1) around ξ = ∞ we find that

1 + λaη

(

1 +
1− d/2

ξ
+ . . .

)

= ξ∆φ

(

a2O + µ2ξ−η′
(

1− η′

2ξ
+ . . .

))

, (3.5)

which allows us to solve for all the other coefficients. We find two possible solutions:

+ : λaη = +1 , a2O = 0 , η′ = ∆φ , µ2 = 2 ,

− : λaη = −1 , a2O = 0 , η′ = ∆φ + 1 , µ2 =
d− 2

2
.

(3.6)

Although we have only used the series expansions of the conformal blocks around the

endpoints ξ = 0 and ξ = ∞, it turns out that for the above values of the coefficients the

– 8 –
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crossing symmetry equation is miraculously satisfied at every order in ξ. Therefore, the

two functions

G+(ξ) = 1 + fbulk(2∆φ; ξ) = ξ∆φ

(

2fbdy(∆φ; ξ)
)

= 1 +

(

ξ

ξ + 1

)∆φ

,

G−(ξ) = 1− fbulk(2∆φ; ξ) = ξ∆φ

(d− 2

2
fbdy(∆φ + 1; ξ)

)

= 1−
(

ξ

ξ + 1

)∆φ

,

(3.7)

are valid solutions to the crossing symmetry equation (2.21) with just a single block in each

channel. Using (2.10) we find that they correspond to two-point functions of the form:

〈φ(x)φ(y)〉 = 1

(x− y)2∆φ
± 1

(x− yr)2∆φ
, (3.8)

where yr is the coordinate vector y reflected in the boundary, so if y = (~y, yd) then

yr = (~y,−yd). This equation informs us that we have derived the two possible two-

point functions of a free field on a half-space, with the + sign corresponding to Neumann

boundary conditions and the − sign corresponding to Dirichlet boundary conditions.

Let us offer a few more comments on the above solutions. First of all, the bulk-to-

boundary OPE is consistent with the boundary conditions. Indeed, the bulk-to-boundary

OPE of a free field φ contains a priori a boundary field φ̂ and its normal derivative ∂dφ̂ of

dimensions ∆φ and ∆φ + 1, respectively. (Notice that these are both SO(d, 1) primaries.)

As expected, in the Dirichlet case the operator φ̂ vanishes by the boundary conditions

and only the block corresponding to ∂dφ̂ is present. In the Neumann case the situation is

reversed. Finally, the operator φ2 is the only operator appearing in the bulk channel and

the sign of its one-point function is reversed between the two boundary conditions.

3.2 Order ǫ bootstrap

Having obtained the scalar two-point function for the free theory, let us apply the bootstrap

technique to the interacting theory in the epsilon expansion. In this section we will allow

for N massless scalars with strength λ
4!(φ

2)2. The N -dependence of the free two-point

function comes from the overall normalization, so the results of the previous section remain

unchanged. Defining d = 4− ǫ, the Wilson-Fisher fixed point is given by

λ∗
16π2

=
3ǫ

N + 8
+O(ǫ2) . (3.9)

We can now write the bootstrap equations as a perturbation series in ǫ. Following the

strategy used in the free case we will assume a finite number of blocks in each channel. In

particular, we will consider two non-trivial blocks in the bulk channel and a single block in

the boundary channel. This ansatz has some partial justification in Feynman diagrams. In

order for an operator O to appear in the bulk OPE of φ with itself, the three-point function

〈φφO〉 should be non-zero. For operators of the form φ2n (ignoring O(N) indices) the only

allowed possibilities at order ǫ are φ2 and φ4. For n > 2 the correlator is higher order in

ǫ, two or more vertices are needed to contract all the legs. In the boundary channel4 we

4For concreteness we will consider the Neumann case but a parallel analysis can be done for Dirichlet

boundary conditions.
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are only considering the operator φ̂, similarly to the bulk case, the bulk-to-boundary OPE

between φ and φ̂2n+1 for n > 0 is higher order in ǫ. Let us then proceed to bootstrap the

order ǫ correlator and comment on the validity of our ansatz at the end of this section.

We want to solve the following equation,

1 + λaφ2fbulk(∆φ2 ; ξ) + λaφ4fbulk(∆φ4 ; ξ) = µ2ξ∆φfbdy(∆φ̂, ξ) . (3.10)

Because we are working perturbatively we will write all coefficients as a power series in

ǫ. For the spacetime dimension d and the external dimension conformal dimension ∆φ

we have

d = 4− ǫ ,

∆φ =
d

2
− 1 + δ∆φǫ+O(ǫ2) .

(3.11)

For the internal conformal dimensions we write,

∆φ2 = d− 2 + δ∆φ2ǫ+O(ǫ2) ,

∆φ4 = 2d− 4 + δ∆φ4ǫ+O(ǫ2) ,

∆φ̂ =
d

2
− 1 + δ∆φ̂ǫ+O(ǫ2) .

(3.12)

Finally, for the coefficients multiplying the blocks,

λaφ2 = 1 + δλaφ2ǫ+O(ǫ2) ,

λaφ4 = δλaφ4ǫ+O(ǫ2) ,

µ2 = 2 + δµ2ǫ+O(ǫ2) ,

(3.13)

where the quantities denoted by “δ” correspond to deviations from the free-field solution.

For example, λaφ4 has only a correction term since it is not present in the free theory. We

will again use the transformation formulas that led to (3.2) in order to expand the boundary

blocks around ξ = 0. The procedure now is the same as before, we Taylor expand both

sides of the equation and match equal powers of the parameter ξ. As in the free case, after

matching the first few coefficients, equation (3.10) is solved to all orders in ξ. The order ǫ

solution is,

δ∆φ = 0 , δ∆φ2 = 2α , δ∆φ̂ = −α ,

δλaφ2 = α , δλaφ4 =
α

2
, δµ2 = 0 ,

(3.14)

where α is an arbitrary coefficient. The zero one-loop anomalous dimension for φ is not

a surprise, the anomalous dimension of φ2 is also well known and can be used to fix the

value of α,

α =
1

2

(

N + 2

N + 8

)

. (3.15)

The first order corrections to the OPE coefficients of the φ2 and φ4 blocks are positive,

while the order ǫ correction to µ2 is zero, as expected from Feynman diagrams. We find a
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negative anomalous dimension for the boundary operator corresponding to φ̂. The anoma-

lous dimension for φ4 does not enter the equations at this order in the expansion. The

complete corrected two-point function is then

G+
φφ = 1 +

(

ξ

ξ + 1

)1− ǫ
2

+
ǫ

2

(

N + 2

N + 8

)(

ξ

ξ + 1
log(ξ) + log(ξ + 1)

)

+O(ǫ2)

= 1+

(

1+
ǫ

2

(

N+2

N+8

))

fbulk

(

2−ǫ+ǫ

(

N+2

N+8

)

; ξ

)

+
ǫ

4

(

N+2

N+8

)

fbulk(4; ξ)+O(ǫ2)

= ξ1−
ǫ
2

(

2fbdy(1−
ǫ

2
− ǫ

2

(

N + 2

N + 8

)

; ξ)

)

+O(ǫ2) , (3.16)

where the + sign indicates Neumann boundary conditions. An analogous calculation can

be done for the Dirichlet case. We simply quote the result:

G−
φφ = 1−

(

ξ

ξ + 1

)1− ǫ
2

+
1

2
ǫ

(

N + 2

N + 8

)(

− ξ

ξ + 1
log(ξ) + log(ξ + 1)

)

+O(ǫ2)

= 1−
(

1− 1

2
ǫ

(

N+2

N+8

))

fbulk

(

2−ǫ+ǫ

(

N+2

N+8

)

; ξ

)

+
ǫ

4

(

N+2

N+8

)

fbulk(4; ξ)+O(ǫ2)

= ξ1−
ǫ
2

((

1− ǫ

2
+

ǫ

2

(

N + 2

N + 8

))

fbdy

(

2− ǫ

2
− ǫ

2

(

N + 2

N + 8

)

; ξ

))

+O(ǫ2) , (3.17)

which features only minor changes with respect to the previous case. Comparison of these

expressions with the explicit calculation of [26] shows perfect agreement. We have used the

bootstrap equations to obtain a one-loop result!

Let us now return to our original ansatz. We did not consider primary operators with

derivatives acting on the φ, which we denote schematically by �kφ2 and �kφ4. For the first

family, we can never have ∂µ∂µ acting on the same field, because the equations of motion

imply ∂µ∂µφ ∼ ǫφ3 and the operator is not really of the form �kφ2. The only possibility is

to have ∂µ1∂µ2 . . . ∂µk
φ∂µ1∂µ2 . . . ∂µk

φ, but these operators are conformal descendants, and

their contribution is already taken into account by the φ2 block. For the second family, the

equations of motion argument still holds, but not all operators are conformal descendants.

In fact, there is an infinite number of primaries of the schematic form �kφ4.5 Our original

ansatz was thus incomplete, we should have added an infinite number of blocks to the

left-hand side of equation (3.10) with tree level dimension ∆k = 2(d − 2) + 2k. As we

obtained the correct answer, it is clear that these operators do not appear at one loop. We

believe that this is due to the vanishing of the three-point functions 〈φφ�kφ4〉 for k > 0,

a fact which should follow from the higher-spin Ward identities of the free theory.

Starting at order ǫ2, crossing symmetry can no longer be solved with a finite number

of blocks. It would be nice to find more powerful analytic techniques to deal with the

infinite-dimensional linear system, and develop a bootstrap apprach to the all-order epsilon

expansion. At each order a new infinite family of bulk primary operators appears. Perhaps

the constraints of sligthly broken higher-spin symmetry [30, 31] could help in organizing

the information contained in (2.21). We leave this as an intriguing direction for future

work, and devote the rest of the paper to numerical investigations.

5This statement can be checked using conformal characters.
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Figure 2. Phase diagram for the surface critical behavior of the Ising model in dimension 2 < d < 4.

Temperature is plotted on the horizontal axis and the (relative) surface interaction strength on the

vertical axis. The extraordinary transition disappears for d = 4, while the special transition is

absent in d = 2.

Statistical mechanics intermezzo

In the study of critical systems with a boundary it is well-known that Neumann boundary

conditions for the Landau-Ginzburg field φ (which corresponds to the bulk spin operator σ)

describe the so-called special transition, while Dirichlet boundary conditions describe the

ordinary transition. The phase diagram of the Ising model in the presence of a boundary

is shown in figure 2.

In our investigations the bulk is always critical so we are always on the vertical line

in figure 2. For weak boundary interactions one finds there the ordinary transition where

the boundary simply orders at the same temperature as the bulk. In the presence of

strong boundary interactions the boundary can however order at a higher temperature

than the bulk. The bulk transition where the boundary is already ordered is then called

an extraordinary transition. In this case the Z2 symmetry of the Ising model is broken,

as φ should acquires a one-point function of the form (2.12). The extraordinary transition

cannot be described in free-field theory (such a one-point function does not satisfy the

free equations of motion), but it appears at first order in the Wilson-Fisher fixed point

in 4 − ǫ dimensions, see appendix B.4. Finally, there is a critical boundary interaction

strength where the boundary and bulk critical temperature just coincide which is the

special transition. We refer the reader to [32, 33] for introductions to boundary critical

phenomena.

The BCFT associated to the extraordinary transition is the most “stable” as there are

no relevant boundary scalar operators. In fact it is believed that its lowest-dimensional

boundary scalar is the “displacement operator” T̂dd, which is the boundary limit of the

bulk stress tensor with both indices pointing in the direction normal to the boundary. The

displacement operator has protected conformal dimension exactly equal to d, and it is thus

irrelevant on the (d−1)-dimensional boundary. The BCFTs associated to the ordinary and

special transitions preserve the Z2 symmetry, which thus remains a good quantum number
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for boundary operators. The boundary spectrum of the BCFT associated to the ordinary

transition contains a single relevant scalar operator which is Z2 odd, and corresponds to ∂dφ̂

in the Landau-Ginzburg description. Finally there are two relevant scalars in the BCFT

for the special transition, one Z2 odd and the other Z2 even, corresponding respectively to

φ̂ and φ̂2.

