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charged black hole solutions at first order in the flavor backreaction but exact in the charge

density. The thermodynamical properties of the dual gauge theories coincide with the ones

found in the usual charged D7-probe limit and the system turns out to be thermodynami-

cally stable. By analyzing the higher order correction in the flavor backreaction, we provide

a novel argument for the un-reliability of the charged probe approximation (and the present

solution) in the extremality limit, i.e. at zero temperature.

We then consider scalar mesonic-like bound states, whose spectrum is dual to that of

linearized fluctuations of D7-brane worldvolume fields around our gravity backgrounds. In

particular we focus on a scalar field saturating the Breitenlohner-Freedman bound in the

flavorless limit, and coupled to fields dual to irrelevant operators. By looking at quasinor-

mal modes of this scalar, we find no signals of instabilities in the regime of validity of the

solutions.

Keywords: Gauge-gravity correspondence, AdS-CFT Correspondence, Holography and

quark-gluon plasmas

ArXiv ePrint: 1304.4802

c© SISSA 2013 doi:10.1007/JHEP07(2013)074

mailto:fbigazzi@pi.infn.it
mailto:cotrone@to.infn.it
mailto:j.tarrio@ub.edu
http://arxiv.org/abs/1304.4802
http://dx.doi.org/10.1007/JHEP07(2013)074


J
H
E
P
0
7
(
2
0
1
3
)
0
7
4

Contents

1 Introduction 1

1.1 Technical overview 4

1.2 Organization and main results of the paper 8

2 The charged D3-D7 system 8

2.1 The 5d effective action 9

2.2 The perturbative approach 10

2.3 The uncharged case 11

2.4 The charged black hole solution 13

3 Thermodynamics 19

4 The issue of extremality 23

5 Perturbations 26

5.1 Restricting the fluctuating modes 27

5.2 The retarded Green’s function: numerical results 29

6 Conclusions 34

6.1 Breaking of the perturbative solution and of the probe approximation 35

6.2 Stability 36

A Expressions involved in the study of the perturbations 37

A.1 Dimension 4 scalar operator 38

A.2 Dimension 7 and 3 vector operators 38

A.3 Dimension 5 vector operator 41

A.4 Dimension 2 scalar operator 43

1 Introduction

The study of the Quantum Chromodynamics (QCD) phase diagram requires a full com-

prehension of finite temperature (T ) and baryon chemical potential (µ) regimes which are

often beyond the reach of current theoretical methods. Standard perturbative treatments

of QCD only provide access to certain asymptotic corners of the (T, µ) plane. Lattice

simulations are limited by the so-called sign problem: a finite value of µ leads to unreli-

able Monte Carlo simulations (though recent advances, e.g. with analytic continuations to

imaginary potential, are partially improving the situation). Moreover, since they are based

on a reformulation of QCD on discretized Euclidean spaces, lattice methods are not well

suited to study real-time processes.
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A challenging phase of QCD is the Quark-Gluon Plasma (QGP), in which the nuclear

matter dissociates into its fundamental components: quarks and gluons. This state of

matter is created in laboratories like RHIC and LHC by collisions of heavy nuclei. The

dynamics of the QGP is described by strong-coupling interactions and involve a finite

(though typically small if compared with the plasma temperature) quark density. Moreover,

most of its interesting properties reside in its real-time dynamics (hydrodynamic transport

coefficients, quenching of probes moving through it, etc). Standard theoretical methods

are therefore not exhaustive to comprehend its features.

Another particularly interesting part of the QCD phase diagram involves a “large”

chemical potential (at least comparable to the zero charge crossover temperature) at zero

and finite temperature. This is the region where a critical point, if it exists, should reveal

itself. Due to its strongly coupled and large µ nature, this region of the phase diagram is

beyond any current first-principle theoretical exploration.

A tool that has been used long and wide in the last years to understand the dynamics of

strongly coupled quantum field theories is the gauge/gravity (holographic) correspondence.

This allows to map classes of strongly coupled quantum field theories into weakly coupled

theories of gravity in at least one dimension more. The extra (radial) direction is the

geometric counterpart of the Renormalization Group (RG) scale of the dual field theory.

The best understood realization of the correspondence, known as AdS/CFT, relates

gravity theories on asymptotically Anti-de-Sitter (aAdS) backgrounds in d + 1 spacetime

dimensions to conformal field theories in d-dimensional Minkowski spacetime. Finite tem-

perature and chemical potential phases in these theories are then mapped into dual aAdS

charged black hole backgrounds.

Although there are several examples in which the correspondence between a quantum

field theory and a dual theory of gravity is explicitly realized, this is unfortunately not the

case for QCD: the holographic dual of Quantum Chromodynamics remains out of reach.

Maximally supersymmetric (N = 4) SU(Nc) Yang-Mills (SYM) theory in four dimensions,

instead, has a well known holographic dual, and most of its non-perturbative properties can

be exactly deduced using the correspondence. It is a conformal field theory with a bosonic

content of six scalars and one vector in the adjoint representation; the scalar manifold has

SO(6) symmetry. Despite the enormous differences among this theory and QCD, in the

last years we have learned that it provides sensible benchmarks on some equilibrium and

dynamical features of phases where QCD could be roughly approximated by a (strongly

coupled) conformal model. This is the case of the deconfined QGP phase, where e.g. the

trace anomaly results to be quite suppressed for not too large values of the temperature

above the confinement-deconfinement crossover. On the other hand, turning on tempera-

ture badly breaks supersymmetry, thus allowing a phenomenologically unpleasant feature

of the N = 4 SYM model to be cast away. See [1] for a recent review on all these issues.

A QCD-inspired refinement of the above toy model requires at least the inclusion of

quarks, i.e. fermionic matter fields transforming in the fundamental representation of the

gauge group. Actually, in order to preserve some supersymmetry in the T = 0 vacuum (so to

benefit from a quantitative control on the related gravity dual) one has to introduce flavor

multiplets, containing scalar (s-quarks) fields as well. The inclusion of these multiplets
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generically breaks part of the global symmetries of the original model. The case we will

focus on in this paper is that of massless fundamental hypermultiplets which, in the N = 4

SYM case, are introduced in such a way to preserve an SO(4)×U(1)R ⊂ SO(6) symmetry

subgroup, where U(1)R is an R-symmetry.

The addition of fundamental degrees of freedom also breaks conformal invariance,

though in an unpleasant way. The beta function for the ’t Hooft coupling λ = g2YMNc,

results to be positive (thus signaling the occurrence of a UV Landau pole) and proportional

to the number of flavored species, β(λ) ∼ (Nf/Nc)λ
2, as opposed to the negative beta

function of QCD. Just as in the case of QED, another famous theory exhibiting a UV

Landau pole, a sensible treatment of the model can be obtained only by focusing on the

IR physics.

The present work will actually focus on N = 4 SYM theory (and its “quiver” gener-

alizations thereof, see below) coupled with massless dynamical flavors. We will discuss its

behavior, in a limiting regime of its parameters, at finite temperature and quark chemical

potential (with both scales taken to be much below the UV Landau pole), by means of a

dual charged black hole background (the case of extremely massive flavors has been ana-

lyzed in [2]). The gravity solution presented in this paper represents an improvement with

respect to the ones found in the past by the authors and collaborators, in that it allows to

scan an enlarged region of the (T, µ) plane. To be specific, our solution will be at first order

in the flavor backreaction parameter ǫ ∼ λNf/Nc, but exact in the chemical potential. So,

we will be formally allowed to explore the large charge regime of the system.

As a first application, we will verify that the backreacted solution reproduces the

thermodynamics calculated in the probe approximation [3] (in particular, the system turns

out to be thermodynamically stable). This is a consistency check that the solution correctly

describes the same physics as the probe whenever observables are computable in both

frameworks. That is, the backreacted solution faithfully contains and extends the probe

physics.

Moreover, we will be able to check the consistency of the large charge regime in the

above model as well as in more general “D3-D7 systems” (see the technical overview below).

As we will see, in the parametrically large charge regime (including the zero temperature

case),1 higher corrections in the backreaction of the flavors, that is in ǫ, are not subleading,

spoiling the reliability of the solution at leading order in ǫ. As a byproduct, this means that

the probe approximation is not reliable in the IR at parametrically large charge or chemical

potential. This fact is known, see e.g. [5], but possibly not fully appreciated. For example,

it means that the use of probes to study the IR regime of the zero temperature, zero flavor

mass limit of charged conformal systems is not trustworthy. Here we are able to confirm

this fact from the explicit analysis of the brane backreaction.

Finally, we will start investigating whether flavor dynamics affects the stability of

1With “parametrically large charge” we mean that the charge or chemical potential is larger by factors

of Nc than the other energy scales in the problems, as e.g. the temperature (this is the case explored in

this paper), the flavor masses or possibly a dynamically generated IR scale (as in confining YM theories,

such as the Sakai-Sugimoto model [4]). In particular, the extremely interesting case of zero temperature

conformal charged systems with massless matter falls in this definition.
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the system. Our analysis extends previous results in the literature, where the flavors were

treated as non-dynamical probes. As it was pointed out in several places (see e.g. [6]), there

are various instabilities one could expect in our models. Charged fermions and scalars on

the field theory side can give rise to various kinds of condensates: the corresponding sym-

metry broken phases should be possibly accounted for by novel dual gravity solutions.

Instabilities could also show up in the spectrum of uncharged mesonic-like bound states.

This is particularly interesting for us since it can be determined by studying (linear) fluc-

tuations of dual fields around our charged black hole backgrounds. Focusing on a possibly

critical scalar meson subsector, we will show that no instability appears at zero momentum

in the regime where our gravity solution can be trusted.

To help the reader going into the details of our analysis, we provide below a short

technical overview on the holographic approach to flavored gauge theories, pointing towards

the main issues raised in this paper. The reader familiar with the subject can safely skip

(part of) this subsection. The way this paper is organized is then presented in a further

subsection.

1.1 Technical overview

Holographically, in the Nc ≫ 1, λ≫ 1 limit, flavorless N = 4 SYM theory is described by

type IIB supergravity in AdS5 × S5. The S5 has a SO(6) isometry that relates directly to

the symmetry of the scalar manifold in the field theory. Turning on temperature on the

field theory side is accounted for by placing a black hole at the center of AdS5. The 10d

geometry originates as the near horizon solution of a stack of Nc D3-branes. Introducing

flavor into the theory is accounted for by adding a stack of suitably embedded Nf D7-

branes [7]. The latter wrap an S3 ⊂ S5, which translates into the SO(4)×U(1)R ⊂ SO(6)

symmetry breaking pattern. The flavored SYM theory arises in turn as the low energy

description of the open strings which end on the D3-D7 branes. Turning on a finite baryon

charge density requires turning on an electric field on the D7 worldvolume.

The D7-brane dynamics is described at leading order by the Dirac-Born-Infeld (DBI)

and Wess-Zumino (WZ) actions. The finite value of the beta function, mentioned above,

is accounted for by a running dilaton, which blows up at a radial position holographically

dual to the field theory UV Landau pole.

The treatment of the system consisting of type IIB supergravity with DBI and WZ

source terms is generically a quite complicated problem to work out. We must, therefore,

work in an appropriate approximation if we want to tackle the system.2

Probe approximation. One of such approximations was started with the seminal paper

of Karch and Katz [7], and goes under the name of probe (or quenched) approximation. It

consists in considering a small number of fundamental degrees of freedom as compared to

the adjoint ones: Nf/Nc ≪ 1; then the ’t Hooft coupling beta function is very small and

can be effectively set to zero. This is the ’t Hooft approximation. On the field theory side

this corresponds to discarding effects of the dynamics of fundamental matter in the theory,

which in the language of lattice gauge theory corresponds to quenching the quarks. On the

2See [8–11] for examples of other solutions to this problem in the supersymmetric case.
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geometrical side of the correspondence, the effect is to treat the D7-branes as probes on

top of the undeformed AdS5 × S5 background. If these branes are all coincident, N = 2

supersymmetry is conserved and the flavor group is SU(Nf ). Since in the undeformed

background the dilaton is constant, there is no RG flow, signaling that in the field theory

we have completely neglected the flavor field effects on the original vanishing beta function.

As the gravitational content of the theory is kept frozen in the presence of the D7-branes,

the dynamics of the flavors is described entirely by the DBI and WZ actions.

Soon after the publication of [7], in which the supersymmetric D7 probes were in-

troduced, the spectrum of mesonic-like bound states in the supersymmetric theory was

analyzed in [12]. In that paper, the spectrum of perturbations of several D7-brane fields,

and their dual gauge theory operators, were studied and organized into the appropriate

supersymmetric multiplets. Later, the theory was extended to include finite temperature

physics [13–15] and the presence of a finite quark density or chemical potential [3, 16, 17].

Following the construction of the thermal/charged backgrounds, perturbations of the sys-

tem were studied in several regimes, see e.g. [18–21].

The contribution of the charged massless hypermultiplets to the free energy, to leading

order in the probe approximation, was studied in [16], at finite or zero temperature. As

a result the thermodynamics of the model was determined, showing that the system is

thermodynamically stable.

In [6] the possible occurrence of instabilities was studied by considering the mesonic

spectrum at finite charge and zero temperature for general flavor mass. In that paper

it was outlined how the fluctuations of all the bosonic D7-brane fields effectively probe

an AdS2 near-horizon metric. This “effective” AdS2 region could be the remnant of a

corresponding extremal region in the fully-backreacted background metric. In this case

one would expect it to be related to a finite entropy degenerate system at T = 0 as in the

usual AdS-Reissner-Nordström (AdS-RN) solution. Such a degeneracy would then also be

considered as a signal of possible instabilities (towards non-degenerate states) to occur.

