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Abstract: The Goldstone theorem implies the appearance of an ungapped mode when-
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anything about the precise form of the dispersion relation nor does it imply that there is

one massless mode for each broken symmetry generator. It is a well-established fact that

even for relativistic field theories in the presence of a chemical potential Goldstone modes

with quadratic dispersion relation, the type II Goldstone bosons, appear in the spectrum.

We develop two holographic models that feature type II Goldstone modes as part of the

quasinormal mode spectrum. The models are based on simple generalizations with U(2)

symmetry of the well-studied holographic s-wave superfluid. Our results include Gold-

stone modes without broken generators but with unusual realization of symmetries and a

frequency dependent conductivity of striking resemblance to the one of Graphene.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1302.5641

c© SISSA 2013 doi:10.1007/JHEP07(2013)108

mailto:irene.r.amado@gmail.com
mailto:arean@sissa.it
mailto:amadeo.j@gmail.com
mailto:karl.landsteiner@csic.es
mailto:luis.melgar@csic.es
mailto:peznacho@gmail.com
http://arxiv.org/abs/1302.5641
http://dx.doi.org/10.1007/JHEP07(2013)108


J
H
E
P
0
7
(
2
0
1
3
)
1
0
8

Contents

1 Introduction 1

2 A field theoretical model with type II Goldstone boson 6

3 The ungauged model 8

4 The gauged model 18

4.1 Charge density in the broken phase 20

4.2 Fluctuations of the gauged model 20

4.2.1 Perturbations in the unbroken phase 21

4.2.2 Perturbations in the broken phase 21

4.3 Conductivities 23

4.4 Conductivities in the (0)− (3) sector 24

4.5 Conductivities in the (1)− (2) sector 25

4.5.1 Diagonal conductivities σ11 & σ22 25

4.5.2 Off-diagonal conductivities σ12 & σ21 27

4.5.3 Conductivities σ+− and σ−+ 27

4.6 Quasinormal modes 29

4.6.1 Type II Goldstone mode 29

4.6.2 Higher quasinormal modes 30

5 Discussion and outlook 33

A Matrix valued Kramers-Kronig relation 36

B Solving the fluctuation equations 38

1 Introduction

The AdS/CFT correspondence has proved to be a powerful tool to study strongly cou-

pled quantum systems, with applications to QCD and condensed matter systems. Among

the applications to condensed matter physics one of the most important examples is the

construction of the so called holographic superfluids [1–3].

The ingredients of such a model are a charged black hole describing a CFT at finite

temperature and charge density. At sufficiently low temperature (or high chemical poten-

tial) a charged scalar field develops an expectation value and triggers a symmetry breaking

phase transition towards a superfluid phase. In the simplest model the order parameter

is a scalar and therefore we speak of an s-wave superfluid. Furthermore it is possible to

go to a decoupling limit in which the fluctuations of the bulk metric are suppressed. The
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dynamics in this limit is completely specified by the fluctuations of the gauge field and the

scalar field [3]. Generalizations to p-wave [4] and d-wave [5, 6] superconductors, for which

the order parameter has angular momentum l = 1 and l = 2 respectively are also known.

Much of this development is reviewed in [7, 8].

The strength of the gauge/gravity correspondence is that it allows to study the real

time dynamics of strongly coupled field theories rather easily. Linear response theory cap-

tures the behavior of a quantum system after an initial, small perturbation. It also applies

to the late time behavior when an initially large perturbation has already sufficiently died

out and enters the linear regime. The basic ingredient of linear response theory is the

retarded Green’s function. In the context of the AdS/CFT correspondence it was shown

in [9, 10] how to calculate retarded Green’s functions by imposing infalling boundary condi-

tions at the black hole horizon. For black holes with non-degenerate horizons the retarded

Green’s functions are analytic in the upper half of the complexified frequency plane and

have (an infinite series of) isolated poles in the lower half. These poles are the holographic

quasinormal modes (QNM) of the black hole [11–14]. Within the QNM spectrum, the un-

gapped modes play a special role, since they give the dominant contribution to the retarded

Green’s functions at low frequency and small momentum. Therefore they determine the

hydrodynamic description of the system. In this paper we will study the quasinormal mode

spectrum of a multi-component generalization of the simple, holographic, non-backreacted

s-wave superfluid with particular focus on the low lying and hydrodynamic modes.

The study of the QNMs for the s-wave U(1) superfluid was first carried out in [15].

Since the basic physics of superfluids is the one of spontaneous symmetry breaking it

can be expected that known results such as the existence of a Goldstone boson1 carry

over to the holographic models. Indeed, one of the main results of [15] was that the

QNM spectrum in the superfluid phase contains such an ungapped Goldstone mode with

dispersion relation ω = ±vsk+O(k2). This mode can also be understood as the sound mode

of the superfluid and vs is the sound velocity.2 In the non-backreacted model these are the

only hydrodynamic modes in the broken phase. In the unbroken phase in contrast there

exists a single hydrodynamic mode signaling the usual diffusive behavior of a normal fluid.

Its dispersion relation is ω = −iDk2, where D is the diffusion constant. The question

what happens to this diffusive mode in the broken phase was also answered in [15]: it

develops a purely imaginary gap ω = −iγ − iD̃k2. This is quite natural because the single

purely imaginary mode can not move off the imaginary axis.3 The hydrodynamics of the

1It is also often called Nambu-Goldstone boson. For simplicity we will refer to it as Goldstone boson or

Goldstone mode throughout the text.
2In [16] it was pointed out that this mode corresponds to the fourth sound. Whereas second sound

is defined through temperature oscillations fourth sound is the phenomenon of sound propagation in the

superfluid component only [40]. This is the mode that survives the probe limit in which propagation in the

normal component of the dual fluid is prohibited. In this model there is no other sound mode so we will

simplfy refer to it as the sound mode. Due to the nature of fourth sound it interpolates between second

sound at T = Tc and normal sound at T = 0.
3Quasinormal modes are bound to come either in pairs ωn and ω̃n = −ω∗n or are fixed on the imaginary

axis. This follows from rather generic symmetry considerations for retarded Green’s functions, see

appendix A.
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broken phase is fully captured by the Goldstone mode and the diffusion mode does the

simplest thing it can to drop out of the hydrodynamic regime by growing the gap γ. Since

this purely imaginary gapped mode has its origin in the universal diffusive mode of the

unbroken phase we expect that it is a universal feature of a large class of superfluids, not

only holographic ones. This mode will necessarily dominate the late time response in the

order parameter to homogeneous perturbations and in regimes close but below the critical

temperature where the gap γ is rather small. Therefore the order parameter is bound to

show a purely exponential decay towards its equilibrium value without any oscillation. In

contrast for lower temperatures where γ becomes large there are other low lying QNMs with

real and imaginary parts in their frequency. In this low temperature regime the response

in the order parameter is then an exponentially damped oscillation rather than a purely

imaginary decay. This universal aspect of the late time response of superfluids was also

emphasized in recent numerical studies of quenches of holographic superfluids in [17].

In this paper we generalize the results on the QNM spectrum to models with U(2)

symmetry. In the first model we simply add a second scalar field of the same mass, we will

call this the ungauged model. A second model also includes gauge fields for the whole U(2)

symmetry. The difference between the two models is as follows. In the ungauged model

only the U(1) symmetry is local in the bulk. It has however a global SU(2) symmetry4 under

which the scalar fields transform as a doublet. According to the holographic dictionary this

model contains only one conserved current, corresponding to the single gauge field in the

bulk. The dual field theory inherits of course the global SU(2) symmetry of the bulk but this

symmetry is not generated by operators in the dual conformal field theory. This is similar to

the decoupling limit in which we are working and in which the fluctuations of the metric are

suppressed. The dual field theory has then strictly speaking no energy momentum tensor.

In usual four dimensional Lagrangian field theories Noether’s theorem guarantees that we

can always construct a conserved charge generating a given symmetry of the Lagrangian.

In holographically defined field theories the existence of a four dimensional Lagrangian

is a priori not guaranteed and therefore Noether’s theorem does not straightforwardly

apply. This is the case here. Although the dual field theory has the SU(2) symmetry (and

Poincaré covariance) it does not contain operators generating these symmetries. We can

speak of these symmetries as an outer automorphism of the operator algebra of the dual

field theory.5 Physically the difference between the two models is that the ungauged one

is a one-component fluid (there is only one notion of charge) whereas the gauged one is

a two component fluid. In the latter case the charges are the expectation values of the

zero-component of the currents in the Cartan subalgebra of the U(2) symmetry.

4Although global symmetries are not expected in a consistent theory of quantum gravity they can be

obtainted in certain decompactification limits of string theory: e.g. by wrapping branes on cycles and then

taking the volume of the cycle to infinity so that the effective gauge coupling on the branes goes to zero

leaving only a global symmetry on them.
5A string theory example for such a situation is the theory based on the small N = 4 superconformal

algebra on the world sheet. This algebra possesses a large SO(4) = SU(2)× SU(2) symmetry acting on the

four supercharges of which only one SU(2) is represented through chiral currents on the worldsheet.
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Although this ungauged model does not contain conserved currents for the SU(2)

symmetry and therefore many of the standard proofs about existence of Goldstone bosons

do not strictly apply we find a new ungapped mode in the QNM spectrum of the scalars.

This mode is however not a standard Goldstone boson with linear dispersion relation but

a so-called type II Goldstone mode whose energy depends quadratically on momentum.

The second model we consider has a scalar field doublet coupled to the full set of

U(2) gauge fields. We switch on a chemical potential only for the overall U(1) symmetry.

Therefore the high temperature phase has the full U(2) symmetry. At low temperatures

this symmetry is broken to U(1). In this model the dual field theory contains currents for

all the U(2) symmetries. We can therefore also study the conductivities.

In the context of condensed matter physics it has been pointed out long ago in [18] that

such multicomponent superfluids have unusual Goldstone modes with quadratic dispersion

relation. In the high energy context such models have been considered as models for Kaon

condensation in the color-flavor locked phase of QCD in [19, 20] again emphasizing the exis-

tence of the quadratic Goldstone mode. Our gauged holographic model is a straightforward

holographic analogue of the model in [19, 20] and indeed we also find the presence of a Gold-

stone mode with quadratic dispersion relation. Let us also note that in the holographic con-

text a type II Goldstone boson was found before in magnetized D3/D5 defect theory [21].

It seems useful to collect now some of the known theorems on Goldstone bosons (a

very useful review on symmetry breaking and Goldstone modes is [22]). First we have of

course the actual Goldstone theorem. Its proof assumes the existence of a conserved

current jµ such that the broken charge is Q =
∫
ddxj0 (with d spatial dimensions). The

theorem then states that spontaneous breaking of a continuous global symmetry implies

the existence of a mode whose energy fulfills

lim
k→0

ω(k) = 0 . (1.1)

The theorem by itself does not make any statement about the number of these modes,

nor does it fix the k-dependence of the frequency. In the presence of Poincaré symmetry

one can make however a stronger statement, namely that the dispersion relation of the

Goldstone mode has to be linear and that the number of Goldstone bosons equals the

number of broken generators.