In d = 2, the extraordinary transition is associated to the Cardy boundary states |1〉〉
and |ε〉〉 labelled by the identity and the energy, respectively. We have

|1〉〉 = 1√
2
|1〉+ 1√

2
|ε〉+ 1

4
√
2
|σ〉 ,

|ε〉〉 = 1√
2
|1〉+ 1√

2
|ε〉 − 1

4
√
2
|σ〉 ,

(3.18)

where the kets on the right-hand side denote Ishibashi states. We see that the two states

are physically equivalent since they are being related by Z2 conjugation. The ordinary

transition is associated instead to the Cardy boundary state |σ〉〉 labelled by the spin,

which is given by

|σ〉〉 = |1〉 − |ε〉 . (3.19)

There is no 2d BCFT associated to the special transition, since the one-dimensional bound-

ary cannot order dynamically at non-zero temperature and so the surface transition is

absent.

4 Numerical results for scalars

Despite the promising results obtained at zeroth and first order in the ǫ expansion, currently

no good analytic tools are available for the exploration of the general space of solutions

of the crossing symmetry equation (2.21). Therefore we have to resort to numerical ap-

proaches. In this section we adapt the numerical methods of [4] to our case and derive

exclusion curves for operator dimensions and OPE coefficients.

The results we obtain below will depend sensitively on some assumptions about the

boundary operator spectrum and thereby fall naturally into different categories related to

the different possible boundary conditions. Following [13] we will focus mainly on corre-

lation functions of the σ operator in the three-dimensional Ising model, whose possible

boundary conditions were presented in figure 2. For reasons to be discussed in subsec-

tion 4.1, our focus will be on the special and extraordinary transitions, which will respec-

tively be discussed in subsections 4.2 and 4.3 below. The relevant bulk and boundary

operator product expansions and scaling dimensions are summarized in table 1. For d = 4

there are several operators that do not appear in OPE and we indicated this with a dash.

The quoted values for the Ising model in d = 3 are of course approximate, but good enough

for the numerical precision of this paper. We were unable to find a reliable estimate of the

dimension of the σ̂′ operator for the special transition.

4.1 Implementation

Let us review how to implement the optimization problem numerically. The following

techniques were explained in great detail in [4, 8] so we shall be brief. We start by isolating
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bulk

σ × σ = 1 + ε+ ε′ + ε′′ + . . .

d 2 3 4

∆σ
1
8 0.5182(3) 1

∆ǫ 1 1.413(1) 2

∆ǫ′ 4 3.84(4) -

∆ǫ′′ 8 4.67(11) -

special

σ = σ̂ + σ̂′ + . . .

d 3 4

∆σ̂ 0.42 1

∆σ̂′ ? -

extraordinary

σ = 1 + T̂dd + . . .

Table 1. Bulk and boundary operator product expansions and operator dimensions in the Ising

model in various dimensions. There is no special transition in two dimensions. For the extraordinary

transition the first boundary operator is T̂dd whose dimension is always equal to the spacetime

dimension d. The results for d = 3 are approximate and were obtained from [13, 34] whereas the

results for d = 2 and d = 4 can be found in the appendices.

the contribution of the identity operator in equation (2.21),

1 = −
∑

k

λkak fbulk(∆k; ξ) + ξ∆ext

(

a2O +
∑

l

µ2
l fbdy(∆l; ξ)

)

, (4.1)

and introduce the compact notation,

1 =
∑

∆

p∆F∆(ξ) , (4.2)

where

p∆ =
(

λkak , a
2
O , µ2

l

)

, (4.3)

F∆(ξ) =
(

−fbulk(∆k; ξ) , ξ
∆ext , ξ∆extfbdy(∆l; ξ)

)

. (4.4)

With these definitions equation (4.2) is analogous to the sum rule of [4]. There is however

a crucial difference between the boundary problem that we are studying compared to the

four-point function crossing symmetry of [4]: even assuming unitarity (as we shall always

do) the coefficients p∆ are not all guaranteed to be positive. They are certainly positive in

the boundary channel, since they are squares of real numbers, but in the bulk channel the

combination λkak is not manifestly positive. Indeed it is not difficult to find counterex-

amples (such as a free scalar with Dirichlet boundary conditions). In the following, we

will assume positivity for the bulk expansion such that p∆ ≥ 0 as in the four-point func-

tion case. The conjecture is that for a given bulk CFT, there exists a choice of boundary

conditions that exhibits positivity. In the Ising model, the ordinary transition is excluded

from our analysis, since both signs occur in the bulk expansion (as can be demonstrated in

d = 2 and in d = 4− ǫ dimensions). We will however assume positivity for the special and

the extraordinary transitions. This assumption is supported by the results in the previous

section as well as in the appendices. We have found positivity of the bulk block coefficients

around d = 4, both for the free field and the Wilson-Fisher fixed point at order ǫ, as well as

in d = 2 where it is a consequence of the positivity of the first two coefficients in the first
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line of (3.18). In appendix B.7 we also found that the coefficients for the special transition

are positive in the O(N) model at large N for any dimension.

We are now ready to start extracting information from the sum rule (4.2). The simplest

possible bound can be obtained as follows: we allow for the bulk spectrum to span all

possible values consistent with unitarity,

∆bulk ≥ d− 1

2
, (4.5)

while restricting the boundary spectrum to be greater than a given value,

∆bdy ≥ ∆min . (4.6)

Then, we consider a functional Λ with the following properties,

Λ(1) < 0 , (4.7)

Λ(F∆) ≥ 0 , (4.8)

where, according to our definitions, F∆ stands for any of the blocks appearing in (4.4) with

scaling dimensions obeying (4.5) and (4.6). If such a functional is found, equation (4.2)

becomes inconsistent and we can rule out that particular CFT. The idea then is to see

how low we can push ∆min.

Before implementing the machinery of linear functionals we need to choose a set of

“coordinates” in our function space. We will parametrize the blocks by an infinite vector

of derivatives {F k
∆} evaluated at ξ = 1,

F k
∆ =

∂kF∆(ξ)

∂ξk

∣

∣

∣

∣

ξ=1

, (4.9)

and crossing symmetry becomes now an infinite set of algebraic equations. In order to make

the problem numerically tractable we will discretize the spectrum of bulk and boundary

dimensions and consider a maximum number of derivatives. With this truncation we have

an optimization problem with a finite dimensional set of inequalities, this is an example of

a linear program. In order to solve the linear programs we used the Mathematica routine

LinearProgamming and the IBM ILOG CPLEX Optimizer. In all our plots below we used

a grid of δk = 0.01 and a total of 15 derivatives.

4.2 Special transition

In the following we present our numerical results for the special transition. The one-

point function of the bulk spin operator σ vanishes since the Z2 symmetry is unbroken by

the (Neumann) boundary conditions. As we have emphasized in the previous subsection,

positivity of the bulk channel coefficients will be a working assumption.

4.2.1 Simplest bound for the boundary channel

Let us start by plotting the simplest possible bound of the form described above. Our

only assumption for the bulk spectrum will be the three-dimensional unitarity bound,
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Figure 3. Upper bound for the first boundary operator in the special transition.

∆bulk ≥ 0.5, but otherwise bulk operators of any dimension are allowed to appear in the

OPE. Crossing symmetry and positivity however imply that the conformal dimension of the

lowest dimension boundary operator cannot be arbitrary. Instead, we found that depending

on the external dimension the first boundary operator has to lie below the curve of figure 3.

Although this is a correct bound, we should mention the following caveat: the bulk

block blows up at the unitarity bound and our more precise assumption for the bulk

spectrum was actually ∆bulk ≥ 0.5 + 10−6. Unfortunately, it turns out that the numerics

are quite sensitive around this point. For example, the bound becomes much stronger if we

change our assumptions on the bulk spectrum to ∆bulk ≥ 0.51. Because of this, we do not

consider this plot to be physically very relevant but it serves as a good warm-up example

before tackling the most interesting cases below.

4.2.2 Improved bound for the boundary channel

The boundary bound obtained above can be improved by making further assumptions.

In the bulk channel decomposition of a scalar two-point function we expect, on physical

grounds, a “gap” between the unitarity bound and the conformal dimension of the first

operator appearing in the bulk OPE. For example, according to table 1, in the three-

dimensional Ising model the first bulk operator appearing in the OPE of the spin operator

σ is the energy operator ε with ∆ε = 1.41, far above the unitarity bound. Clearly, allowing

for the bulk spectrum to go all the way down to the unitarity bound is very unphysical.

In figure 4 we present an improved bound in which we assumed that the bulk spectrum

satisfies ∆bulk ≥ 2∆ext.

Our solution seems to indicate that the bound cannot go below the straight line where

∆bdy = ∆ext. The reason for this is the trivial solution (x1 − x2)
−2∆ext which we discuss

in appendix B.5. This two-point function contains no non-trivial bulk blocks and thus

effectively has an infinite gap in the bulk spectrum. On the other hand, it also has a

boundary channel expansion which starts with a block of dimension ∆ext and our bound

of course cannot get past this particular solution. In a sense, the bound is optimal in this

case, going down until it hits a known solution to crossing symmetry.
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Figure 4. Improved bound for the first boundary operator in the special transition. The bulk

spectrum is assumed to satisfy ∆bulk ≥ 2∆ext.

For the Ising model the dimension of the first boundary operator has a value of ∼ 0.42

and is well inside the allowed region of figure 4. Ideally, we would have found a plot with

some striking feature around this value, like the kink of [13]. However, in our case the

trivial solution is standing in the way. A qualitative explanation for this difference appears

in the epsilon expansion results. Namely, the anomalous dimension of the ε operator

(which is φ2 in d = 4) is positive at one loop, so the Ising model lies above any trivial

(mean field-like) solutions for the bulk four-point function. On the other hand, the one-

loop anomalous dimension of the first boundary operator is negative, so we end up below

the trivial solution. This was of course largely a coincidence - we are not aware of any

fundamental reason requiring these anomalous dimensions to have a definite sign. Some

effort was made in order to circumvent the trivial solution but we did not succeed in

obtaining reliable “kinks” that highlight the presence of the Ising model.

We would like to stress however that our plot is still teaching us something very non-

trivial: the lowest boundary dimension can never be greater than the external dimension.

Interestingly, this result precisely implies that the bulk-to-boundary OPE is never regular,

see equation (2.21). It would be very interesting to find a more direct argument for this

result —perhaps even one that does not rely on our specific assumptions.

4.2.3 Bounding the second boundary operator in the Ising model

Our assumptions in the previous section were almost minimal, and the result is a general

bound valid on the space of BCFTs. In this section we will take a closer look at the three-

dimensional Ising model and attempt to bound the second boundary operator. We will do

so for both the 〈σσ〉 and 〈εε〉 correlators. Using the results from table 1 we can assume that

∆ext = 0.518 ,

∆bulk ≥ 1.41 ,

∆
(1)
bdy ∼ 0.42 ,

∆
(2)
bdy ≥ ∆

(2)
min .

(4.10)
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Figure 5. Upper bound for the dimension of the second boundary operator in 〈σσ〉 as a function

of the dimension of the first boundary operator.

In the boundary channel the first block corresponds to σ̂. We assume that it sits isolated

at ∆
(1)
bdy ∼ 0.42 and that all the subsequent blocks have a scaling dimension greater than

∆
(2)
min. Proceeding as before we push ∆

(2)
min as high as possible until the CFT becomes

inconsistent. This will give us an upper bound for the dimension of the second operator

σ̂′, only valid for the 〈σσ〉 correlator of the 3d Ising model. Because ∼ 0.42 is our less

precise value we will explore a range around this number. Our result is shown in figure 5.

The same can be done for the 〈εε〉 correlator. The statistical mechanics data [34] in

this case are

∆ext = 1.41 ,

∆bulk ≥ 3.80 ,

∆
(1)
bdy ∼ 0.75 ,

∆
(2)
bdy ≥ ∆

(2)
min .

(4.11)

and the resulting bound is shown in figure 6.

Unfortunately, we were unable to find reliable estimates of the scaling dimensions of

the second boundary operators in the statistical mechanics literature. It would of course be

interesting to compare our values with e.g. a two-loop computation for the Wilson-Fisher

fixed point.

4.3 Extraordinary transition

In the extraordinary transition the boundary identity operator is always present, so bound-

ing the lowest boundary dimension is not an interesting exercise in this case. The second

boundary scalar operator is expected to be T̂dd, the energy momentum tensor with indices

in the normal direction, evaluated on the boundary. This operator is always present in the

boundary spectrum and has conformal dimension exactly equal to d, see [24] for details.