An especially interesting mesonic operator is the dimension-two scalar corresponding

to a worldvolume scalar field of mass squared m2L2 = −4, with L being the AdS5 radius.

This mass sits precisely on top of the Breitenlohner-Freedman (BF) bound for AdS5, and

a small perturbation could push the mode beyond unitarity. By studying the quasinormal

modes of that scalar (corresponding to poles in the retarded two-point function of the dual

mesonic operators), the authors of [6] found that none of them corresponds to an instability.

In turn, they found a “diffusive” mode (analogous to the “zero sound mode” appearing as

a pole in the U(1)B charge density two-point function) with purely imaginary dispersion

relation, Ω = −iDq2, with q the momentum of the mode and diffusion constant D ∼ 1/µ

from dimensional analysis. Near the origin of AdS5 spacetime, the mode is approximated

by a massless scalar in AdS2. Since a zero mass scalar is above the AdS2 BF bound, the

absence of instabilities consistently follows. In [22] it was shown that this mode is related

to the Higgs branch of a moduli space of vacua (at zero temperature and finite chemical

potential).

In summary, despite the suggestions that the model should present an instability at

low temperature, none could be found. Since all the relevant bosonic fields were included
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in the analysis of [6], it is possible that the instability can be seen only when backreaction

of the D7-branes on the geometry is included. In view of the previous claim on the validity

of the probe, however, one has to take in mind that the results described above are on solid

grounds only away from the zero temperature, zero flavor mass limit.

Smearing approximation. A different limiting regime, considered in the present paper,

is provided by the Veneziano approximation, in which both Nf and Nc are taken to be large

with their ratio Nf/Nc fixed. In this way, the dynamics of the quarks (in a perturbative

language, the quark loops) is not ignored. In the holographic context this consists in

considering the backreaction of the D7-branes in the original AdS5 × S5 geometry.

When the flavor branes are coincident, there are limitations (at least in flat space)

in the maximum number we may have (see [23] for an explanation in this context). To

avoid this and other (more technical than physical) problems, the D7-branes are distributed

homogeneously in the two dimensions perpendicular to their worldvolume. This strategy

was initiated in [24, 25]. The transverse distribution breaks part of the supersymmetry as

well as the flavor group which reduces to its maximal Abelian subgroup U(1)Nf . This is

usually referred to as the smearing approximation.

As already stated above, N = 4 SYM theory in the presence of fundamental matter

develops a Landau pole at a certain energy scale (governed by Nf/Nc). Holographically

this appears because the D7-brane backreaction sources the equation of motion for the

dilaton, which does not admit a constant solution any longer. Actually, the dilaton shows

a logarithmic divergence at a finite radial position r = rLP corresponding to the field

theory UV Landau pole. In particular this implies that a conformal boundary is no longer

available and the existence of a holographic dictionary is in dispute. However, experience

with this and other systems suggests that physics of the IR can still be defined by applying

the standard holographic dictionary at a large cutoff radial position below rLP . This is the

approach we follow in this paper, where we formally push the position rLP to infinity.

D3-D7 systems in the smearing approximation. A N = 1 supersymmetric solution

describing the backreacted intersection of D3 and smeared D7 branes at zero temperature

and charge density was derived in [26]. The construction is quite general in that it is

easily extended to infinite classes of flavored N = 1 quiver theories which arise when the

D3-branes are placed at the tip of toric Calabi-Yau cones.3

The solutions in [26] are the starting point of the construction in [27] where their black

hole (finite temperature) versions were found. Since the models are no longer supersym-

metric, the equations of motion one needs to solve are second order and the analysis was

restricted to small backreaction parameter ǫ∗ ∼ λ∗Nf/Nc (where λ∗ is the ’t Hooft coupling

at a given scale, see the text for details) to keep analyticity. The case of the charged black

hole was later studied in [28, 29] by including the effects of finite, small charge density per

flavor perturbatively in the black hole solution of [27] (which is itself perturbative in ǫ∗).
4

In the present paper we generalize this work by giving the exact, in charge density per

3In the flavorless case, when these theories are conformal, the dual gravity backgrounds have AdS5×XSE

metric, where XSE is the 5d compact Sasaki-Einstein base of the given cone.
4These solutions have been studied further in [30–32].
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Original 10d field 5d two-forms 5d vectors 5d scalars 5d metric

C4 C
(4)
1 C

(4)
0

C2 C
(2)
2 C

(2)
1 C

(2)
0

C0 C
(0)
0

B2 B
(2)
2 B

(2)
1 B

(2)
0

A A1 A0

G A1 f, w g

Φ Φ

Table 1. Five-dimensional fields originating from the ten-dimensional ones, taken from [33]. G

and A represent the 10d metric and world-volume gauge field, respectively.

flavor, charged black hole solution (again, still perturbative in ǫ∗). As discussed before, we

are able to use this solution to check the validity regime of the small ǫ∗ approximation,

and of the probe approximation as well.

A reason to construct this solution is to study the effects of backreaction in the stability

analysis of [6] recalled above. To perform this analysis we need to make a consistent

perturbation of the IIB+DBI+WZ equations of motion. To do this we use extensively the

results of [33], where a consistent reduction of the IIB+DBI+WZ action to five dimensions

was presented. In this reduction the fields appearing are:

- fields preserving the complex structure of the internal 5d manifold on which one

compactifies (to ensure the consistency of the reduction);

- fields neutral under the U(1)R R-symmetry, which is preserved by the smearing (this

condition can be relaxed, see [34–36]).

We reproduce table 1 from [33] where the field content of the 5d reduction and its 10d

origin is specified. The action and equations of motion dictating the dynamics of these

fields are written in [33]. We will not write them here explicitly but will refer to them

extensively. The field strengths follow an equivalent nomenclature to the potentials shown

in the table. For example, the 10d field strength three-form, F3, gives rise to three different

5d field strengths F
(3)
1 (a one-form), F

(3)
2 (a two-form) and F

(3)
3 (a three-form). We refer

again to [33] for exact definitions and details.

The interesting scalar field sitting on the AdS5 BF bound (the one giving rise to the

diffusive mode in [6]) corresponds in the former classification to the scalar A0 coming from

the world-volume vector on the D7-branes. This scalar, in fact, is dual to an operator of

dimension ∆ = 2+Qf ,
5 where Qf is a measure of the backreaction (related to ǫ∗ above by

a factor of the dilaton, see (2.8) later). We could wonder whether the limq→0Ω = 0 limit,

found for the diffusive mode in the probe approximation, is perturbed in the backreacted

case. Even if ǫ∗ is taken to be small, it could weight positive or negative corrections to this

limit, leading in one case or another to an instability (depending on the conventions: for

us purely imaginary modes with Im(Ω) > 0 will be unstable, i.e. exponentially growing).

5For smeared anti-D7-branes this mode is not present, and A0 describes a ∆ = 6 +Qf operator.
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1.2 Organization and main results of the paper

This paper is organized as follows. In section 2 we present the minimal effective 5d gravity

action relevant for the holographic study of the charged D3-D7 system with massless fla-

vors. We will setup our perturbative approach presenting it in a slightly different (though

physically equivalent) way as that followed by the authors and collaborators in the past

(see ref. [33]). As we will see, this approach is quite useful in that it automatically iden-

tifies the fields contributing to the effective action at each order in the ǫ∗ expansion. In

particular it allows one to holographically study how irrelevant operators are “integrated”

out along the RG-flow towards the IR. Moreover, as we will see, it shows how the effective

action, order by order, assumes quite simple forms (e.g. Einstein-dilaton, Einstein-DBI)

which are commonly used in bottom-up holographic setups. Finally, the approach allows

to easily recover the already known uncharged perturbative black hole solution. The novel

content of section 2 is a charged black hole solution at first order in ǫ∗. The difference with

the solution presented in ref. [28] is that the parameter related to the charge density per

flavor is treated in full generality in the present work, whereas in previous solutions it was

treated perturbatively. This complicates the explicit form of the solution but increases its

regime of validity.

In section 3 we study the thermodynamics of the charged solution at first order in ǫ∗
and compare it to the results in [28] and with those obtained in the probe approximation.

We will show, in turn, that the system is thermodynamically stable.

In section 4, by studying second order corrections to the charged solution of section 2,

we will show how in the perturbative-in-ǫ∗ regime (and thus in particular in the probe

approximation with massless flavors) it is not sensible to approach the extremal T/µ → 0

limit, for which an all-order solution is necessary.

In section 5 we will study linear perturbations on top of the charged solution, focusing

in particular on the mode dual to the operator with dimension ∆ = 2 +Qf . We will find

no instability in the regime of parameters where the solution is reliable.

We present conclusions and final comments in section 6. Further useful results are

collected in an appendix.

2 The charged D3-D7 system

A solution of the reduced system described in the introduction corresponds to D7-branes

with a finite electric field in the radial direction. This describes holographically the presence

of charge density per quark in the field theory. The study of this setup was initiated

in [28], where it is shown that the minimal set of fields that must be considered includes

three scalars, Φ, w and f , dual to operators of dimension ∆Φ = 4, ∆w = 6 and ∆f = 8

respectively, two vectors A1 and C
(2)
1 and one two-form C

(2)
2 , that upon redefinitions give

rise to a massless vector field, a massive vector field, and a massive two-form, corresponding

to a ∆J = 3 flavor current operator, and ∆V = 2+
√

9 + σ2Qf and ∆T = 6+Qf operators.6

6A fourth scalar C
(2)
0 corresponds to a Stückelberg scalar coupled to the C

(2)
1 vector and can be gauged

away. The redefinitions leading to these dimensionalities can be found in [33].
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The parameter σ is equal to −1 (resp. to +1) if D7-brane (resp. anti-D7-branes) are

introduced in the setup (see [33]). The case we will focus on is the σ = −1 one, though

some of our results are presented for the general case. Schematically, the operators dual to

the fields present in our solution are of the form [23, 26, 37, 38]

OΦ = trF 2 , Of = trF 4 , Ow ∈ tr(WαWα) ,

OJ
µ = ψ†αγµαβψ

β + iq†mDµqm − iD̄µq†mqm ,

OV ,OT ∈ Tr(W̄α̇WβWβ) + . . . ,

where W is the gluino superfield, ψ a doublet of spinors and q a doublet of squarks.

2.1 The 5d effective action

A 5d effective gravity action describing the dynamics of the minimal set of fields considered

above can be obtained from a more general one [33] arising from a consistent Kaluza-

Klein truncation of 10d supergravity. With the specific choice of the ansatz we will take

below, the dynamics of the minimal set of fields relevant for the charged D3-D7 solutions

is described by

S5 =
1

16πG5

∫

d5x
√

− det g [R[g] + Ls + Lf + LDBI ] , (2.1)

Ls = −40

3
(∂f)2 − 20(∂w)2 − 1

2
(∂Φ)2 − V (Φ, f, w) ,

V (Φ, f, w) = 4e
16
3
f+2w

(

e10w − 6
)

+
1

2
Q2

fe
16
3
f−8w+2Φ +

Q2
c

2
e

40
3
f ,

Lf = −1

2
eΦ−

4
3
f−8w(dC1 +QfdA1)

2 − 4eΦ+4f+4wC2
1 −

1

2
eΦ−

20
3
f (dC2)2 ,

LDBI = −4Qfe
Φ+ 16

3
f+2w

√

1 +
1

2
e−Φ−

20
3
f (dA1)2 .

We have redefined

C
(2)
2 ≡ C2 , C

(2)
1 ≡ C1 , (2.2)

and reabsorbed a 2πα′ factor in the definition of A1. The constant Qf is related to the

number Nf of D7-branes as follows

Qf =
V (X3)

4V (XSE)
gsNf . (2.3)

Here V (XSE) and V (X3) are the volumes of the five-dimensional internal Sasaki-Einstein

manifold and of the three-cycle wrapped by the D7-branes, respectively.7

The action above admits an AdS5 solution when Qf = 0 and all the matter fields are

trivial. The AdS radius is related to the constant Qc by L4 = Qc/4. When choosing to

work in L = 1 units (as we will mostly do here) one has then to set Qc = 4 accordingly.8

7In the flavored N = 4 SYM case, for example, V (XSE) = V (S5) = π3, V (X3) = V (S3) = 2π2.
8Reinserting the correct dimensionalities one finds Qc = (gsα

′2Nc(2π)
4)/V (XSE) where Nc is the num-

ber of D3-branes.
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The 5d Newton constant G5 is obtained from the 10d one after reduction on the 5d

internal compact space (of radius L) and it is thus given by

1

16πG5
=
L5V (XSE)

(2π)7g2sα
′4
. (2.4)

Using the action (2.1), care has to be given to the fact that it does not strictly arise as

a consistent truncation from 10d, but just as a “partially on-shell” reduction of the latter

on the homogeneous “electric ansatz” we will choose. For example there will be extra

conditions to be imposed on dC2 coming from the 5d equations of motion for H3 (which we

take to be zero here). We will write these extra conditions explicitly, deriving them from

the action given in [33], as an expression for the two-form field, i.e., we will not impose an

ansatz for C2, since it will be determined from the other fields in our setup.

