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1 Introduction

To understand the various aspects of an experimental measurement, the LHC program relies

on simulations from parton shower Monte Carlo codes like PYTHIA [1] and HERWIG [2].

One of the ingredients of such event generators are the collinear Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) splitting functions [3–5]. These functions describe to leading

order O(αs) collinear radiation on distance scales of the order of the inverse transverse size
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of a typical jet. Coherent branching effects [6, 7] are encoded in some of these generators,

like HERWIG, in a way that forces subsequent branchings to happen at smaller angles than

the previous ones. This property is known as angular ordering. Typical parton showers

resum leading order collinear large logarithms, while the angular-ordered parton shower

has been argued to include leading order infrared logarithms.

While implementations of angular ordered parton showers have been phenomenologi-

cally successful, they suffer from a conceptual inconsistency. Angular ordering is directly

applied to the collinear splitting functions. The coherent branching is correct in the soft

gluon emission limit from a hard N -parton final state. Conversely, the collinear (DGLAP)

splitting functions are derived in the small angle approximation, factorize from the hard

scattering and have no knowledge of the global event structure. In this paper we are

interested in characteristics of well-separated and energetic jets. In order to understand

the properties of highly-collimated showers and, in particular, the questions of angular

ordering, angular anti-ordering, or lack of any ordering, we investigate the higher order

O(α2
s) collinear splitting functions. In the vacuum, all such 1→ 3 parton branchings have

already been calculated [8, 9]. We use Soft Collinear Effective Theory (SCET) [10–13] to

demonstrate, on the example of the q → ggq splitting, that it recovers these results. Our

main focus, however, are the medium-induced splitting processes, where the characteristic

large-angle radiation pattern, first understood in the soft gluon approximation limit [14],

is the theoretical basis for interpreting jet production in heavy ion collisions at the LHC.

Naturally, the question of what effects, if any, multiple branchings may have on the angular

distribution of an in-medium shower is a very important one. So far, possible qualitative

features of the gluon bremsstrahlung have been discussed on the example of a dipole an-

tenna model [15, 16]. Actual calculations of 1→ 3 parton branching in dense QCD matter

are absent in the literature. We use Soft Collinear Effective Theory with Glauber glu-

ons [17–23] (SCETG ) to derive the splitting function of a quark to emit two gluons and

study the angular distributions in such higher order medium-induced splitting. This infor-

mation might lead to important insights as to what corrections arise to fixed order and/or

resummed calculations [24–32] and Monte Carlo simulations [33–37] of jet observables in

heavy ion reactions. It will also help interpret the exciting experimental measurements

with jet final states in heavy ion collisions at the LHC, see for example [38–41].

Our paper is organized as follows. In section 2 we derive the vacuum q → ggq splitting

function using SCET. In section 3 we review the basics of Soft Collinear Effective Theory

with Glauber gluons. In section 4 use SCETG to derive the first order in opacity medium-

induced splitting function of q → ggq. In section 5 we study the angular distributions of

vacuum and medium-induced 1→ 3 splitting functions. We conclude our paper in section 6.

2 The q → ggq splitting function in the vacuum

In this section we calculate the vacuum splitting function for q → ggq.1 We use SCET

and show that our SCET calculation yields the same result as obtained in the collinear

approximation of massless QCD, ref. [8].

1Note that to O(α2
s) the kinematic variables, such as the light cone momentum fractions and transverse

momenta, do not factorize.
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We follow the method used in ref. [20] for evaluating radiative energy loss. We use

the light-cone gauge which allows us to work directly with physical transverse polarization

vectors. The gluon polarization vector ε in light-cone components is

[n̄·ε, n·ε, ε⊥] =

[
0,

2p⊥ ·ε⊥
n̄·p

, ε⊥

]
, (2.1)

where we have used the gauge conditions ε(p)·p = 0, n̄·ε = 0. The spin sum matrix of these

transverse polarization vectors is ∑
gluon polarizations

εi⊥ε
i′
⊥ = δii

′
. (2.2)

i and i′ are indices in Euclidean three-space.

2.1 Notation and kinematics

We consider a general hard scattering amplitude J that creates, apart from other partons,

the collinear parent quark with momentum p0. This parton subsequently emits two gluons

with momenta p1 and p2, and the final-state quark emerges with momentum p3. The

Feynman diagrams for matrix elements2 M(0)
n and M(0)

n+2 in SCET are shown in figure 1.

These matrix elements equal to

M(0)
n = χ̄n,p0J, (2.3)

M(0)
n+2 = g2 εi11⊥ ε

i2
2⊥ χ̄n,p3 Γi1i2eff J, (2.4)

where χ̄n is the gauge-invariant collinear quark field of SCET and the expression for Γeff

follows directly from the Feynman rules of SCET. The squared matrix elements can be

written as ∑
spin,color

∣∣∣M(0)
n

∣∣∣2 = Tr

(
n/

2
n̄·p0 J(p0)J̄(p0)

)
, (2.5)

∑
spin,color

∣∣∣M(0)
n+2

∣∣∣2 = g4 Tr

(
n/

2
n̄·p3 J(p0)J̄(p0) ρ0

)
, where (2.6)

ρ0 =

2∑
i1,i2=1

γ0 (Γi1i2eff )† γ0 Γi1i2eff . (2.7)

The trace in the equations above is over spin and color indices. To obtain eq. (2.6) we have

used eq. (2.2) to sum over the gluon polarizations. If

ρ0 = ψ0 (IDirac) (Icolor) , (2.8)

with ψ0 a real number,3 the n+ 2 parton matrix element and the n parton matrix element

can be related ∑∣∣∣M(0)
n+2

∣∣∣2 = 4g4

s2123
〈P̂q→ggq〉

∑∣∣∣M(0)
n

∣∣∣2 . (2.9)

2Subscripts (0) refer to the fact that we deal with vacuum splittings in this subsection.
3As you will see in the vacuum this is always the case. In the medium this is the case if the jet has been

created by a pure QCD interaction.
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Figure 1. Definition of the matrix elements M
(0)
n and M

(0)
n+2 and the Feynman diagrams in SCET

that contribute to the splitting q → ggq.