Having so much information about the boundary channel we would like to address the

following question: can we bound the bulk spectrum using the boundary bootstrap? We

will show below that this is indeed possible, although our bound is weaker than the one

obtained in [13] who used the crossing symmetry equations for the bulk four-point function.
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Figure 6. Upper bound for the second boundary operator in 〈εε〉 as a function of the first boundary

operator.
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Figure 7. Bulk bound for the extraordinary transition as a function of the external dimension. The

dashed line corresponds to the (stronger) bound obtained in [13] using the bulk crossing symmetry

equations.

4.3.1 Bound for the bulk channel

The assumptions for the extraordinary transition are

∆bulk ≥ ∆min .

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d ,

(4.12)

where we used a notation familiar from the previous subsection. The fact that ∆
(1)
bdy = 0

corresponds to the boundary identity operator which sits isolated, and we then allow for

any operator with a dimension greater than (or equal to) d to be present in the boundary

channel. ∆min is the lowest bulk dimension and the quantity we want to bound. In figure 7

we plot our bound as a function of the external dimension. Because figure 7 can be directly

compared with the bound of [13] we have superimposed their result on our plot. We can

see that the bound obtained using the boundary bootstrap is qualitatively different, it is

weaker and has no kink at the Ising point. Since we successfully found an “optimal” bound
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Figure 8. Bulk bound for different spacetime dimensions in the extraordinary transition. We

highlighted the Ising model in various dimensions with the crosses. The dashed line is a specific

solution for d = 2 which interpolates through the minimal models, see appendix B.2.

for the boundary spectrum in the previous subsection, it is surprising that our bulk bound

does not exhibit any of the expected features.

There are two possible explanations for the discrepancy seen in figure 7. First, there

may be a spurious solution to crossing symmetry that we have not found yet and that

prevents the bound from going lower. If such a solution exists then it would be interesting

to understand whether it corresponds to a full-fledged BCFT or not. Notice that this

solution would appear to violate the bound of [13] but this may be due to the fact that

certain operators do not get one-point functions and therefore do not appear in our bulk

block expansion. The second explanation is that our numerics are not precise enough and

that we would be able to lower the bound by increasing our numerical precision. We offer

some comments on this second possibility below.

Bulk bound for arbitrary d

One of the advantages of studying the boundary problem is that the blocks are an analytic

function of d. In figure 8 we plot the bulk bound obtained above for different dimensions

including non-integer values.

The bound we find is always significantly different from any known solutions to crossing

symmetry. In particular, in the figure we have shown the line interpolating through the

minimal models in d = 2 and the Ising model for the integral dimensions. Again, it would

be interesting to understand if this is due to our finite numerical precision or whether there

exist ‘spurious’ solutions to the crossing symmetry equations at the current bounds.

4.3.2 Upper bound for T̂dd OPE coefficient

The method of linear functionals can also be used to bound OPE coefficients. In [6] a

universal upper bound for the OPE coefficient of three scalars was found using the four-

point function bootstrap. The same technique was used in [7, 8] to obtain an upper bound

for the OPE coefficient of the stress tensor. This coefficient is inversely proportional to the

central charge c of the theory so the result translates into a lower bound for c.
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Figure 9. Upper bound for the coefficient of the T̂dd block as a function of the external dimension.

The dashed line represents and improved bound with a stronger assumption for the gap, following

the dashed line of figure 7 (see text).

In this section we will use the boundary bootstrap to bound the coefficient µ2
d of the T̂dd

boundary block fbdy(d, ξ). We recall that this block is always present in the extraordinary

transition, see the OPE in table 1. We start by imposing,

Λ(ξ∆extfbdy(d, ξ)) = 1 , (4.13)

Λ(F∆) ≥ 0 . (4.14)

Applying this functional to the crossing symmetry relation (4.2) we obtain,

µ2
d ≤ Λ(1) , (4.15)

where µ2
d is the OPE coefficient of fbdy(d, ξ). The best bound is obtained by minimizing

the action of Λ on the identity. For the spectrum we require,

∆bulk ≥ 2∆ext ,

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d .

(4.16)

Notice that we have again assumed a gap of 2∆ext in the bulk. We plot our result as a

function of the external dimension in figure 9. Let us try to justify our choice of ∆bulk ≥
2∆ext. A way to make the bound stronger would be to increase the bulk gap above

this value, the maximum value we can assume for the gap is dictated by the bulk bound

of [13], obtained using the four-point bootstrap equations. In figure 9 we have thus plotted

an improved upper bound (dashed line) assuming ∆bulk ≥ f(∆ext), where f(∆) is the

function represented by the dashed line of figure 7. It is clear that the upper bound is

not too sensitive to the assumed gap. For example, for the Ising model ∆ext = 0.518,

and the upper bounds are µ2
d . 0.0734 and µ2

d . 0.0693 for ∆bulk ≥ 2(0.518) ∼ 1.04 and

∆bulk ≥ f(0.518) = 1.41 respectively. A change of ∼ 0.37 in the bulk gap translates into a

change of ∼ 0.0041 in the bound, so at least for this example 2∆ext does a good job as a

representative gap for the space of CFTs.
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Figure 10. Locating the Ising model in d = 2 (left) and d = 3 (right). The plot show the dimension

of a bulk operator versus the external dimension. With the assumptions explained in the main text,

we need at least one bulk operator in the shaded regions. The Ising model is indicated with the

cross in both plots.

The procedure used above generalizes with no major changes to arbitrary dimensions,

let us then make a quick comparison with some known values. For the 2d Ising model the

coefficient µ2
d can be read from the conformal block expansion in (B.5), it has the value

µ2
d = 1

32
√
2
∼ 0.0221 whereas the Linear Programming methods result in an upper bound

µ2
d . 0.0309. For the extraordinary transition in the ǫ-expansion equation (B.39) tells us

µ2
d = 1

10 = 0.10, whereas we obtained the upper bound µ2
d . 0.119 in four dimensions. We

see that the numbers agree reasonably well.

4.3.3 Towards the Ising model

In analogy with [13] we may try to isolate the Ising model in various dimensions. To this

end we will improve the results of the previous subsection by using as additional knowledge

the dimension of the next scalar operator ε′ which appears in the σ × σ OPE. According

to table 1, in three dimensions this operator has a scaling dimension ∆ǫ′ of approximately

3.84 whereas in two dimensions it has dimension 4 (it corresponds to L−2L̄−21). We again

assumed a boundary channel spectrum consistent with the extraordinary transition, i.e. a

possible one-point function and a gap equal to the spacetime dimensions d. Summarizing,

∆
(2)
bulk ≥ ∆ǫ′ ,

∆
(1)
bdy = 0 ,

∆
(2)
bdy ≥ d .

(4.17)

with ∆ǫ′ fixed to the values of table 1. Our aim is now to find the possible range of values

that ∆
(1)
bulk can take. The resulting plots are shown in figure 10.

Notice that the plots give results that are qualitatively similar to those of [13], in a

considerably simpler setup. This is of course an encouraging result. Furthermore, we also

did not rule out the Ising model and this provides some a posteriori justification for our

assumption of positivity in three dimensions.

It is however rather unfortunate that the bounds we obtain are relatively weak. For

this specific example we have tried different numerical implementations as well, for example
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we have tried to include more derivatives or to evaluate the blocks at different points like

ξ = 1/2 or ξ = 2. In each case we were unable to significantly lower the bounds. We have

also attempted to improve the results by imposing an additional gap between the second

and the third operator in the bulk channel. The third bulk operator has scaling dimensions

8 in d = 2 and approximately 4.6 in d = 3. Imposing this additional gap significantly

improved the bounds for d = 2 but unfortunately this was not the case for d = 3.

5 Boundary crossing symmetry for stress tensors

In section 2 we derived the crossing symmetry equation (2.21) for two-point functions of

scalar operators using the bulk and boundary conformal block decompositions. In this

section we will derive a similar equation for the two-point function of the stress tensor. We

will then use this equation in section 6 to obtain numerical bounds for the spectrum of

operators appearing in the stress tensor OPE.

The main results of this section are summarized in subsection 5.1. We then present

the details of our computations in subsections 5.2 through 5.4. These latter subsections

are not essential for the remainder of the paper and can safely be skipped by the casual

reader.

5.1 Summary of results

As we show in equation (5.17) below, the two-point function of a spin two operator in the

presence of a boundary features three independent tensor structures. Each tensor structure

comes multiplied with its own scalar function of ξ and we find it convenient to collect these

three functions in a three-component vector of the form (f(ξ), g(ξ), h(ξ)). Furthermore,

for the stress tensor the Ward identities relate the three components in the following way:

(d− 2)ξ2
d

dξ
g = (d2 + 3d− 2)h− 2(d− 1)ξ(1 + ξ)

d

dξ
h

4dξ3
d

dξ
f = −4(1 + ξ)h+

(

ξ(d2 + 2d− 4)− 2dξ2(1 + ξ)
d

dξ

)

g ,

(5.1)

so up to a few integration constants there is effectively only one independent function of ξ.

In the following subsections we derive the conformal block decompositions of the func-

tions (f, g, h) in the bulk and the boundary channel. The main result of these subsections

will be the following crossing symmetry equation:






1

0

0






+
∑

k

λkaOk







fbulk(∆k; ξ)

gbulk(∆k; ξ)

hbulk(∆k; ξ)







= µ2
(0)







f
(0)
bdy(d; ξ)

g
(0)
bdy(d; ξ)

h
(0)
bdy(d; ξ)






+ µ2

(1)







f
(1)
bdy(d; ξ)

g
(1)
bdy(d; ξ)

h
(1)
bdy(d; ξ)






+
∑

n

µ2
(2),n







f
(2)
bdy(∆n; ξ)

g
(2)
bdy(∆n; ξ)

h
(2)
bdy(∆n; ξ)






,

(5.2)

where all the functions (f, g, h) are explicitly known functions of ξ. Equation (5.2) is the

analogue of (2.21) for scalars and we will use it in section 6 to obtain bounds on operator

dimensions and OPE coefficients. Let us now discuss it in a bit more detail.
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First of all, because of the three independent tensor structures we get a three-

dimensional vector of equations (and the conformal blocks themselves also become three-

dimensional vectors). It is then important to realize that the Ward identities are operator

equations and therefore they must be true for the individual conformal blocks as well. Each

vector appearing in (5.2) thus individually satisfies the Ward identities (5.1).

The left-hand side of (5.1) is the bulk channel conformal block decomposition. As

in (2.21), we separated out the conformal block corresponding to the identity operator.

For the other operators we should recall that SO(d, 1) conformal symmetry dictates that

only scalars can get non-zero one-point functions and therefore only scalar blocks can

contribute to the bulk channel expansion.

The right-hand side of (5.1) represents the boundary channel conformal block decompo-

sition. A priori, a spin 2 operator has a boundary OPE decomposition involving operators

with spins ranging from 0 to 2 and indeed we find all these possibilities in (5.1), where the

spins of the exchanged operator is written as the superscript in parentheses. However in

this case the Ward identities turn out to further constrain the conformal block decompo-

sition. More specifically, the boundary scalar and vector appearing in the boundary OPE

decomposition of Tµν must have scaling dimensions equal to the spacetime dimensions, so

∆(0) = ∆(1) = d. There is thus a unique block for the exchange of a scalar of dimension

d and also for a vector of dimension d. These two blocks are the first two terms on the

right-hand side of (5.2). On the other hand, the dimensions of the spin 2 fields are not

constrained in this way and there can therefore in principle be infinitely many spin 2 blocks,

represented by the final sum in (5.2).

Let us offer a few more comments on the spin 0 and 1 boundary operators. As one

may have anticipated, in physical theories they correspond to the T̂d d and T̂i d (i being a

tangential index) components of the bulk stress tensor, restricted to the boundary. These

operators are intimately related to infinitesimal variations in the location of the boundary

surface which explains the ‘non-renormalization’ of their scaling dimensions, see [24] for

details. For physical BCFTs the displacement operator T̂d d is generically present on the

boundary and we encountered it already in the discussion of the extraordinary transition

in section 3. On the other hand, the vector operator is only present if there is a non-zero

energy flow across the boundary. For BCFTs this is an unphysical boundary condition and

we can then set µ2
(1) = 0. (Notice that an energy flow would be allowed if the surface xd = 0

was actually an SO(d, 1) preserving interface between two different theories, one defined

for xd > 0 and the other for xd < 0, and in such cases the vector block will generically be

present.)

In appendix C we present a few explicit solutions to the crossing symmetry equa-

tion (5.2). We discuss the universal solution in two dimensions (which is fully determined

by the Virasoro algebra), the free-field theory solutions in d dimensions and the extraordi-

nary transition to leading order for the Wilson-Fisher fixed point.