The black hole metric ansatz we will consider is of the form

ds25 = e2A(r)[−b(r)dt2 + dxidxi] + e2B(r) dr
2

b(r)
. (2.5)

Moreover, we will assume the scalar fields f, w,Φ to be functions of the radial coordinate

only. For the vector fields we will choose the following electric ansatz

A1 = At(r)dt , C1 = Ct(r)dt . (2.6)

2.2 The perturbative approach

Let us split the dilaton into a constant and a piece vanishing at the particular position r∗

Φ(r) = Φ∗ + φ(r) , φ(r∗) = 0 . (2.7)

The thermal smeared D3-D7 systems studied so far (and in this paper) are perturbative in

the parameter [27]

ǫ∗ ≡ eΦ∗Qf =
V (X3)

16πV (XSE)
λ∗
Nf

Nc
, (2.8)

where the ’t Hooft coupling λ∗ = 4πgse
Φ∗Nc is defined at a certain scale set by radial

coordinate r = r∗. We can analogously define a running parameter ǫ(r) = Qfe
Φ(r). Since

the flavor perturbation induced by the D7-branes and dual to the dilaton field is marginally

irrelevant, we know (see [27]) that the shifted dilaton is logarithmically running to leading

order: φ(r) ∼ ǫ∗ log(r/r∗). This implies that, perturbatively, the beta function for ǫ(r)

is proportional to ǫ2. This in turns implies that, at first order, the differences between

ǫ∗ and any other allowed value ǫ(r0) are subleading in ǫ∗. When working with the first

order thermal solutions, whose horizon radius rh is holographically related to the field

theory temperature, we will then be free to replace ǫ∗ with ǫh = ǫ(rh) at first order in the

backreaction parameter.

As it was discussed in [27], working in the ǫ∗ ≪ 1 limit, allows us to decouple the

IR physics (to which we are ultimately interested in) from the troubling UV Landau pole.

Actually, the limit allows us to trust our IR description up to an arbitrary “large” radial

cutoff r = rs (where we impose our solutions to match with the uncharged T = 0 ones
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found in [26]), which has to be smaller than the one corresponding to the UV Landau pole

scale.9

Our approach to the perturbative solution here will be slightly different (though physi-

cally equivalent) to the one usually followed so far in the literature. The standard treatment

consists in first writing down the exact-in-backreaction equations of motion and then ex-

panding them in series of ǫ∗. In this paper, instead, we will first expand the action and

only then derive the equations of motion. This approach is particularly useful if one is

interested in determining holographically the IR properties of the D3-D7 plasma, like the

thermodynamics. Since the field theory partition function is obtained from the on-shell

(renormalized, Euclidean) 5d action, expanding the latter in powers of ǫ∗ allows us to

understand which fields will actually contribute to each order.

Moreover, unless specified otherwise, we will formally send the cutoff rs to infinity,

which physically amounts in neglecting all power-like r/rs terms in our solutions. This

will allow us to automatically focus on the deep IR solutions which are those relevant for

describing the thermodynamics.

Before presenting the charged perturbative solution, let us first review what happens

in the uncharged case using the approach described above.

2.3 The uncharged case

Setting the AdS radius to one, the effective 5d gravity action in the uncharged case re-

duces to

S5 =
1

16πG5

∫

d5x
√

− det g

[

R[g]− 40

3
(∂f)2 − 20(∂w)2 − 1

2
(∂Φ)2 − V (Φ, f, w)

]

, (2.9)

where

V (Φ, f, w) = 4e
16
3
f+2w

(

e10w − 6 +Qfe
Φ
)

+
1

2
Q2

fe
16
3
f−8w+2Φ + 8e

40
3
f . (2.10)

When Qf = 0 the action admits an AdS5 (black hole) solution of unit radius where

Φ =const and f = w = 0. The perturbative solution in ǫ∗ = Qfe
Φ∗ ≪ 1, will arise

in form of an expansion around the unflavored AdS5 background. In particular, we will

expand the scalars as follows:

Φ(r) = Φ∗ + ǫ∗ φ1(r) +O(ǫ2∗) ,

f(r) = ǫ∗

[

− 1

40
+

√

3

80
f1(r)

]

+O(ǫ2∗) ,

w(r) = ǫ∗

[

− 1

60
+

√

1

40
w1(r)

]

+O(ǫ2∗) . (2.11)

The constants in f, w are chosen in order to diagonalize the action and to have canonically

normalized kinetic terms. Plugging these expressions in (2.9) and requiring that ǫ∗ψ1 ≪ 1

9Actually, it must be rs < ra < rLP , where ra is the radial position where the holographic a−function

presents a singularity [39].
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for ψ1 = (f1, w1, φ1), we find, to second order in ǫ∗,

S5 =
1

16πG5

∫

d5x
√

− det g

[

R[g] + 12

(

1− ǫ∗
3

− ǫ2∗
72

)

+ ǫ2∗ Lm

]

, (2.12)

with

Lm = −1

2
(∂f1)

2 − 1

2
(∂w1)

2 − 1

2
(∂φ1)

2 − v(φ1, f1, w1) , (2.13)

and

v(φ1, f1, w1) = 4φ1 + 16f21 + 6w2
1 . (2.14)

This shows that the masses of the modes f1, w1 around AdS are m2
f = 32 and m2

w = 12 and

thus (as already pointed out in the literature) that they are related to irrelevant operators

of dimension ∆f = 8 and ∆w = 6 respectively. The dilaton, instead, has no mass term and

as such is dual to a marginal (actually a marginally irrelevant) operator.

The action to first order. From the above expressions we see that, to first order in ǫ∗,

the 5d effective action reduces to just an Einstein-Hilbert action with negative cosmological

constant. This has thus a simple AdS5 (black hole) solution

ds25 =
r2

L2

(

1− ǫ∗
3

)

[−b0(r)dt2 + dxidxi] + L2
(

1 +
ǫ∗
3

) dr2

r2b0(r)
, b0(r) = 1− r4h

r4
, (2.15)

with effective radius Lf given by L2
f = L2[1 + ǫ∗/3], where L is the AdS radius of the

unflavored model. The thermodynamics to first order in ǫ∗ can be thus easily obtained. All

one needs is simply to replace L with Lf in the AdS black hole thermodynamical formulas.

Thus, using T = rh/(πL
2
f ) for the temperature, the entropy density s = [1/(4G5)]π

3T 3L3
f as

well as the other thermodynamical observables follow. The results are in perfect agreement

with those found in [27] using the 10d solution10 and with the results obtained in the probe

approximation [15].

The action to second order. At second order in ǫ∗ the scalar fields start playing a rôle

in the effective action. The equations of motion for f1 and w1 (dual to irrelevant operators)

admit simple trivial solutions f1 = w1 = 0. These precisely match with the solutions found

in [27] when all the power-like cutoff-suppressed terms are neglected. In this way these fields

are effectively integrated out and the constant values entering in the redefinitions (2.11) of

f, w can thus be seen as the IR remnant of integrating out the irrelevant fields.

The remaining non-trivial part of the effective 5d action, which only contains the metric

and the scalar field φ1, can be rewritten, to second order in ǫ∗, as a simple Einstein-dilaton

action of the Chamblin-Reall [40] kind

Seff =
1

16πG5

∫

d5x
√

− det g

[

R[g]− 1

2
(∂ϕ)2 − V0e

γϕ

]

, (2.16)

where ϕ ≡ −ǫ∗φ1 and, to the order we are interested in,

V0 = −12

[

1− ǫ∗
3

− ǫ2∗
72

]

, γ =
ǫ∗
3
. (2.17)

10Notice that the standard AdS radial coordinate used in (2.15) and the r-coordinate used in [27] are

simply related by a rescaling at first order: rhere = [1 + (5ǫ∗/24)]rthere.
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Despite the fact that we have to stop at second order in ǫ∗, let us recall, reporting e.g.

the results in [41], that this action has a known exact black hole solution. In the r = ϕ

“gauge” it reads

ds25 = e2A(ϕ)[−h(ϕ)dt2 + dxidxi] + e2B(ϕ) dϕ
2

h(ϕ)
, (2.18)

where

e2A = exp

(

−2

3

ϕ

γ

)

, e2B = −8− 3γ2

6γ2V0
exp(−γϕ) ,

h = 1− exp

[

−8− 3γ2

6γ
(ϕh − ϕ)

]

. (2.19)

From these formulae we get the entropy density and temperature of the black hole as (see

also [42])

s =
e3Ah

4G5
=
e
−

ϕh
γ

4G5
,

T =
eAh−Bh

4π
|h′(ϕh)| =

1

4π

√

−4

3
V0

√

1− 3

8
γ2 e

−
ϕh
6γ

(2−3γ2)
, (2.20)

so that, to second order,

s = σ0T
3

[

1 +
ǫh
2

+
7

24
ǫ2h

]

, (2.21)

where

ǫh = ǫ∗ + ǫ2∗ log(πT ) , (2.22)

so that

T
dǫh
dT

= ǫ2h . (2.23)

Above, σ0T
3 is the entropy density of the unflavored plasma, with

σ0 =
π3L3

4G5
=

π5N2
c

2V (XSE)
, (2.24)

being a measure of the number of degrees of freedom of the unflavored theory (it is propor-

tional to the central charge holographically given by a = N2
c π

3/(4V (XSE)). The entropy

density, as well as the “RG-running” formula for ǫh given above, precisely coincide with the

ones found using the full 10d action in [27]. The remaining thermodynamical observables

also follow accordingly.

These results confirm that in the deep IR limit (i.e. for T ≪ Λs ≪ ΛUV ) the thermo-

dynamics is captured by just the marginally irrelevant operator dual to the dilaton field.

The same conclusion holds for the hydrodynamic behavior, as it has been shown in [30, 31].

2.4 The charged black hole solution

Let us consider now the charged case, which is the focus of the present paper. In the

following we will adopt the same redefinitions for the scalar fields as in (2.11) together

with the following ones for the forms

A1 = eΦ∗/2A , dC2 = Qfe
Φ∗/2F3 , C1 = Qfe

Φ∗/2V . (2.25)
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With these redefinitions we find, at second order in ǫ∗

Seff =
1

16πG5

∫

dx5
√

− det g

[

R[g] + 12− 4ǫ∗

√

1 +
F 2

2
+ ǫ2∗L2

]

, (2.26)

where F = dA, Y = dV and F3 = dC2. The term L2 is given by

L2 = −(∂f1)
2

2
− (∂w1)

2

2
− (∂φ1)

2

2
− 5

6
+

2

3
Λ1[F

2] +

−G1[F
2]f1 −H1[F

2]w1 − 16f21 − 6w2
1 − 4φ1Λ1[F

2] +

−1

2
(Y + F )2 − 1

2
F 2
3 − 4V 2 , (2.27)

with the functionals

Λ1[F
2] =

1 + F 2/4
√

1 + (F 2/2)
,

G1[F
2] =

3
√
2F 2 + 16

√
2− 16

√
2 + F 2

√
15
√
2 + F 2

,

H1[F
2] =

−2
√
2 + 2

√
2 + F 2

√
5

. (2.28)

In the uncharged case F = V = F3 = 0 we get Λ1 = 1, G1 = H1 = 0 so that the uncharged

second order effective action (2.12) is recovered.

The action to first order. From eq. (2.26) we see that, at first order in ǫ∗, the effective

action reduces to a simple Einstein-DBI one, where only the metric and the U(1)B field F

enter. The thermodynamics of the charged D3-D7 system at first order in ǫ∗ is thus fully

captured by that simple action. Using the electric ansatz given in (2.5), (2.6) we find that

the equation of motion for the vector field is readily solved by

Frt =
eA(r)+B(r)r3d
√

e6A(r) + r6d

, (2.29)

where rd is a dimensionful constant naturally associated with the charge density per fla-

vor.11

Writing the metric as ds2 = gMN (r)dxMdxN it is easy to see that Einstein’s equations12

Rtt + 4gtt +
2

3
ǫ∗
gtt

g
3/2
xx

√

r6d + g3xx − 2ǫ∗
gttg

3/2
xx

√

r6d + g3xx

= 0 ,

Rxx + 4gxx −
4

3
ǫ∗

√

r6d + g3xx

g
1/2
xx

= 0 ,

Rrr + 4grr +
2

3
ǫ∗
grr

g
3/2
xx

√

r6d + g3xx − 2ǫ∗
grrg

3/2
xx

√

r6d + g3xx

= 0 , (2.30)

11Notice that rd is not a radial position, since it can have a negative value in correspondence to the sign

of the charge density per quark.
12Cfr. e.g. [43], eqs. (18)-(20), setting V = 0, Z1 = Z2 = 1, λ = 1, φ = 0, d = 4,Λ = −6, Tb = 4ǫ∗.
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admit the following simple solutions (found imposing regularity at the horizon and UV

matching with the uncharged flavored solution in (2.15))

gtt = −r2
(

1− ǫ∗
3

)

b(r) ,

gxx = r2
(

1− ǫ∗
3

)

,

grr =

(

1 + ǫ∗
3

)

r2b(r)
,

where

b(r) =
(

1 +
ǫ∗
3

)

(

1− r4h
r4

)

+ ǫ∗bq(r) ,

bq(r) = − 1

3r3

√

r6 + r6d +
rh
3r4

√

r6h + r6d −
r4d
r4
GF (r)−GF (rh)

2
,

GF (r) =
1

3
B

(

r6

r6 + r6d
;
1

6
,
1

3

)

=
1

31/4
F

[

cos−1

(

(

1−
√
3
)

r2 + r2d
(

1 +
√
3
)

r2 + r2d

)∣

∣

∣

∣

∣

2 +
√
3

4

]

. (2.31)

F [x|y] is the Elliptic integral of the first kind, B(x; a, b) the incomplete beta function and

we have chosen the integration constants so that b(rh) = 0. Finally, the electric field reads13

Frt =
r3d

√

r6d + r6
. (2.32)

This result is in agreement with the solution obtained in the probe approximation in [16]

(see their eq. (3.8)). Integrating the expression above and imposing At(rh) = 0 we find

At(r) = rd
GF (r)−GF (rh)

2
. (2.33)

The action to second order. Let us now consider the effective action to second order.