Lorentz symmetry might be absent however, either in principle such as in non-

relativistic field theories or the system under consideration might be in a Lorentz symmetry

breaking state, such as being at finite temperature or density. In these cases another theo-

rem classifies Goldstone bosons as type I if their energy vanishes as an odd power of

the momentum or as type II if their energy vanishes as an even power of the momentum

in the zero momentum limit. The number of type I and type II Goldstone bosons has to

fulfill then

nI + 2nII ≥ NBG , (1.2)

where NBG is the number of broken generators [23]. The number of type I and type II

Goldstone bosons can be further constrained. Upon assuming that the broken symmetry

generators obey 〈[Qa, Qb]〉 = Bab the number of Goldstone bosons has to fulfill [24, 25, 27]
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(see also [22, 26, 28] for more on counting rules of Goldstone bosons).

nI + nII = NBG −
1

2
rank(B) . (1.3)

We shall now consider the symmetry breaking pattern of the boundary theory dual to

the gauged holographic model. We will see that trough the theorems above the presence

of a type II Goldstone boson in the spectrum is guaranteed. There are in total four

symmetry generators. The symmetry is broken from U(2) to U(1) and so there are three

broken generators. In the broken phase the charges corresponding to the overall U(1) and

the Cartan U(1) generator inside SU(2) receive vacuum expectation values. Therefore the

rank of the matrix B is two and so the number of type I and type II Goldstone bosons should

add up to two. This is precisely what we find in the QNM spectrum, one ungapped mode

with linear dispersion relation and one ungapped mode with quadratic dispersion relation.

We also note that the ungauged model satisfies Goldstone’s theorem and the counting

rule of Chadha and Nielsen (1.2). It violates however the more refined counting rule (1.3).

In a strict sense this model only has one symmetry generator since it has only one U(1)

gauge field in the bulk. Therefore the counting rule (1.3) would suggest the existence

of only one Goldstone boson, the number of broken generators is one and the matrix B

vanishes trivially.

This paper is organized as follows. In section 2 we briefly review a simple field

theoretical model featuring type II Goldstone modes. This model has been introduced in

the context of Kaon condensation in color-flavor locked QCD. It serves us as inspiration

for constructing the holographic models.

Section 3 is devoted to the analysis of the ungauged model. Since the well-known

s-wave superconductor is a subsector of both the ungauged and the gauged model we

also briefly review first the findings of [15]. Then we show that even with this drastic

simplification, i.e. not gauging the global SU(2) symmetry in the bulk, the model presents

Goldstone modes with quadratic dispersion relation. Hence, within this model a type II

NG boson is found as a consequence of having broken just one charge generator (the one

associated to the U(1) symmetry).

In section 4 we study the fully gauged U(2) model. Then we analyze the fluctuation

equations to linear order. They decompose into three decoupled sectors. One being the

already encountered U(1) s-wave superfluid, the other describing the non-Abelian sector

in which the type II Goldstone mode resides and a third one with the unbroken U(1)

symmetry. We proceed to study the conductivities which now arrange naturally into a

two by two matrix. We show that the diagonal conductivities have delta-functions at zero

frequency and are in this sense superconducting. Moreover upon a change of basis we find

a frequency dependence that is strikingly similar to the one of Graphene [29]. Furthermore

we find indications that for temperatures below T = 0.4Tc another instability arises in

the gauge field sector leading to an additional p-wave condensate. Then we study the low

lying quasinormal modes and analyze the results. We find the type II Goldstone mode and

also study the fate of the diffusion modes in the broken phase. Since now two symmetries

participate there are two diffusion modes that in the broken phase pair up and can move
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away from the imaginary axis. We find that this is precisely what happens. Therefore the

response in this sector does not show the purely exponential decay induced by the gapped

pseudo diffusion mode of the U(1) sector.

We conclude in section 5 with a discussion of our results and an outlook to further

possible studies of holographic type II Goldstone modes.

Finally, in appendix A we present some general properties of matrix-valued Green’s

functions from which constraints on the quasinormal mode spectrum follow . In appendix B

we collect technical details on how to actually compute the QNMs for coupled systems.

2 A field theoretical model with type II Goldstone boson

Motivated by the physics of Kaon condensation in the color-flavor locked phase of QCD

the authors of [19, 20] studied QCD at a nonzero chemical potential for strangeness. It

was shown that at a critical value of the chemical potential equal to the Kaon mass, Kaon

condensation occurs through a continuous phase transition. Moreover, a Goldstone boson

with the non-relativistic dispersion relation ω ∼ p2 appears in the Kaon condensed phase.

To illustrate this fact, they considered the following (Euclidean) toy model:

L = (∂0 + µ)φ†(∂0 − µ)φ+ ∂iφ
†∂iφ+M2φ†φ+ λ(φ†φ)2 , (2.1)

where φ is a complex scalar doublet,

φ =

(
φ1

φ2

)
. (2.2)

As long as µ < M the masses of the four excitations in the model are the positive

roots in ω of

(ω ± µ)2 = M2 . (2.3)

All are doubly degenerate. It is straightforward to check that at µ = M the global U(2)

symmetry gets broken and the new vacuum can be chosen to be:

φ =
1√
2

(
0

v

)
, with v2 =

µ2 −M2

λ
. (2.4)

Studying the fluctuations of the doublet φ around this background one finds two mass-

less and two massive modes with the following dispersion relations:

ω2
1 =

µ2 −M2

3µ2 −M2
p2 +O(p4) , (2.5)

ω2
2 = 6µ2 − 2M2 +O(p2) , (2.6)

ω2
3 = p2 − 2µω3 , (2.7)

ω2
4 = p2 + 2µω4 . (2.8)
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Figure 1. The spectrum of the field theoretical model. Below the critical value µ = M there are

four massive modes. The masses are M −µ and M +µ, the numbers indicate that they are doubly

degenerate. In the broken phase µ > M there are two Goldstone modes with exactly zero mass and

two gapped modes. The special gapped mode has mass 2µ.

If we concentrate on the positive roots we see that ω1 is a normal, linear Goldstone mode.

The positive root of equation (2.7) is

ω3 =
p2

2µ
+O(p4) . (2.9)

This is the type II Goldstone mode. It has formally a non-relativistic dispersion relation.

Since the underlying theory has however Lorentz invariance there is of course also a

negative energy mode with quadratic dispersion. This arises as the negative root of ω4.

Finally ω2 and ω4 are gapped modes with

ω4 = 2µ+O(p2) . (2.10)

Since the symmetry breaking pattern is U(2) → U(1) there are three broken generators

but only two massless Goldstone modes in the spectrum. This model fulfills all the

counting theorems noted in the introduction. In particular the Chadha-Nielsen rule (1.2)

is exactly saturated. The role of ω4 is special. It is the mode that pairs up with the

type II Goldstone mode in the dispersion relations (2.7) and (2.8). It has been argued

that this mode is a universal feature and that its energy at zero momentum is exact and

protected against quantum corrections [28, 30, 31]. The spectrum obtained from this

model is summed up in figure 1. In our holographic models we will look for this special

gapped partner mode of the type II Goldstone mode. It will turn out that the gauged and

ungauged models differ significantly here: only the mode in the gauged model shows the

characteristic linear dependence on the chemical potential.

This simple Lagrangian model serves as our motivation and guideline to construct a

holographic model featuring type II Goldstone modes. In fact we can use the same kind of

matter Lagrangian in a holographic setup. According to the usual holographic dictionary
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a local bulk symmetry corresponds to a global symmetry in the boundary conformal field

theory. We would therefore most naturally be led to a model in which we gauge the global

U(2) symmetry of (2.1) and put it into an AdS Schwarzschild background. In order to

trigger spontaneous symmetry breaking we introduce a chemical potential via a boundary

value for the temporal component of the overall, Abelian U(1) gauge field. This is then

our gauged model.

Alternatively we might ask what are the minimal ingredients necessary to trigger spon-

taneous symmetry breaking. The chemical potential resides entirely in the overall U(1)

factor. The other three SU(2) gauge fields are not needed to achieve symmetry breaking.

Therefore we can choose as a sort of minimal setup a model in which the SU(2) symmetry

stays global in the bulk of AdS. As already mentioned in the introduction this is a some-

what unusual realization of the symmetry from the boundary conformal field theory point

of view. There are no conserved currents associated to this SU(2) symmetry, nevertheless

all states and operators fall naturally into representations of this symmetry group since it is

a global symmetry of the bulk and it is also not broken by any of the boundary conditions.

This setup constitutes our ungauged model and we will study it in detail in the next section.

Let us note here one more technical detail: the field theoretic model of this section

is most naturally viewed as living in four space time dimensions. In the following our

holographic models will be dual to field theories living in three space time dimensions in

order to stay as close as possible to the well-studied holographic U(1) s-wave superfluid

of [2, 15]. This is however of no relevance to the essential features of the models, i.e. the

existence and the nature of the hydrodynamic and Goldstone modes.

3 The ungauged model

We will now study the holographic model where the condensation of a charged scalar

breaks a global SU(2) symmetry in the bulk. We shall look at the spectrum of quasinormal

modes on both sides of the phase transition and study their dispersion relations. Since the

simple U(1) s-wave holographic superfluid constitutes a subsector of this as well as of the

gauged model we will also use the opportunity to briefly review the most salient features

of its QNM spectrum.

The minimal holographic model containing a type II Goldstone boson consists of a

scalar doublet of SU(2) charged under a U(1) gauge field. The Lagrangian is given by

L = −1

4
FµνFµν −m2Ψ†Ψ− (DµΨ)†DµΨ , (3.1)

where

Ψ =

(
λ

ψ

)
, Dµ = ∂µ − iAµ , (3.2)

and Aµ is the Abelian gauge field. The mass of the scalar field is chosen to be m2 = −2/L2.

This is basically the same as the model in [2] except that we have added a second scalar

field λ with the same mass. Because of the degeneracy in the mass the model possesses

in addition to the bulk-local U(1) symmetry a bulk-global SU(2) symmetry. Note that

– 8 –
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the global SU(2) symmetry is a priori not enough to set the field λ(r) = 0. But we

are interested in un-sourced static solutions for the scalar fields, i.e. we assume that the

leading non-normalizable mode is not switched on. The solution space is then a two

dimensional complex vector space spanned by the vevs of the operators dual to the scalar

fields. On this parameter space we can act with the global SU(2) symmetry to set the

operator corresponding to the field λ equal to zero. Since now the non-normalizable and

the normalizable mode of λ are set to zero it follows that λ(r) = 0.

We will be working in the probe limit, in which the coupling of the gauge field is very

large and the backreaction of the matter fields onto the metric can be neglected. The

background metric is then taken to be the Schwarzschild-AdS black brane

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2) ,

f(r) =
r2

L2
− M

r
. (3.3)

The horizon of the black hole is located at rH = M1/3L2/3 and its Hawking temperature

is T = 3rH
4πL2 . In the following we use dimensionless coordinates

(r, t, x, y) →
(
rH ρ,

L2

rH
t̄,
L2

rH
x̄,

L2

rH
ȳ

)
. (3.4)

These rescalings allow us to set M = rH = 1 in the dimensionless system. In order to

switch on a finite chemical potential in the boundary theory, the bulk Maxwell field

A = χ(ρ)dt̄ , (3.5)

must take a non-zero value at the boundary.

The equations of motion for the background fields are

χ′′ +
2

ρ
χ′ − 2ψ2

f
χ = 0 , (3.6)

ψ′′ +

(
f ′

f
+

2

ρ

)
ψ′ +

χ2

f2
ψ − m2

f
ψ = 0 . (3.7)

Notice that the system above is precisely the original U(1) holographic superconductor

first studied in [2]. To ensure finiteness of the norm of the current at the horizon, we have

to demand the scalar field to be regular whereas the gauge field has to vanish χ(ρ = 1) = 0.

With these boundary conditions, the asymptotic behavior of the fields at the conformal

boundary is

χ = µ̄− n̄

ρ
+O

(
1

ρ2

)
, (3.8)

ψ =
ψ1

ρ
+
ψ2

ρ2
+O

(
1

ρ3

)
. (3.9)

For the chosen value of the scalar mass, both terms in the scalar asymptotics correspond

to normalizable modes [32]. Considering one or the other as the vacuum expectation

– 9 –
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value of a dual boundary operator leads to two different theories. In what follows we will

consider only the case in which ψ1 is interpreted as the coupling and ψ2 as the vev of a

mass dimension two operator.