5.2 Correlation functions of tensor operators

In this section we discuss correlation functions of operators with spin in conformal field

theories. We will use the results of [35], see also [36], and adapt them to conformal field
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theories with a boundary. Many of the results in this and the next two subsections were

also obtained in [24, 26] but we present here an independent derivation which is straight-

forwardly implemented on a computer.

The index structures appearing in correlation functions of tensor operators are easily

found in the null projective cone formalism discussed in section 2.1. According to [35], a

generic tensor field fµ1...νn(x) lifts to a tensor field FA1...An
(P ) in the null projective cone

with the following properties:

– equal symmetries in the indices of FA1...An
(P ) and of fµ1...νn(x);

– transversality, so PAiFA1...Ai...An
(P ) = 0 for 1 ≤ i ≤ n;

– a gauge equivalence defined as FA1...An
(P ) ∼ FA1...An

(P ) + PAi
ΛA1...Âi...An

for any Λ

and 1 ≤ i ≤ n.

For symmetric traceless tensors it is convenient to contract the indices on F with auxiliary

variables ZA and write F (P,Z) ≡ FA1...An
(P )ZA1 . . . ZAn . Tracelessness implies that we

may restrict ourselves to the subspace defined by Z2 = 0 and the gauge equivalence implies

that we may take Z · P = 0 as well. The transversality condition becomes:

P · ∂

∂Z
F (P,Z) = 0 . (5.3)

Correlation functions of n symmetric traceless tensor primary operators can now be

written as scalar functions G(Pi, Zi) with 1 ≤ i ≤ n with the following properties:

– the dependence on Zi should be a homogeneous polynomial of degree li;

– the dependence on Pi should be homogeneous of degree −∆i;

– transversality dictates that Pi · ∂Zi
G = 0 for 1 ≤ i ≤ n;

– for any conserved tensor there is a Ward identity of the form [35]

(∂P ·D(d))G = 0 , (5.4)

with

D
(d)
A =

(d

2
− 1 + Z · ∂

∂Z

) ∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z , (5.5)

where P and Z are the variables corresponding to the conserved tensor, for example

P1 and Z1 if the conserved tensor is the first operator.

As an example, let us review the well-known result for the three-point function of two

stress tensors and one scalar operator GTTO(P1, P2, P3, Z1, Z2). The first three constraints

together dictate that there are three different invariant tensor structures,

GTTO =
1

(−2P1 · P2)d−∆/2(−2P2 · P3)∆/2(−2P3 · P1)∆/2

(

a(W12)
2 + bH2

12 + cH12W12

)

,

(5.6)
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with for now arbitrary constants a, b, c and with building blocks

W12 =

(

(Z1 · P2)(P1 · P3)− (Z1 · P3)(P1 · P2)
)(

(Z2 · P1)(P2 · P3)− (Z2 · P3)(P1 · P2)
)

(P1 · P2)(P2 · P3)(P3 · P1)
,

H12 =
(Z1 · Z2)(P1 · P2)− (Z1 · P2)(Z2 · P1)

P1 · P2
.

(5.7)

The Ward identities for the stress tensor furthermore dictate that:

a =
∆(∆+ 2)

4d(d+ 1)
λTTO ,

b =
(∆− d)2(d− 1)− 2d

d(d+ 1)(d− 2)
λTTO ,

c =
∆((∆− d)(d− 1)− 2)

d(d+ 1)(d− 2)
λTTO ,

(5.8)

where λTTO is an undetermined overall coefficient. Upon sending ∆ → 0 we find that

a, c → 0 but b → λTT1 and we recover the unit normalized stress tensor two-point function,

〈T (P1, Z1)T (P2, Z2)〉 =
H2

12

(−2P1 · P2)d
, (5.9)

provided we set λTT1 = 1. The normalization in (5.8) is therefore such that λTTO is a

natural three-point coupling coefficient.

Let us finally take the OPE limit by sending P1 → P2. In that case H12 remains finite

whilst

W12 → WOPE
12 ≡ (Z1 · P2)(Z2 · P1)

(P1 · P2)
(5.10)

and therefore

GTTO → a(WOPE
12 )2 + bH2

12 + cH12W
OPE
12

(−2P1 · P2)d−∆/2(−2P1 · P3)∆
, (5.11)

and we infer that the T × T → O operator product expansion becomes to leading order

T (P1, Z1)T (P2, Z2) ∼ . . .+
a(WOPE

12 )2 + bH2
12 + cH12W

OPE
12

(−2P1 · P2)d−∆/2
O(P1) + . . . (5.12)

where we assumed that O is normalized such that 〈O(P1)O(P2)〉 = (−2P1 · P2)
−∆.

As we mentioned in section 2.1, the breaking of SO(d + 1, 1) to SO(d, 1) due to the

presence of a boundary is implemented by introducing an additional fixed vector

V A = (0, 0, . . . , 0, 1) , (5.13)

representing the unit normal to the boundary. Correlation functions are still required to

be SO(d + 1, 1) scalars with the same four properties as above but they can now depend

on V A as well. For example, we have already mentioned that the one-point function of a

scalar operator can take the form:

〈O(P )〉 = aO
(V · P )∆

, (5.14)

– 26 –



J
H
E
P
0
7
(
2
0
1
3
)
1
1
3

with arbitrary coefficient aO. For one-point functions of tensor operators one directly sees

that the numerator would have to involve a factor (V · Z)l but this is not transverse and

so higher-spin one-point functions must vanish.

With two points we can build the invariant object ξ of section 2.1 which we recall was

ξ =
−P1 · P2

2(V · P1)(V · P2)
=

(x1 − x2)
2

4xd1x
d
2

, (5.15)

and conformal symmetry thus determines two-point functions only up to arbitrary functions

of ξ. For the scalar two-point function this leads to equation (2.10) which was:

〈O1(P1)O2(P2)〉 =
1

(2V · P1)∆1(2V · P2)∆2
fO1O2(ξ) , (5.16)

where fO1O2(ξ) is not fixed by conformal symmetry. Two-point functions involving tensors

are easily found, e.g.

ZA
2 〈O(P1)JA(P2)〉 =

(Z2 · V )(P2 · P1)− (P2 · V )(Z2 · P1)

(V · P1)∆O+1(V · P2)∆J+1
fOJ (ξ) ,

ZA
2 Z

B
2 〈O(P1)TAB(P2)〉 =

(

(Z2 · V )(P2 · P1)− (P2 · V )(Z2 · P1)
)2

(V · P1)∆O+2(V · P2)∆T +2
fOT (ξ) ,

ZA
1 Z

B
2 〈JA(P1)JB(P2)〉 =

fJJ (ξ)H12 + gJJ (ξ)Q12

ξ∆1(V · P1)∆1(V · P2)∆2
,

ZA
1 Z

B
1 ZC

2 ZD
2 〈TAB(P1)TCD(P2)〉 =

fT T (ξ)H2
12 + gT T (ξ)H12Q12 + hT T (ξ)Q2

12

(4ξ)∆1(V · P1)∆1(V · P2)∆2
,

(5.17)

with H12 already defined above and with

Q12 =

(

(V · P1)(Z1 · P2)

(P1 · P2)
− (V · Z1)

)(

(V · P2)(Z2 · P1)

(P1 · P2)
− (V · Z2)

)

. (5.18)

If the above tensors are conserved then we write J and T instead of J and T . In that case

∆J = d− 1 and ∆T = d and from the Ward identities we also find that:

fOJ(ξ) = cOJ(ξ(1 + ξ))−d/2 ,

fOT (ξ) = cOT (ξ(1 + ξ))−1−d/2 ,

0 =

(

(d+ 1)− 2ξ
d

dξ

)

gJJ − 2ξ2
d

dξ

(

fJJ + gJJ

)

,

(d− 2)ξ2g′TT = (d2 + 3d− 2)hTT − 2(d− 1)ξ(1 + ξ)h′TT ,

4dξ3f ′
TT = −4(1 + ξ)hTT +

(

ξ(d2 + 2d− 4)− 2dξ2(1 + ξ)
d

dξ

)

gTT ,

(5.19)

with c... denoting an integration constant. We see that the two-point function of two stress

tensors and the two-point function of two currents are both fixed up to a single function of

ξ. The last two equations in (5.19) were already presented in equation (5.1). They agree
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with equation (2.27) and (2.31) of [26] with the replacements f(ξ) = C(v), g(ξ) = 4v2B(v)

and h(ξ) = v4A(v) and with v2 = ξ/(ξ + 1).

We can also insert operators at boundary points labelled X satisfying X · V = 0. As

before, we will denote such operators with a hat. We project the indices of such operators to

lie along the boundary, which in the null projective cone is implemented by the constraint

V · D(d) = 0 with the operator D
(d)
A already given by (5.5). The correlation functions of

interest are those with a single stress tensor in the bulk. We find:

ZA
2 Z

B
2 〈Ô(X1)TAB(P2)〉 = δd,∆

Ô
cÔT

(

(Z2 · V )(P2 ·X1)− (P2 · V )(Z2 ·X1)
)2

(−2X1 · P2)d+2
,

ZA
1 Z

B
2 ZC

2 〈ĴA(X1)TBC(P2)〉 = δd,∆
Ĵ
cĴT

(

(Z2 · V )(P2 ·X1)− (P2 · V )(Z2 ·X1)
)

Ĥ12

(−2X1 · P2)d+1
,

ZA
1 Z

B
1 ZC

2 ZD
2 〈T̂AB(X1)TCD(P2)〉 = cT̂ T

Ĥ2
12 − 1

d−1Q
2
12

(−2X1 · P2)
∆

T̂ (V · P2)
d−∆

T̂

,

(5.20)

with

Ĥ12 =
(Ẑ1 · Z2)(P1 · P2)− (Ẑ1 · P2)(Z2 · P1)

P1 · P2
, ẐA

1 ≡ ZA
1 − (Z1 · V )V A . (5.21)

Notice that for scalars and vectors the scaling dimension is required to be d whereas the

dimension of T̂ is unconstrained by the Ward identity.

Up to terms that ensure that V ·D(d) annihilates the correlator, two-point functions

of boundary operators are of the same form as two-point functions of bulk operators in the

absence of a boundary. In particular we find that:

〈Ô(X1, Z1)Ô(X2, Z2)〉 =
1

(−2X1 ·X2)∆
,

〈Ĵ (X1, Z1)Ĵ (X2, Z2)〉 =
H12 − (V · Z1)(V · Z2)

(−2X1 ·X2)∆
,

〈T̂ (X1, Z1)T̂ (X2, Z2)〉 =

(

H12 − (V · Z1)(V · Z2)
)2

− 1
d−1(V · Z1)

2(V · Z2)
2

(−2X1 ·X2)∆
.

(5.22)

Equation (5.22) defines our normalization of the boundary operators. Notice that H12

descends from the projective cone to zµ1 z
ν
2 (δµν −2x12,µx12,ν/x

2
12) so it is easily verified that

our normalization is consistent with reflection positivity. Using (5.20) and (5.22) we find

the bulk-to-boundary OPE of the stress tensor,

T (P,Z) → cÔT (Z · V )2Ô(X)− cĴ T (Z · V )Ĵ (X,Z) +
cT̂ T

(V · P )d−∆
T̂

T̂ (X,Z) + . . . (5.23)

5.3 Bulk channel blocks for the stress tensor

In this subsection we compute the conformal blocks for the two-point function of the stress

tensor using the conformal Casimir differential equation method of [37]. These are the

conformal blocks appearing on the left-hand side of (5.2).
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On a symmetric traceless tensor F (P,Z) the action of an element LAB of SO(d+1, 1)

takes the form:

LABF (P,Z) =
(

PA
∂

∂PB
− PB

∂

∂PA
+

1
d
2 + l − 1

(ZAD
(d+2)
B − ZBD

(d+2)
A )

)

F (P,Z) , (5.24)

with the operator D
(d+2)
A given by (5.5) but with d → d+ 2 since we are rotating in d+ 2

dimensions. The conformal Casimir equation is then:

1

2
LABL

ABF (P,Z) = −C∆,lF (P,Z) , (5.25)

with C∆,l = ∆(∆ − d) + l(l + d − 2). We used this equation in appendix A to find the

result (A.6) for the conformal block in the bulk channel for a scalar two-point function.