The sums are over spin and color. The splitting function4 for q → ggq

〈P̂q→ggq〉 =
z3s

2
123

4g4
ψ0, (2.10)

where zi = n̄ ·pi/n̄ ·(p1 + p2 + p3) = n̄ ·pi/n̄ ·p0, and s123 = (p1 + p2 + p3)2, is calculated

by substituting eq. (2.8) into eq. (2.6) and comparing with eq. (2.5) and eq. (2.9). The

factorization formula eq. (2.9) and the splitting function eq. (2.10) were first derived in

ref. [8]. Note that if not for eq. (2.9), a process independent splitting function could not

be defined.

In section 2.2 we use the vectors

Uj
Q1,Q2

= n̄ · p0

(
Qj

1⊥
n̄ ·Q1

−
Qj

2⊥
n̄ ·Q2

)
=

Qj
1⊥

zQ1

−
Qj

2⊥
zQ2

, (2.11)

where the four-vectors Q1 and Q2 are linear combinations of p1, p2, p3. They are related to

sij ≡ (pi + pj)
2 via

s13 = z1z3 U2
p1,p3 , s23 = z2z3 U2

p2,p3 , s12 = z1z2 U2
p1,p2 . (2.12)

These relations are needed to compare our results to ref. [8]. Note that out of the six

transverse vectors that appear in vacuum Feynman diagrams (see section 2.2), Up1,p3 ,

Up2,p3 , Up1,p2 , Up2,p1+p3 , Up1,p2+p3 , Up1+p2,p3 , only two are linearly independent.5 They

can be all written as linear combinations of Up1,p3 , Up2,p3 and, moreover, any product of

these six vectors can be written as combination of s13, s23, s12 with coefficients that depend

on z1, z2, z3.

2.2 Individual contributions of diagrams

In this subsection we calculate the diagrams that contribute to the effective vertex Γeff,

shown in figure 1. We use the SCET Feynman rules, the polarization vectors in the light-

4The brackets in this notation indicate that we sum over the initial quark polarization. In all splittings

that we consider in this paper we do the same. Spin correlations in the vacuum splittings have been studied

in refs. [8, 9].
5Due to boost invariance along the collinear direction only two of the three momenta p1, p2, p3 are

independent.
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cone gauge given in eq. (2.1), and the relation

γi⊥γ
j
⊥ = −δij − iεij3Σ3, where i, j = 1, 2, and Σ3 =

(
σ3 0

0 σ3

)
. (2.13)

The explicit form of the matrix Σ3 is only valid in the Weyl representation. Its properties,

Σ3† = Σ3 and (Σ3)2 = 1, which we use in section 2.3, however, are independent of the

representation. For the contributions from each of the four diagrams to Γeff we obtain

Ci Γi1i2i , with

C1 =
1

s123
, Γi1i21 =

(
T a1T a2 Oi1i21a + T a2T a1 Oi1i21b

)
, (2.14)

C2 =
1

s123s13
, Γi1i22 =

∑
j1,j2

T a1T a2 Uj1
p1,p3 Uj2

p2,p1+p3 O
i1i2j1j2
2 , (2.15)

C3 =
1

s123s23
, Γi1i23 =

∑
j1,j2

T a2T a1 Uj1
p2,p3 Uj2

p1,p2+p3 O
i1i2j1j2
3 , (2.16)

C4 =
1

s123s12
, Γi1i24 =

∑
j1,j2

[T a1 , T a2 ] Uj1
p1,p2 Uj2

p1+p2,p3 O
i1i2j1j2
4 . (2.17)

The operators Oj depend only on z1, z2, z3 and Σ3 and are defined as

O =
(
Oi1i21a ; Oi1i21b ; Oi1i2j1j22 ; Oi1i2j1j23 ; Oi1i2j1j24

)
,

Q =
(
δi1i2 ; εi1i23; δi1j1δi2j2 ; δi1j2δi2j1 ; δi1i2δj1j2 ; δi1j1εi2j23; δi2j2εi1j13; δi1i2εj1j23

)
,

Oi =
∑
j

QjMji. (2.18)

The 8×5 matrix M is equal to

Mji = (2.19)

1
1−z2−

2(z1−z2)
(z1+z2)2

1
1−z1 + 2(z1−z2)

(z1+z2)2 0 0 0

− iΣ3

−1+z2
iΣ3

−1+z1
0 0 0

0 0 (2−z2)(z1+2z3) z1z2 −2z2(1+z3)

0 0 z1z2 (2−z1)(z2+2z3) −2z1(1+z3)

0 0 −z1z2 −z1z2
2z1z2(1+z3)

z1+z2

0 0 −iz2(z1+2z3)Σ3 i(−2+z1)z2Σ3 2iz2(z1+z2)Σ3

0 0 iz1(−2+z2)Σ3 −iz1(z2+2z3)Σ3 2iz1(z1+z2)Σ3

0 0 0 −2i((−1+z1)z2+z1z3)Σ3 2iz2
1Σ3


ji

.

Note that eq. (2.14) and eq. (2.17) do not coincide exactly with the corresponding

diagrams 1 and 4 in figure 1 since we have rearranged terms in these equations. The terms

proportional to 2(z1 − z2)/(z1 + z2)2 in the first row of Mji are included into operators

O1a and O1b and therefore contribute to diagram 1. In figure 1, these terms are contained

in diagram 4. This rearrangement does not effect the sum of diagrams 1 and 4 and is

especially convenient for the in-midium calculation.
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2.3 Result for the vacuum splitting

As one can see from the previous subsection, the sum of all four diagrams can be written

in the following form,

Γi1i2eff =
4∑

k=1

Ck Γi1i2k =
[
T a1T a2

(
αi1i21,1 + iαi1i22,1 Σ3

)
+ T a2T a1

(
αi1i21,2 + iαi1i22,2 Σ3

)]
.

=
∑
j

e
(0)
j

(
αi1i21,j + αi1i22,j iΣ

3
)
. (2.20)

In general, e
(0)
j is a list of color operators and αi1i21,j , αi1i22,j are complex numbers. In our case

e
(0)
1 = T a1T a2 , e

(0)
2 = T a2T a1 and α1,j , α2,j are real functions which can be extracted from

eqs. (2.14)–(2.19).