The dimensionless parameters are related with the physical quantities by

µ̄ =
3

4πT
µ , (3.10)

n̄ =
9

16π2T 2L2
n , (3.11)

ψ1 =
3

4πTL2
JO , (3.12)

ψ2 =
9

16π2T 2L4
〈O〉 , (3.13)

where µ, n and JO, 〈O〉 are the chemical potential, charge density and source and

expectation value of an operator O of dimension 2, respectively. From now on we set

L = 1. In the following we will work in the grand canonical ensemble. In practice we vary

the dimensionless parameter µ̄. Because of the underlying conformal symmetry this can

then be thought of as either fixing the chemical potential µ and varying the temperature T

or fixing the temperature and varying the chemical potential. We define the temperature

by T/Tc = µ̄c/µ̄ and fix µ = 1.

Spontaneous symmetry breaking is driven by low temperature or high chemical po-

tential. It triggers a non trivial expectation value for the scalar field without switching on

any source JO. For small µ̄ the scalar field is trivial and the gauge equation is solved by

χ = µ̄(1−1/ρ) and ψ = 0. The system is then in the symmetric phase. However, by decreas-

ing the temperature the system becomes unstable towards condensation of the scalar [1, 2].

In [15] it was shown that at the critical temperature indeed the lowest quasinormal mode

of the scalar field becomes unstable, i. e. it crosses over to the upper half plane.

The free energy density of the system is given by the on-shell renormalized action,

F = −TSren = −T
(

1

2
µn−

∫ ∞
rH

dr
r2ψ2χ2

f

)
. (3.14)

The second term vanishes in the absence of a condensate and it works against the phase

transition if it is present. In figure 2 the free energies for the symmetric and broken phase

are compared. It is clear that for T < Tc the condensate solution is always preferred and

therefore the system undergoes a second order phase transition to the superconducting

phase. Note that the presence of the second scalar plays no role for the phase structure.

It simply vanishes in the broken and unbroken phase λ = 0.

In order to extract the quasinormal mode spectrum, we switch on fluctuations of the

background fields

ΨT = (η(ρ, t, x), ψ(ρ) + σ(ρ, t, x)) , (3.15)

A = (χ(ρ) + at(ρ, t, x)) dt+ ax(ρ, t, x)dx . (3.16)

We do not include transverse fluctuations because they decouple from the interesting

physical features of the model at hand.

– 10 –



J
H
E
P
0
7
(
2
0
1
3
)
1
0
8

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T

Tc

-40

-30

-20

-10

0

F

Tc

0.0 0.2 0.4 0.6 0.8 1.0

T

Tc
0

500

1000

1500

2000

2500

3000

3500

< O2 >2

Tc
4

Figure 2. (Left) The free energy of the trivial (blue) and condensate (red) background solutions

at low temperatures, T < Tc. (Right) Value of the condensate in the grand canonical ensemble as

a function of T/Tc.

In the normal phase, i.e. expanding around ψ(ρ) = 0, the system reduces to the U(1)

holographic superconductor studied in [15] with two copies of the scalar fluctuations,

fs′′ + s′
(
f ′ +

2f

ρ

)
+

(
(χ+ ω)2

f
− k2

ρ2
−m2

)
s = 0 , (3.17)

fa′′t +
2f

ρ
a′t −

k2

ρ2
at −

ωk

ρ2
ax = 0 , (3.18)

fa′′x + f ′a′x +
ω2

f
ax +

ωk

f
at = 0 , (3.19)

iω

f
a′t +

ik

ρ2
a′x = 0 , (3.20)

where s stands for both η and σ fluctuations. The equation for the complex conjugate

scalar s̄ can be obtained by changing the sign of the potential χ in (3.17). The frequency

and momentum are related to the physical ones by

ω =
3

4πT
ωph , (3.21)

k =
3

4πT
kph . (3.22)

The scalar and gauge fluctuations completely decouple in the symmetric phase. This

is a consequence of working in the probe limit. The quasinormal mode spectrum of the

U(1) field in the normal phase is just that of an electromagnetic field on an AdS-Sch

background. The longitudinal fluctuations contain one hydrodynamic mode, ω = −iDk2,

reflecting the diffusive behavior of normal fluids. In physical units D = 3/(4πT ). Due to

the lack of an energy-momentum tensor for the dual field theory in the probe limit, the

diffusion pole is the only hydrodynamic mode in the unbroken phase.

There are two copies of the scalar fluctuations. The quasinormal modes of η and

σ move towards the origin when decreasing the temperature, whereas the modes of η̄

and σ̄ have larger masses and widths the smaller the temperature. As we approach the

– 11 –
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critical temperature T = Tc, the lowest quasinormal modes of η and of σ become massless,

triggering the phase transition: the scalar field acquires a non trivial vev in order to avoid

its fluctuations to become tachyonic. By symmetry we can choose the condensate to reside

completely in the ψ field. The fluctuations σ couple then to the gauge field fluctuations

just as in [15]. Therefore the QNM spectrum in this sector contains a Goldstone mode

with linear dispersion relation ω = ±vsk+O(k2). This is the usual type I Goldstone boson

associated with the breaking of the gauge U(1) symmetry. As shown in [15] it can be

interpreted as the sound mode of the dual superfluid in the broken phase. What happens

then to the QNMs in the fluctuations of the second scalar η? At the critical temperature

there is also an ungapped mode present since its QNM spectrum is simply another copy of

the scalar sector. Since there are no operators generating the SU(2) symmetry in the dual

field theory standard arguments about the appearance of Goldstone modes do a priori not

apply. Three logical possibilities arise then: the mode could become unstable for T < Tc,

it could become gapped again or it stays ungapped, playing the role of an unexpected

Goldstone boson for the broken bulk-global SU(2) symmetry. Shortly we will see that the

last possibility is realized and that the massless mode of η will indeed correspond to a

type II Goldstone boson with quadratic dispersion relation, ω ∝ k2.

In the broken phase, the equations of motion read

0 = fη′′ + η′
(
f ′ +

2f

ρ

)
+

(
(χ+ ω)2

f
− k2

ρ2
−m2

)
η , (3.23)

0 = fδ′′+δ′
(
f ′+

2f

ρ

)
+

(
χ2

f
+
ω2

f
− k

2

ρ2
−m2

)
δ− 2iωχ

f
ζ−iψ

(
ω

f
at+

k

ρ2
ax

)
, (3.24)

0 = fζ ′′ + ζ ′
(
f ′ +

2f

r

)
+

(
χ2

f
+
ω2

f
− k2L2

r2
−m2

)
ζ +

2iωχ

f
δ +

2χψ

f
at , (3.25)

0 = fa′′t +
2f

ρ
a′t −

(
k2

ρ2
+ 2ψ2

)
at −

ωk

ρ2
ax − 2iωψδ − 4χψζ , (3.26)

0 = fa′′x + f ′a′x +

(
ω2

f
− 2ψ

)
ax +

ωk

f
at + 2ikψδ , (3.27)

0 =
iω

f
a′t +

ik

ρ2
a′x + 2ψ′δ − 2ψδ′ , (3.28)

where we have divided σ = ζ+ iδ into real and imaginary part. The system (3.24)–(3.28) is

again the one studied in [15]. This sector, that also appears in the gauged model that will

be presented afterwards, decouples from the additional scalar fluctuation η. Notice that

even if (3.23) is formally the same as in the normal phase, the background χ is different

leading to non trivial features in the η sector such as the presence of a massless excitation.

Figure 3 shows the spectrum of quasinormal excitations of the scalar doublet. In the

normal phase we have two degenerate copies of the spectrum that partially split after the

phase transition. It is clear that the two lowest excitations become massless at the critical

chemical potential and then remain massless in the superconducting phase. They can be

identified with the two Goldstone bosons at the phase transition. The rest of the excitations

remain gapped in the broken phase. Notice that the first η̄ excitation (dashed black line in

figure 3) does not follow the expected universal behavior in the broken phase, i.e. it is not

– 12 –
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Figure 3. Real (left) and imaginary (right) parts of the lowest scalar QNMs as a function of the

chemical potential. Solid lines correspond to the unbroken phase. For the broken phase dashed

lines stand for modes of the additional scalar while dotdashed lines represent the modes common

to the U(1) holographic superconductor.

linear in µ. This mode is the equivalent of the special gapped mode ω4 in the field theoretical

model of section 2. However, it has already been mentioned that the ungauged model does

not satisfy all the theorems about symmetry breaking and therefore deviations from the

universal behavior should not be surprising. The behavior of the gapped modes is actually

similar to that of the U(1) model modes. In the unbroken phase we can distinguish the

modes that come from the s-type of fluctuations from the ones that come from the complex

conjugate s̄ fluctuations. The former become lighter whereas the latter become heavier.6

In the broken phase it is more useful to use real and imaginary parts, at least for the scalar

that mixes with the gauge fields fluctuations, i.e. the lower component of the scalar in our

conventions. So we can not a priori talk of s and s̄ type fluctuations. We still can study

to which modes the s and s̄ type modes connect to in the broken phase. Here we see an

interesting pattern: the s type modes split in the broken phase whereas the s̄ type modes

stay almost degenerate close to the phase transition (at least at zero momentum). This

is surprising given the fact that the fluctuations correspond to two completely different

systems, one coming from a single differential equation whereas the others come from

a complicated system of coupled equations. However, for small temperatures they split

and actually the real part of the lowest one for the U(1) sector goes to zero at a finite

temperature. For temperatures below T ≈ 0.63Tc it becomes a purely imaginary mode.

Sound mode. There are two massless modes in the broken phase. The first one is the

type I Goldstone boson appearing because of the spontaneous breaking of the U(1) gauge

symmetry. In [15], it was shown that this mode corresponds to the sound mode of the dual

superfluid and that in the hydrodynamic limit it has a linear dispersion relation

ωI = ±
(
vs k + b̄ k2

)
− iΓs k2 , (3.29)

where vs is the speed of sound and Γs is its attenuation. It turns out that the quadratic

part of the dispersion relation also has a real component. This component is very small

6This behavior is reversed if we had taken the chemical potential to be negative.
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Figure 4. Speed of sound and damping for the sound mode. The speed of sound goes to zero at the

critical temperature. The damping constant first rises quickly and then falls off again. Precisely at

the critical temperature its value is such that the sound modes connect continuously to the scalar

modes that become massless there. The peak in the damping constant sits close to the critical

temperature and was not resolved in [15].

and subleading compared to the linear term that determines the speed of sound. In [15]

this real quadratic part has not been studied.

For very small temperatures the velocity approaches its conformal value v2
s = 1/2 while

the width goes to zero, see figure 4. Close to the phase transition, the speed of sound has

a mean field behavior as a function of temperature

v2
s ≈ 2.8

(
1− T

Tc

)
. (3.30)

As expected, at T = Tc the speed of sound vanishes. This can be traced back to the fact

that at the phase transition the total mass m2
∗ = M2−µ2 fulfills m2

∗ = v2 = 0, as expected,

and hence the complex scalar field, charged under a U(1) symmetry, becomes massless.

Indeed, one can write down the effective action, analogous to (2.1), for a complex

scalar field with mass M , in the presence of a chemical potential for a U(1) symmetry that

is spontaneously broken. The excitations on top of the U(1)-breaking background have

a dispersion relation equal to (2.5)–(2.6), being (2.5) the type I Goldstone boson. It is

a general feature of these linear sigma models that the coefficient in front of the linear

term in the momentum depends on m2
∗, as can be explicitly checked for the case at hand

(see (2.5)). Therefore, at the phase transition the leading term in the dispersion relation is

of O(k2); this effect can be seen very clearly with numerical methods, as shown in figure 5.