For two stress tensors the conformal block can be written as:

G∆
b (P1, P2, Z1, Z2) =

fb(ξ)H
2
12 + gb(ξ)H12Q12 + hb(ξ)Q

2
12

(4ξ)d(V · P1)d(V · P2)d
, (5.26)

and the constraint 1
2(L

(1)
AB+L

(2)
AB)(L

(1)AB+L(2)AB)G∆ = −C∆,0G
∆ together with the Ward

identities leads to the unique solution for the coefficients:

hb =
∆(∆+ 2)

16d(d+ 1)
(4ξ)∆/2+2

2F1

(

2 +
∆

2
, 2 +

∆

2
; 1− d

2
+ ∆;−ξ

)

, (5.27)

with fb and gb determined by the Ward identities (5.19). Let us verify the normalization

by taking the OPE limit ξ → 0. We already mentioned that H12 then remains finite and

it is not hard to find that

Q12 → − 1

2ξ
WOPE

12 , (5.28)

with WOPE
12 defined in (5.10). From the expansion of (5.27) and the Ward identities we find

hb = (4ξ)∆/2(4ξ2â+O(ξ)) , â =
∆(∆+ 2)

4d(d+ 1)
,

fb = (4ξ)∆/2
(

b̂+O(ξ)
)

, b̂ =
(∆− d)2(d− 1)− 2d

d(d+ 1)(d− 2)
, (5.29)

gb = (4ξ)∆/2
(

− 2ξĉ+O(ξ) ,
)

ĉ =
∆((∆− d)(d− 1)− 2)

d(d+ 1)(d− 2)
,

and the entire block behaves as:

G∆
b (P1, P2, Z1, Z2) =

â(WOPE
12 )2 + b̂H2

12 + ĉH12W
OPE
12

(−2P1 · P2)d−∆/2(V · P1)∆
, (5.30)

which is compatible with (5.8), (5.12) and (5.14).

Explicit expressions for fb and gb are also available in terms of linear combinations of

2F1 hypergeometric functions.

The identity block can be found by sending ∆ → 0. We then find that fb = 1 and

gb = hb = 0.
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5.4 Boundary channel blocks for the stress tensor

We label the boundary block associated to a primary operator of dimension ∆ and spin l

as G
(∆,l)
s (with a subscript “s” for surface). Each block has again the same form as the TT

two-point function given in (5.17) with three associated functions f
(∆,l)
s , g

(∆,l)
s and h

(∆,l)
s .

In the two-point function of the stress tensor there are three types of boundary blocks,

G
(d,0)
s , G

(d,1)
s and G

(∆,2)
s . To find these blocks we act with the SO(d, 1) Casimir operator

on one of the two points and solve the resulting differential equation. In the equations

below we use h ≡ d/2.

For a block corresponding to the exchange of a boundary scalar of dimension d we find:

h(d,0)s =
1

2h(2h+ 1)
ξh+1(1 + ξ)−h−3

(

2h(2h+ 1)ξ2 + 2(2h+ 1)(h− 1)ξ + h(h− 1)
)

,

g(d,0)s =
1

h(2h+ 1)
ξh(1 + ξ)−h−2(h+ ξ + 2hξ) ,

f (d,0)
s =

1

4h(2h+ 1)
ξh−1(1 + ξ)−h−1 ,

(5.31)

where we already fixed the normalization. In the limit where ξ → ∞ we find that only the

third tensor structure contributes and

G(d,0)
s (P1, P2, Z1, Z2) ∼

(V · Z1)
2(V · Z2)

2

(−2P1 · P2)2h
, (5.32)

which agrees with (5.23) and the first equation in (5.22).

For the block corresponding to the exchange of a boundary vector of dimension d

we find:

h(d,1)s =
1

2(2h+ 1)
ξh+1(1 + ξ)−h−3

(

− 2(2h+ 1)ξ2 + 2h(h− 1)ξ + h(h− 1)
)

,

g(d,1)s =
1

(2h+ 1)
ξh(1 + ξ)−h−2

(

ξ2 + h(1 + 2ξ + 2ξ2)
)

,

f (d,1)
s =

1

4(2h+ 1)
ξh−1(1 + ξ)−h−1(1 + 2ξ) ,

(5.33)

and the block behaves for ξ → ∞ as

G(d,1)
s (P1, P2, Z1, Z2) ∼

(V · Z1)(V · Z2)
(

H12 − (V · Z1)(V · Z2)
)

(−2P1 · P2)2h
, (5.34)

which is again consistent with the formulas given above.

Finally, for the spin two blocks:

h(∆,2)
s =

2(h−1)

2h−1
(4ξ)2h−∆3F2

(

2+∆, 3−2h+∆, 1−h+∆; 1−2h+∆, 2−2h+2∆;−1
ξ

)

,

g(∆,2)
s = −2(4ξ)2h−∆ +O(ξ−1) , (5.35)

f (∆,2)
s = (4ξ)2h−∆ +O(ξ−1) ,
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where g
(∆,2)
s and f

(∆,2)
s can also be explicitly written as a sum over two hypergeometric

functions. As we send ξ → ∞ we recover that

G(∆,2)
s (P1, P2, Z1, Z2) ∼

(

H12 − (V · Z1)(V · Z2)
)2

− 1
d−1(V · Z1)

2(V · Z2)
2

(V · P1)2h−∆(V · P2)2h−∆(−2P1 · P2)∆
, (5.36)

which is again consistent with the formulas given above.

6 Numerical results for stress tensors

The numerical analysis of equation (5.2) proceeds largely as for the scalar two-point func-

tion, see subsection 4.1. In particular, we again translate the constraints of crossing sym-

metry to an infinite vector of derivatives at ξ = 1 and apply a linear functional in order

to exclude certain spectra, using the same numerical methods as described above. Notice

that the Ward identities (5.1) can be used to express derivatives of f and g in terms of

derivatives of h. We therefore do not need to include more than the zeroth derivative for

the f and g components if we include many derivatives of the h component. There is again

no guarantee that the coefficients of the conformal blocks are positive in the bulk channel.

Just as before we will therefore have to assume this condition of positivity in order to

obtain any bounds.

6.1 Bound on the bulk gap

In order to turn equation (5.2) into a useful equation to constrain conformal field theories

we have to decide which parameters we are going to vary. In previous computations of

this sort the canonical parameter was always the dimension of the external field but for

the stress tensor this dimension is of course fixed to be d. In our first analysis we instead

chose to vary the dimension of the lowest spin 2 boundary block which we denote as ∆(2).

We then obtained an upper bound for the lowest bulk operator dimension as a function of

∆(2) which we plotted as the upper curve in figure 11.

We may rephrase this result by saying that the upper curve in figure 11 informs us

that the crossing symmetry equation (5.2) can only be satisfied if there is at least one

“critical” bulk operator with a scaling dimension somewhere below the curve. We can

however subsequently ask whether this “critical” operator really could be sitting anywhere

below the curve (and above the unitarity bound ∆bulk > 1/2). In fact it turns out that

the region where such an operator has to appear can be constrained even further: we can

limit it to the shaded region in figure 11. We conclude that for every ∆(2) there has to

be at least one bulk operator somewhere within this region. (There could in addition be

other operators, for example somewhere in the white “band” or multiple operators in the

shaded region, but none of this modifies the validity of our claim.)

In figure 11 we assumed that the vector block was not present in the boundary OPE

of Tµν . Upon repeating the analysis with a vector block we obtained exactly the same

curves for ∆(2) > 3 (up to small deviations due to the finite numerical precision), whereas

for ∆(2) ≤ 3 we would not be able to bound the bulk gap at all. The latter phenomenon
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2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
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8

∆(2)

∆bulk

Figure 11. Bounds for the energy momentum tensor two-point function in three spacetime dimen-

sions. The upper curve is the upper bound ∆bulk for the first bulk operator as a function of the gap

∆(2) for the first spin 2 boundary operator. The other lines denote further constraints for such a

bulk operator, to the extend that for every ∆(2) there has to be at least one bulk scalar somewhere

in the shaded region.

has an easy explanation: the bulk identity operator can be decomposed in the boundary

channel into the scalar block, the vector block and an infinite series of spin 2 blocks starting

with ∆(2) = 3. For ∆(2) ≤ 3 and with the vector block present it is therefore possible to

have an infinite gap in the bulk (i.e. no bulk operators apart from the identity) and so ∆bulk

cannot be bounded. This is reminiscent of the “trivial” solution for the scalar two-point

function discussed in appendix B.5 which we found numerically in section 4.2.

The curves shown in figure have several “bumps” and other features whose origins

are unfortunately unclear to us. For example, we were unable to find specific solutions of

crossing symmetry that reflect the existence of these bumps. It would be interesting to see

if such solutions exist and whether a conformal field theory is associated to them.

6.2 Bound on OPE coefficients in the three-dimensional Ising model

In subsection 4.3.2 we discussed how to bound OPE coefficients in the conformal block

decomposition. Here we repeat the same procedure for the two-point function of the

stress tensor. We will again bound the coefficient of the boundary operator T̂dd which

in equation (5.2) corresponds to the coefficient µ2
(0) of the scalar block in the boundary

channel. In addition, we decided to focus our attention on the three-dimensional Ising

model. In particular, we have assumed that the bulk spectrum consists of operators with

dimensions equal to 1.41, 3.84, and any operator with a scaling dimension greater than 4.6.

We then obtain an upper bound on µ2
(0) as a function of the unknown scaling dimension

∆(2) of the lowest spin two operator in the boundary channel. We assumed that no vector

operator was present in the boundary channel. Our results are plotted in figure 12.

We find a rather surprising plateau for ∆(2) between approximately 2.9 and 3.2 where

µ2
(0) ∼ 11.5. From the results in appendix C we find that µ2

(0) = 4 in two dimensions and

that µ2
(0) = 640/ǫ+O(ǫ0) in 4− ǫ dimensions so at the very least our estimate appears to

have the right order of magnitude. It would be interesting to compute the dimension of
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Figure 12. Bounds for the coefficient of the scalar boundary block in the two-point function of

the stress tensor as a function of the gap ∆(2) in the spin 2 boundary dimensions.

the first spin 2 operator appearing in the boundary channel in the epsilon expansion, since

it is natural to expect that the Ising model lies at one of the corners of this plateau.

7 Conclusions

In this paper we have begun to explore the constraining power of crossing symmetry for

BCFTs in general spacetime dimensions. After discussing the basic setup in section 2, we

illustrated the relative simplicity of the “boundary bootstrap” in section 3 where we found

exact solutions with at most two blocks in each channel. We have then applied the linear

programming methods of [4] to the boundary crossing symmetry equations for both scalar

operators and stress tensors. With our assumption of positivity for the bulk expansion

coefficients, we have demonstrated that these methods can be useful in the BCFT setup

as well and that they lead to interesting universal bounds on scaling dimensions and OPE

coefficients. Several of our results warrant a more detailed theoretical investigation. For

example, the bound on the second boundary operator in the special transition and the Tdd

OPE coefficient in the extraordinary transition should be compared with computations

in the epsilon expansion. Similarly, our numerical results of section 4.2 indicate that the

bulk-to-boundary OPE always has to be singular, a result that should be put on a more

solid theoretical footing. Finally, our results for the stress tensor are rather mysterious and

certainly call for further investigations, beginning with the one-loop anomalous dimension

of the spin two boundary operator in the extraordinary transition.

It is unfortunate that the distinct “kinks” of [13] appear not to be generically present

in the BCFT bounds. We emphasize that this (negative) result is completely independent

from our positivity assumption, indeed in d = 2 we see no kink but we know that the exact

result does exhibit positivity. It would be interesting to see if there is another solution to

crossing symmetry “standing in the way” and thereby preventing us from obtaining such

a kink. More generally our results are a reflection of the fact that there are currently no

deep understanding of why and when such kinks will appear. It would of course be very

interesting to understand this phenomenon better. We hope hat our numerical results (as
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well as the analytical results for the minimal models of appendix B.1) will be helpful in

further investigations.

The weakest point of our analysis is admittedly the assumption of positivity for the

bulk expansion coefficients. While we have presented strong evidence that it is satisfied

for the special and extraordinary Ising BCFTs, it would be desirable to find a proof. A

possible approach would be to derive rigorous inequalties for boundary correlators on the

lattice.

This paper is a first attempt to investigate the boundary bootstrap with a focus on

the three-dimensional Ising model, but we feel we have just scratched the surface and that

there are many interesting open questions. It is clear that the avenues for further numerical

exploration are practically unlimited, but let us discuss a few possibilities in more detail.