Squaring Γeff yields

ρ0 =
2∑

i1,i2=1

γ0 (Γi1i2eff )† γ0 Γi1i2eff =
∑
j′,j

〈e(0)
j′ |e

(0)
j 〉

(
Re
(
α∗1,j′ ·α1,j + α∗2,j′ ·α2,j

))
−Σ3 Im

(
α∗1,j′ ·α2,j − α∗2,j′ ·α1,j

))
. (2.21)

In the equations above, the dot between α’s is a shorthand notation for summing over

i1, i2, for example α∗1,j′ ·α1,j ≡
∑2

i1,i2=1 α
i1i2∗
1,j′ α

i1i2
1,j . Note that the Gram matrix for the two

basis color operators e
(0)
j ,

〈e(0)
j′ |e

(0)
j 〉 =

 C2
F CF

(
CF − CA

2

)
CF

(
CF − CA

2

)
C2
F

× Icolor, (2.22)

is symmetric6 and proportional to unity in color space. Since the tensors α are real the

imaginary part in eq. (2.21) vanishes and the Dirac part is also proportional to unity. As

a direct result we obtain that eq. (2.8) holds,

ρ0 = ψ0 (IDirac) (Icolor) , where (2.23)

ψ0 = CF
[
CF
(
(α1,1 + α2,1)2 + (α1,2 + α2,2)2

)
− CA (α1,1 ·α2,1 + α1,2 ·α2,2)

]
. (2.24)

As before, it is understood that a square or a product contains summation over i1, i2.

Substituting eq. (2.24) into eq. (2.10) yields

〈P̂g1g2q3〉 = C2
F 〈P̂ (ab)

g1g2q3〉+ CFCA〈P̂ (nab)
g1g2q3〉, where (2.25)

〈P̂ (ab)
g1g2q3〉 =

z3s
2
123

4

(
(α1,1 + α2,1)2 + (α1,2 + α2,2)2

)
, (2.26)

〈P̂ (nab)
g1g2q3〉 =

z3s
2
123

4
(−α1,1 ·α2,1 − α1,2 ·α2,2) . (2.27)

6We used that the Gram matrix 〈e(0)j′ |e
(0)
j 〉 is a symmetric matrix to arrive at eq. (2.21).
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In the abelian part, the contribution from Γ4 cancels exactly in the sums α1,1 + α2,1 and

α1,2 + α2,2 because of the color commutator in eq. (2.17). The remaining three diagrams

result in

〈P̂ (ab)
g1g2q3〉 =

s2
123

2s13s23

z3(1 + z2
3)

z1z2
+
s123

s13

z3(1− z1) + (1− z2)3

z1z2
− s23

s13
+ (1↔ 2). (2.28)

The non-abelian part reduces to

〈P̂ (nab)
g1g2q3〉 =

[2(z1s23 − z2s13) + (z1 − z2)s12]2

4(z1 + z2)2s2
12

+
1

4
+

s2
123

2s12s13

(
1 + z2

3

z2
+

1 + (1− z2)2

1− z3

)

− s2
123

4s13s23

z3(1 + z2
3)

z1z2
+
s123

2s12

(
z1(2− 2z1 + z2

1)− z2(6− 6z2 + z2
2)

z2(1− z3)

)

+
s123

2s13

(
(1− z2)3 + z2

3 − z2

z2(1− z3)
− z3(1− z1) + (1− z2)3

z1z2

)
+ (1↔ 2). (2.29)

Both eq. (2.28) and eq. (2.29) are in agreement with ref. [8] for ε = 0.

2.4 Cascade approximation for the two-gluon splitting function

In this section we derive an approximation for the q → ggq splitting function based solely

on our knowledge of 1→ 2 splitting functions. We refer to this approximation as ”cascade”,

since it is closely related to how parton shower generators would approximate such higher

order collinear splitting function. We start from the definition of arbitrary 1 → 2 and

1→ 3 splittings

∑
spin,color

∣∣∣M(0)
n+1

∣∣∣2 =
2g2

sjk
〈P (0)

i→jk[pj , pk]〉
∑

spin,color

∣∣∣M(0)
n

∣∣∣2 , (2.30)

∑
spin,color

∣∣∣M(0)
n+2

∣∣∣2 =
4g4

s2
jkl

〈P (0)
i→jkl[pj , pk, pl]〉

∑
spin,color

∣∣∣M(0)
n

∣∣∣2 . (2.31)

Next, we calculate an expression for
∣∣∣M(0)

n+2

∣∣∣2 by iteratively applying eq. (2.30) twice and

summing over all possible branching sequences that produce two gluons. Comparing this

expression to eq. (2.31), we obtain the cascade 1→ 3 splitting function

〈P casc
q→ggq[p1, p2, p3]〉(0) =

s123

(
〈P (0)

q→gq[p2, p3 + p1]〉〈P (0)
q→gq[p1, p3]〉

s13
+
〈P (0)

q→gq[p1, p3 + p2]〉〈P (0)
q→gq[p2, p3]〉

s23

+
〈P (0)

q→gq[p1 + p2, p3]〉〈P (0)
g→gg[p1, p2]〉

s12

)
. (2.32)

In section 5.1 we compare the cascade approximation to the full splitting. The cascade

formula omits certain interference terms, which are contained in the full 1→ 3 splitting.

– 7 –



J
H
E
P
0
7
(
2
0
1
3
)
0
5
9

3 Soft Collinear Effective Theory with Glauber gluons

When a highly energetic parton traverses dense QCD matter, the perturbative QCD ap-

proach can be used to describe its elastic and inelastic interactions and the formation of an

in-medium parton shower. In this approach, the medium can be modeled as consisting of

effective scattering centers that provide a color-screened Coulomb potential, which serves

as a background field for the partons that travel through the medium [42]. Consequently,

the processes that characterize the evolution of a parton shower in strongly-interacting

matter, which can be cold nuclear matter or a quark-gluon-plasma (QGP), can be divided

into two categories. In the first category the familiar soft and collinear splittings appear

at leading order at high energies, analogously to the vacuum case. The second category

involves elastic scattering with the medium quasi-particles. The first type of processes are

described by the known Soft Collinear Effective Theory. For example, small angle collinear

radiation in the parton shower is correctly captured by the SCET Lagrangian. However,

the elastic scattering off of medium quasi-particles forces us to go beyond traditional SCET.