Since the quasinormal mode spectrum has to vary continuously through the second order

phase transition the real and complex coefficients of the k2 term have to coincide at T = Tc
with the ones obtained from the massless scalars in the unbroken phase. Numerically we

find b̄(Tc) = 0.22 and Γs(Tc) = 0.071.

Pseudo diffusion mode. In the unbroken phase our model has only one hydrodynamic

mode, the diffusion mode ω = −iDk2 + O(k4) with D = 3/(4πT ) in physical units. The

shear and normal sound modes have their origin in the metric fluctuations and therefore

are absent in the decoupling limit we are studying. The phase transition to the broken
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Figure 5. Dispersion relations of Reω (left) and Imω (right) at T = Tc for the type I Goldstone

boson in the system studied by [15]. The behavior Reω ∼ k becomes quadratic right at this

temperature: Reω = b̄k2. The coefficient is b̄ = 0.22, which in turn matches the value that one

finds if approaches Tc from above (i.e. from the unbroken phase).

phase is second order. For the spectrum of quasinormal modes this implies that the

modes of the broken and unbroken phase must connect continuously through the phase

transition. In the case of the diffusion mode there must therefore exist a quasinormal

mode with purely imaginary frequency. Hydrodynamics implies however that the only

ungapped modes are the sound modes corresponding to the type I Goldstone mode. Not

too far from the phase transition, i.e. for T . Tc the diffusion mode of the broken phase

must develop into a mode with dispersion relation

ω = −iγ(T )− iD(T )k2 +O(k4) , (3.31)

as shown in figure 6.

We might say that the diffusion mode develops a gap in the broken phase and becomes

what has been called a pseudo diffusion mode in [15]. Precisely at zero momentum k = 0

this gapped pseudo diffusion mode explains the observation made in [17] on the late time

response of holographic superconductors. For temperatures T . Tc the pseudo diffusion

mode is the mode that lies closest to the real axis and therefore it dominates the long time

response to any perturbation, such as the quenches studied in [17]. It follows that the

order parameter shows a purely exponential decay since this mode does not have a real

frequency. The existence of that mode can ultimately be traced back to the universality of

the diffusion mode in the unbroken phase. We expect therefore the pseudo diffusion mode

to be a universal feature of a wide class of superfluids (not necessarily holographic ones).

The gap γ grows as the temperature decreases. On the other hand there are quasi-

normal modes (connecting to the QNMs in the scalar sector of the unbroken phase) whose

imaginary part is only weakly dependent on the temperature. At a certain crossover tem-

perature T∗ the gap of the pseudo diffusion mode is bigger than the imaginary part of

these modes, as shown in figure 7. Then the response pattern changes from a purely

exponential decay to an exponentially damped oscillation. Numerically we find that the

crossover temperature is T∗ = 0.69Tc.
7 Such crossover changes in the long term response

7This is lower than in the model of [17]. The difference is presumably due to the fact that we work in

the decoupling limit.
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Figure 7. (Left) Continuation of the second and third scalar QNM into the broken phase. The real

part grows as the temperature is lowered whereas the imaginary part shows very little dependence

on T . (Right) The gap γ (blue line) and the imaginary part of the lowest (scalar) mode fluctuation

(red line) in the broken phase are shown as function of T/Tc. At T∗ ≈ 0.69Tc the imaginary parts

cross. For lower temperatures the late time response is not dominated anymore by the pseudo

diffusion mode and consequently is in form of a exponentially decaying oscillation.

appear frequently in the details of the quasinormal mode spectrum of holographic field

theories, [33–35]. In fact this purely exponential decay applies not only to the order pa-

rameter but to all operators that correspond to the fields participating in the fluctuation

system (3.24)–(3.28), e.g. charge density or x-component of the current.

For finite momentum the response pattern is expected to be different however. Now

one also has to take into account the sound mode. While precisely at zero momentum

the sound mode, i.e. the Goldstone mode, degenerates to a constant phase change of the

condensate at small but non-zero momentum the long time response should be dominated

by the complex frequencies (3.29). If one looks however only to the response in the gauge

invariant order parameter |O| the Goldstone modes, being local phase rotations of the

order parameter, are projected out.

Type II Goldstone mode. The second massless mode is the Goldstone boson asso-

ciated with the breaking of the bulk-global SU(2) symmetry. It can be fit to a quadratic
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Figure 8. Real (left) and imaginary (right) parts of the type II Goldstone mode as a function of

the momentum for T/Tc = 0.9998 (blue) and T/Tc = 0.704 (red) . The solid lines correspond to the

numerical result while the dashed lines are the quadratic fit to a dispersion relation ωII = b k2−ic k2.

dispersion relation of the form

ωII = ±b k2 − ic k2 +O(k4) , (3.32)

in the long wavelength limit. Therefore it has the characteristic of a type II Goldstone

mode. In figure 8 the dispersion relation for the η massless mode is shown for various

temperatures as well as its fit to the hydrodynamic form. It is clear that there is a good

agreement in the regime of validity of the low energy limit.

The coefficients in the hydrodynamic dispersion relation (3.32) as a function of the

temperature are shown in figure 9. Close to the phase transition they have a linear

dependence in the reduced temperature

b(T ) = 0.22 + 0.049

(
1− T

Tc

)
, (3.33)

c(T ) = 0.071− 0.0014

(
1− T

Tc

)
near Tc .

Notice that at the phase transition the sound mode and the type II Goldstone must behave

in the same way due to continuity of the modes through the phase transition and the fact

that they are degenerate in the normal phase. In fact, at the transition b = b̄ = 0.22 and

c = Γs = 0.071, values that of course coincide with those of the lowest scalar mode in the

normal phase. On the other hand, it is interesting to notice that in the broken phase the

behavior of the coefficients of the type II Goldstone is completely different from that of

the coefficients of the sound of the superfluid. Unlike the sound velocity, that vanishes

at the phase transition, the coefficient b of the type II Goldstone mode takes a finite

value at the critical temperature. This result of course persists for the gauged model. The

attenuation on the other hand, as it happens for the U(1) sector, has a finite value at the

phase transition and then decreases with temperature, reflecting the fact that the fluid is

more ideal the lower the temperature.
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Figure 9. Coefficients of the type II Goldstone mode dispersion relation ωII = b k2 − ic k2, as a

function of the temperature. Dependence with temperature is very mild.

4 The gauged model

Let us now discuss the fully gauged model. Consider the following Lagrangian for a complex

scalar field living in the fundamental representation of a U(2) gauge symmetry of the bulk,

S =

∫ √
−gL =

∫
d4x
√
−g
(
−1

4
FµνcF cµν −m2Ψ†Ψ− (DµΨ)†DµΨ

)
, (4.1)

where

Ψ =

(
λ

ψ

)
, Aµ = AcµTc , Dµ = ∂µ − iAµ , (4.2)

and c = 0, 1, 2, 3 is the color index. The field Ψ plays the role of the condensate. The

expectation value of its dual operator thus triggers the spontaneous breaking of the U(2)

global symmetry of the boundary theory. For simplicity, we set λ = 0 in the background.

Tc are the generators of U(2):

T0 =
1

2
I , Ti =

1

2
σi ,

{Ti, Tj} =
1

2
δijI , {T0, Ti} =

1

2
σi . (4.3)

Notice that we are again working in the probe limit, so the background metric is taken

to be the Schwarzschild-AdS black brane of (3.3). On the other hand, the gauge field is now

A
(0)
0 ≡ Φ(r) , A

(3)
0 ≡ Θ(r) . (4.4)

The rest of the components of the gauge field being zero. As in the previous section, we

will use dimensionless coordinates defined by the rescaling given in (3.4).

The equations of motion for our ansatz are

ψ′′ +

(
f ′

f
+

2

ρ

)
ψ′ +

(Φ−Θ)2

4f2
ψ − m2

f
ψ = 0 , (4.5)

Φ′′ +
2

ρ
Φ′ − ψ2

2f
(Φ−Θ) = 0 , (4.6)

Θ′′ +
2

ρ
Θ′ +

ψ2

2f
(Φ−Θ) = 0 . (4.7)

– 18 –



J
H
E
P
0
7
(
2
0
1
3
)
1
0
8

Notice that from (4.7) it follows that we can not simply switch on Φ without also allowing

for a non-trivial Θ. We are of course only interested in switching on a chemical potential

in the overall U(1), and therefore we will impose Θ(ρ → ∞) = 0 and allow for a finite

boundary value of Φ.

The coupled system of equations above can be simplified by defining χ ≡ 1
2 (Φ−Θ) and

ξ ≡ 1
2 (Φ + Θ). Using (4.6) and (4.7), we see that the resulting equations for these fields are8

Ψ′′ +

(
f ′

f
+

2

ρ

)
Ψ′ +

χ2

f2
Ψ− m2

f
Ψ = 0 , (4.8)

χ′′ +
2

ρ
χ′ − 2Ψ2

f
χ = 0 , (4.9)

ξ′′ +
2

ρ
ξ′ = 0 , (4.10)

where we have redefined ψ →
√

2Ψ. As usual we choose the boundary conditions

χ(ρ = 1) = 0, ξ(ρ = 1) = 0 along with regularity of Ψ. Having a dual field theory with

only one finite chemical potential switched on, implies that χ and ξ must take the same

non trivial value at the boundary in order to ensure that Θ vanishes asymptotically. Notice

that ξ decouples completely. The remaining system (4.8)–(4.9) is again the background

found for the widely studied s-wave U(1) holographic superconductor. Therefore, the

background of the U(2) gauge model contains the Abelian superconductor plus a decoupled

conserved U(1) sector.

The field χ lies in the direction of one of the broken generators, which is the linear com-

bination 1
2(T3−T0), whereas ξ lies in the direction of the preserved U(1) given by 1

2(T3+T0).

The asymptotic expansion of the fields near the conformal boundary reads

χ = µ̄χ −
n̄χ
ρ

+O

(
1

ρ2

)
, (4.11)

ξ = µ̄ξ −
n̄ξ
ρ

+O

(
1

ρ2

)
, (4.12)

Ψ =
ψ1

ρ
+
ψ2

ρ2
+O

(
1

ρ3

)
. (4.13)

The map of the various coefficients in the previous equations to the boundary conditions is

µ̄χ = µ̄ξ = µ̄. We will again focus in the O2 theory exclusively, henceforth we will demand

ψ1 = 0.

Equations (4.8)–(4.9) allow for solutions with a non-vanishing condensate, and there-

fore 1
2(T3 − T0) will be spontaneously broken. This solution must be found numerically,

since the system is non-linear. However, (4.10) does have an analytic solution

ξ = µ̄

(
1− 1

ρ

)
(4.14)

and thus n̄ξ = µ̄.

8These equations of motion correspond to the probe limit of the system studied in [36] as a dual of

superconductors with chemical potential imbalance. Notice however that in [36] the gauge symmetry was

U(1)×U(1) instead of U(2) as in the present setup.
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When the symmetry is not broken, Ψ = 0, the equation for χ has of course

χ = µ̄

(
1− 1

ρ

)
(4.15)

as a solution as well. Therefore, in the unbroken phase

Θ = 0 , (4.16)

Φ = 2µ̄

(
1− 1

ρ

)
. (4.17)

This behavior reflects the fact that T3 is completely independent from T0 in the unbroken

phase. However, once we switch on the condensate, the interplay between T3 and T0

(recall that the remaining symmetry is a combination of the two) makes it impossible to

set only one of the fields to zero.

Finally, let us mention that in order to relate the dimensionless parameters with the

physical ones, we need to apply the same dictionary (3.10)–(3.13) used for the ungauged

model.