If one is interested in the thermodynamics (obtained from the free energy, which in turn is

holographically related to the on-shell gravity action), it is clear that the relevant equations

of motion for f1, w1, C2, φ1 and V which appear in the action at O(ǫ2∗), can be solved just

by computing them on the “zeroth-order” background

ds20 = r2[−b0(r)dt2 + dxidxi] +
dr2

r2b0(r)
, b0(r) = 1− r4h

r4
,

(Frt)0 =
r3d

√

r6d + r6
, so that (F 2)0 = −2

r6d
r6d + r6

. (2.34)

13In order to get the first order correction to this expression we need to consider the second order effective

action. See below.
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The equations for f1, w1, φ1, V and C2 which we need to solve are

(5r4 − r4h)f
′
1 + r(r4 − r4h)f

′′
1 = r3(G1[(F

2)0] + 32f1) ,

(5r4 − r4h)w
′
1 + r(r4 − r4h)w

′′
1 = r3(H1[(F

2)0] + 12w1) ,

(5r4 − r4h)φ
′
1 + r(r4 − r4h)φ

′′
1 = 4r3Λ1[F

2] ,

d ⋆0 F3 = 0 ,

d ⋆0 (Y + F0) = 8 ⋆0 V , (2.35)

where the Hodge dual is computed on the zero-th order background. It F = 0 these

equations consistently reduce to the uncharged ones, which have f1 = w1 = 0 as solutions.

In the charged case these trivial solutions are not admitted and all the scalar fields are

running. As in the last equation F = F0, we see that the field V (a massive vector field

dual to an irrelevant operator) is “effectively” decoupled from the other fluctuations in this

setting.

The above system of equations is actually not complete: there is in fact a further

constraint which should be imposed by hand which comes from the requirement that the

5d H3 fields (which do not appear in our effective 5d action) can be consistently set to

zero. In particular, from eq. (78) in [33] we get that to leading order

F3(r) = r3
√

−(F 2)0/2
√

1 + (F 2)0/2
dx1 ∧ dx2 ∧ dx3 = r3d dx

1 ∧ dx2 ∧ dx3 , (2.36)

which readily solves the corresponding equation in (2.35).

The solutions to the rest of the equations (2.35) (found by requiring regularity at the

horizon and UV matching14 with the T = 0 uncharged flavored solution of section 2.3) are

quite involved and we can give them just in a semi-analytic form

√

3

80
f1 =

1

40
− 1

90

2r4 − r4h
2r4s − r4h

− (2r4 − r4h)

∫ rs

r

8
√

r̃6 + r6d

40(2r̃4 − r4h)
2
dr̃ (2.37)

+ r4hr
4
d(2r

4 − r4h)

∫ rs

r

GF (r̃)−GF (rh)

20r̃(r̃4 − r4h)(2r̃
4 − r4h)

2
dr̃ ,

√

1

40
w1 =

1

60
+
P1/2

(

2 r4

r4
h

− 1
)

P1/2

(

2 r4s
r4
h

− 1
)



− 1

60
−
P1/2

(

2 r4s
r4
h

− 1
)

10r4h

∫ rs

r

r̃6R1/2

(

2 r̃4

r4
h

− 1
)

√

r̃6 + r6d

dr̃





(2.38)

−
r6R1/2

(

2 r4s
r4
h

− 1
)

10r4h

[

R1/2

(

2 r4

r4
h

− 1
)

R1/2

(

2 r4s
r4
h

− 1
)

∫ r

rh

r̃6P1/2

(

2 r̃4

r4
h

− 1
)

√

r̃6 + r6d

dr̃

−
P1/2

(

2 r4

r4
h

− 1
)

P1/2

(

2 r4s
r4
h

− 1
)

∫ rs

r

r̃6P1/2

(

2 r̃4

r4
h

− 1
)

√

r̃6 + r6d

dr̃

]

,

14We present the solution at finite UV cutoff rs.

– 16 –



J
H
E
P
0
7
(
2
0
1
3
)
0
7
4

where we have used the explicitly real combination R1/2(x) = Q1/2(x) +
iπ
2 P1/2(x), with

Pn(x) and Qn(x) the Legendre functions of the first and second kind.

The dilaton solution reads

φ1 =





r
√

r6 + r6d − rh

√

r6h + r6d

4r4h



 log b0(r)−





r∗

√

r6∗ + r6d − rh

√

r6h + r6d

4r4h



 log b0(r∗)

+
r4d
8r4h

(DF (r)−DF (r∗)) +
1

2r4h

∫ r∗

r

2r̃6 + r6d
√

r̃6 + r6d

log b0(r̃)dr̃ . (2.39)

where we have defined

DF (r) = log b0(r) (GF (r)−GF (rh)) , (2.40)

and finally, for the vector field, we write

Vt = 4r3dJ ′1
r4 − r4h
r5

, (2.41)

so that the equation of motion can be written as15

∂r

(

r4 − r4h
r5

J ′1
)

− 8r−3J1 =
σ

4
√

r6 + r6d

, (2.42)

with solution

J1 =σ

(

2
r2

r2h
+

(

1 +
r4

r4h

)

log

[

r2 − r2h
r2 + r2h

])

[

((√
3− 1

)

r4d + 2r4h
)

256r2dr
2
h

(GF (r)−GF (rh)) (2.43)

+
1

128r2h





(

1 +
√
3
)

r
√

r6 + r6d
((

1 +
√
3
)

r2 + r2d
) −

(

1 +
√
3
)

rh

√

r6d + r6h
(

r2d +
(

1 +
√
3
)

r2h
)





−
√
3r2d

128r2h
(GE(r)−GE(rh))

]

− σ
r4 + r4h
r4s + r4h

(

2
r2s
r2h

+

(

1 +
r4s
r4h

)

log

[

r2s − r2h
r2h + r2s

])

×
[

((√
3− 1

)

r4d + 2r4h
)

256r2dr
2
h

(GF (rs)−GF (rh))

+
1

128r2h





(

1 +
√
3
)

rs

√

r6d + r6s
(

r2d +
(

1 +
√
3
)

r2s
) −

(

1 +
√
3
)

rh

√

r6d + r6h
(

r2d +
(

1 +
√
3
)

r2h
)





−
√
3r2d

128r2h
(GE(rs)−GE(rh))

]

+ σ
r4 + r4h
64r6h

∫ rs

r

(

r̃4 + r4h
)

√

r̃6 + r6d

log

[

r̃2 − r2h
r̃2 + r2h

]

dr̃

− σ

96

(

1 +
r4

r4h

)

log





r3 +
√

r6 + r6d

r3s +
√

r6d + r6s



 ,

15Recall that the parameter σ is equal to −1 in our setup and to 1 in the anti-D7 brane case.
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where GE is defined in the same way as GF in (2.31), but with the elliptic function of

the second kind E[x|y] instead of the first kind one F [x|y]. In particular, notice the linear

dependence with the WZ factor σ, describing the dependence of this function on the charge

of the smeared branes.

While for the other fields the zero-th order background suffices, in order to solve

for Frt we need the first order background metric (2.31), which has gttgrr = −1 and√
g = r3[1− (ǫ∗/2)]. Dubbing Rd the integration constant, we find that, to first order

Frt(r) =
R3

d
√

r6 +R6
d

[

1 + ǫ∗
r6

r6 +R6
d

Q[r]

]

, (2.44)

where Q[r] is expressed in terms of the on-shell values of the scalar fields and the vector V

Q[r] =
1

2

[

1− r3

2R3
d

∂L2

∂Frt
|0
]

, (2.45)

and the derivative has to be evaluated on the zero-th order solution for Frt.

The integration constant Rd can be written as an expansion

Rd = rd

(

1 +
ǫ∗
3
ρ1

)

, (2.46)

with ρ1 ≪ 3/ǫ∗. This way we can equivalently write

Frt(r) =
r3d

√

r6 + r6d

[

1 + ǫ∗
r6

r6 + r6d
(ρ1 +Q[r])

]

, (2.47)

with (to be explicit)

Q[r] =
1

2



1 +
(−1 + 6φ1)r

6
d

6r6
+
f1(2r

6 + 5r6d)√
15r6

−
√

2

5
w1 − r3





1
√

r6 + r6d

+
Yrt
r3d







 .

(2.48)

Comments. The whole charged solution described in this section is perturbative in ǫ∗
but exact in rd. In [28] the solution with |rd| ≪ rh was presented, which implied a second

perturbative expansion in δ ≡ r3d/r
3
h. The solution in [28] is thus only valid when the

energy scale of the charge density per flavor (or chemical potential if a change of ensemble

is performed) is much lower than the energy scale associated to the temperature. The fact

that our solution is exact in rd does not mean that the solution is valid for asymptotically

large values of the charge density (or chemical potential) per flavor, since the solution is

still perturbative in ǫ∗ and large values of rd may push the solution out of the region of

validity. This will be clarified in the following sections by studying the extremal limit. This

limit requires the knowledge of the solution at second order in ǫ∗. This solution is more

involved and we have not been able to find a complete analytic expression for the metric

in that case (the explicit solutions to f1, w1, φ1, etc. enter in the equations of motion,

implying that an analytic approach becomes an extremely convoluted task), however we

can obtain crucial informations that allow us to find some conclusive results.
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3 Thermodynamics

In this section we discuss the thermodynamics of the charged solution at first order in

ǫ∗ ∼ ǫh, where we have an analytic solution for the 5d metric and the electric U(1)B
field.16 As usual in gauge/gravity contexts, in the planar, strong coupling regime, the field

theory thermodynamics is identified with that of the dual black hole solution. The back-

reacted metric we have obtained in the previous section allows us to immediately deduce

the Bekenstein-Hawking temperature (from the surface gravity) and the black hole entropy

(from the horizon area). By construction, the black hole thermodynamics which follows

is consistent with that which can be deduced starting from the renormalized euclidean

on-shell gravity action (which is in turn identified with the black hole free energy). An

explicit check of this statement and a discussion of how counterterms and boundary terms

are treated in the D3-D7 setup with UV cutoffs, can be found in the appendix B of [27]

(see also [28] for the charged case).

To begin with, let us notice that the thermodynamics of the same system has been

calculated in the probe approximation in [3]. Let us immediately make it clear that, in

the cases we can compare, the thermodynamical quantities calculated here and in [3] will

coincide modulo the temperature. That is, the observables will coincide once we write the

result in [3], where the temperature was the constant temperature of the unflavored theory,

in terms of the temperature of the backreacted solution.17

The temperature of the charged black hole solution found in the previous section reads

T =
rh
π

[

1− ǫh
3

√

1 +
r6d
r6h

]

≡ T0

[

1− ǫh
3

√

1 +
r6d
r6h

]

, (3.1)

where T0 is the temperature in the unflavored case. Equation (3.1) is a monotonic function

of rd (namely, of the chemical potential or charge density per flavor) vanishing at

rextrd =

[

9

ǫ2h
− 1

]1/6

rh . (3.2)

We do not expect, however, that we can really reach the extremality regime where T ∼ 0

since there the corrections to T0 are order unity and we are not guaranteed that higher

orders in ǫh will be subleading. In fact, we will argue in section 4 that the corrections are

not subleading, so that the extremal perturbative solution is not reliable.

The field theory entropy density, s, holographically identified with the Bekenstein-

Hawking entropy of the dual black hole

s =
1

4G5
r3h

(

1− ǫh
2

)

, (3.3)

can be recast in terms of the temperature as

s = σ0T
3
[

1− ǫh
2

+ ǫh
√

1 + δ2
]

. (3.4)

16Extrapolations to QGP RHIC temperatures give rise to ǫh ∼ 0.24 [27] and we will use this value where

needed in our plots.
17This was the case also in the perturbative solution in [28].
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where

δ =
r3d
r3h
, (3.5)

and σ0 defined as in (2.24). It is easy to see that the entropy density precisely reduces to

that found in [28] in the δ ≪ 1 limit at second order in δ.

The charge density nq is given by the holographic relation

nq =
(2πα′)

L5
e−Φ∗/2

dS

dȦt

= (2πα′)e−Φ∗/2ǫh
r3d

4πG5L5
, (3.6)

so that

nq
T 3

= ǫh

√

π7

λhV (XSE)
N2

c δ =
V (X3)

16π

π7/2

V (XSE)3/2

√

λhNfNc δ . (3.7)

This relation matches (to first order in ǫh) with that obtained in [28] in the small δ limit.

This is related to the fact that (no matter the value of δ) at this order the field At is

effectively decoupled from the vector and two-form fields in the action (2.1). Notice that

the baryon charge density nB is related to nq by the simple relation nq = NcnB.

From (3.7) we get that at first order in ǫh and fixed charge density (canonical ensemble)

(

dδ

dT

)

nq

= −3δ

T
. (3.8)

Using this result it is easy to verify that the Helmholtz free energy density, given in terms

of the incomplete beta function

f = −1

4
σ0T

4
[

1− ǫh
2

(

1− 2
√

1 + δ2 +Σ(δ)
)]

,

Σ(δ) = δ4/3
[

B

(

1;
1

6
,
1

3

)

−B

(

1

1 + δ2
;
1

6
,
1

3

)]

, (3.9)

satisfies the thermodynamical relation s = −∂f/∂T (canonical ensemble). Notice that

Σ(δ) ≈ 3δ2 in the δ → 0 limit. Using this result we see that the formula above precisely

reduces to the corresponding one found in [28] in the small δ limit.