Soft Collinear Effective Theory with Glauber gluons (SCETG ) is an effective theory

appropriate for describing parton shower formation in the ambiance of dense QCD matter

and the corresponding jet observables in heavy ion collisions. In addition to the interactions

of SCET, it has interactions of collinear quarks [17, 20] and collinear gluons [20] with

t− channel off-shell gluons with momentum scaling7 (λ2, λ2, λ), which are usually called

Glauber gluons. So far, the soft gluons have been neglected and SCETG contains only

interactions of collinear fields with Glauber gluons. Because this mode is off-shell, the

proper description for it is to treat the source field and the Glauber gluon as a background

field. Thus, based on the assumptions for the momentum scaling of the source, as well

as on the gauge fixing, one can derive the scaling of the background field created by the

source. With this scaling at hand, it is a matter of putting this background field into the

covariant derivative of the SCET Lagrangian to extract the Feynman rules of SCETG .

The resulting Lagrangian of SCETG is [20]:

LSCETG(ξn, An, AG) = LSCET(ξn, An) (3.1)

+g
∑
p,p′

e−i(p−p
′)x

(
ξ̄n,p′T

a n̄/

2
ξn,p − ifabcAλcn,p′Aνbn,p g⊥νλn̄·p

)
n·AaG(x).

The details of the Lagrangian depend on the type of the source and the gauge fixing

condition. In [20] different types of such choices have been considered. The Lagrangian

above corresponds to the static source with the momentum scaling psource = Mv+k, where

the mass of the source particle M → ∞ and k ∼ (λ, λ, λ). As for the gauge choice, it is

the hybrid gauge, when the collinear gluons are quantized in the light-cone gauge and

the potential off-shell Glauber gluons are quantized in the covariant gauge. This choice is

simple for two reasons. First, the number of Feynman rules and their structure is minimal

with this choice. For example, one can compare the two terms in eq. (3.1) with similar

7This statement is correct for the static and collinear sources. However for the soft source the correct

mode is (λ, λ2, λ) [20].
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Lagrangians of SCETG derived in [20] using covariant or light-cone gauge. Second, the two

Wilson lines that appear in matrix elements of the effective theory, the collinear Wilson

line and the transverse gauge link, do not add additional diagrams8 [20].

The Lagrangian in eq. (3.1) contains the background field in position space. The

Feynman rules of such a Lagrangian contain the Fourier transform of the vector potential

n·AG(x)→
∫

d4q/(2π)4 eiqxv(q). For the static source v(q) = 2πδ(q0)ṽ(q) due to the fact

that the recoil energy is negligible. This formally follows from time independence of the

background field AG(x).

Since every appearance of the Glauber gluon interaction leads to the integral over the

Glauber gluon momentum, the following notation will be useful:

dΦi =
d4qi

(2π)4
eiqiδxi v(qi), dΦi⊥ =

d2qi⊥
(2π)2

e−iqi⊥δxi ṽ(qi⊥), (3.2)

where δxi = xi − x0, x0 is the space-time position where the jet was created, and xi is the

space-time position of the interaction with the medium quasi-particle i. The transverse

part of the four-vector δxi is defined as δxi. The relation between these two definition

is simple:

dΦi = dΦi⊥
d (n·qi)

2π
ei(n·qi)δzi , (3.3)

where δzi = δx3
i . Finally, in order to relate the cross section to physical observables as

elastic scattering length and cross sections, we use:

dσel

d2q⊥
(R, T ) =

C2(R)C2(T )

dA

|ṽ(q⊥)|2

(2π)2
=

4α2
s

dA(q2
⊥ + µ2)2

·


C2
F , for qq → qq

C2
A, for gg → gg

CFCA, for qg → qg

 . (3.4)

In the equation above, C2(R) and C2(T ) are the quadratic Casimirs of the incident parton

and target (source) representations. dA = 8 is the dimension of the adjoint representation.

The formula above is valid in the high energy limit and neglecting the masses of the partons.

As a result, one can read out the value of ṽ(q⊥) = 4παs/(µ
2 + q2

⊥).

4 The q → ggq splitting function in dense QCD matter

In this section we calculate the q → ggq splitting function in the medium to first order

in opacity using SCETG and keeping the full z1, z2, z3 dependence. First order in opacity

contains single Born diagrams, representing interactions of the propagating system at lon-

gitudinal positions x3
i . It also contains double Born diagrams, which can be viewed as the

contact limit x3
j → x3

i of 2 interactions. In the first type of interactions one Glauber gluon is

exchanged in both the matrix element and the complex conjugate of the matrix element. In

the second type two Glauber gluons at the same point are exchanged either only in the ma-

trix element or only in the complex conjugate of the matrix element. The organization of the

opacity series is independent of the propagating system, for more details see refs. [43, 44].

8The latter was derived specifically for the static source.
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Figure 2. Single Born diagrams. See text for explanation of the different topologies.

The calculation in medium is very similar to the one in vacuum and we use many

definitions from section 2 in this section. In particular, since Glauber gluons do not carry

large momenta, the entire part that depends solely on z1, z2, z3 is identical in the vacuum

and medium calculations. Thus, we use the same operators Oj given in eq. (2.18) as well

as the same matrix given in eq. (2.19).

4.1 Single Born diagrams

All single Born graphs are shown in figure 2. Graphs 1–4 have the same collinear structure

as the vacuum graph 1 in figure 1, and we refer to them as topology 1. Graphs 5–9 are

of topology 2, graphs 10–14 are of topology 3, and graphs 15–19 are of topology 4. The

amplitude of an arbitrary single Born graph k with 1 ≤ k ≤ 19 looks like

M(1)
k = −g2 εi11 ε

i2
2 χ̄n,p

(∫
dΦ⊥Ck Γi1i2k I

(1)
k

)
J. (4.1)

The minus sign in eq. (4.1) cancels when squaring the matrix element. It is chosen for

convenience, since it leads to a color operator matrix with more positive than negative

numbers, see eq. (D.1). In the remainder of this subsection we give detailed expressions

for the longitudinal integrals I
(1)
k , the factors Ck, and effective vertices Γi1i2k .
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The longitudinal integrals are defined as

I
(1)
k =

∫
dq−

2π
eiq
−δz ∆g(Q1, q) . . . ∆g(QNk

, q), (4.2)

where the integrand contains the product of all propagators with momentum Qi − q, that

depend on the medium transfer momentum q

∆g(p, q) =
[
Ω(p,q⊥)− q− + iε/n̄·p

]−1
, (4.3)

Ω(p,q⊥) = p− − (p⊥ − q⊥)2

p+
. (4.4)

For diagram k the number of q dependent propagators is Nk. For single Born diagrams

Nk is at least Nmin = 1 and at most Nmax = 2 for topology 1 and Nmax = 3 for the other

topologies 2, 3, 4.