4.1 Charge density in the broken phase

According to [19, 24] we can expect the presence of type II Goldstone modes if the broken

symmetry generators fulfill

〈[Qa, Qb]〉 = Bab (4.18)

with at least one Bab 6= 0. In our case we have [Q1, Q2] = iQ3. Therefore in the broken

phase we are interested in a non-vanishing expectation value for the charge density

operator 〈Q3〉 = nΘ. As we argued previously, in the unbroken phase we necessarily have

Θ(r) = 0. This happened since both χ and ξ obey the same differential equation and the

integration constants had to be set equal in order to do not switch on a source for Θ. Now

we would like to find out whether or not an expectation value for Θ will be spontaneously

generated in the broken phase.

Independently of the phase the field associated to the unbroken combination of gener-

ators is given by (4.14). Since Θ = ξ − χ, then

n̄Θ = µ̄− n̄χ . (4.19)

Hence, what we want to check is the difference between the leading and the subleading

coefficients of χ as a function of the temperature. The numerical result is shown in figure 10.

So we conclude that precisely at T ≤ Tc this difference is switched on and an

expectation value for 〈Q3〉 appears. This can be taken as a clear indication for the

appearance of type II Goldstone bosons in the spectrum.

4.2 Fluctuations of the gauged model

In order to study the quasinormal spectrum and the conductivities of the system, we switch

on longitudinal perturbations on top of the background, so that

Ψ̂T = (η(t, ρ, x),Ψ(ρ) + σ(t, ρ, x)) , (4.20)
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Figure 10. Charge density of Θ, n̄Θ, as a function of the temperature T/Tc.

A(0) = (Φ(ρ) + a
(0)
t (t, ρ, x))dt+ a(0)

x (t, ρ, x)dx , (4.21)

A(1) = a
(1)
t (t, ρ, x)dt+ a(1)

x (t, ρ, x)dx , (4.22)

A(2) = a
(2)
t (t, ρ, x)dt+ a(2)

x (t, ρ, x)dx , (4.23)

A(3) = (Θ(ρ) + a
(3)
t (t, ρ, x))dt+ a(3)

x (t, ρ, x)dx . (4.24)

4.2.1 Perturbations in the unbroken phase

In the normal phase, the background value of the condensate vanishes. Moreover, we have

Θ(ρ) = 0. The equations of motion for the perturbations read

s′′ + s′
(
f ′

f
+

2

ρ

)
+

(
(Φ

2 + ω)2

f2
− k2

fρ2
− m2

f

)
s = 0 , (4.25)

a
′′(c)
t +

2

ρ
a
′(c)
t − ωk

fρ2
a(c)
x −

k2

fρ2
a

(c)
t = 0 , (4.26)

a′′(c)x +
f ′

f
a′(c)x +

ω2

f2
a(c)
x +

ωk

f2
a

(c)
t = 0 , (4.27)

ω

f
a
′(c)
t +

k

ρ2
a′(c)x = 0 , (4.28)

where s ∈ {η, σ}. Since the color indices do not see each other the system is the same one

as (3.17)–(3.20) except that there are four copies of the gauge field fluctuations. Due to

the chosen normalization of the U(2) generators the gauge field background Φ enters with

an additional factor 1
2 compared to (3.17). The quasinormal mode spectrum is the same

as the one of the holographic s-wave superconductor [15] except that the scalar modes are

doubly degenerate and the gauge field modes are fourfold degenerate. In particular there

are four copies of the hydrodynamic diffusion mode ω = −iDk2.

4.2.2 Perturbations in the broken phase

The equations of motion in the broken phase decouple in two sets: one mixing the (0)− (3)

colors of the gauge field and σ fluctuations and the other mixing the (1) − (2) colors and

the η fluctuations.
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Writing σ = ζ + iδ, the equations of the (0)− (3) sector are

0 = fζ ′′+

(
f ′+

2f

ρ

)
ζ ′+

(
ω2

f
+
χ2

f
− k

2

ρ2
−m2

)
ζ+

2iωχ

f
δ+(a

(0)
t −a

(3)
t )Ψ

χ

f
, (4.29)

0 = fδ′′ +

(
f ′ +

2f

ρ

)
δ′ +

(
ω2

f
+
χ2

f
− k2

ρ2
−m2

)
δ − 2iωχ

f
ζ + iΨω

a
(3)
t − a

(0)
t

2f
+

+iΨk
a

(3)
x − a(0)

x

2ρ2
, (4.30)

0 = fa
′′(0)
t +

2f

ρ
a
′(0)
t −

(
Ψ2 +

k2

ρ2

)
a

(0)
t −

ωk

ρ2
a(0)
x + Ψ2a

(3)
t − 4ζΨχ− 2iωΨδ , (4.31)

0 = fa′′(0)
x + f ′a′(0)

x +

(
ω2

f
−Ψ2

)
a(0)
x +

ωk

f
a

(0)
t + Ψ2a(3)

x + 2ikδΨ , (4.32)

0 = fa
′′(3)
t +

2f

ρ
a
′(3)
t −

(
Ψ2 +

k2

ρ2

)
a

(3)
t −

ωk

ρ2
a(3)
x + Ψ2a

(0)
t + 4ζΨχ+ 2iωΨδ , (4.33)

0 = fa′′(3)
x + f ′a′(3)

x +

(
ω2

f
−Ψ2

)
a(3)
x +

ωk

f
a

(3)
t + Ψ2a(0)

x − 2ikδΨ , (4.34)

0 =
ik

ρ2
a′(0)
x +

iω

f
a
′(0)
t + 2Ψ′δ − 2Ψδ′ , (4.35)

0 =
ik

ρ2
a′(3)
x +

iω

f
a
′(3)
t − 2Ψ′δ + 2Ψδ′ . (4.36)

It is trivial to show that by defining new fields a
(±)
t ≡ 1

2(a
(0)
t ±a

(3)
t ) and a

(±)
x ≡ 1

2(a
(0)
x ±a(3)

x )

the system further decouples into a coupled system for the scalar fluctuations and a
(−)
µ

and a background independent set of equations for the U(1) gauge field a
(+)
µ . The first

subsystem reproduces the eoms (3.24)–(3.28) and therefore corresponds to the s-wave U(1)

superconductor contained in the U(2) model. On the other hand, the field a
(+)
µ corresponds

to the preserved gauge symmetry surviving the U(2)→ U(1) spontaneous symmetry break-

ing. The quasinormal mode spectrum in this sector is therefore the same one as in [15] plus

the QNMs that are stem from a U(1) gauge field in AdS4. In particular the hydrodynamic

modes in this sector are the sound mode and the diffusion mode of the unbroken U(1).

From now on we will concentrate on the remaining fields. We will call this remaining,

inherently non-Abelian sector the (1)− (2) sector and will show that the expected type II

Goldstone boson resides there. Writing η = α+ iβ, we find the following equations in the

(1)− (2) sector:

0 = fα′′ +

(
f ′ +

2f

ρ

)
α′ +

(
ω2

f
+

(Φ + Θ)2

4f
− k2

ρ2
−m2

)
α+

iω(Φ + Θ)

f
β −

−iΨ
(
k

2ρ2
a(2)
x +

ω

2f
a

(2)
t

)
+

ΨΦ

2f
a

(1)
t , (4.37)

0 = fβ′′ +

(
f ′ +

2f

ρ

)
β′ +

(
ω2

f
+

(Φ + Θ)2

4f
− k2

ρ2
−m2

)
β − iω(Φ + Θ)

f
α−

−iΨ
(
k

2ρ2
a(1)
x +

ω

2f
a

(1)
t

)
− ΦΨ

2f
a

(2)
t , (4.38)
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0 = fa
′′(1)
t +

2f

ρ
a
′(1)
t −

(
Ψ2+

k2

ρ2

)
a

(1)
t −

ωk

ρ2
a(1)
x +iΘ

k

ρ2
a(2)
x −2ΦΨα−2iωΨβ , (4.39)

0 = fa′′(1)
x + f ′a′(1)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(1)
x − 2i

Θω

f
a(2)
x − iΘ

k

f
a

(2)
t +

ωk

f
a

(1)
t β +

+2ikΨβ , (4.40)

0 = fa
′′(2)
t +

2f

ρ
a
′(2)
t −

(
Ψ2+

k2

ρ2

)
a

(2)
t −

ωk

ρ2
a(2)
x −iΘ

k

ρ2
a(1)
x +2ΦΨβ−2iωΨα , (4.41)

0 = fa′′(2)
x + f ′a′(2)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(2)
x + 2i

Θω

f
a(1)
x + iΘ

k

f
a

(1)
t +

ωk

f
a

(2)
t +

+2ikΨα , (4.42)

0 =
ik

ρ2
a′(1)
x +

iω

f
a
′(1)
t +

1

f

(
a
′(2)
t Θ− a(2)

t Θ′
)

+ 2Ψ′β − 2β′Ψ , (4.43)

0 =
ik

ρ2
a′(2)
x +

iω

f
a
′(2)
t − 1

f

(
a
′(1)
t Θ− a(1)

t Θ′
)

+ 2Ψ′α− 2α′Ψ . (4.44)

A comment is in order here. This system of equations could be written in a more

compact form by using complex field variables η and a
(1)
t,x ± ia

(2)
t,x . One has to keep in mind

then that the field equations one needs to solve for the QNM spectrum for the complex

conjugate fields are not the complex conjugate equations since one has to demand infalling

boundary conditions on the fields and on the complex conjugate fields simultaneously.

This aspect is somewhat clearer if one works with the (formally) real field variables on

paying the price of writing a somewhat lengthy system of equations.

Up to linear order in perturbations, there are three decoupled sectors in the system.

Two of them belong to the ‘(0) − (3) sector’ and they are a copy of the U(1) holographic

superconductor, already extensively studied, and the preserved U(1) gauge symmetry.

The main features of the spectrum of this sector have already been presented in section 3

since it is also a subsector of the ungauged model. On the other hand, the so called

‘(1)− (2) sector’ has not been studied before. The physics in this sector is quite different

from the holographic superconductors studied up to now and we will concentrate on it in

the rest of this paper.

Before studying the quasinormal modes we will focus on a simpler problem, namely

the conductivities.

4.3 Conductivities

In order to study the conductivities via Kubo formulae, it is enough to solve the linearized

equations in the limit k = 0. The retarded correlators that we are interested in have the

form GR ∼
〈
Jx(c), J

x
(c′)

〉
R

, with c, c′ color indices.

We will be applying the prescription of [34] for computing Green functions in the

presence of holographic operator mixing. If one has a set of fields ΦI , the two-point

correlation functions will be

GIJ = lim
Λ→∞

(
AIMFMk J(Λ)′ + BIJ

)
, (4.45)

where the matrix Fk(r) is nothing but the bulk-to-boundary propagator for the fields,

normalized to be the unit matrix at the boundary. The matrices A and B can be read off
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from the on-shell renormalized action. The corresponding DC conductivities are given by

the following Kubo formula

σIJ = lim
ω→0

(
i

ω
GIJ(ω, 0)

)
. (4.46)

At vanishing momentum the longitudinal components of the gauge field perturbations

decouple from the scalar perturbations, as well as from the temporal components of the

gauge fields. Moreover, the constraints (eqs. (4.35)–(4.36) and (4.43)–(4.44)) become

trivial. Since we know that the system splits into the (0) − (3) and the (1) − (2) sectors

we can rearrange the a
(c)
x fields in two vectors

ΦT
k (0−3)(ρ) = (a(0)

x (ρ), a(3)
x (ρ)) and ΦT

k (1−2)(ρ) = (a(1)
x (ρ), a(2)

x (ρ)) . (4.47)

One can check that in our case the A,B matrices take the simple form

A = −f(r)

2
I , B = 0 , (4.48)

for both sectors. A priori we would have a 4×4 matrix of conductivities. We know however

that the fluctuations in the (0)−(3) and the (1)−(2) sector decouple from each other. There-

fore we can restrict ourselves to study two independent 2× 2 matrices of conductivities.