The energy density (holographically related to the ADM black hole one) reads

e =
3

4
σ0T

4

[

1− ǫh
2

(

1− 2
√

1 + δ2 − 1

3
Σ(δ)

)]

, (3.10)

and can be deduced from the relation e = f+sT . From this expression we easily determine

the pressure p, and thus the Gibbs free energy density ω, as

p = −ω =
e

3
+O(ǫ2h) . (3.11)

This also follows from the fact that at first order in ǫh the trace of the stress energy tensor

at thermodynamical equilibrium does not receive corrections with respect to its (zero) value

in the conformal limit. In fact we know that the conformality breaking effects are higher

orders in ǫh [27] and that the chemical potential does not contribute to the conformality
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0.5 1.5 2.5
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rh

2

4

6

8

s

sN=4
,

e

eN=4

Figure 1. s/sN=4 (solid line) and e/eN=4 (dashed line) as functions of rd/rh with ǫh = 0.24.

breaking in a theory like the present one where matter fields are massless. This also implies

that the speed of sound is v2s = 1/3 and the specific heat at fixed chemical potential is

c|µ = 3s.

In figure 1 we focus on the flavored N = 4 SYM case and we report the entropy

density and the energy density, normalized with respect to the ones in the unflavored

theory. Nothing special happens at the would-be “extremality point” rextrd ∼ 2.32rh. In

particular, the entropy density is finite.

As said above, in order to compare with the probe results in [3], we have to nor-

malize our quantities by the appropriate power of T/TN=4. After this normalization, the

agreement of our results with the ones in [3] is perfect.

We can check that the thermodynamical relation s = −∂ω/∂T at fixed chemical po-

tential (gran-canonical ensemble) is consistently satisfied . First of all notice that from the

thermodynamical relation µnq = f − ω and from formulas (3.6), (3.7) we get (to leading

order)

µ

T
=

π

12

Σ(δ)

δ

√

πλh
V (XSE)

. (3.12)

It can be checked that, consistently,

µ =
eΦ∗/2

2πα′
At(∞) , (3.13)

where At(r) is given in (2.33). In the small δ limit these expressions precisely agree (to first

order in ǫh) with those given in [28]. In particular in this limit we have µ/T ∼ δ hence µ/T

scales like r3d. In the opposite δ ≫ 1 limit (which can be formally taken with the proviso

of taking rd not greater than rextd ) we get

µ

T
≈ π

12

√

πλh
V (XSE)

[

B

(

1;
1

6
,
1

3

)

δ1/3 − 6

]

∼ π

12

√

πλh
V (XSE)

[

8.4
rd
rh

− 6

]

, (δ ≫ 1) ,

(3.14)
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0.5 1.5 2.5

rd

rh

1

2

3

4

Μ

Λ TN=4

Figure 2. µ/
√
λTN=4 as a function of rd/rh in the perturbative charged (dashed line) and exact

charged (solid line) cases, with ǫh = 0.24.

which shows that µ/T scales linearly with rd. This behavior is made evident in fig-

ure 2 where (focusing on the N = 4 SYM case) we also compare our results against

the perturbative-in-δ case, normalized with
√
λh TN=4. From (3.12) we get that

(

dδ

dT

)

µ

= −3δ

T

( √
1 + δ2Σ(δ)

6δ2 +
√
1 + δ2Σ(δ)

)

, (3.15)

which is what we need to verify that s = −∂ω/∂T at fixed µ.

Now we are in the position to calculate the susceptibility matrix, in order to check

the thermodynamical stability of the system. The “quark” susceptibility χ = ∂µnq and

χTT = − ∂2ω
∂2T

are reported in figure 3 for the flavored N = 4 SYM master example. As

we can see, both susceptibilities are increasing positive functions of the chemical potential.

Obviously, their values at µ = 0 are the same as in the perturbative case

χpert =
4π2

λ
ǫhN

2
c T

2 , χTT,N=4 =
3π2

2
N2

c T
2 . (3.16)

The off-diagonal susceptibilities are as in the perturbative case

χTµ = χµT = ∂Tnq =
2π2√
λ
ǫhN

2
c

(

rd
rh

)3

T 2 . (3.17)

Actually, we do not need their expression at leading order in ǫh for the issue of stability

(i.e. the positivity of the determinant of the susceptibility matrix). The point is that these

observables are already of order ǫh, so they are subleading in the determinant, which at

leading order results to be simply proportional to the “quark” susceptibility χ (times the

unflavored part of χTT , i.e. χTT,N=4).

In conclusion, the thermodynamical stability of the system is guaranteed by the posi-

tivity of the “quark” susceptibility χ for every charge value.
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Figure 3. χ/χpert (solid line) and χTT /χTT,N=4 (dashed line) as functions of rd/rh with ǫh = 0.24.

4 The issue of extremality

As we will see in the following, the charged solution in section 2 is not complete around

T ∼ 0, forbidding us to trust it at extremality. The point is that going to T = 0 would

require, strictly speaking, going beyond the perturbative-in-ǫ regime. In fact, at first order,

we have found that T = T0[1 − O(ǫh)] and implementing the extremality condition (3.2)

would imply taking the subleading O(ǫh) terms to be of order one. The perturbative

approach would have some hope to be sensible only if, despite being at extremality, the

second order terms keep staying subleading with respect to the first order ones. As we will

show in the following, this, not unexpectedly, is not the case.

The extremality condition for the charged solution at first order can be rewritten as

y =
ǫh

3

√

1− ǫ2
h

9

=
ǫh
3

+O(ǫ3h) . (4.1)

where y ≡ δ−1 = r3h/r
3
d. In this way we can say that turning on the flavor backreaction,

the extremality condition y = 0 turns into y = ǫh/3 at first order in ǫh.

It is easy to show that taking this “first order extremality limit” the thermodynamic

relations found in the previous section precisely reduce to those found at T = 0 in the

charged, massless, D7 probe approximation [16]. In particular the extremal metric develops

an AdS2 near-horizon region and the entropy density s ∼ r3d is non-zero. The free energy

scales like r4d accordingly.

Now, in view of the previous observations, the question is whether this first order

extremality limit makes sense. To answer this question we may ask how the extremality

condition is modified at second order. For dimensionality reasons (there are no other scales

in the deep IR apart from rh and rd) the T = 0 condition to second order should read as

y − ǫh
3

√

1 + y2 − ǫ2hC[y] = 0 . (4.2)

– 23 –



J
H
E
P
0
7
(
2
0
1
3
)
0
7
4

Now, if C[y] is an analytic function of y, we can expand it around zero getting

y =
ǫh
3

+ ǫ2hC[0] +O(ǫ3h) . (4.3)

In this case, the second order corrections would be subleading and the first order extremality

limit would not be spoiled.

If instead, say, C[y] ≈ ky−m with m > 0 when y → 0 the situation would be very

different. Take, for example, m = 1. In this case the first order value y = ǫh/3 would be

modified to y = (ǫh/6)(1 +
√
1 + 36k). This would mean that the perturbative expansion

in ǫh would not be reliable when going to T = 0: higher order corrections to the T = 0

condition would modify the critical value of y to lower orders. For m = 2 we would get

that the critical value of y gets a zero-th order correction. This, again, would tell us that

the perturbative expansion in ǫh is not reliable when going to T = 0.

In the following, examining some properties of our charged solution to second order,

we will find that, unfortunately, the above situation (actually the m = 1 case) is precisely

realized.

For our purposes, since we are just interested in the T = 0 condition, it suffices to

consider the near-horizon behavior of the matter fields in the small y limit, with y ≡ r3h/r
3
d.

From the analytic expressions reported in section 2, we find that

Vt(rh) = 0 , Yrt(rh) = V ′t (rh) =
3

5
(π + log 4− 1) +O(y2) ∼ 2.12 +O(y2) , (4.4)

f1(rh) = −4 + 3π − 18 log(2)

4
√
15

1

y
+ . . . ∼ −0.06

y
+ . . . (4.5)

and

w1(rh) =
1

3
√
10

+ . . . ∼ 0.1 + . . . (4.6)

From these we see that, among these modes, the leading contribution to the IR physics

in the extremality regime comes from the field f1. The horizon contribution of w1, as well

as that of the field strength Y of the massive vector mode V , is a constant. It would be

interesting to precisely understand why a different role is played by these fields, despite

the fact that they are all dual to irrelevant deformations.

As for the dilaton, its value at the horizon can be reabsorbed by a redefinition of ǫ. In

fact, as we know, ǫh = Qfe
Φ(rh) = ǫ∗(1 + ǫ∗φ1(rh)).

The horizon value of Frt from (2.47) turns out to be

Frt(rh) =
1

√

y2 + 1

[

1 + ǫ∗
y2

y2 + 1
(ρ1 +Q[rh])

]

, (4.7)

and in the y → 0 limit

Q[rh] =
18 log 2− 4− 3π

24y3
+O(1/y2) ≡ a

y3
+O(1/y2) , a ∼ −0.04 , (4.8)

were we have used the fact that at first order ǫ∗φ1(rh) ≈ 0. From this expression we see

that the T = 0 extremality condition y ∼ ǫ∗/3 which emerges at first order cannot be
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consistent with the perturbative expansion to second order. In fact, if y ∼ ǫ∗/3 the O(ǫ∗)

correction in the expression for F 2(rh) turns out to be not parametrically suppressed: it

is just a number equal to 3a ∼ −0.12.18 This should be sufficient to state that the second

order correction to the T = 0 condition cannot be made parametrically subleading with

respect to the first order one.

To strengthen the above statement let us proceed as follows. Defining the off-shell

matter Lagrangian as

Lm = −4ǫ∗
√

1 + F 2/2 + ǫ2∗L2 , (4.9)

we know that Einstein’s equation are

RMN − R

2
gMN − 6gMN =

1

2
gMNLm − ∂Lm

∂gMN
. (4.10)

In order to get, from these, informations on the T = 0 condition, it suffices to focus on

the tt component. Our metric ansatz will be of the generic form written in (2.5) and, as

usual, we will require that b(rh) = 0, so that b(r) = b′(rh)(r − rh) +O((r − rh)
2) close to

the horizon.

The T = 0 condition is realized when

b′(rh) = 0 . (4.11)

Now, taking the tt component of Einstein’s equation, multiplied overall by gtt, expanding

around the horizon, taking just the leading zero-th order terms (in an expansion in r− rh),
and using the on-shell horizon values of the various matter fields, we get that the T = 0

condition is, as expected, precisely of the form written in (4.2).

Moreover, we also discover that, in the y → 0 limit, the function C[y] goes as

C[y] =
(4 + 3π − 18 log 2)(1 + 2π − 12 log 2)

120y
+ . . . ≡ k

y
+ . . . , (4.12)

so that we fit in the m = 1 case discussed above.

These results confirm that in order to reach the T = 0 regime in the charged D3-D7

models with massless flavors we need to abandon the perturbative-in-ǫ approach. This

implies in particular that the extremality limit cannot be taken in the probe approximation.

This is something which has already been stated in [5] but perhaps not fully appreciated in

the literature. The reason for the breakdown of the reliability of the probe approximation

is simple: if T = 0 the energy density of the unflavored conformal theory (say, N = 4

SYM) is zero. We cannot thus work in the probe approximation consistently, since even

a very small number of charged flavors would provide a larger contribution to the energy

density. For the same reason, in the case of theories displaying a dynamical scale ΛIR, the

reliability of the probe approximation could be obtained only for a limited range of values

of µ/ΛIR.

A final comment is in order. The DBI action we have been using constitutes an ap-

proximation to the full dynamical flavor effects. In particular, it re-sums the “one-window

18Recall that by construction ρ1 ≪ 3/ǫ∗ ∼ 1/y.
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graphs” in the Veneziano limit, that is the graphs with one quark loop. At order ǫ2 one

generically expects further corrections, e.g. two-window graphs, to be present. Moreover,

despite the fact that they are unknown in the D7-brane case, there could be “thermal”

corrections (given by the blackfold approach [44, 45]) taking into account the proper ther-

malization of the brane degrees of freedom. In order for these corrections to spoil the

result of this section, they should all conspire to cancel the non-subleading ǫ2 contribution

discussed above. While we cannot discard this possibility, we find it very unlikely (for ex-

ample, we suspect that in the T ≪ ΛUV regime we work in, thermal corrections would be

suppressed); were it realized, the solutions presented in section 2 would include bona-fide

extremal charged black branes, with AdS2 × R3 near horizon geometry.

5 Perturbations

We consider now linear fluctuations of the 5d fields around the charged solution. We refer

again the reader to [33] for a complete list of the equations of motion of the 5d system,

from where the equations of motion of the fluctuations can be derived by linearizing around

the setup described in section 2.

Representing generic fluctuations of type IIB supergravity fields by Λ and fluctuations

of D7 worldvolume fields by λ, we can expand in powers of the backreaction parameter as

Λ = Λ0+ǫ∗ Λ1+· · · and λ = ǫ∗ λ1+· · · where in the last expansion we have started at order

O(ǫ∗) since in the absence of D7-branes there are no worldvolume fields. In an ǫ∗ expansion

the different fluctuations equations of motion can be written in the hierarchic way

EOM [Λ0] = 0 , (5.1)

EOM [λ1] = ǫ∗ σ[Λ0] , (5.2)

EOM [Λ1] = σ[λ1] , (5.3)

...

where EOM [·] represents linear, possibly coupled, second order differential operators and

σ[·] some linear, at most first order, differential operators acting as a source.19

If we had considered a D7 probe with a trivial embedding in our setup, the equations

governing the dynamics of this extra D7 would be given by (5.2) with σ[Λ0] = 0 (because

the supergravity fields remain frozen in the probe approximation). In the present setup

supergravity and worldvolume fields fluctuate with amplitudes of the same order and their

equations are naturally coupled.