First of all we could consider other scalar two-point functions to further investigate

the spectrum of the three-dimensional Ising model. For example, one can try to further

constrain the Z2 even scalar boundary spectrum by analyzing the two-point function of the

ε operator beyond what is shown in figure 6. Of course this is straightforward: although in

section 4 we mostly referred to the external operator as the σ operator, in fact the bounds

we obtained applied to any two-point function of identical scalar bulk operators, so the

〈ε(x1)ε(x2)〉 two-point function can be analyzed by simply dialing the external dimension to

the right value and relaxing the constraint from the Z2 selection rule. For the extraordinary

transition one could also try to probe the Z2 odd one-point functions by studying a mixed

two-point function like 〈σ(x1)ε(x2)〉.
Another class of options is to study correlation functions involving boundary operators.

Here we find non-trivial structures in e.g. the three-point function of two bulk operators and

one boundary operator or the three-point function with two boundary operators and one

bulk operator. However, in the former case it is clear that positivity cannot be guaranteed

in either channel, whereas in the latter case there is only one conformal block decomposition

so there is no crossing symmetry condition. These correlators could nevertheless be useful

by conjecturing additional positivity constraints or by considering the constraints arising

from multiple correlators at the same time.

Perhaps the most promising correlator is the four-point function of four boundary

operators, which should lead to non-trivial constraints for the boundary spectrum. Here

the positivity assumption is certainly satisfied for any unitary boundary condition. The

two-dimensional bounds of [5] also apply to the boundary spectrum of a 3d theory, and we

have checked for example that the spectrum for the ordinary and special transition in the

3d Ising model (estimated from the epsilon expansion at one loop) lies strictly below the

bounds. In fact one should be able to do better: since the boundary spectrum does not

involve a stress tensor one can additionally impose a finite gap (above the unitarity bound)

for the first spin two operator. One can then study how the upper bound on the dimension

of the first scalar will come down if one increases this gap. It will be very interesting to

see “kinks” appear in such an analysis. We hope to report the results of this analysis in

future work.

There are many more general directions to pursue as well. To mention a few, one may

extend our results to supersymmetric theories, and to spacetime dimensions greater than
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four. Furthermore, the relatively simple form of the conformal blocks makes the bound-

ary bootstrap especially suitable for investigations involving tensor operators, a research

direction that is much more involved for the bulk four-point function in a theory with no

boundary. Finally there is the prospect to broaden the setup and include conformal defects

of all possible codimensions.
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A Scalar conformal blocks

In this section we will use the method of [37] to obtain the scalar conformal blocks as

eigenfunctions of the conformal Casimir operator. This procedure can be applied with no

major changes to two-point functions involving tensor operators, and it was used succesfully

in section 5 to decompose the two-point function of the stress tensor.

Bulk channel

The SO(d+ 1, 1) generators are,

LAB = PA
∂

∂PB
− PB

∂

∂PA
, (A.1)

where PA = (P+, P−, P 1, . . . P d). To obtain the conformal blocks we solve the eigenvalue

problem [37],

L2〈O1(P1)O2(P2)〉 = −C∆,0〈O1(P1)O2(P2)〉 , (A.2)

with L2 = 1
2(L

(1)
AB + L

(2)
AB)(L

(1)AB + L(2)AB) and C∆,l = ∆(∆− d) + l(l + d− 2), where ∆

and l are the dimension and spin of the internal operator. Because of Lorentz invariance

no operators with spin can ever appear in the bulk conformal block decomposition, hence

we set l = 0 in equation (A.2).

Once the asymptotic behavior of f(ξ) is given, the conformal block is completely fixed.

In the ξ → 0 limit the bulk OPE dictates [26],

f(ξ) ∼ ξ−
1
2
(∆1+∆2−∆) . (A.3)
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where ∆1 and ∆2 are the dimensions of the external operators. Stripping out this factor

f(ξ) = ξ−
1
2
(∆1+∆2−∆)g(ξ) and plugging in (A.2) we obtain a standard hypergeometric

equation,

ξ(1 + ξ)g′′(ξ) + (c+ (a+ b+ 1)ξ)g′(ξ) + abg(ξ) = 0 , (A.4)

with,

a =
1

2
(∆ +∆1 −∆2) , b =

1

2
(∆−∆1 +∆2) , c = ∆− d

2
+ 1 . (A.5)

The conformal block for the bulk channel is then,

f(ξ) = ξ−
1
2
(∆1+∆2−∆)

2F1

(

1

2
(∆ +∆1 −∆2),

1

2
(∆−∆1 +∆2),∆− d

2
+ 1;−ξ

)

, (A.6)

in perfect agreement with [26].

Boundary channel

In this channel we consider the restricted conformal group. The SO(d, 1) generators are,

Lab = Pa
∂

∂P b
− Pb

∂

∂P a
. (A.7)

where P a = (P+, P−, P 1, . . . P d−1). To obtain the conformal blocks we act with the

Casimir operator on one of the fields and solve the eigenvalue problem,

L2〈O1(P1)O2(P2)〉 = −C∆,0〈O1(P1)O2(P2)〉 . (A.8)

where C∆,l = ∆(∆−d+1)+ l(l+d−3) in this case. For this particular two point function

only scalar blocks are present, so l = 0 again. However, this is no longer true for operators

with indices (see subsection 5.4). The asymptotic behavior for ξ → ∞ can be obtained

from the bulk-to-boundary OPE [26],

f(ξ) ∼ ξ−∆ . (A.9)

Stripping out this factor and plugging in (A.8) we obtain another hypergeometric equation.

The boundary block is,

f(ξ) = ξ−∆
2F1

(

∆,∆− d

2
+ 1, 2∆ + 2− d;−1

ξ

)

, (A.10)

again in perfect agreement with [26].

B Solutions to crossing symmetry for scalar operators

In this section we discuss a few solutions to the crossing symmetry equations for scalar

two-point functions. We have:

〈O(x1)O(x2)〉 =
1

(2xd1)
∆(2xd2)

∆
ξ−∆G(ξ) (B.1)
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where ∆ is the conformal dimension of the operator O. The conformal block decomposi-

tion is,

G(ξ) = 1 +
∑

k

λkakfbulk(∆k; ξ) = ξ∆
∑

l

µ2
l fbdy(∆l; ξ) (B.2)

with λk and µk three-point couplings and ak the coefficient of the one-point function of the

k’th operator.

B.1 Two-dimensional Ising model

In this section we will decompose several correlators for the two-dimensional Ising model.

The basic fields of the theory, corresponding to the energy and spin operators, will be de-

noted by ε and σ respectively and have scaling dimensions ∆ε = 1 and ∆σ = 1
8 respectively.

As we discussed in section 3, there are three different conformally invariant boundary con-

ditions (or boundary states), given in equations (3.18) and (3.19). The first two are related

by the Z2 symmetry of the theory and result in the same two-point function of σ. The two

remaining possible two-point functions for the σ field are then [25],

G±
σσ = ξ1/8

√

(1 + ξ

ξ

)1/4
±
( ξ

1 + ξ

)1/4
. (B.3)

As we shall see below, the + sign corresponds to the extraordinary transition, i.e. the |1〉〉
and |ε〉〉 Cardy boundary states, whereas the − sign corresponds to the ordinary transition

which is the |σ〉〉 Cardy boundary state.

The full conformal block decomposition can in principle be obtained from Virasoro

representation theory. We content ourselves here with a simpler analysis where we expand

the correlation function in the limits ξ → 0 and ξ → ∞ and match the coefficients of the

expansion to conformal blocks. The bulk block decomposition becomes

G±
σσ = 1± 1

2
fbulk(1; ξ) +

1

64
fbulk(4; ξ) +

9

40960
fbulk(8; ξ)±

1

32768
fbulk(9, ξ) + . . . (B.4)

The bulk spectrum corresponds to the identity 1 and the energy ε operators plus scalar

Virasoro descendants. For example, we may identify the operator of dimension 4 with

L−2L̄−21 and the operator of dimension 9 with a level four descendant of ε. The absence

of an operator of dimension 5 is in agreement with the fact that ε has a null descendant at

level two, so L−2L̄−2ε is actually an SO(2, 2) descendant.

In the boundary channel we find that:

ξ−∆σG+
σσ =

√
2 +

1

32
√
2
fbdy(2; ξ) +

9

20480
√
2
fbdy(4; ξ) +

25

1835008
√
2
fbdy(6; ξ) + . . .

ξ−∆σG−
σσ =

1√
2
fbdy

(1

2
; ξ
)

+
1

16384
√
2
f
(9

2
; ξ
)

+
1

327680
√
2
fbdy

(13

2
; ξ
)

+ . . .

(B.5)

The constant term in the + case corresponds to a one-point function of σ and therefore

the Z2 symmetry is broken by the boundary conditions. We can thus identify it with
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the extraordinary transition. As an additional check one may verify that the bulk block

decomposition agrees with the decompositions (3.19) and (3.18).

For completeness, we present the conformal block decomposition for the energy two-

point function. We have [25],

G±
εε = ξ +

1

ξ + 1
, (B.6)

so this expression is valid for both boundary conditions. The decomposition in the bulk

channel is,

G±
εε = 1 +

∞
∑

n=1

(

2n− 3

n− 2

)−1

fbulk(2n; ξ) . (B.7)

For the boundary expansion we obtain,

ξ−∆εG±
εε = 1 +

∞
∑

n=1

(

4n− 3

2n− 2

)−1

fbdy(2n; ξ). (B.8)

From the expressions above we learn that the coefficients of the conformal blocks are

positive both in the boundary and in the bulk channels.

B.2 The unitarity minimal models and their analytic continuation

Let us now generalize the results of the previous subsection to the whole series of the

unitarity minimal models. Primary operators in the (m,m+1) model, m ≥ 3, are labeled by

integers (r, s), with 1 ≤ r ≤ m−1, 1 ≤ s ≤ m and the identification (r, s) ∼ (m−r,m+1−s).

Denoting the (1, 2) operator by σ and the (1, 3) operator by ε, the relevant OPE and scaling

dimensions are

σ × σ = 1+ ε , ∆σ =
1

2
− 3

2(m+ 1)
, ∆ε = 2− 4

m+ 1
. (B.9)

We can eliminate m to find

∆ε =
2

3
(4∆σ + 1) , (B.10)

and we will work with ∆σ rather than m as our independent variable from now on.

We are after the 〈σσ〉 correlator with the Cardy boundary condition labelled by the

identity. (Recall that in the Ising model this Cardy state is associated to the extraordinary

transition, see equation (3.18)). This correlator can be obtained as a special case of a result

obtained in the context of Liouville theory with ZZ boundary conditions [38], where the

two-point function

〈V−b/2(x)Vα(y)〉 (B.11)

was evaluated. Here Vα(x) denotes the usual Liouville vertex operator with scaling dimen-

sion ∆α = α(Q− α) with Q = b+ b−1. We will be interested in the case α = −b/2 and b

set to the minimal model values given by

c = 1 + 6Q2 = 1− 6

m(m+ 1)
. (B.12)

One may verify that solving this equation for b results in a scaling dimension of V−b/2 which

is precisely ∆σ given in (B.9).
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The two-point function from [38] takes the form:

Gσσ(ξ) = 2 sin
(π

6
(1 + 4∆σ)

)

ξ(4∆σ+1)/3(1 + ξ)−(∆σ+1)/3

× 2F1

(

1− 2∆σ

3
,
2 + 2∆σ

3
;
2− 4∆σ

3
;

1

ξ + 1

)

.
(B.13)

The boundary conformal block decomposition of this correlation functions contains oper-

ators with even dimensions,

ξ−∆σGσσ(ξ) = 2 sin
(π

6
(1 + 4∆σ)

)

(

1 +
∆σ(1 + ∆σ)

2(5− 4∆σ)
fbdy(2, ξ)

+
∆σ(1 + ∆σ)

2(2 + 5∆σ)

40(11− 4∆σ)(5− 4∆σ)
fbdy(4, ξ)

+
∆σ(1 + ∆σ)

2
(

20 + 106∆σ + 35∆2
σ + 21∆3

σ

)

1008(17− 4∆σ)(11− 4∆σ)(5− 4∆σ)
fbdy(6, ξ) + . . .