4.4 Conductivities in the (0)− (3) sector

The k = 0 equations of motion for a
(0)
x and a

(3)
x can be simplified by using the already

defined a
(−)
x and a

(+)
x fields. This results in

0 = fa′′(+)
x + f ′a′(+)

x +
ω2

f
a(+)
x , (4.49)

0 = fa′′(−)
x + f ′a′(−)

x +

(
ω2

f
− 2Ψ2

)
a(−)
x . (4.50)

We see that the resulting system of equations is now completely decoupled. We only have

two diagonal conductivities σ++ and σ−−, corresponding to the unbroken U(1) diffusive

sector and a mode which is associated to the broken U(1) coupling to the condensate.

The former is the same as in the unbroken phase and of no further interest for us. The

latter is again the well-studied U(1) s-wave superconductor. Its conductivity has been

already calculated in [3]. To check our numerics we have re-calculated it and in figure 11

we show its behavior. It coincides completely with [3]. The real part shows the ω = 0

delta function characteristic of superconductivity.9 Numerically this can be seen through

the 1/ω behavior in the imaginary part. The Kramers-Kronig relation (see (A.13) in

appendix A) implies then infinite DC conductivity. The real part of the AC conductivity

also exhibits a temperature dependent gap.

9In general, this behavior is also typical of translation invariant charged media, in which accelerated

charges cannot relax. However, working in the probe limit we effectively break translation invariance and

therefore the infinite DC conductivity is a genuine sign of superconductivity.
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Figure 11. Real part (left) and imaginary part (right) of the conductivity as a function of frequency.

The plots correspond to temperatures in the range T/Tc ≈ 0.91 − 0.41, from red to purple. As

expected, the plots reproduce the ones of [3].

4.5 Conductivities in the (1)− (2) sector

The relevant equations for the (1)− (2) sector read

0 = fa′′(1)
x + f ′a′(1)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(1)
x − 2i

Θω

f
a(2)
x , (4.51)

0 = fa′′(2)
x + f ′a′(2)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(2)
x + 2i

Θω

f
a(1)
x . (4.52)

These equations obey the symmetry

(a(1)
x → a(2)

x , a(2)
x → −a(1)

x ) . (4.53)

One can see that the fact that Θ(1) = 0 implies that a
(1)
x (1) is independent of a

(2)
x (1),

so, after imposing infalling boundary conditions at the horizon, the parameter space of

boundary conditions is two-dimensional, as expected.

In the unbroken phase the system completely decouples

0 = fa′′(c)x + f ′a′(c)x +
ω2

f
a(c)
x . (4.54)

4.5.1 Diagonal conductivities σ11 & σ22

The diagonal components of the conductivity, σ11 and σ22 have the same behavior, as

could be anticipated from the equations (4.51), (4.52). Henceforth, we will only refer to

σ11, but all the conclusions also apply to σ22.

Figure 12 shows the conductivity for several values of the temperature. We find that

these conductivities also show delta-function singularities at ω = 0.

The strength of the delta function can also be computed. It is given by the residue of

the imaginary part of the conductivity at ω = 0,

lim
ω→0

ω Im(σ11) ∼ ns . (4.55)
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Figure 12. Real (left) and imaginary (right) parts of σ11 versus ω for five different temperatures

chosen in a range T/Tc ≈ 0.91− 0.41, from red to purple. Im(σ11) clearly blows up as ω → 0.
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Figure 13. Residue at ω = 0 as a function of T/Tc.

The residue is plotted in figure 13 as a function of T/Tc. As expected, it starts

growing from a zero value. At T/Tc ≈ 0.65, ns reaches a maximum and starts decreasing

fast, changing sign at T/Tc = 0.49. To study ns down to very low temperature we would

need to go beyond the proble limit. However, as we will comment below, this behaviour

of ns can be understood in light of the QNM spectra.

Let us look in detail at the behavior of the real part of the conductivity (left plot

in figure 12). For high enough temperatures the optical conductivity is almost constant,

Re(σ11) = 1, which is expected since in that regime the dynamics is described essentially

by (4.54). As soon as we decrease the temperature, the onset of the DC conductivity also

decreases and only approaches the constant value asymptotically, when ω becomes large

enough and thus the term ω2

f dominates, turning equations (4.51), (4.52) approximately

into (4.54). According to the Ferrell-Glover sum rule, the area missing as we lower the

temperature is proportional to ns.

Interestingly, at low temperatures the real part of σ11 starts developing a bump at small

values of ω (0 < ω . 2). The bump leaves less area for the delta function to cover, which ex-
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Figure 14. Real (left) and imaginary (right) part of σ12 as a function of ω for T/Tc ≈ 0.91− 0.41,

from red to purple.

plains why ns starts decreasing approximately at this temperature. Moreover, the appear-

ance of these bumps can be traced back to the fact that for a subleading gauge QNM with

small | Im(ω)|, Reω(T )� Imω(T ) holds. Hence, the conductivities affected by this mode

start developing the reminiscence of a resonance at a particular frequency. We have studied

the spectrum of low lying QNM for the gauge sector and found that this mode corresponds

in the normal phase to the lowest excitation of a
(1,2)
µ , ω = −1.5i. But it is at lower temper-

atures where one finds a remarkable fact: at T/Tc ≈ 0.395 the mode becomes unstable, and

indeed, as we will see, several physical quantities modify their behavior at that temperature.

Therefore, we expect a new phase transition around T/Tc ≈ 0.395, due entirely to the

(1)− (2) sector. Since this phase transition seems to be triggered by an unstable mode in

the vector sector it most likely leads to the formation of a p-wave condensate. This surely

requires further investigation that is currently underway [55].

4.5.2 Off-diagonal conductivities σ12 & σ21

The off-diagonal elements of the conductivity matrix are also related via the symme-

try (4.53) and therefore obey σ12 = −σ21. Therefore, it is enough to comment on σ12,

although the conclusions are valid for both components.

The form of σ12 is plotted in figure 14 for various different temperatures as a function

of frequency. At T/Tc = 1 the system is practically decoupled, so for all temperatures the

off-diagonal conductivity goes to zero as ω increases.

Observe that σ12(ω) behaves as a normal conductivity. Its real part vanishes as ω → 0,

whereas the imaginary part tends to a constant value.

4.5.3 Conductivities σ+− and σ−+

It is worth to notice that the equations (4.51)–(4.52) decouple if we define a new vector field

ϕ̃ =

(
A+

A−

)
=

(
1 i

1 −i

) (
a

(1)
x

a
(2)
x

)
= S ϕ . (4.56)
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Figure 15. Real (left) and imaginary (right) part of the conductivity σ−+ for temperatures in the

range T/Tc ≈ 0.91− 0.41, from red to purple.

In this basis, the equations of motion become

0 = fA′′± + f ′A′± +

(
(ω ∓Θ)2

f
−Ψ2

)
A± . (4.57)

It is easy to check that the relation between the conductivity matrices in the two basis is

given by

σ̃ =
(
ST
)−1

σS−1 , (4.58)

and that only the off-diagonal components of σ̃ are non vanishing.

The conductivities σ−+ and σ+− are represented in figure 15 and 16, respectively.

The plot of the conductivity σ−+ is particularly suggestive. Besides the superconducting

delta of the DC conductivity, it resembles the behavior observed in Graphene [29]. Such

a resemblance of the conductivities of holographic superconductors to the one of graphene

has been pointed out already in [37]. We emphasize however that the conductivities shown

in figure 15 have an even closer resemblance to [29]. In particular, at small frequencies

we see that a Drude-like peak develops. This kind of behavior in metals is usually due

to the presence of impurities or lattices, whereas in our case, momentum relaxation

would be due to the non-vanishing expectation value of the charge density operator

〈Q3〉 = n̄Θ. The resemblance holds for not too low temperatures. When lowering the

temperature, a gap opens up as for the (0) − (3) sector. The real part of σ+− shows the

same peak already observed for σ11 when decreasing the temperature. For temperatures

below T ≈ 0.49Tc, the pole in the imaginary part of both conductivities changes sign.

Of course, it corresponds to the temperature at which the residue changes sign. The

onset of the DC conductivity at low temperatures grows very fast, becoming divergent at

T/Tc ≈ 0.395. The presence of such a pole in the conductivity is related to the appearance

of an instability in the spectrum of excitations of the gauge field and therefore with a

phase transition to another superconducting phase, as already discussed.
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Figure 16. Real (left) and imaginary (right) part of the conductivity σ+− for temperatures in the

range T/Tc ≈ 0.91− 0.41, from red to purple.

4.6 Quasinormal modes

Let us finally study the QNM spectrum in the (1) − (2) sector. This sector contains

the fluctuations η, aiµ with i = 1, 2, therefore in the unbroken phase the spectrum will

contain two diffusive modes associated with the two gauge fields. The fluctuations of

the scalar field in the normal phase were already discussed in section 3. Analyzing

the quasinormal mode spectrum in the broken phase amounts to solving the system of

equations (4.37)–(4.44). Details of the computation can be found in appendix B.

4.6.1 Type II Goldstone mode

As expected within the (1) − (2) sector we find a type II Goldstone mode. As in the

ungauged model for small enough momentum its dispersion relation can be fitted to

ω = ±Bk2 − iCk2 . (4.59)

Figure 17 shows the dispersion relation for various values of the temperature in the hydro-

dynamic regime. The quadratic behavior with momentum is apparent.

The temperature dependence of B and C is plotted in figure 18. Their value at T =

Tc is given by the same value as in the ungauged model (3.33) and in fact can also be

cross checked by calculating the scalar mode dispersion relation in the unbroken phase

at T = Tc since the QNMs must be continuous through the phase transition. We find a

rather surprising dependence of B with the temperature. It starts at a finite value at the

transition and then it rises rather sharply and falls off slower. It reaches a minimum at

T ≈ 0.49Tc, temperature at which we found the change of sign in the residue of current-

current correlators. We also find another peak around T ≈ 0.4Tc. We expect that it is

again related with the instability found in the gauge sector around that temperature. It

would also be interesting to calculate B(T ) using an alternative method e.g. as the sound

velocity can be calculated from thermodynamic considerations alone. In order to do this

one would need to formulate the hydrodynamics of type II Goldstone modes. We are

however not aware of such a hydrodynamic formulation and leave this for future research.
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Figure 17. Plots of Re(ω) (left) and Im(ω) (right) as a function of the momentum. Thick lines

correspond to data and thin lines to quadratic fit. At T = 0.995Tc the real quadratic parameter

B(T ) shows a maximum, see figure 18. Relation (4.59) is fulfilled with high accuracy.
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Figure 18. B (left) and C (right) as a function of T/Tc. The zoom-in shows the peak of C close

to the transition. Furthermore at T ' 0.4Tc a sharp peak shows up in both coefficients. We relate

this feature also to the instability arising in the vector sector.

The attenuation C(T ) decreases rapidly with temperature. For temperatures T/Tc <

0.9 it is negligible and the width of the type II Goldstone scales with k4 in the hydrodynamic

limit. This fast decreasing with temperature reflects that this mode propagates almost ide-

ally in the fluid at low temperature. No further ungapped modes can be found in this sector.

4.6.2 Higher quasinormal modes

Higher quasinormal modes correspond to gapped modes in the QNM spectrum and thus

represent subleading contributions to the low energy Green’s functions. We will focus here

only on two of them: the continuation of the two diffusive modes of the unbroken phase

and the special gapped mode that appears as the partner mode of the type II Goldstone

mode in the field theoretical model.