Performing the integrals yields

I
(1)
k =


I1(Ω1), if Nk = Nmin

I2(Ω1,Ω2), if Nk = Nmin + 1

I3(Ω1,Ω2,Ω3), if Nk = Nmin + 2

 , (4.5)

where Ωi = Ω(Qi,q⊥) and

I1(Ω1) = −i eiΩ1δz, (4.6)

I2(Ω1,Ω2) = i
eiΩ2δz − eiΩ1δz

Ω2 − Ω1
, (4.7)

I3(Ω1,Ω2,Ω3) = i

(
eiΩ2δz − eiΩ1δz

Ω2 − Ω1
− eiΩ3δz − eiΩ1δz

Ω3 − Ω1

)
1

Ω3 − Ω2
. (4.8)

For details on the longitudinal integrals of single and double Born graphs, see appendix C.

The factors Ck and effective vertices Γi1i2k are

Γi1i2k = e
(a)
k Oi1i21a + e

(b)
k Oi1i21b , Ck=

{
1

s123
, if Nk = Nmin

1
n̄·p0 , if Nk = Nmin + 1

}
, (4.9)

Γi1i2k = ek Uj1
pk1 ,pk2

Uj2
pk3 ,pk4

Oi1i2j1j2tk
, Ck=


1

p2k12
p2k34

, if Nk = Nmin

1
p2k12

n̄·p0
, if Nk = Nmin + 1

1
n̄·(pk1+pk2 ) n̄·p0 , if Nk = Nmin + 2

 , (4.10)

where pk1 , pk2 are the two four-vectors that come out of the second collinear splitting and

similarly pk3 , pk4 are those coming out of the first splitting. Since UQ1,Q2 is antisymmetric

under exchange of its arguments Q1 ↔ Q2, we need to define the order of the arguments:

for q → gq splittings, the gluon momentum is the first argument of U followed by the quark

momentum; for g → gg splittings, the momentum containing p1 is the first argument of U

followed by the momentum containing p2.

The color operator for single Born amplitudes ek is provided in appendix D in the

basis of six elements e
(1)
j , see section 4.3. For topology k = 1 there are two color operators
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per diagram, with indices (a) and (b), while for the other topologies there is only one color

operator per diagram, consistent with the notation in eq. (4.9) and eq. (4.10).

Note that eqs. (4.9) and (4.10) are very similar to the corresponding vacuum equations,

eqs. (2.14)–(2.17).9 We also have used the same rearrangements between topology 1 and 4

as in the vacuum case, mentioned at the end of section 2.2.

Even though we provided all rules necessary to evaluate any single Born graph in this

subsection, we also summarize all values for Ck,Upk1 ,pk2
,Upk3 ,pk4

, I
(1)
k in appendix B.

4.2 Double Born diagrams

All 34 double Born graphs are presented in figure 3. Graphs 1–7 are of topology 1, graphs

8–16 are of topology 2, graphs 17–25 are of topology 3, and graphs 26–34 are of topology

4. A general diagram k with 1 ≤ k ≤ 34 equals

M(2c)
k = g2 εi11 ε

i2
2 χ̄n,p

(∫
dΦ1⊥ dΦ2⊥Ck Γi1i2k I

(2c)
k

)
J, (4.11)

where Ck and Γi1i2k are identical to the single Born case, given in eq. (4.9) and eq. (4.10). But

for double Born diagrams, Nmin and Nmax are both larger by 1 in comparison to the single

Born case. The maximum number of q−dependent denominators is still Nmax = Nmin + 1

for topology 1 and Nmax = Nmin + 2 for the remaining topologies.

The longitudinal integrals for double Born diagrams are defined similarly to eq. (4.2),

I
(2c)
k =

∫
dq−1
2π

dq−2
2π

eiq
−
1 δz1+iq−2 δz2 ∆g(Q1, q̃1) . . . ∆g(QNk

, q̃Nk
), (4.12)

where q̃i is q1, q2 or q1+q2 dependent on the diagram. The results can be expressed through

the same functions I1, I2, I3 defined in eq. (4.6)–(4.8),

I
(2c)
k = (−i)·



I1(Ω2)/2, if nk = (1, 0, 1)

I2(Ω2,Ω3)/2, if nk = (1, 0, 2)

I3(Ω2,Ω3,Ω4)/2, if nk = (1, 0, 3)

I2(Ω1 + Ω2,Ω3), if nk = (1, 1, 1)

I3(Ω4,Ω1 + Ω3,Ω2 + Ω3), if nk = (2, 1, 1)

I3(Ω4,Ω1 + Ω2,Ω1 + Ω3), if nk = (1, 2, 1)

I3(Ω1 + Ω2,Ω3,Ω4), if nk = (1, 1, 2)


, (4.13)

where nk = (nq1 , nq2 , nq12), with nq1 being the number of q1 dependent denominators,

etc. Obviously Nk = nq1 + nq2 + nq12 . For details on how to perform single and dou-

ble Born longitudinal integrals see appendix C. The Ωi in eq. (4.13) are defined as:

Ω1. . . Ωnq1
for q1 dependent propagators, Ωnq1+1. . . Ωnq1+nq2

for q2 dependent propagators,

and Ωnq1+nq2+1. . . Ωnq1+nq2+nq12
for q1 + q2 dependent propagators.

9This similarity is very much expected due to the fact that Glauber exchanges do not change the large

momentum fractions z1, z2, z3 and, thus, the part of the amplitude that depends only on these fractions

is identical to the vacuum case. Hence, the operators Otk are equivalent to eq. (2.18) and eq. (2.19), and

tk = 2, 3 or 4 depending on the topology of the diagram.
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Figure 3. Double Born diagrams. See text for explanation of the different topologies.
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The color operators ek for the double Born amplitudes in the basis of 24 basis elements

e
(2)
j (see section 4.3) are provided in appendix D.

Even though we provided the rules necessary to evaluate any double Born graph in

this subsection, we also summarize all values for Ck,Upk1 ,pk2
,Upk3 ,pk4

, I
(2c)
k in appendix B.