)

, (B.14)

in agreement with the fact that the only boundary block is the identity Virasoro block. In

the bulk channel we find the identity and the ε Virasoro blocks, leading to a decomposition

into SO(2, 1) blocks with operators of dimension of 1+4n and ∆ε+4n with n a non-negative

integer. For the first few coefficients we find

Gσσ(ξ) = 1 +
∆σ(1 + ∆σ)

2(5− 4∆σ)
fbulk(4, ξ) +

∆σ(1 + ∆σ)
2(2 + 5∆σ)

40(11− 4∆σ)(5− 4∆σ)
fbulk(8, ξ) + . . . (B.15)

− Γ
(

2−4∆σ

3

)

Γ
(

2+2∆σ

3

)

Γ(−2∆σ)Γ
(

4+4∆σ

3

)

(

fbulk(∆ε, ξ)

+
(1 + ∆σ)(2 + 5∆σ)(−1 + 8∆σ)

6(7 + 4∆σ)(5 + 8∆σ)
fbulk(∆ε + 4, ξ) + . . .

)

.

Up to the normalization factor 2 sin(π6 (1 + 4∆σ)), the coefficients of the first series are

the same as those of the boundary identity Virasoro block. Indeed, in either channel

these blocks correspond to Virasoro descendants of an identity operator. Notice also that

the coefficient of the block with dimension ∆ε + 4 has a zero precisely when ∆σ = 1
8 ,

reflecting the aforementioned fact that L−2ε is actually an SO(2, 2) descendant in the two-

dimensional Ising model. (Indeed in the Ising model the (1, 3) primary is identified with

the (2, 1) primary which has a level-two null descendant.)

Remarkably, the coefficients of the boundary conformal blocks turn out to be positive

for 0 < ∆σ < 5
4 .

6 This implies that we have found a solution of the crossing symmetry

equation that is consistent with the unitarity requirements for any value of ∆σ in this

interval, given simply by the analytic continuation of (B.13) away from the minimal model

values for ∆σ. Of course this does not imply that this correlator can always be embedded

in a full-fledged unitary CFT — in fact we already know that this is only possible if ∆σ

has one of the minimal model values.
6We have verified this statement to high order and believe that it is generally true although we currently

cannot offer a rigorous proof.
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As we pointed out repeatedly in this paper, unitarity does not require the coefficients

of the bulk channel conformal blocks to be positive. These coefficients however do turn

out to be positive for the smaller range 1
8 < ∆σ < 1. The lower and upper endpoint of this

range are determined by the zeroes of the blocks of dimension ∆ε+4 and ∆ε, respectively.

In summary, for the range 0 < ∆σ < 5
4 we have found an exact solution to the boundary

crossing symmetry equation (2.21), with the dimension of the first bulk scalar primary ǫ in

the σσ OPE given by (B.10). In the smaller range 1
8 < ∆σ < 1 the bulk expansion satisfies

positivity.

An aside: the four-point function

The result just found compels us to briefly consider the analogous analytic continuation

for the mimimal-model four-point function (without boundary). The numerical bounds in

that case [5] appear to converge to a shape with a “kink” at the Ising model, so at ∆σ = 1
8 ,

which is followed by a straight line that is approximately given by B.10 for 1
8 < ∆σ . 0.4.

(For larger values of ∆σ the numerical analysis becomes less precise.)

Now, as we show momentarily, one can easily repeat the boundary analysis and con-

struct a four-point function 〈σσσσ〉 with ∆ε given by B.10. This solution appears to

precisely saturate the numerical bounds of [5] in the range 1
8 < ∆σ < 1

2 , which explains

why they cannot be lowered by e.g. improving the numerical accuracy, even in between the

discrete minimal model points. Note of course that there is no complete unitary CFT when

one does not precisely sit at the minimal model points, only a solution for this particular

four-point function. On the other hand, we currently cannot explain why this solution is

“extremal” in the sense that it saturates the bounds.

We can construct this “interpolating” solution by noticing that the σ field in the

minimal models has a null descendant at level two and its correlation functions therefore

satisfy the following differential equation:

(

L−2 −
3

2(2h+ 1)
L2
−1

)

〈σ(z)O1(z1) . . .On(zn)〉 = 0 , (B.16)

with

L−1 = ∂z ,

L−2 =
n
∑

i=1

(

1

(z − zi)
∂zi +

hi
(z − zi)2

)

.
(B.17)

Our natural conjecture is that the same differential equation is satisfied by a putative four-

point function that saturates the bound and interpolates between the minimal models.

When we apply this differential operator to the four-point function of four σ fields,

which we write as usual as

〈σ(x1)σ(x2)σ(x3)σ(x4)〉 =
1

(x12)2∆(x34)2∆
G(z, z̄) , (B.18)
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we find a simple hypergeometric equation that we can easily solve. Combining the holo-

morphic and antiholomorphic part the two solutions become:

G(z, z̄) = G1(z)G1(z̄) +N(∆)G2(z)G2(z̄) ,

G1(z) = (1− z)−∆
2F1

(

1− 2∆

3
,−2∆,

2(1− 2∆)

3
, z

)

= 1 +O(z2) ,

G2(z) = (1− z)
1+∆
3 z

1
3
+ 4∆

3 2F1

(

2(1 + ∆)

3
, 1 + 2∆,

4(1 + ∆)

3
, z

)

= z(4∆+1)/3(1 +O(z)) .

(B.19)

Crossing symmetry fixes the relative normalization to be:

N(∆) =
21−

8(1+∆)
3 Γ

(

2
3 − 4∆

3

)2
Γ(1 + 2∆)2

(

− cos
(

1
3(π + 4π∆)

)

+ sin
(

1
6(π + 16π∆)

))

πΓ
(

7
6 + 2∆

3

)2 .

(B.20)

Notice that N(∆) > 0 for 0 < ∆ < 1 but N(0) = N(1) = 0.

The conformal block decomposition can be found most easily by first decomposing the

holomorphic functions separately in terms of the holomorphic building blocks

f(β, z) = zβ2F1(β, β, 2β, z) . (B.21)

For the identity block we then find that

G1(z) =
∞
∑

n=0

c1(n)f(2n, z) , (B.22)

with the first few coefficients given by:

c1(0) = 1 ,

c1(1) =
∆(1 + ∆)

2(5− 4∆)
,

c1(2) =
∆(1 + ∆)2

(

1 + 5∆
2

)

20(−11 + 4∆)(−5 + 4∆)
,

c1(3) = −∆(1 +∆)2
(

5 + 1
2∆
(

53 + 7
2∆(5 + 3∆)

))

252(−17 + 4∆)(−11 + 4∆)(−5 + 4∆)
,

(B.23)

and we checked that the first six coefficients are all positive functions for 0 < ∆ < 1.

The epsilon block can be decomposed as:

G2(z) =

∞
∑

n=0

c2(n)f

(

4∆ + 1

3
+ 2n, z

)

, (B.24)

with

c2(0) = 1 ,

c2(1) =
(1 + ∆)

(

1 + 5∆
2

)

(−1 + 8∆)

3(7 + 4∆)(5 + 8∆)
,

c2(2) =
(1 + ∆)2

(

−35 + 1
2∆
(

419 + 1
2∆(6315 + 64∆(97 + 25∆))

))

18(7 + 4∆)(13 + 4∆)(11 + 8∆)(17 + 8∆)
.

(B.25)
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We again checked by hand that the first eight coefficients are positive for 1
8 < ∆ < 1. They

however also all have simple zeroes for some ∆ ≤ 1
8 , starting with c2(1) at ∆ = 1

8 . This first

zero corresponds to the decoupling of a spin 2, dimension 3 operator (as well as an infinite

number of its Virasoro descendants) which we can again identify with the level two null

descendant of the epsilon operator in the two-dimensional Ising model. The fact that our

putative solution extends to ∆ = 1 implies that it extrapolates beyond the accumulation

points of the minimal models at ∆ = 1
2 .

Notice that for ∆σ > 1
2 it is natural to conjecture that the bound will be saturated

instead by the free boson where (in the notation of this section) ∆ǫ = 4∆σ. On the other

hand, for ∆σ < 1
8 our putative solution becomes invalid precisely because the coefficient of

the conformal block corresponding to L−2ε becomes negative. It would be very interesting

to find a solution saturating the numerical bound for ∆σ < 1
8 which would would allow one

to investigate the precise transition at the “corner” corresponding to the Ising model point

and the role of L−2ε in this transition. Interestingly, the (approximate) decoupling of the

first irrelevant spin 2 operator was observed numerically in three dimensions as well [13].

B.3 〈φ2φ2〉 correlator

In this section we will decompose 〈φ2φ2〉 in free field theory. This expansion complements

the order ǫ expression for the scalar two-point function of section 3. The φ2 two-point

function is,

G±
φ2φ2 =

(

1±
(

ξ

ξ + 1

) 1
2
d−1
)2

+
N

2
ξd−2 , (B.26)

where the plus/minus sign corresponds to Neumann/Dirichlet boundary conditions, and

N is the number of scalars. The conformal block expansion in the bulk channel is

G±
φ2φ2 = 1 + λaφ2fbulk(d− 2; ξ) +

∞
∑

n=0

λaφ4,nfbulk(2d− 4 + 2n; ξ) , (B.27)

with

λaφ2 = ±2 ,

λaφ4,n =

(

(−1)n2dΓ(d−12 )Γ(12d+n−1)+4N
√
πΓ(d+n−2)

)

Γ(d+n−2)Γ(32d+n−4)

8
√
πΓ(d− 2)2Γ(n+ 1)Γ(32d+ 2n− 4)

.

(B.28)

The Neumann expansion exhibits positivity while the Dirichlet case has one negative co-

efficient. In the boundary channel we have,

ξ−d+2G±
φ2φ2 =

N

2
+

∞
∑

n=0

µ2
nfbdy(d− 2 + 2n; ξ) , (B.29)

with

µ2
n = (1± δn,0)

41−n

(2n)!

Γ(d−1
2 + n)Γ(12d+ n− 1)Γ(d+ 2n− 3)

Γ(12d− 1)Γ(d− 2)Γ(d+4n−3
2 )

, (B.30)

with positivity in both cases.
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B.4 The extraordinary transition

There is no extraordinary transition in 4 dimensions since the conformally invariant one-

point function of a free field is not compatible with its equation of motion. In 4 − ǫ

dimensions the equation of motion is however modified to:

�φ =
λ∗
6
φ3 (B.31)

with λ∗ = 48π2ǫ/(N + 8) and N = 1 in our case. On the half-space this equation admits

the solution:

〈φ(x)〉 =
√

12

λ∗

1

xd
(B.32)

which to leading order is consistent with boundary conformal invariance. This solution is

our starting point for the analysis of the extraordinary transition in the ǫ expansion.

Let us compute the two-point function of the scalar field φ. We may shift the field φ

by its classical one-point function,

φ(x) = 〈φ(x)〉+ χ(x) (B.33)

and find the propagator G(x, y) = 〈χ(x)χ(y)〉 by solving the linearized equation of motion

around this solution,
(

�− 6

(xd)2

)

G(x, y) = δd(x− y) (B.34)

The solution compatible with the boundary conditions at xd = 0 takes the form:

G(x, y) =
1

(2xd)(2yd)
ξ−1

(

1

4π2
G0(ξ)

)

G0(ξ) =
1

1 + ξ
+ 12ξ + 6ξ(1 + 2ξ) log

(

ξ

1 + ξ

) (B.35)

with ξ = (x − y)2/(4xdyd), as before. On the first line we recognize the familiar form of

a scalar two-point function for a CFT with a boundary. Taking the limit ξ → 0 in (B.35)

we see that the properly normalized operator is actually 2πχ rather than χ, and similarly

2πφ rather than φ. We will henceforth work with these rescaled operators. This implies

that from now on 〈φ(x)〉 = 3/(
√
ǫ xd) and we can drop the 4π2 on the first line of (B.35).

We will now expand the two-point function of φ in conformal blocks. It is important

to note that OPE statements always refer to full correlation functions, i.e. including any

disconnected contributions. In our case the disconnected part 〈φ(x)〉〈φ(y)〉 is of order 1/ǫ
which makes it the leading-order term. Our first task is thus to decompose 〈φ(x)〉〈φ(y)〉
in conformal blocks. In the boundary channel we of course find precisely the block corre-

sponding to the identity operator and nothing else. In the bulk channel we find:

〈φ(x)〉〈φ(y)〉 = 36/ǫ

(2xd)(2yd)
=

36/ǫ

(2xd)(2yd)
ξ−1

(

fbulk(2, ξ) +
∞
∑

n=1

2(n!)2

(2n)!
fbulk(2 + 2n, ξ)

)

(B.36)
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Interestingly, the product of two one-point functions decomposes into an infinite set of bulk

blocks with dimensions given by the even integers and with positive coefficients. However,

as expected for a totally disconnected correlator, the bulk identity operator is missing at

this order.