Analyzing the first one is interesting in order to understand if also a qualitative change

in the response pattern, such as that characterized by T∗ in the U(1) superconductor
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sector, exists in the (1)− (2) sector. Since in this sector there exist however two diffusive

modes in the unbroken phase it is also possible that the diffusive modes do not simply

develop a gap but that they pair up and move off the imaginary axis in the broken phase.

Indeed as we will see this is what happens.

The special gapped mode corresponds to a mode that is associated to the complex

conjugate of the scalar perturbation in the unbroken phase. At k = 0 and µ = 0 the scalar

mode and its complex conjugate are degenerated. As we lower the temperature they split

into two different modes. When we reach T = Tc, the lowest scalar mode becomes the

type II Goldstone mode whereas the mode of the complex conjugate scalar field turns into

the special gapped mode. The gap of this mode is expected to be given by the tree level

result (2.10) [31].

Fate of diffusive modes. As already mentioned, in the (1)− (2) sector we have two de-

generate diffusive modes in the unbroken phase. When going through the phase transition

these modes can therefore pair up and move off the imaginary axes such that their quasi-

normal frequencies develop real parts and lie symmetrically around the imaginary axis. We

expect therefore that in the low energy limit the dispersion relation takes the form

ω = Γ(T ) +M(T )k2 , (4.60)

where both coefficients are complex functions and the second mode is located at ω′ = −ω∗.
Besides, we expect the QNMs to be continuous through the phase transition, which in

particular means that for T = Tc, our pseudo-diffusive modes should match the unbroken

phase values, i.e. Γ(Tc) = 0 and M(Tc) = −i.
The modes at zero momentum are plotted in figure 19. We see that indeed the gap

vanishes as T → Tc, whereas the modes split and develop a real part as we decrease

the temperature. This last feature is exclusive of the non-Abelian system and thus does

not take place in the usual U(1) holographic superconductor, where the gap is purely

imaginary (see [15] and comments above). Close to the phase transition, they present a

linear behavior in temperature,

Γ(T ) = (4.1− 0.8 i)

(
1− T

Tc

)
near Tc . (4.61)

The temperature dependence of the coefficient of the momentum in (4.60), M(T ),

is shown in figure 20. The real part rises very steeply just below the phase transition.

The imaginary part approaches the unbroken phase value at the critical temperature, i.e.

M(Tc) = −i, as is expected for the pseudo-diffusion modes to continuously connect to the

normal diffusion modes through the phase transition. Notice ImM(T ) decreases when

lowering the temperature.

Another check of the fact that the pseudo diffusion modes come from the pairing up of

the diffusion modes of the normal phase is that their dispersion relation at the phase tran-

sition matches. Therefore the two diffusive modes are continuous through the transition, as

expected for second order phase transitions, however instead of simply developing an imag-

inary gap to drop out of the hydrodynamic spectrum as for the usual U(1) superconductor,

they pair up in two modes that on top of this gap also develop a real part.
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Figure 19. Imω versus Reω at k = 0 as a function of the temperature. The shape of the figure is

compatible with T symmetry, since there are two pseudo-diffusive modes. Having Reω(k = 0) 6= 0

is characteristic of the non-Abelian case.
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Figure 20. Real (left) and imaginary (right) part of M(T ) as a function of T/Tc. As the

temperature approaches Tc, the value of M(T ) reaches the one prescribed by continuity through

the phase transition.

The fact that Re(ω) does not vanish for these modes implies that sufficiently close to

Tc and in the limit k = 0, the late-time response of the perturbed state will present an

oscillatory decay of the perturbations, meaning that, contrary to the U(1) case, there will

not be a temperature at which the late-time behavior changes qualitatively.

Special gapped mode. Seeking for this mode is computationally much more involved.

Its behavior is characterized by a gap that is proportional to µ. In particular, in [31] it

was argued that a type II Goldstone mode is accompanied by a gapped mode obeying

ω(0) = qµ with q being the charge of the corresponding field. In our conventions here we

have q = 1. So we have to look for a mode with ω(k = 0) = µ. Furthermore we expect

that it connects to the lowest mode of the complex conjugate scalar in the unbroken phase.

In figure 21 we depict such mode at zero momentum with respect to the chemical

potential µ̄ in numerical units. Notice that the mode is continuous at the phase transition,

as expected. We observe the linear behavior with the chemical potential that is predicted

theoretically, at least near µ̄c. It is very difficult to do the analysis when µ̄ > 6 due to
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Figure 21. Real (left) and imaginary (right) part of the special gapped mode versus the chemical

potential. We encounter the expected linear behavior with µ. The plot covers both the unbroken

(dashed line) and the broken (solid line) phases.

the high computational power demanded to carry out the computation. The mode shows

of course also a non-vanishing imaginary part which is due to the dissipation at finite

temperature. We find that the real part above the phase transition can be approximated by

Reω = 1.10 µ̄ near µ̄c . (4.62)

This result shows a deviation from the conjectured behavior which could nevertheless be

due to uncertainties in the numerics. Let us emphasize here that the numerics involved in

tracking this mode through the phase transition were rather challenging.

5 Discussion and outlook

The main focus of this work was to establish the existence of type II Goldstone modes

in the quasinormal mode spectrum of a holographic theory dual to a strongly coupled

superfluid with U(2) symmetry.

We studied two models, one in which only the overall U(1) symmetry is gauged in the

AdS bulk and another in which all the U(2) symmetry is gauged. The most important

finding is that indeed there exist ungapped excitations represented by quasinormal modes

in the AdS bulk that show the expected but somewhat unusual quadratic dispersion

relation of type II Goldstone bosons.

For the ungauged model this does constitute a surprising result. After all, the field

theory dual to this model does not contain the necessary conserved currents that would

correspond to the generators of the global SU(2) symmetry. Standard proofs of the Gold-

stone theorem take the existence of such conserved currents for granted. On the other hand

it is basically guaranteed that one can construct an effective field theory, a simple Landau-

Ginzburg type model, that captures the essential dynamics of the light modes, i.e. the lowest

lying quasinormal modes. Such a model would be essentially given by the field theoretical

model of section 2 and this guarantees the existence of the type II Goldstone modes. How-

ever one can expect that such an effective field theory approach can capture only the physics

of the low lying QNMs but not the higher modes. This is indeed what happens: the partner
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mode of the type II Goldstone mode in the ungauged model does not behave in the sup-

posed universal way ω = qµ. In contrast the corresponding mode in the gauged model does

obey this relation approximately and the deviation we found could very well be attributed

to numerical difficulties and uncertainties that arise in the study of the higher QNMs.

One rather interesting perspective on the ungauged model opens up if we vary the

masses of the scalar fields in the AdS bulk. If the masses are slightly different, then at

the critical temperature only one of the two scalars will feature an ungapped QNM (the

one with smaller mass). The lowest scalar mode of the second one will still be gapped at

that temperature. As one goes through the phase transition we do not expect this mode

to become massless at lower temperatures. Rather it should become a pseudo-Goldstone

mode with a gap that is proportional to the mass splitting. The appearance of the type II

Goldstone mode can then be interpreted as the effect of a symmetry enhancement at the

point in parameter space where the masses of the scalars become degenerate. Since this

symmetry is not represented by bulk-gauge fields we might call it an accidental symmetry.

At this point it is difficult to resist the temptation to draw a parallel to the conjectured

symmetry enhancement of high Tc superconductors. In [38] it was suggested that the

phase diagram of high Tc superconductors can be captured by a unified model with and

enhancement of the SO(3)×U(1) symmetry of rotations and electromagnetism to a larger

SO(5) symmetry. Since high Tc superconductors are d-wave rather than s-wave it remains

to be seen how our symmetry enhancement mechanism and the resulting type II Goldstone

mode can be combined with holographic models of d-wave superfluids such as [5, 6].10

The second model we studied has bulk gauge fields for all of the U(2) symmetry. There

are several important differences compared to the ungauged model. The most eye-jumping

one is that now we can also define and study the full set of conductivities corresponding to

the U(2) symmetry. Nothing special occurs of course in the unbroken phase, there are sim-

ply four diagonal conductivities for all the four bulk gauge fields. In the broken phase there

are however interesting new phenomena. In particular there are now off-diagonal conduc-

tivities that do not simply vanish. In addition we have found that also the diagonal conduc-

tivities in the (1)− (2) sector, the one containing the type II Goldstone mode, have delta-

function poles at zero frequency. In this sense this sector is still superconducting. Moreover,

going to a decoupling basis for this sector leads to a very suggestive result: the conductivity

develops a Drude-like peak characteristic of metals on top of the infinite DC conductivity.

On the other hand Landau’s criterion for superfluidity does not hold in this sector. Re-

call that this says that superfluidity takes place for flow velocities v that are smaller than

the critical velocity vc where vc = miniωi(k)/k for all excitation branches i and over all

momenta k [40, 41]. For a type II Goldstone mode the critical flow velocity is clearly zero.

A second difference concerns the fate of the diffusive modes. In the unbroken phase

there are simply four diffusive modes, one for each gauge field in the AdS bulk. In the broken

phase there is one purely imaginary gapped ‘pseudo-diffusive’ mode in the (0)− (3) sector,

i.e. in the sector isomorphic to the U(1) s-wave superfluid. Since there is still one unbroken

10The appearance of unexpected massless modes related to symmetry enhancement in the context of Bose

condensates was as well found in [39].
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U(1) symmetry there is also a normal diffusive mode for the preserved U(1) symmetry. In

the (1) − (2) sector we have however two diffusive modes in the unbroken phase. Going

through the phase transition these two modes can pair up and move off the imaginary

axis, becoming a pair of usual gapped quasinormal modes with real and imaginary parts

in their frequencies. Generically the imaginary part of this gap is smaller (i.e. it lies closer

to the real axis) then the gap of the purely imaginary mode in the (0) − (3) sector. A

large, generic perturbation will in its late time response pattern excite both the (0) − (3)

and the (1) − (2) sector. The late time response of the U(2) invariant order parameter√
|O1|2 + |O2|2 will therefore be dominated by these paired modes and show an oscillatory

behavior in contrast to the response pattern of the order parameter in the U(1) case [17].

Another remarkable QNM is the special gapped mode, i.e. the partner mode of the type

II Goldstone boson. At very high temperatures this mode and the one which at T = Tc
leads to the sound mode are degenerate. As we lower the temperature the gap of these

modes becomes different and, for T < Tc, it is expected that Re(ω(k = 0)) for the Special

Gapped mode is proportional to qµ [28, 31]. In particular we find ω ∼ 1.1µ even if q = 1

in our conventions. Unfortunately with the numerical methods employed in this paper we

found it very difficult to study this mode and the discrepancy can therefore very well be

a consequence of insufficient numerical accuracy. It is probably worth the effort to study

this mode with alternative methods such as the relaxation method developed in [42, 43].

There are several generalizations of the U(2) model that seem interesting and could

be investigated in the future. A straightforward one would be to analyze the p-wave like

instability commented in section 4 and to look for a stable background at low temper-

atures. The existence of a perturbation that becomes tachyonic means that the system

will suffer a second order phase transition into a new phase, probably with the remaining

U(1) symmetry broken. Such an investigation is currently underway. A similar scenario

has been found in [44, 45], in which a gauged version of the field theoretical sigma model

undergoes a phase transition driven by an anisotropic vector condensate.

Another possible generalization would be to analyze the model when the backreaction

onto the metric is taken into account. This introduces the energy-momentum tensor

as an operator of the dual field theory and thus we expect the usual sound and shear

modes to stem from bulk metric fluctuations. Moreover, this would allow us to obtain

reliable results even at very low temperatures and for instance compute the density of

superconducting charge densities at zero temperature, as well as B(T = 0).