4.3 Squaring the matrix element

In this subsection we combine vacuum, single and double Born amplitudes and derive a

formula for the total squared matrix element averaged over the dense QCD matter. We

start from general expressions for vacuum, single and double Born amplitudes

M(0)
n+2 = g2 εi11 ε

i2
2 χ̄n,p3

∑
j

e
(0)
j

(
αi1i21,j + αi1i22,j iΣ

3
)
J, (4.14)

M(1)
n+2 = g2 εi11 ε

i2
2 χ̄n,p3

∫
dΦ⊥

∑
j

e
(1)
j

(
βi1i21,j + βi1i22,j iΣ3

)
J, (4.15)

M(2c)
n+2 = g2 εi11 ε

i2
2 χ̄n,p3

∫
dΦ1⊥ dΦ2⊥

∑
j

e
(2)
j

(
γi1i21,j + γi1i22,j iΣ3

)
J. (4.16)

The tensors structures α1,2, β1,2, γ1,2 can be directly read off from the results in sec-

tions 2.2, 4.1 and 4.2. The basis of color operators for these three cases is:

e(0) = (a1a2)R, (a2a1)R, (4.17)

e(1) = (a1a2b)R, (a1ba2)R, (ba1a2)R, (a2a1b)R, (a2ba1)R, (ba2a1)R, (4.18)

e(2) = (a1a2b1b2)R, (a1b1a2b2)R, (b1a1a2b2)R, (a2a1b1b2)R, (a2b1a1b2)R, (b1a2a1b2)R,

(a1a2b2b1)R, (a1b1b2a2)R, (b1a1b2a2)R, (a2a1b2b1)R, (a2b1b2a1)R, (b1a2b2a1)R,

(a1b2a2b1)R, (a1b2b1a2)R, (b1b2a1a2)R, (a2b2a1b1)R, (a2b2b1a1)R, (b1b2a2a1)R,

(b2a1a2b1)R, (b2a1b1a2)R, (b2b1a1a2)R, (b2a2a1b1)R, (b2a2b1a1)R, (b2b1a2a1)R. (4.19)

For brevity, we have omitted the overall medium color structure of (b)i for the single Born

and (b1)i(b2)j for the double Born color basis elements. Combining, squaring, and averaging

over the position of the medium scattering centers we get:∑
spin, color

〈∣∣∣M(0)
n+2 +M(1)

n+2 +M(2c)
n+2 + · · ·

∣∣∣2〉
q⊥

(4.20)

=g4 Tr

(
n/

2
n̄·p3 JJ̄

[
ρ0 +

1

Nc

N

A⊥

∫
d2q⊥
(2π)2

{
|ṽ(q⊥)|2 ρ1 + ṽ(q⊥)ṽ∗(−q⊥) ρ(2c)

}
+ · · ·

])
.

Note that the term ∝ TrM(0)†
n+2M

(1)
n+2 vanishes and the term ∝ TrM(2c)†

n+2M
(2c)
n+2 contributes

to higher order in opacity [43, 44]. Here, ρ0 is given by the vacuum splitting and has been

calculated in section 2.3. The single and double Born terms ρ1 and ρ(2c) are:

ρ1 =
∑
j′,j

〈e(1)
j′ |e

(1)
j 〉

(
Re
[
β∗1,j′ ·β1,j + β∗2,j′ ·β2,j

]
I− Im

[
β∗1,j′ ·β2,j − β∗2,j′ ·β1,j

]
Σ3
)
, (4.21)

ρ(2c) = 2
∑
j′, j

〈e(0)
j′ |e

(2)
j 〉

(
Re
[
α∗1,j′ ·γ1,j + α∗2,j′ ·γ2,j

]
I + Im

[
α∗2,j′ ·γ1,j − α∗1,j′ ·γ2,j

]
Σ3
)
.
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In the equations above for the single Born expression we have used the fact that the Gram

matrix of color basis vectors is symmetric. This is explicitly shown below in this subsection.

The dot products between the tensor structures α, β, γ indicate contractions, for example

β∗1,j′·β1,j ≡
∑

i1,i2
β∗i1i21,j′ β

i1i2
1,j . The Gram matrices of the color vector basis necessary for the

evaluation of the squared matrix element are straightforward to obtain

〈e(1)
j′ |e

(1)
j 〉=TR



c1 c2 c3 c2 c3 c4

c2 c1 c2 c3 c4 c3

c3 c2 c1 c4 c3 c2

c2 c3 c4 c1 c2 c3

c3 c4 c3 c2 c1 c2

c4 c3 c2 c3 c2 c1


, (4.22)

〈e(0)
j′ |e

(2)
j 〉=TR

[
c1 c2 c3 c2 c3 c4 c1 c1 c2 c2 c2 c3 c2 c1 c1 c3 c2 c2 c3 c2 c1 c4 c3 c2

c2 c3 c4 c1 c2 c3 c2 c2 c3 c1 c1 c2 c3 c2 c2 c2 c1 c1 c4 c3 c2 c3 c2 c1

]
.

(4.23)

Because every element of these two matrices above is a number times a unit matrix in color

space, the squared matrix element of both single and double Born amplitudes automatically

is a singlet in color space. The color factors as functions of the SU(3) quadratic Casimirs are

c1 = C3
F , c2 = C2

F (CF − CA/2), c3 = CF (CF − CA/2)2,

c4 = CF (CF − CA)(CF − CA/2) = 2c3 − c2. (4.24)

Unlike in vacuum, the squared two gluon amplitude in medium is in general not a

singlet in Dirac space. This was also found for the single gluon probability kernel in ref. [20].

In vacuum α1,j and α2,j are real and, hence, the Σ3 piece cancels. This is not the case in

medium, because the longitudinal integrals have a non-zero complex phase. However, if

the jet has been created by a pure QCD interaction, the trace Tr
(
n/
2 JJ̄ Σ3

)
= 0 and the

medium-induced two gluon emission factorizes from the production process, similarly to

the single gluon emission [20].

4.4 Cascade approximation for the two-gluon splitting function

We define the 1→ 2 and 1→ 3 splittings in the presence of dense QCD matter∑
spin, color

〈∣∣∣M(0)
n+1 +M(1)

n+1 +M(2c)
n+1 + · · ·

∣∣∣2〉
q⊥

=
2g2

s2
jk

〈Pi→jk[pj , pk]〉
∑

spin,color

∣∣∣M(0)
n

∣∣∣2 ,
∑

spin, color

〈∣∣∣M(0)
n+2 +M(1)

n+2 +M(2c)
n+2 + · · ·

∣∣∣2〉
q⊥

=
4g4

s2
jkl

〈Pi→jkl[pj , pk, pl]〉
∑

spin,color

∣∣∣M(0)
n

∣∣∣2 .
(4.25)

The full splitting functions become a sum over the opacity series

〈Pi→jk[pj , pk]〉 = 〈P (0)
i→jk[pj , pk]〉+ 〈P (1)

i→jk[pj , pk]〉, (4.26)

〈Pi→jkl[pj , pk, pl]〉 = 〈P (0)
i→jkl[pj , pk, pl]〉+ 〈P (1)

i→jkl[pj , pk, pl]〉. (4.27)
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The first term corresponds to the vacuum splitting function10 and the second term corre-

sponds to the first order in opacity term, including both single and double Born graphs.