At the next order we should take into account that the one-point function of φ a priori

has subleading corrections,

〈φ(x)〉 = 3√
ǫ xd

(

1 + ǫ a+
ǫ

2
log(2xd)

)

(B.37)

with an unknown coefficient a and with the logarithm originating from the correction to

the scaling dimension of φ in 4 − ǫ dimensions. The full two-point function to order ǫ0

becomes:

〈φ(x)φ(y)〉 = 1

(2xd)∆φ(2yd)∆φ
ξ−∆φGext(ξ)

Gext(ξ) =
36

ǫ
(1 + 2ǫ a)ξ − 18ξ log(ξ) +G0(ξ)

(B.38)

with ∆φ = 1− ǫ/2 the free-field dimension of φ in 4− ǫ dimensions.

In the boundary channel the conformal block decomposition of this corrected correlator

is again straightforward. The corrections to the disconnected part of course simply become

corrections to the boundary identity block, whilst for the connected part we find that:

ξ−1G0(ξ) =
1

10
fbdy(4; ξ) (B.39)

so we find a single boundary block of dimension d = 4. This is completely as expected. In

particular, the existence of a gap of size d was an essential assumption in the numerical

bootstrap for the bulk bounds.

In the bulk channel we find subleading corrections to the infinite series of blocks

in (B.36) but no new blocks. The first few terms take the form:

Gext(ξ) = 1 +

(

36

ǫ
+ 11 + 72a

)

fbulk

(

2− 2

3
ǫ; ξ

)

+

(

36

ǫ
− 12 + 72a

)

fbulk (4, ξ) +

(

12

ǫ
− 18 + 24a

)

fbulk(6 + 2ǫ, ξ)

+

(

18

5ǫ
+

1

20
(−241 + 144a)

)

fbulk

(

8 +
16

3
ǫ, ξ

)

+ . . .

(B.40)

where it is understood that the blocks are evaluated in 4 − ǫ spacetime dimensions. The

order 1/ǫ terms in (B.40) of course coincide with (B.36). The identity operator is now

present in the bulk channel, and the dimension of the next operator (which is 2 − 2
3ǫ) is

precisely the one-loop dimension of φ2 in the epsilon expansion. It would be interesting to

compute a so we can get an idea of positivity of the coefficients for ǫ = 1.

B.5 A trivial solution

A particularly simple solution of (2.21) is obtained by assuming that the bulk channel

only contains the identity operator, so all the non-trivial one-point functions are set to
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zero. In that case there is effectively no boundary at all and the two-point function is just

(x1−x2)
−2∆. This two-point function still has a boundary conformal block decomposition

of the form:

ξ−∆ =
∞
∑

m=0

µ2
mfbdy(∆ +m; ξ) (B.41)

with

µ2
m =

{

1
2mm!(∆)m(∆− d

2 + 1)m/2(∆− d−1
2 +m)−m/2 m even

1
2mm!(∆)m(∆− d

2 + 1)(m−1)/2(∆− d−1
2 +m)(1−m)/2 m odd

(B.42)

All the coefficients are positive for ∆ greater than the unitarity bound and the boundary

spectrum begins with an operator of dimension ∆.

B.6 Generalized free field theory

As a simple generalization of the free field theory result we define generalized free field (or

gff) two-point functions in the presence of a boundary as:

〈O(x1)O(x2)〉 =
1

(x1 − x2)2∆
± 1
(

(x1 − x2)2 + 4xd1x
d
2

)∆

=
1

(2xd1)
∆(2xd2)

∆
ξ−∆G±

gff(ξ) G±
gff(ξ) = 1±

(

ξ

ξ + 1

)∆
(B.43)

The conformal block decomposition in the bulk takes the form

G±
gff(ξ) = 1±

∞
∑

n=0

(−1)n(∆)n
(

2∆− d
2 + 2n

)

−n
(

∆− d
2 + n+ 1

)

−n
n!

fbulk(2∆ + 2n; ξ) (B.44)

which has the expected ‘double trace’ infinite operator spectrum and coefficients with

alternating signs. On the boundary we find that:

ξ−∆G+
gff(ξ) =

∞
∑

n=0

(∆)2n
(

∆− d−1
2 + 2n

)

−n

22n−1(2n)!
(

∆− d
2 + n+ 1

)

−n

fbdy(∆ + 2n; ξ)

ξ−∆G−
gff(ξ) =

∞
∑

n=0

(∆)2n+1

(

∆− d−3
2 + 2n

)

−n

22n(2n+ 1)!
(

∆− d
2 + n+ 1

)

−n

fbdy(∆ + 2n+ 1; ξ)

(B.45)

and we find two ‘single trace’ operator spectra on the boundary, both with positive coeffi-

cients.

B.7 O(N) model at large N

For the the O(N) model with Neumann boundary conditions the scalar two-point function

is given by [26],

GO(N) =

(

1

1 + ξ

) 1
2
d−1

(1 + 2ξ) . (B.46)
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The bulk channel expansion is,

GO(N) = 1 +
∞
∑

n=0

λanfbulk(2n+ 2; ξ) , (B.47)

with

λan = (−1)2n
(d2 − 4d(n+ 2) + 8(1 + n)2 + 4)Γ(1− 1

2d+ n)Γ(2− 1
2d+ n)

2

4Γ(2− 1
2d)

2
Γ(n+ 2)Γ(2− 1

2d+ 2n)
. (B.48)

As in all the expansions with Neumann boundary conditions studied in this appendix, the

bulk channel coefficients are positive. Finally, the boundary channel expansion is,

ξ−
1
2
d+1GO(N) = 2fbdy(d− 3; ξ) . (B.49)

It is somewhat unexpected that in this channel we have a single block.

C Conformal block decompositions for Tµν

In this appendix we present a few explicit examples of conformal block decompositions of

the form (5.2) for the two-point function of the stress tensor.

C.1 Two bulk dimensions

The conformal block decomposition of the stress tensor two-point function in two dimen-

sions is a bit subtle, see [24] for details. First of all, the residual Virasoro symmetry plus the

absence of energy flow across the boundary completely determines the two-point function.

Furthermore, the number of independent tensor structures decreases to two and the two

functions f(ξ) and g(ξ) have to be replaced with the single function 2ξf(ξ) + (1 + ξ)g(ξ).

With our unit normalization we find that the resulting two-point function is given precisely

by the boundary scalar block, with a coefficient that is equal to 4. In the bulk channel we

find the identity plus a single block of dimension 4 with unit coefficient.

C.2 Free field theory for general d

The two-point function of the stress tensor in free field theory for d > 2 decomposes into

infinitely many blocks in either channel. Without presenting all the formulas, we have

presented the first few operators and their associated coefficients in both the bulk and the

boundary channel in the tables. Notice that the coefficients in the bulk channel are not

positive for either boundary condition.

C.3 Extraordinary transition

In this subsection we compute the two-point function of the stress tensor in the extraordi-

nary transition.

The classical stress tensor for the λφ4 theory with a curvature coupling z takes the

form:

Tµν(x) =
2√
3

((

2z− 1

2

)

∂µφ∂νφ+2z φ∂µ∂νφ+gµν

(

λ

48
φ4+

(

1

4
−2z

)

∂ρφ∂
ρφ−2zφ�φ

))

(C.1)
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∆ λaO
0 1

d− 2 ±
(

(−2+d)d(1+d)
4(−1+d)

)

2d +1

2d+ 2 −
(

(−2+d)d
(2+3d)

)

2d+ 4 +
(

(−2+d)d2(1+d)
6(2+d)(4+3d)

)

2d+ 6 −
(

(−2+d)d2(1+d)(2+d)
18(8+3d)(10+3d)

)

2d+ 2m . . .

Table 2. Bulk conformal block decomposition of the two-point function of the stress tensor in

free field theory. The first block corresponds to the identity operator and its coefficient sets the

overall normalization. The plus/minus sign corresponds to the special/ordinary transition, i.e.

Neumann/Dirichlet boundary conditions.

∆ l µ2

d 0 2d
(−1+d)

d 2 21−2d(1± 1)

d+ 2 2 2−2−2dd(−1+d)(2+d)
(1+d)

d+ 4 2 2−6−2dd(−1+d)2+d)2(4+d)
3(7+d)

d+ 2m 2 . . .

Table 3. Boundary conformal block decomposition of the two-point function of the stress tensor

in free field theory.

One may easily verify that it is traceless in d = 4 for z = 1/12 which therefore corresponds

to the conformally coupled scalar. We will henceforth use z = 1/12. In that case Tµν is

unit normalized in free field theory, more precisely 〈Tµν(x)Tρσ(y)〉 = H2
12

(4ξ)4(xd)4(yd)4
provided

〈φ(x)φ(y)〉 = 1
(x−y)2

.

The correlation functions of the scalar φ were computed to leading order in subsec-

tion B.4. Upon substituting the solution 〈φ(x)〉 = 3/(
√
ǫ xd) in (C.1) we find that the

one-point function of Tµν vanishes, in agreement with the requirements of boundary con-

formal invariance. At the next order we substitute φ(x) = 〈φ(x)〉 + χ(x) and expand in ǫ

to find an expression of the form:

Tµν(x) =
1√
ǫ
Tµν [xd, ∂x]χ(x) + . . . (C.2)

where Tµν [xd, ∂x] is a linear differential operator which explicitly depends on xd. To leading

order we therefore obtain that

〈Tµν(x)Tρσ(y)〉 =
1

ǫ
Tµν [xd, ∂x]Tρσ[yd, ∂y]〈χ(x)χ(y)〉 (C.3)

We can now substitute the solution G(x, y) = 〈χ(x)χ(y)〉, which is equation (B.35) without

the factor of 4π2, work out the action of the differential operators T and collect various
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terms to eventually find a two-point function of the form:

〈Tµν(x)Tρσ(y)〉 =
f ext(ξ)H2

12 + gext(ξ)H12Q12 + hext(ξ)Q2
12

(4ξ)4(xd)4(yd)4
(C.4)

where the tensor structures H12 and Q12 are defined (in the projective cone notation)

in (5.7) and (5.18) and

f ext(ξ) =
16ξ

ǫ(1 + ξ)3
gext(ξ) =

64ξ2(2 + 5ξ)

ǫ(1 + ξ)4
hext(ξ) =

64ξ3
(

1 + 5ξ + 10ξ2
)

ǫ(1 + ξ)5
(C.5)

Upon comparing (C.4) with the last equation in (5.17) we see that this correlation function

has exactly the right tensor structure to be consistent with boundary conformal invariance.

Furthermore, the functions (f ext, gext, hext) also satisfy the Ward identities (5.19). These

are rather non-trivial checks of our result.

The conformal block decomposition of (C.4) turns out to be remarkably simple. In the

boundary we find only a scalar block (which must have dimension d by the Ward identities)

with coefficient 640/ǫ. In the bulk we find three blocks,







f ext(ξ)

gext(ξ)

hext(ξ)






=

160

ǫ







fbulk(2; ξ)

gbulk(2; ξ)

hbulk(2; ξ)






+

480

ǫ







fbulk(4; ξ)

gbulk(4; ξ)

hbulk(4; ξ)






+

320

ǫ







fbulk(6; ξ)

gbulk(6; ξ)

hbulk(6; ξ)






(C.6)

all with positive coefficients. Notice that the identity operator is absent at this order.

Closer inspection of (C.6) leads to a subtlety that we would like to clarify. We easily

identify the bulk block with dimension 2 as the operator φ2. It appears in the TT OPE

with an order one coefficient and its one-point function is 〈φ2〉 = 〈φ〉2 ∼ ǫ−1 so altogether

it appears at the right order in ǫ. The counting for the operator of dimension 4 is however

a bit different. The only scalar primary of that dimension is φ4 but its one-point function

is of order ǫ−2. Our result can therefore only be consistent if φ4 appears in the stress tensor

OPE only at order ǫ. It is in fact easy to see that the leading-order Feynman diagram for

the 〈TTφ4〉 tree-point function (which would be of order ǫ0) has to vanish. This is because

it factorizes into a product of two Feynman diagrams that each correspond to the 〈Tφ2〉
two-point function, which in turn vanishes by conformal invariance. This is also consistent

with the fact that no dimension 4 block appears in the bulk conformal block decomposition

of the stress tensor two-point function in free-field theory, cf. table 2. From these tables

we may also deduce that a similar cancellation should occur for the dimension 6 operator.
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