We will consider only leading order effects, since the higher order in ǫ∗ terms will

contribute just with small corrections that will not change our conclusions. Working at

leading order means that equations (5.3), etc. are not considered. This implies particularly

that the backreaction corrections described in section 2 do not appear explicitly in the

equations we solve.

19Notice that EOM [·] and σ[·] are not necessarily the same in every equation; we have omitted extra

labels for the sake of clarity.
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5.1 Restricting the fluctuating modes

Due to the presence of non-trivial components in the background RR potentials C
(2)
1 and

C
(2)
2 , a complete analysis of all the perturbations becomes very involved. However, we can

consider a consistent truncation of such perturbation modes, which includes in particular

the field we are interested in, A0. We will consider that any field Ψ in the background

solution20 is perturbed by

Ψ → Ψ+ eik.xδΨ , (5.4)

where we can use the residual SO(3) little group invariance of the solution we are perturbing

to set k ·x = −ωt+qx3. Since we will consider fluctuations in a black hole background, the

related frequencies associated to the δΨ modes will generically be complex. We will also

have to pick up appropriate boundary conditions for the fluctuating fields at the horizon:

incoming-wave boundary conditions at the horizon are known to be relevant for computing

retarded correlators in the dual theory .

We will restrict our analysis to the q = 0 case in which the little group remains

unbroken. As a result, the fluctuating modes classify into tensorial, vectorial and scalar

SO(3) modes. As we explained in the introduction, we are mostly interested in analyzing

the behavior of the fluctuation of the A0 mode, which is a scalar under SO(3). Therefore,

we will focus just on the scalar fluctuations of the fields. These include (see also table 1)

perturbations of all the scalars present in the system, and components of the vector and

tensor fields spanning the t− r subspace. Components of fluctuations of the metric in the

t − r directions, as well as its trace, must be considered as well. Counting the number of

modes we have

1× 8 (scalars) + 2× 5 (vectors) + 1× 2 (2-forms) + 4 (metric) = 24 modes.

This is still a large number of modes to analyze. We can make a further reduction on the

number of fields by imposing that the equations of motion that do not vanish identically

in the background (the ones for the three scalars f , w and Φ, Einstein equations and the

equations for H
(3)
3 and F

(3)
2 ) do not receive corrections at first order in fluctuations. This

implies that we will not consider fluctuations of non-vanishing background scalar fields,

nor the metric.

Furthermore, consistency requires that fluctuations of the two-form mode B
(2)
2 to can-

cel. Doing the counting we observe that now we have four scalars (δB
(2)
0 , δC

(0)
0 , δC

(4)
0 and

δA0) and the t and r components of three vectors (δB
(2)
1 , δC

(4)
1 and δA1), adding up to ten

different modes which form a closed system (in principle we could have considered the tr

component of the two-form δC
(2)
2 as well, but it is pure gauge in this setup). In appendix A

we list the equations of motion describing these perturbations at leading order, along with

technical comments. From now on we skip the δ in the names of perturbation fields.

A schematic description of the operators dual to the fluctuating fields we consider is:

- the axion corresponds to the ∆ = 4 operator F ∧ F in the field theory, and will not

play an essential rôle in our discussion below;

20In particular Ψ can have tensorial indices which we are not writing, and can have the background value

Ψ = 0.
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- the NSNS vector field B
(2)
1 corresponds holographically to an operator of dimension-

ality ∆ = 2 +
√

9 + 4Qf = 5 + O(Qf ) and sits in the supermultiplet with the term

Tr(W̄α̇WβWβ) + · · · ;

- the fields C
(4)
1 and A1 correspond to a transformed basis for two vector fields holo-

graphically dual to ∆JR = 3 and ∆ = 7 operators. The operator JR generates the

U(1)R symmetry [34, 36];

- the operator dual to the scalar field A0 is sensitive to the value of σ. For σ = 1 (anti-

D7-brane case) the scalar is dual to an operator of dimension ∆ = 6+Qf . For σ = −1

(D7-brane case) the scalar is dual to an operator of dimension ∆ = 2 + Qf [33]. In

the probe approximation its mass sits on the AdS5 BF bound and the scalar is dual

to [12]

O = q†ασαβq
β , (5.5)

where q is the doublet of SU(2)R squarks and σαβ are Pauli matrices. The scalar

operator is a vector of SU(2)R, which is dubbed “R-spin” in [6]. The case σ = −1 is

the one we will focus on.

In appendix A we have redefined the gravity fields dual to the ∆ = 5, 7 operators

into gauge-invariant combinations (which we dubbed ηB and ηC respectively, but see the

comments around (A.17) and (A.27)), which allowed us to decouple completely the ǫ0∗
equations. The scalar dual to the ∆ = 2 operator (dubbed ηA) is sourced by the former

gauge invariant combinations (as in equation (5.2)).

Mixing of perturbations’ equations of motion is a generic situation in holographic

systems. In [46] this situation was studied in generality and it was found that the gen-

eralization of the two-point function’s prescription of [47] consisted, schematically, on the

expression

GR ∝ B ·A−1 , (5.6)

where the subindex R indicates that we are talking about the retarded two-point function

(which is imposed by fixing incoming wave boundary conditions at the horizon [47]), B is

schematically a matrix of normalizable modes (dual to vevs of the operators [46]) and A

a diagonal matrix of non-normalizable modes (dual to sources of the operators). Focusing

on the fields C
(0)
0 ≡ χ, ηA, ηB and ηC we have in our case

GR =











Vχ←ϕχ Vχ←ϕA Vχ←ϕB
Vχ←ϕC

VA←ϕχ VA←ϕA VA←ϕB
VA←ϕC

VB←ϕχ VB←ϕA VB←ϕB
VB←ϕC

VC←ϕχ VC←ϕA VC←ϕB
VC←ϕC











·











ϕ−1χ 0 0 0

0 ϕ−1A 0 0

0 0 ϕ−1B 0

0 0 0 ϕ−1C











, (5.7)

where ϕX is the source of the operator dual to the field X, and VX←ϕY
is proportional

to the vev of the operator dual to the field X when only ϕY is non-zero. This, together

with the ingoing-wave condition at the horizon, determines the boundary conditions used

to calculate the VX←ϕY
, which are presented in the next section.
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The position of the quasinormal modes is a property of the retarded two-point function

as a matrix, as the poles in a meromorphic expansion, and therefore all the VX←ϕY
terms,

are described by the same set of QNMs.

In the former discussion we have not considered possible divergences arising in (5.6),

i.e., we have assumed that a holographic renormalization procedure has been made such

that we can identify the matrix B in that expression with the matrix of normalizable

modes. We have not proved that a proper cancellation occurs when explicit counterterms

are added, especially with the lack of an asymptotically locally AdS spacetime. Here we

assume this is the case. Indeed, background subtraction is enough to obtain the correct

thermodynamical relations in which the free energy is obtained via the on-shell action,

which is UV divergent. That the normalizable mode is the relevant factor to calculate the

two-point function is a well established fact in holography [48], even in the presence of

irrelevant operators [49].21

5.2 The retarded Green’s function: numerical results

The fluctuation of the axion at leading order (A.1) was already studied in the literature [50,

51], and the quasinormal modes were found to be at ω = 2πTn(±1 − i) with n > 0 an

integer. In particular the frequency-function
Vχ←ϕχ

ϕχ
can be found in [50]. As we will

see below, the rest of the components
VX←ϕY

ϕY
we analyze do not show QNMs at ω =

2πTn(±1− i), even when the QNMs are shared by all components of the Green’s function.

The reason for this is the ǫ∗ expansion. If we had included higher order corrections, the

couplings between the equations of motion would have given rise to the presence of QNMs

at precisely these values (plus an ǫ∗ correction). In different words, the residue of these

poles for the other
VX←ϕY

ϕY
components is subleading in ǫ∗.

The only physical parameter appearing in the leading order equation of motion for the

fluctuation ηC , (A.11), is the temperature, which is encoded in the radius of the horizon

rh = πT+O(ǫ∗). This means that at leading order in ǫ∗ we can work with the dimensionless

ratio ω/rh. Taking rh = 1 for convenience we present in figure 4 a plot of the real and

imaginary parts of
VC←ϕC

ϕC
in the negative imaginary frequency plane (no non-analyticities

were observed in the upper half plane), following appendix A. As explained in the appendix,

the contour plot shown in figure 4 is valid up to some contact terms which, in particular,

will not introduce any non-analyticities. Therefore we can say that at leading order in the

backreaction parameter, for frequencies not much larger in norm than πT , there are no

QNMs in the propagator of ηC .

21Due to the structure of the effective perturbation action, counterterms contribute only to the hermitian

part of the GR matrix. Therefore, for the two-point function the anti-hermitian combination

ρ(ω) = i
(

GR(ω)−GR(ω)
†
)

, (5.8)

should not be sensitive to the addition of such counterterms. In [46] it was shown that the spectral function

matrix can be defined at any radius, contrary to the two-point function which is defined at the boundary.

Since by construction all fields are regular at the horizon, the definition of the spectral function at the

horizon proves its finiteness. The regularized hermitian part can be obtained by use of Kramers-Krönig

relations.
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Figure 4. Contour plots of the real (left) and imaginary (right) parts of
VC←ϕC

ϕC
in the complex

ω/rh frequency plane. The real (imaginary) part is even (odd) under ω → −ω̄.

Similar comments hold for
VB←ϕB

ϕB
, which we present in figure 5, up to contact terms,

for the negative imaginary frequency plane (no non-analyticities were observed in the upper

half plane). We see now the existence of a quasinormal mode in the imaginary axis for

ω/rh ≈ −2.5i. This mode is purely damped and gapped, therefore it does not correspond

to a hydrodynamic mode. The fact that this QNM is not observed in the perturbation

for the axion is, once again, an effect of the ǫ∗ expansion. On the other hand, we will see

below how this mode appears in other components of the Green’s function.

Now we come to
VA←ϕA

ϕA
. As seen in (A.30) there are two dimensionful physical param-

eters: the temperature (related to rh) and the charge density (related to rd). As we argued

in the previous section, our solution is valid only for temperatures larger than the charge
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Figure 5. Contour plots of the real (left) and imaginary (right) parts of
VB←ϕB

ϕB
in the complex

ω/rh frequency plane. The real (imaginary) part is even (odd) under ω → −ω̄.

density per quark, so it is natural to scale dimensionful quantities with the temperature,

namely ω/rh and rd/rh ∼ n
1/3
q /T .

In figure 6 we show a typical contour plot for
VA←ϕA

ϕA
where three QNMs can be

observed. One of the QNMs corresponds to a purely damped mode and presents a gap (its

imaginary part is non-zero). In figure 7 we show how the purely damped mode behaves

as we change the charge density relative to the temperature. In this plot we show the

curve (rd/rh)
−3 as a guide to the eye, however we find a remarkable agreement between

this line and the actual position of the damped mode, although we did not find an analytic
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Figure 6. Contour plots of the real (left) and imaginary (right) parts of
VA←ϕA

ϕA
in the complex

ω/rh frequency plane for rd/rh = 1.4. The real (imaginary) part is even (odd) under ω → −ω̄.

explanation for it. Assuming this mode is actually located at

Ω = −r
3
h

r3d
i , (5.9)

would imply that the mode will never become unstable by crossing to the upper-half plane,

it will just approach the real axis as the radius of the horizon is small respect to the charge

density. This is what was found in [6], where a zero sound mode is found at the origin for

the rh = 0 case (T = 0 in the probe limit).

The behavior of the oscillatory modes (those with a real part in the complex frequency

plane) with the charge density is given in figure 8, where it is observed that increasing the
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Figure 7. Position of the purely damped mode in the ω/rh imaginary axis. The dashed line

corresponds to (rd/rh)
−3.
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Figure 8. Position in the ω/rh complex plane of the first quasinormal mode with non-null real

part (by symmetry there is another QNM related to the one showed in the graph with opposite

real part) from rd/rh = 0.6 (point A in the graph) to rd/rh = 1.6 (point B). At lower values of

rd/rh < 0.6 the position of the quasinormal mode does not change perceptively.

ratio rd/rh pushes the modes deeper into the complex frequency plane (where the frequency

is given in units of the radius of the horizon).

Sourcing explicitly the operators dual to ηB and ηC sources a vev for the operator dual

to ηA, as can be seen from equation (A.30), where the presence of non-trivial ηB, ηC would

trigger a non-trivial profile for A, even if we keep the boundary condition ϕA = 0. We

indeed observe this when we integrate the equations of motion with boundary conditions

(a) ϕA = ϕB = 0 and ϕC = 1 or (b) ϕA = ϕC = 0 and ϕB = 1. In the case (a) the contour

plot for
VC←ϕC

ϕC
is given by figure 4, and the one for

VA←ϕC

ϕC
in figure 9 (left). We can see

quasinormal modes whose positions depend on rd/rh. The position of these quasinormal

modes is the same as in figure 6. In the case (b) again
VB←ϕB

ϕB
is given by figure 5, and the

contour plot for
VA←ϕB

ϕB
(see figure 9 (right)) presents quasinormal modes with positions

coincident with the quasinormal modes observed both in figure 6 and 4. These coincident

QNMs are not surprising, as we commented already, since these equations are coupled and

QNMs are shared by the different components of the matrix of Green’s functions. This is

the dual to the mixing of operators in the field theory side, such that sourcing one single

operator inevitably implies a vev for more than one operator.