Note that pi, pj , pk, pl are momenta of external partons and independent of the medium

averaging, which is not shown in the above equations but is present in the second terms.

The medium-induced cascade formula, similarly to the vacuum case, is based on the ap-

proximation that the probability to emit two gluons can be approximated by a product of

single gluon emissions. This approximation is valid up to certain interference terms. The

splitting function of the medium-induced “cascade” is

〈P casc
q→ggq[p1, p2, p3]〉(1) =

s123

(
〈P (0)

q→gq[p2, p1 + p3]〉〈P (1)
q→gq[p1, p3]〉+ 〈P (1)

q→gq[p2, p1 + p3]〉〈P (0)
q→gq[p1, p3]〉

s13

+
〈P (0)

q→gq[p1, p2 + p3]〉〈P (1)
q→gq[p2, p3]〉+ 〈P (1)

q→gq[p1, p2 + p3]〉〈P (0)
q→gq[p2, p3]〉

s23

+
〈P (0)

q→gq[p1 + p2, p3]〉〈P (1)
g→gg[p1, p2]〉+ 〈P (1)

q→gq[p1 + p2, p3]〉〈P (0)
g→gg[p1, p2]〉

s12

)
. (4.28)

This equation is derived analogously to the one in vacuum, eq. (2.32), and takes into account

that the interaction with the medium can happen either in the first or the second splitting.11

The medium-modified 1→ 2 splitting functions are related to the medium-induced splitting

kernels x dN/dx dk⊥ calculated in ref. [20, 21] and are reviewed in appendix A.

5 Angular distributions of splitting functions

In this section we study the angular distributions of the collinear vacuum and medium-

induced splittings. We start with an overview of coherent branching and angular ordering,

following closely ref. [45]. Consider an arbitrary hard process with a total of n incoming and

outgoing quarks and/or gluons and an exclusive differential cross section σn. In addition,

we define σn+1 as the lowest order differential cross section to emit an ultrasoft (eikonal)

gluon with momentum scaling (λ2, λ2, λ2) from either of the external legs. Using the well

known eikonal approximation of QCD we find

dσn+1 = dσn
dω

ω

dΩ

2π

αS
2π

n∑
i,j=1

CijWij , (5.1)

where ω is the energy of the emitted gluon, Cij is a color factor and

Wij =
ω2 pi ·pj
pi ·q pj ·q

=
1− cos θij

(1− cos θiq)(1− cos θjq)
. (5.2)

Each term of the sum in eq. (5.1) corresponds to a different interference term, where the

ultrasoft gluon is attached to the leg i in the matrix element and leg j in the complex

10It is identical to it due to our normalization
11There can be medium interactions in both splittings at higher orders in opacity.
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conjugate of the matrix element. Thus, the ultrasoft branching depends on the global

structure of the event. We have assumed that all external legs are massless, pi is the

momentum of leg i, q is the momentum of the emitted gluon and the angles between legs

i and j and leg i and the soft gluon are defined as θij and θiq, respectively. The function

Wij has the well known property of angular ordering. Namely, if one rewrites

Wij = W
[i]
ij +W

[j]
ij , (5.3)

where

W
[i]
ij =

1

2

(
Wij +

1

1− cos θiq
− 1

1− cos θjq

)
, (5.4)

and a similar definition for W
[j]
ij with i↔ j, then W

[i]
ij has the property∫

dφiq
2π

W
[i]
ij =

1

1− cos θiq
Θ(θij − θiq). (5.5)

The integration over the azimuthal part of dΩ in eq. (5.1) is performed while fixing the z

axis along the direction of parton i. Thus, the angle θiq is kept fixed while θjq varies as

cos θjq = cos θij cos θiq+sin θij sin θiq cosφiq. eq. (5.5) means that after azimuthal averaging

the interference term W
[i]
ij emits radiation only inside the cone R

[i]
ij with opening angle θij

centered around parton i. W
[j]
ij obeys an equation analogous to eq. (5.5) and only radiates

soft gluons inside the cone R
[j]
ij . In the remainder of this paper we will refer to the cones R

[i]
ij

and R
[j]
ij as angular ordered cones. It follows from these properties and equation eq. (5.1)

that in the eikonal approximation the radiation obeys angular ordering in the sense that

the emitted gluons are emitted only inside the angular ordered cones for all i and j.

Having reviewed the known properties of coherent branching, we turn to the question

of how the collinear branchings behave in terms of angular distributions. In the high energy

factorization picture of hard scattering processes there are three widely separated distance

scales: the scale of the hard process ∼ 1/
√
s, the scale of collinear splittings or showering

∼ 1/p⊥, where p⊥ is the scale of the transverse size of the jet, and the scale of soft recombi-

nation processes ∼ 1/ΛQCD. The coherent branchings discussed in the last paragraph which

lead to angular ordering correspond to the soft scale. Angular ordering is widely used in the

literature on parton showers and is implemented in some of them, for example HERWIG

and PYTHIA. To our knowledge, the study of angular distributions of collinear splittings,

which are characterized by the intermediate scale of the parton shower, does not exist in the

literature. In what follows we perform such a study in the vacuum and the medium using

full 1→ 3 collinear splittings which include all interferences. For the vacuum we use results

from ref. [8], where all 1→ 3 parton collinear splittings have been calculated. In section 2

we derived one of these splittings, q → ggq, in SCET and confirmed the result in ref. [8].

In medium we use our new SCETG result for the q → ggq splitting presented in section 4.