We have constructed here a simply model with type II Goldstone bosons using a

“bottom-up” strategy. It is however also interesting to ask if such models can be realized

via “top-down” D-brane, string theory or M-theory constructions [46–50].

Another possible direction of research involves using the Fluid/Gravity correspon-

dence [51] in order to derive the Hydrodynamic expansion of the current and upon

including backreaction also the constitutive relation for the energy-momentum tensor.

This will throw light on the hydrodynamic behavior of non-relativistic superfluids and

in particular should result in the formulation of the hydrodynamics of relativistic type II

Goldstone modes. Up to our knowledge this is not even known to the leading, i.e. zeroth

order in derivatives.
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Another direction of investigation concerns the Landau criterion of superfluidity.

According to this criterion, the dispersion relation (4.59) prevents the system from

accommodating a superflow. Therefore, even though σ11 and σ22 are superconducting,

as soon as a non-vanishing supercurrent/superflow is switched on the system should

in principle be taken out of the superfluid phase. It should be noted however that in

a holographic superfluid the condensate and its flow are of leading order in a large N

expansion and the excitation spectrum, the QNMs, are subleading. Therefore it seems

not clear if Landau’s criterion can be applied straightforwardly. It is known however that

for the U(1) superfluid there exists a critical superflow or a critical supercurrent above

which the condensate vanishes [52–54]. It would be very interesting to analyze if this is so

(along the lines of [54]) and also to study how the whole mechanism takes place. Such an

investigation is currently underway [55].

Finally it is also interesting to ask the question if holographic models featuring Gold-

stone modes with higher order dispersion relation ω = ckn with n > 2 can be constructed.
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A Matrix valued Kramers-Kronig relation

The generically matrix-valued spectral function is defined as

ρij(x) = 〈[Oi(x),Oj(0)]〉 , (A.1)

where Oi are Hermitian operators. Its behavior under Hermitian conjugation is

ρ(x)† = ρ(−x) = −ρ(x)t . (A.2)

Correspondingly, the Fourier transform ρ̃(k) =
∫
d4x e−ikxρ(x) also satisfies a set of

identities

ρ̃(k)† = ρ̃(k) = −ρ̃(−k)t . (A.3)

In particular this means that the diagonal components are real and antisymmetric under

k → −k. One may also be interested in the behavior under ω → −ω. We take now

k = (ω,q). For theories with rotational invariance the spectral function can depend only

on q2. Consequently the diagonal components will also be real and odd in ω

ρii(ω,q
2) = ρii(ω,q

2)∗ = −ρii(−ω,q2) . (A.4)
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For the off-diagonal components however, only if one also imposes time reversal or parity

symmetry can one prove that the off-diagonal entries must be either even or odd functions

of the frequency. In the present case time reversal symmetry is broken by the presence

of the chemical potential. Further constraints can however be obtained by supposing that

the theory is invariant under x→ −x. For an odd number of spatial dimensions we could

use the parity operators P to take x → −x. In the two spatial dimensions we study in

this paper we can take P to by a rotation by π (for an arbitrary even number of spatial

dimensions D = 2n we could take the angle π for all the rotations in the i, i + 1-th plane

for all i ≤ n). This P-operator acts as POi(t,x)P−1 = σiOi(t,−x) with σi = ±1. In odd

spatial dimensions σi is the parity of the operator. In even spatial dimension σi = −1 if

Oi is the component of a spatial vector. Hence

P [ρij(t,x)] = σiσjρij(t,−x) . (A.5)

P-invariance implies ρij(t,x) = σiσjρij(t,−x), which for the Fourier transform implies that

ρ̃ij(ω,q) = −σiσj ρ̃ij(−ω,q)∗ . (A.6)

So the off-diagonal entries are either odd or even functions of ω depending on the signs

σi. In the case where the fields transform in the same way under the parity operator

this means that the real (imaginary) part of the off-diagonal components is an odd (even)

function of the frequency.

From the spectral function, as defined in (A.1) we can define two causal propagators,

namely the retarded and advanced Green’s functions

GR(x) = −iΘ(t)ρ(x) , (A.7)

GA(x) = iΘ(−t)ρ(x) , (A.8)

where x = (t,x). Using (A.3), one can prove the following relation among the Fourier

transforms of these

G̃R(k) = G̃R(−k)∗ = G̃A(k)† . (A.9)

From here, we see that the real (imaginary) part, Re(GR) (Im(GR)), is even (odd) under

k → −k. We can compute the Fourier transform of the retarded Green’s function, which

is given by the convolution of the Fourier transform of the Heaviside step function Θ̃(ω)

with the Fourier transform of the spectral function ρ̃(k),

G̃R(ω,q) = −i
∫ ∞
−∞

Θ̃(ω − µ)ρ̃(µ,q)
dµ

2π
. (A.10)

Using the Fourier transform of the step function

Θ̃(ω) =
i

ω + iε
,

and the Sokhatsky-Weierstrass theorem we get

G̃R(ω,q) = P
∫ ∞
−∞

ρ̃(ω′,q)

ω − ω′
dω′

2π
− i

2
ρ̃(ω,q) , (A.11)
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where P denotes the principle value. From the Hermiticity of ρ̃(k) we see that we can

regard (A.11) as a split of G̃R(k) into its Hermitian and anti-Hermitian parts, and find

that the spectral function can be computed from the anti-Hermitian part of the Fourier

transform of the retarded Green’s function

ρ̃(k) = i[G̃R(k)− G̃R(k)†] ≡ 2iG̃
(A)
R (k) , (A.12)

where the (A) stands for anti-Hermitian.11 Plugging this back into (A.11) and taking the

Hermitian part (H) on both sides we arrive at

G̃
(H)
R (ω) =

i

π
P
∫ ∞
−∞

G
(A)
R (ω′)

ω − ω′
dω′ , (A.13)

which is nothing but the Kramers-Krönig relation for the matrix Green’s function. It is

complemented by the conjugate relation interchanging the Hermitian and anti-Hermitian

parts. Imposing P-invariance and using (A.6) and (A.11) if follows that the Green’s

function satisfies

G̃Rij(ω,q) = σiσjG̃
R
ij(−ω,q)∗ . (A.14)

This constrains the QNM spectrum. Taking for example a diagonal Green’s function with

i = j and writing it as a sum over quasinormal frequencies [33, 56] one seems that the

quasinormal frequencies have to come either in pairs obeying ωn and ω̃n = −ω∗n or are

confined to lie on the imaginary axis. The residues of the pairs are related by complex

conjugation and the purely imaginary ones have to have also purely imaginary residue.

B Solving the fluctuation equations

The (1) − (2) sector of the gauged model in the broken phase consists of a system of

coupled equations (4.37)–(4.44). In order to extract the spectrum of quasinormal modes

we made use of the techniques detailed in [15, 34], where a method to compute the

poles of the Green functions in terms of non-gauge invariant fields was developed. The

quasinormal frequencies are given by the zeroes of the determinant of the field matrix

spanned by a maximal set of linearly independent solutions satisfying infalling boundary

conditions on the horizon evaluated at the boundary.

Imposing infalling boundary conditions, the near horizon behavior of the fields solving

the mentioned equations reads

α = (ρ− 1)κ
(
α(0) + α(1)(ρ− 1) + . . .

)
, (B.1)

β = (ρ− 1)κ
(
β(0) + β(1)(ρ− 1) + . . .

)
, (B.2)

a
(i)
t = (ρ− 1)κ+1

(
a

(i)
t (0) + a

(i)
t (1)(ρ− 1) + . . .

)
, (B.3)

a(i)
x = (ρ− 1)κ

(
a

(i)
x (0) + a

(i)
x (1)(ρ− 1) + . . .

)
, (B.4)

where κ = −iω/3 and i = 1, 2. Since the system is subject to two constraints, we can

only choose four of the six parameters at the horizon. Without loss of generality, solutions

11Using (A.9) we can always work with retarded Green’s functions GR.
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can be parametrized by {α(0), β(0), a
(i)
x (0)}. In this way it is possible to construct four

independent solutions to the field equations. We can label them as I, II, III, IV .

Two additional solutions, V, V I, can be obtained by performing gauge transformations

of the trivial solution,

α→0, β→ i
λ1Ψ

2
, a(1)

x →−kλ1, a(2)
x →0, a

(1)
t →ωλ1, a

(2)
t → iΘλ1 , (B.5)

α→ i
λ2Ψ

2
, β→0, a(1)

x →0, a(2)
x →−kλ2, a

(1)
t →−iΘλ2, a

(2)
t →ωλ2 , (B.6)

where λi are arbitrary constants. Notice that these pure gauge solutions are not algebraic

since they have a nontrivial dependence on the bulk coordinate ρ.

The most general solution for each field ϕi = {α̃, β̃, a(i)
t , a

(i)
x } is given by a linear

combination of the above solutions, including the pure gauge modes,

ϕi = cIϕ
I
i + cIIϕ

II
i + cIIIϕ

III
i + cIV ϕ

IV
i + cV ϕ

V
i + cV Iϕ

V I
i , (B.7)

where we have defined {α̃(ρ), β̃(ρ)} = {ρα(ρ), ρβ(ρ)}. This convenient choice allows us

to identify the asymptotic boundary values ϕi with the sources of the gauge invariant

operators of the dual field theory.

As shown in [15], the poles of the retarded Green functions will be given by the val-

ues of the frequency for which the determinant of the matrix spanned by ϕNi vanishes

asymptotically. Expanding the determinant and evaluating it at a cutoff ρ = Λ, it reads

0 =
1

λ1λ2
det



ϕα
I ϕα

II ϕα
III ϕα

IV ϕα
V ϕα

V I

ϕβ
I ϕβ

II ϕβ
III ϕβ

IV ϕβ
V ϕβ

V I

ϕt(1)
I ϕt(1)

II ϕt(1)
III ϕt(1)

IV ϕt(1)
V ϕt(1)

V I

ϕt(2)
I ϕt(2)

II ϕt(2)
III ϕt(2)

IV ϕt(2)
V ϕt(2)

V I

ϕx(1)
I ϕx(1)

II ϕx(1)
III ϕx(1)

IV ϕx(1)
V ϕx(1)

V I

ϕx(2)
I ϕx(2)

II ϕx(2)
III ϕx(2)

IV ϕx(2)
V ϕx(2)

V I


(B.8)

= ω2 det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIx(1) ϕ

II
x(1) ϕ

III
x(1) ϕ

IV
x(1)

ϕIx(2) ϕ
II
x(2) ϕ

III
x(2) ϕ

IV
x(2)

+ ωk det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(1) ϕIIt(1) ϕIIIt(1) ϕIVt(1)

ϕIx(2) ϕ
II
x(2) ϕ

III
x(2) ϕ

IV
x(2)



−ωk det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(2) ϕIIt(2) ϕIIIt(2) ϕIVt(2)

ϕIx(1) ϕ
II
x(1) ϕ

III
x(1) ϕ

IV
x(1)

+ k2 det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(1) ϕ

II
t(1) ϕ

III
t(1) ϕ

IV
t(1)

ϕIt(2) ϕ
II
t(2) ϕ

III
t(2) ϕ

IV
t(2)

 ,

where the background boundary conditions Θ(Λ) = 0 and ΛΨ = 0 have been already

imposed. This absence of background sources for the corresponding operators makes

the point (ω, k) = (0, 0) a trivial solution to the vanishing determinant condition, which

ensures the existence of a hydrodynamic mode. Notice also that the point (ω, k) = (0, 0)

is a double solution to the previous determinant equation.

Solutions to the equations of motion and to the determinant condition (B.8) have

been computed numerically. It has been checked that the election of solution basis, i.e. of

initial values of the free parameters, does not affect the result.
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