Summarizing the results presented in this section, we observe that all the QNMs at

leading order in ǫ∗ are in the lower complex plane, and therefore are stable modes. Going
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Figure 9. Absolute value of
VA←ϕX

ϕX
. Left: case (a) discussed in the text, with X = C. Right: case

(b) discussed in the text, with X = B. In these figures rd/rh = 1.

to next order in ǫ∗ would require to solve equations of motions where the corrections to

the background solution found in section 2 appear explicitly, however such a correction

could modify the position of the quasinormal modes only perturbatively in ǫ∗, and would

not trigger an instability. The only case where such a correction might have an important

effect would be in the rh/rd → 0 case, where (5.9) points to a mode sitting at the origin of

frequencies. However, this situation is out of the regime of validity of our solution.

6 Conclusions

We have expanded the study of the charged D3-D7 black hole started in [28] providing a

new solution for generic value of the parameter rd. The solution is dual to N = 4 SYM (and
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quiver generalizations) with massless dynamical flavors at finite temperature and baryon

density. Let us discuss in turn two features of this solution.

6.1 Breaking of the perturbative solution and of the probe approximation

From equation (3.7) (using nq = NcnB and specializing to the flavored N = 4 SYM case),

we observe that the dimensionless quotient rd/rh is a measure of the charge (baryon)

density per flavor, nB/q =
nB

Nf
, over temperature

r3d
r3h

=
8nB/q√
λ∗T 3

+O(ǫ∗) . (6.1)

From this formula it follows that, since rd/rh can be of order one in our solution, the latter

can describe effects due to large charge density per flavor (order
√
λ∗T

3).

Nevertheless, the overall value of the charge density is still “small”, in the sense that

it is not sufficient to modify at order one the IR physical observables. In fact, the latter

are of the generic form O ∼ ON=4 [1 + ǫf(rd/rh) + . . .]. As we have seen in section 4, e.g.

for the temperature, the flavor corrections ǫf(rd/rh) are of order one when (rd/rh)
3 ∼ 1/ǫ,

but, as expected, this value makes higher order corrections in ǫ relevant, thus spoiling the

reliability of the solution.

From the gravitational side this is expected since the gravitational force would not

be able to compensate the electric repulsion in a small black hole. It is not clear to us

what to expect in the field theory side. A transition to a different phase, like the spatially

modulated phases encountered for the dual of the AdS-RN black hole [53, 54] would appear

if instabilities are found at finite momentum, which we have not covered in the present work.

Thus, while the solution can correspond to large charge with respect to the temper-

ature, it does not describe in the IR an (almost) zero temperature system, which would

require a solution at all orders in ǫf(rd/rh). The existence and the nature of such solution

remains an extremely interesting open problem.

The breakdown of the perturbative solution at zero temperature implies the breakdown

of the charged probe approximation as well. In fact, the probe approximation requires that

the original background is not significantly affected (or it is un-affected for a long time)

by the addition of a small perturbation due to flavor branes (i.e. ǫf(rd/rh) ≪ 1). But

in the present case the original background does not admit a small perturbation at zero

temperature: either the perturbed system is at non-zero temperature (and “far” from zero

temperature in a qualitative way, as we have seen in this paper), or the flavor contribution

must be dominant near the origin of AdS in order to have a zero or almost zero temperature

(the corresponding solution being still unknown).

This breakdown of the charged probe approximation is actually already known. For

example, in [5] it is pointed out that for the probe approximation to make sense, the stress-

energy tensor of the probe must be subleading with respect to the one of the background,

otherwise one has to take into account the brane backreaction. In a zero temperature

background and for a charged probe, this condition cannot be satisfied all the way up to

the deep IR region,22 unless there is some other mass scale, such as the temperature or

22Condition (3.27) in [5] is equivalent to the condition for the validity of our solution (rd/rh)
3 ≪ 1/ǫ.
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the flavor mass. In the latter cases, the probe approximation is valid as long as the charge

density is not parametrically larger (in Nc) than these extra scales.

6.2 Stability

With the aim of finding a physical instability we have checked the matrix of susceptibilities

of the system, which turned out to be parametrically stable, and quasinormal modes of a

set of perturbations of the system, showing no indication of a physical instability either.

We comment further on the quasinormal modes below.

Comparison of the fluctuation calculation with the probe limit. In equa-

tions (5.1)–(5.3) we have sketched how the equations for the fluctuations organize when a

perturbative expansion in ǫ∗ is implemented. In the probe approximation fluctuations of

the supergravity fields are not allowed and Λ0 = 0. This satisfies identically equation (5.1)

and transforms equation (5.2) into the probe fluctuation equation EOM [λ1] = 0. A non

trivial solution to these equations will source fluctuations of the supergravity fields Λ1 via

equation (5.3), which are first order in ǫ∗, which is a depreciable correction to the back-

ground value in the probe limit. It is only after a large time of order t ∼ t0/ǫ∗ (t0 being

order one) [55] that the correction Λ1 would not be small compared to the background

value and the backreaction of the probe onto the geometry needs to be considered.

So we see how the ǫ∗ expansion of the fluctuations organizes itself to take into account

the backreaction of the geometry, and how can one link the results to the probe approx-

imation case. The probe calculation ceases to be valid at t ∼ t0/ǫ∗ where perturbations

of the probe on the horizon must be considered: energy is injected into the system and

eventually it will be absorbed by the black hole, which will increase in size.

In the specific case of the fluctuation of the field A0 (see section A.4), the fact that ηB
and ηC source the equation of motion for ηA points to the fact that the source will behave

differently when embedded in the original background or in the perturbed one. However,

if we turn off the source of the irrelevant operators that perturb the background, the probe

will be insensitive to these changes (to leading order in ǫ∗), and we obtain the same equation

of motion one would have obtained from the probe calculation at finite temperature.

Operator mixing and the two-point function. The equations of motion for the

fluctuations we have focused on consist of a set of coupled, linear, second order differential

equations. In section 5 we have expanded these equations in a power series in ǫ∗, since our

background is only valid up to first order in that expansion. This allowed us to decouple

the ǫ0∗ equations for the fields dual to the ∆ = 5, 7 operators, however the field dual to the

∆ = 2 operator, itself of order ǫ∗, is sourced by the former ones.

Equation (5.6) describes the mixing of the operators in the Green’s function. We

have given the values of
VA←ϕA

ϕA
,

VB←ϕB

ϕB
and

VC←ϕC

ϕC
in figures 6, 5 and 4 respectively, and

Vχ←ϕχ

ϕχ
can be found in [50]. The off-diagonal terms, which describe the mixing of operators,

VA←ϕB

ϕB
and

VA←ϕC

ϕC
correspond to the values in figure 9. We have observed that the position

of the QNMs in the off-diagonal two-point components coincide with the positions of the

QNMs in the two correspondent diagonal components, as expected from operator mixing
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considerations. We have not described all of the VX←ϕY
components, since we were mainly

interested in the gapped, purely damped mode described in figure 7. We do not expect

that the inclusion of the rest of the components will add any relevant physical information.

The main interest of considering all the components would be to check the relations that

are imposed on the two point matrix function by time reversal symmetry

GR(−ω) = GR(ω)
∗ , GA(ω) = GR(ω)

† . (6.2)

Absence of overdamped modes. The fluctuation of the backreacted system shows no

sign of instability at zero momentum. At finite temperature the QNMs have a negative

imaginary part and ǫ∗ corrections, being parametrically small, cannot push these modes

to the positive half-plane. The reason for this is that our solution, as stated several times

now, holds only when the temperature dominates over the charge of the system, or when

the two effects are of the same order.

We have focused in a purely damped mode with a gap at finite temperature apparently

given by equation (5.9). In the probe case at zero temperature this mode has been observed

in [6]. For this mode to be present in the probe calculation it is crucial that fluctuations

of worldvolume fields effectively see an AdS2 spacetime in the IR, which is associated to

extremal black holes (and therefore zero temperature solutions). In the present work we

expect the zero temperature setup to be described not by rh = 0, but an extremal black

hole with finite horizon radius, whose near-horizon geometry would be AdS2×R3, and this

would imply that the gap is non vanishing at zero temperature.

We have shown that the low temperature regime is beyond the applicability of our

solution, so the former comments are just speculative. Even if we had a T = 0 solution

at hand it is possible that no instability would appear. The reason is that in [33] it was

shown that backreaction corrects the mass of the field dual to the ∆ = 2 operator to a

larger value, getting away from the BF bound in the stable direction, the dual operator

having now dimension ∆ = 2+Qf > 2. Therefore, we can speculate that if instabilities of

the system were to be found they arise as new solutions, presenting a spatially modulated

phase or maybe something more complicated.

Acknowledgments

We thank Antón Faedo, Pau Figueras, Javier Mas, David Mateos, Andy O’Bannon and

Domenico Seminara for useful discussions.

J.T. is supported by MEC FPA2010-20807-C02-02, by ERC StG HoloLHC - 306605

and by the Juan de la Cierva program of the Spanish Ministry of Economy.

F.B. and A.L.C. would like to thank the Italian students, parents, teachers and scien-

tists for their activity in support of public education and research.

A Expressions involved in the study of the perturbations

By construction, the equations of the modes we focus on are those that vanish identically

in our background. Specifically, these are the equations of motion for the field strengths
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F
(1)
1 , F

(3)
1 , F

(3)
3 , F

(5)
2 , H

(3)
1 , H

(3)
2 and dA1, which are a total of twelve equations so that

our system may seem overdetermined (see [33]). However, it is not difficult to show that

the equation of motion for F
(3)
3 still vanishes identically, reducing the number of equations

to nine and suggesting that the system is actually under-determined. This conclusion is

also too naive. The reason is explained in [33], where it is shown that acting with the

external derivative on the equations of motion for F
(5)
2 and H

(3)
2 gives rise to the equations

of motion for F
(5)
1 and dA0, respectively. The ultimate reason for this is that the modes

C
(4)
0 and B

(2)
0 are nothing but Stückelberg scalars coupled to the vectors C

(4)
1 and B

(2)
1 .23

The equation of motion for F
(5)
1 does not provide any new physical information, since it

is not independent of the other equations of motion. On the other hand, the equation for

dA0 does provide a new, independent equation.

A.1 Dimension 4 scalar operator

The first equation is the one for the fluctuation of the axion and at leading order O(ǫ0∗) is

given by the equation of motion of a massless scalar in Schwarzschild-AdS

C
(0)
0

′′
+ ∂r log

[

r(r4 − r4h)
]

C
(0)
0

′
+

r4ω2

(r4 − r4h)
2
C

(0)
0 = 0 . (A.1)

A.2 Dimension 7 and 3 vector operators

The second set consists of five different equations for the fluctuations of A1, C
(4)
1 and

C
(4)
0 . At leading order in ǫ∗ these are fluctuations of N = 4 SYM that can be considered

independently of the backreaction of fundamental matter. It is convenient to express the

vector fields in a different basis where we have a massive and a massless vector field dual

to operators of dimension ∆Σ = 7 and ∆∆ = 3 respectively, which is achieved by taking

A1 =
−
√
2∆ + 2Σ

12
, C

(4)
1 =

2∆+
√
2Σ

12
. (A.2)

Then the five equations for the fluctuations read

ω(ω∆r − i∆′t) = 0 , (A.3)

3ω∆r + rω∆′r − i(3∆′t + r∆′′t ) = 0 , (A.4)

−3i(r4 − r4h)ωΣr + 24r3Σt + 24ir3ωC
(4)
0

−i(r4 − r4h)(rωΣ
′
r − i(3Σ′t + rΣ′′t )) = 0 , (A.5)

(5r8 − 6r4r4h + r8h)Σr + ir5ωΣt + r(r4 − r4h)
2Σ′r − r5ω2C

(4)
0

−(5r8 − 6r4r4h + r8h)C
(4)
0

′
− r(r4 − r4h)

2C
(4)
0

′′
= 0 , (A.6)

−
√
2r2ω2∆r + (−48r4 + 48r2h + 2r2ω2)Σr + ir2ω(

√
2∆′t − 2Σ′t)

+48(r4 − r4h)C
(4)
0

′
= 0 . (A.7)

23Actually, the Stückelberg scalar associated to the vector B
(2)
1 is a combination of the scalars B

(2)
0 and

A0.
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Notice also that ∆t enters only via derivatives in the equations of motion, so we can always

make a shift to set the constant part of ∆t to zero.

To solve (A.3) and (A.4) we just need to impose

∆r =
i

ω
∆′t , (A.8)

where we are assuming ω 6= 0 in the following. With this plugged back into the equations,

all dependence on the ∆t,r functions disappears, and one can algebraically solve for Σr

as well

Σr =
24(r4 − r4h)C

(4)
0

′
− ir2ωΣ′t

24(r4 − r4h)− r2ω2
, (A.9)

and plugging (A.9) into (A.5) and (A.6) one gets the same differential equation involving

zeroth, first and second derivatives of Σt and C
(4)
0 . The solution to this equation is given by

C
(4)
0 =

i

ω
Σt + ηC , (A.10)

where ηC satisfies

η′′C + ∂r log

[

r3(r4 − r4h)

24(r4 − r4h)− r2ω2

]

η′C − 24r2(r4 − r4h)− r4ω2

(r4 − r4h)
2

ηC = 0 . (A.11)

Before solving this equation of motion let us outline that the relations (A.8) and (A.9)

are ambiguous. The fact that we cannot fix completely the five modes present in these

equations of motion is reflecting the existence of a gauge freedom. In particular, two

modes can be gauged away (this can be seen from the set (A.3)–(A.7) by noticing that

there are two differential relations between these equations).

To solve numerically the equation of motion for the fluctuation it is better to work

with a compact radial variable defined as z = 1/r. In these coordinate,24 equation (A.11)

is solved near the boundary z = 0 by

ηC ≈ sC
z4

+
sC ω

2

24z2
+
sC ω

4

1152
− r4hsC − sC ω

2

24
r4hz

2 − sC ω
4(1728r4h + ω4)

442368
z4 + vCz

6 (A.12)

+
ω2(−3317760vC + sCω

2(262656r8h + 1848r4hω
4 + ω8))

53084160
z8 + · · ·

+ log[z]

(

sC ω
2(147456r8h + 1728r4hω

4 + ω8)

2211840
z6

−sC ω
4(147456r8h + 1728r4hω

4 + ω8)

35389440
z8 + · · ·

)

,

and we see that the asymptotic solutions in the UV behave as z−4 and z6, corresponding

to the dual to a vector operator of dimension ∆ = 7.

In [49] it was shown that for irrelevant operators the coefficient multiplying the nor-

malizable mode, proportional to z6, is still holographically dual to the expectation value of

24In the rest of the appendix we will use z radial coordinate in expressions necessary for the numeric

integration and r radial coordinate otherwise.

– 39 –



J
H
E
P
0
7
(
2
0
1
3
)
0
7
4

the operator, whereas the non-normalizable z−4 mode is dual to the source of the operator

in the field theory.

Near the IR there are two independent solutions, one corresponding to a ingoing wave

at the horizon25 and one corresponding to an outgoing wave. Focusing in the ingoing wave

we obtain

ηC ≈ (1− rhz)
− iω

4rh ηC,h

[

1 +
3(128r3h − 32ir2hω + 2rhω

2 + iω3)

8ω(2irh + ω)

(

z − 1

rh

)

+ · · ·
]

, (A.13)

where ηC,h is an undetermined normalization.

We consider now regularity at the horizon, which is obvious from the previous ex-

pression for ηC , but not evident for the physical modes C
(4)
0 and Σt. A quick look at

the previous equations shows that, assuming regularity for the time components, the only

problems that can arise come from equation (A.9). Using an ingoing wave regular solution

for the time component of the gauge field, and the ηC expansion (A.13), shows that to have

a regular radial component of the vector field, Σ1r, the fluctuation of the time components

must vanish at the horizon, i.e.,

Σt = #(r − rh)
1− iω

4rh + · · · . (A.14)

Imagine for a moment we pick the Stückelberg gauge in which C
(4)
0 = 0. Then from (A.10)

we obtain that the time component Σt has a finite value at the horizon (proportional to ηC,h)

and the radial component would be irregular at the horizon, behaving like Σr ∼ (r−rh)−1.
This is therefore an irregular gauge. From now on we will pick the regular, radial gauge26

Σr = 0. We obtain27

Σt =

∫

dr
24i(r4 − r4h)ω

24(r4 − r4h)− r2ω2
η′C , (A.15)

and performing an integral we obtain the complete function. When one does this integral

a constant appears that must be fixed somehow. This constant is actually unphysical. In

the equations of motion the terms proportional to time components of the massive vector

fields without a derivative appear always in a certain combination with the corresponding

Stückelberg scalar without derivative, and the constant shift of the time components can

be compensated by the opposite shift in the Stückelberg scalar. We can use this to set the

constant of integration in the previous equations to zero.

The only physical parameter appearing in the equation of motion for the fluctuation

ηC is the temperature, which is encoded in the radius of the horizon rh = πT +O(ǫ∗). This

means that at leading order in ǫ∗ one can build the dimensionless ratio ω/rh and describe

all the finite temperature solutions at the same time, a change of temperature scale being

compensated by a change in frequency.

From equation (5.6) we are interested in determining VC←ϕC
and ϕC . From the holo-

graphic correspondence the last identification corresponds just to the boundary condition

25We are assuming here that the temperature is non-zero, rh 6= 0.
26The same discussion will hold for the fluctuation of the NSNS potential below.
27Notice that the solution for ∆, i.e., the field dual to the ∆∆ = 3 operator, will not be needed; actually,

this solution cannot be found uniquely since this is a pure gauge mode in the case of zero momentum.
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ϕC = sC , whereas the former must read VC←ϕC
∝ vC [49] when sC is non-zero. We are

not interested in determining the exact proportionality factor, but in the position of the

poles. Therefore, to produce the plots in figure 4 we solve equation (A.11) performing a

double shooting from the IR and the UV with sC = 1 in the boundary conditions (A.12)

and (A.13), and varying ηC,h and vC such that the solution and its derivative match

smoothly in the bulk.28 Then
VC←ϕC

ϕC
∝ vC
sC

, (A.16)

and we will renormalize the Green’s function such that the constant of proportionality is

exactly one. Actually, to study the two-point function we are interested in we should not

focus just on vC/sC but in the result coming from undoing the change of variables (A.15).

Since we are evaluating an antiderivative (no extra constant must be considered) it can be

performed with the asymptotic series in the UV, to obtain

〈OΣOΣ〉R ∝ vC
sC

− r8hω
2

36
− r4hω

6

3072
− ω10

5308416
. (A.17)

The frequency powers correspond to contact terms (derivatives of Dirac’s delta distributions

when we Fourier-transform back). In particular they are analytic in the complex frequency

plane. Our main focus is to determine the non-analytic behavior of the two-point function,

so we may ignore these contact terms.

A.3 Dimension 5 vector operator

The third set of equations of motion contains three coupled equations. As in the previ-

ous subsection, at leading order in ǫ∗ these are fluctuations of N = 4 SYM that can be

considered independently of the backreaction of fundamental matter

8r(r4 − r4h)B
(2)
1r − 2

√
2r(r4 − r4h)δB

(2)
0

′
− r3ω(ωB

(2)
1r − iB

(2)
1t

′
) = 0 , (A.18)

2
√
2ir3ωB

(2)
0 − 3i(r4 − r4h)ωB

(2)
1r + 8r3B

(2)
1t − iωr(r4 − r4h)B

(2)
1r

′

−3(r4 − r4h)B
(2)
1t

′
− r(r4 − r4h)B

(2)
1t

′′
= 0 , (A.19)

−r5ω2B
(2)
0 + 2

√
2ir5ωB

(2)
1t + (5r8 − 6r4r4h + r8h)(2

√
2B

(2)
1r −B

(2)
0

′
)

+r(r8 − 2r4r4h + r8h)(2
√
2B

(2)
1r

′
−B

(2)
0

′′
) = 0 . (A.20)

As in the previous subsection, there is an algebraic solution for the radial component

B
(2)
1r =

2
√
2(r4 − r4h)B

(2)
0

′
− ir2ωB

(2)
1t

′

8(r4 − r4h)− r2ω2
, (A.21)

which, once plugged back into the equations of motion, identifies (A.19) and (A.20) in an

equation with solution

B
(2)
0 =

2
√
2i

ω
B

(2)
1t + ηB , (A.22)

28The numeric condition we have set for this smooth juncture is that the maximum difference between

the function or its derivative at the matching point is less than 10−10.
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with ηB satisfying

η′′B + ∂r log

[

r3(r4 − r4h)

8(r4 − r4h)− r2ω2

]

η′B − 8r2(r4 − r4h)− r4ω2

(r4 − r4h)
2

ηB = 0 . (A.23)

As before, there is an ambiguity due to the gauge freedom (which can be seen in the

set (A.18)–(A.19) by noticing the existence of a differential relation between the equations).

Equation (A.23) has as asymptotic solution in the UV the expansion

ηB ≈ sB
z2

+
sB ω

2

16
− r4hsB z

2 + vBz
4 +

(

−vB ω
2

8
+

7sB ω
4(192r4h + ω4)

49152

)

z6 + · · · (A.24)

+ log[z]

(

−sB ω
2(102r4h + ω4)

768
z4 +

sB ω
4(192r4h + ω4)

6144
z6 + · · ·

)

,

where the term proportional to the non-normalizable mode, sB, is dual to the source and

the term proportional to the normalizable mode, vB, is related to the vev of the dual,

dimension ∆ = 5 operator. Near the IR the ingoing wave solution is given by

ηB ≈ (1− rhz)
− iω

4rh ηB,h

[

1 +
128r3h − 32ir2hω + 6rhω

2 + 3iω3

8ω(2irh + ω)

(

z − 1

rh

)

+ · · ·
]

, (A.25)

with ηB,h a normalization.

The same discussion about regularity at the horizon that was performed for the Σ

vector field can be performed in the present case, and we pick the radial gauge B
(2)
r = 0 to

ensure regularity. Then we have the relation

B
(2)
1t =

∫

dr
2
√
2i(r4 − r4h)ω

8(r4 − r4h)− r2ω2
η′B , (A.26)

where the integral must be considered, once again, as an antiderivative.

Once again, the only physical scale at leading order in flavor backreaction is the tem-

perature, and we can express the solution in terms of ω/rh. The results presented in figure 5

correspond to the identification
VB←ϕB

ϕB
=
vB
sB

, (A.27)

which can be obtained with a double shooting from the IR and UV with sB = 1 and

the parameters ηB,h and vB adjusted to match smoothly the solution and its derivative.

The real two-point function component we are interested in must be obtained undoing the

transformation (A.26), which gives us a result

〈OBOB〉R ∝ vB
sB

− r4hω
2

8
− ω6

1024
, (A.28)

and again the frequency powers correspond just to some contact terms that we can ignore

since we want to focus on non-analytic terms.
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A.4 Dimension 2 scalar operator

The modes studied in the previous subsections enter as sources in the first order equation of

motion for the fluctuation of the worldvolume scalar, δA0. Plugging the previous algebraic

solutions we find that the equation of motion for the worldvolume scalar is solved by

A0 = − i

ω
B

(2)
1t + ηA , (A.29)

with ηA satisfying

η′′A + ∂r log





(r4 − r4h)
√

r6 + r6d

r2



 η′A

+
r4
(

8r(r4 − r4h)
√

r6 + r6d − 4r4(r4 − r4h) + (r6 + r6d)ω
2
)

(r6 + r6d)(r
4 − r4h)

2
ηA

+2
√
2
2r10 + 2r6r4h − r4r6d + 5r6dr

4
h

r(r6 + r6d)(8(r
4 − r4h)− r2ω2)

η′B +
√
2
r2(r6 + 2r6d + 2r3

√

r6 + r6d)

(r6 + r6d)(r
4 − r4h)

ηB

−2i
r5r3dω

(r6 + r6d)(24(r
4 − r4h)− r2ω2)

η′C = 0 . (A.30)

Since A0 is dual to a dimension ∆ = 2 operator the two independent solutions in the UV

behave as z2 and z2 log[z]. In these limiting cases where the Brietenlohner-Freedman bound

is saturated, it is the coefficient of the most divergent term, namely the one with z2 log[z],

the dual to the source of the operator, whereas the coefficient of z2 will be proportional to

the expectation value [52]. Since ηB and ηC are dual to irrelevant operators that deform the

UV of the theory, the asymptotic behavior is dominated by these fields [49]. Using (A.12)

and (A.24), we find

ηA ≈− sB

2
√
2z2

+
ω(16isCr

3
d − 3

√
2sBω)

192
+ vA z

2 (A.31)

+
55ir3dsCω

5 + 288(4
√
2vB + (−4sA +

√
2sBr

4
h − 4vA)ω

2)

4608
z4 + · · ·

− log[z]

(

sAz
2 +

ω2(−768sA + 48isCr
3
dω

3 +
√
2sB(192r

4
h + ω4))

3072
z4 + · · ·

)

+ log[z]2
(

− i r
3
dω

3sC
32

z2 +
i r3dω

5sC
128

z4 + · · ·
)

. (A.32)

The presence of the logarithm introduces a scale z0 (which we fixed to 1) that enters in the

counterterms one has to add to regularize the on-shell action. This affects the definition

of the two-point function introducing contact terms (analytic terms in the momentum),

which we are ignoring because we are interested only in the position of the poles of the

retarded two-point functions, so our results will be insensitive to this scale. For the IR,
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the solution with the ingoing wave boundary conditions is given asymptotically by

ηA ≈ (1− rhz)
− iω

4rh

[

ηA,h +

(

r2h

(

8irh(r
6
d + r6h) + 2ωr3h

√

r6d + r6h + (2r6d + r6h)ω
)

√
2(r6d + r6h)(2rh − iω)ω

ηB,h

+
−16r8h + 32r5h

√

r6d + r6h + 6ir6drhω − 6ir7hω + 3(r6d + r6h)ω
2

8(r6d + r6h)(2rh − iω)
ηA,h

+
r3dr

5
h

(r6d + r6h)(2rh − iω)
ηC,h

)

(

z − 1

rh

)

+ · · ·
]

. (A.33)

To integrate the equation, we perform again a double shooting from the IR and UV.

Since we are interested in the two-point function associated to the operator of dimension

∆A = 2 we must make sure that we are sourcing only this operator. This implies that we

have to integrate with conditions sA = 1 and sB = sC = 0. From this integration we can

extract
VA←ϕA

ϕA
=
vA
sA

. (A.34)

The result for vA/sA is reported in figure 6.

The operators dual to ηB and ηC will source as well the operator dual to ηA. This

is seen from equation (A.31), where the presence of non-trivial ηB or ηC would trigger a

non-trivial value of vA, even if we keep the boundary condition sA = 0. We indeed observe

this when we integrate the equations of motion with boundary conditions (a) sA = sB = 0

and sC = 1, giving
VA←ϕC

ϕC
=
vA
sC

, (A.35)

or (b) sA = sC = 0 and sB = 1, giving

VA←ϕB

ϕB
=
vA
sB

. (A.36)
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