For later use, we define

Xij = −1

2

(
Wij −

1

1− cos θiq
− 1

1− cos θjq

)
, (5.6)
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which has the property of anti-angular ordering∫
dφiq
2π

Xij =
1

1− cos θiq
Θ(θiq − θij). (5.7)

5.1 The vacuum case

We consider the five 1→ 3 splitting functions, calculated in ref. [8], and study their angular

distributions. Our goal is to clarify if collinear splittings exhibit a feature like the angular

ordering of soft coherent branching, discussed in the previous subsection. It is clear that

the notion of angular ordering is only applicable in deterministic parton showers with

sequential branching. The obvious example is precisely the q → ggq splitting, where the

two gluons are indistinguishable. In order to define a notion of first and second splitting,

we choose the limit when one of the three partons in the final state is much softer than

the two others, z1 � z2, z3. One has to be careful in taking this limit, since the collinear

power counting breaks down if parton ”1” becomes too soft. So we have to ensure that

the energy carried by parton ”1” is much smaller than the one carried by partons ”2” and

”3”, but still much larger than ΛQCD. In other words, we take the limit in the collinear

branching 1 → 3 such that the second branching is at larger distance than the first one,

but still in the collinear region, not in the soft recombination regime. In contrast to the

ultrasoft branching in the previous subsection, this limit is process independent because

the collinear splitting functions we started with are process independent.

Taking this limit for the five splittings: q → q̄′q′q, q → q̄qq, q → ggq, g → gqq̄, g → ggg

yields

〈Pq0→q̄′1q′2q3〉 =
CFTR (1− c23)

z1

(1− z2)
(
2(1− z2) + z2

2

)
z2

(
W

[2]
23 +X23

)
, (5.8)

〈Pq0→q̄1q2q3〉 =
CF (1− c23)

z1

[
TR

(
(1− z2)(1 + (1− z2)2)

z2

(
W

[2]
23 +X23

)
+
z2(1 + z2

2)

(1− z2)

(
W

[3]
23 +X23

))
+ 2(CF − CA/2)X23

]
,

〈Pq0→g1g2q3〉 =
4CF (1− c23)

z2
1

z2(1− z2)
1− z2 + z2

2/2

z2

(
CF

(
W

[3]
23 +X23

)
+ CA

(
W

[2]
23

))
,

〈Pg0→g1q2q̄3〉 =
2TR(1− c23)

z2
1

z2(1−z2)(z2
2 + (1−z2)2)

(
CF

(
W

[2]
23 +W

[3]
23

)
+ CA (X23)

)
,

〈Pg0→g1g2g3〉 =
4C2

A(1−c23)

z2
1

z2(1−z2)

(
z2

1−z2
+

1−z2

z2
+ z2(1− z2)

)(
W

[2]
23 +W

[3]
23 +X23

)
,

where c23 is defined as the cosine of the opening angle between the partons 2 and 3.

We see from the presence of both terms W
[i]
ij and Xij that the splittings are neither

angular ordered nor anti-angular ordered. However, some individual pieces are. For exam-

ple, the non-abelian part of the third splitting and the abelian part of the fourth splitting

are angular ordered. The identical particle piece of the second splitting proportional to

CF (CF −CA/2) and the non-abelian part of the fourth splitting are anti-ordered. All other

pieces are neither ordered nor anti-ordered. Note that, as expected, the last three splittings
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are proportional to the reduced vacuum 1 → 2 splitting of the initial parton into partons

”2” and ”3”. Conversely, the first two splittings do not exhibit any similar relation. In

addition, the soft behavior of the first two splittings compared to the last three differ. The

first two splittings, where the anti-quark is taken to be the softer parton, are proportional

to 1/ω ∼ 1/z1 and thus free of soft singularities after including the phase space factor

dz1 z1. The last three splittings are proportional to 1/z2
1 which leads to a soft singularity.

Next we compare the small z1 limit of the full q → ggq splitting, given in eq. (5.8), to

the small z1 limit of the cascade eq. (2.32),

〈P cascade
q0→g1g2q3〉 = (1− c23)

4CF
z2

1

z2(1− z2)
1− z2 + z2

2/2

z2

×
(
CF

(
W

[3]
23 +X23

)
+ CA

(
W

[2]
23 +X23

))
. (5.9)

The cascade reproduces the abelian part exactly, while only the singular behavior is re-

produced for the non-abelian part. The numerical comparison of the full splitting to the

cascade is shown in the middle right panel of figure 4. As expected from the analytical

formulas, the cascade reproduces both collinear singularities. In the tail of the distribution

the cascade is larger by a factor (CF +CA)/CF compared to the equivalent piece (X23) in

the full splitting.

To visualize the angular distribution we plot the splitting function averaged over the

azimuthal angle of the softer parton (z1) with respect to the decaying parton as a function

of the angle between the decaying parton and the softer parton (z1). No other phase space

factors are included. We fix the angle between the second (third) parton and the decaying

parton to be 10 degrees (20 degrees). We set the energy of the initial quark E0 = 100 GeV,

z1 = 0.03 and z2 = 2/3, z3 = 1/3. Note that z1 is much smaller than z2 and z3 but the

enrgy of parton ”1” is still much larger than ΛQCD. Thus, this choice of parameters obeys

the desired limit. For the numerics we exploit the fact that partons ”2” and ”3” have to be

approximately back-to-back in the transverse plane in order to balance the total transvers

momentum. In figure 4 we present these plots for all five splittings, which we discuss in

the following:

• Each splitting has a collinear singularity at angles of 10 and 20 degrees as expected.

• The steepness of the angular distributions outside the angular ordered cones (at 40

and 50 degrees with respect to the initial decaying parton) is ∼ 1/θ4
0q in the cases

when there is angular ordering and ∼ 1/θ2
0q when there is no ordering, consistent with

equation eq. (5.8). Note that in the situations when there is ordering, radiation is still

present outside the angular ordered cones, though it is power suppressed compared

to the case of no ordering. The reason for this is that we are averaging over the

azimuthal angle with respect to the initial (decaying) parton, not with respect to one

of the partons ”2” or ”3” like in eq. (5.5). Since W
[i]
ij and W

[j]
ij become non-positive

definite outside the angular ordered cones they cannot be interpreted as probabilities

anymore. Since the solid angle of the emitted gluon is ∼ dθ2
0q, the amount of radiation

outside of the cone depends on the cone size logarithmically for the power law∼ 1/θ2
0q,

but by an inverse power for the power law ∼ 1/θ4
0q.
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Figure 4. Angular distributions of 1→ 3 splittings in the vacuum.
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• In the middle left panel of figure 4, for the q0 → g1g2q3 splitting, the abilian con-

tribution dominates in the tail, while the non-abilian contribution to the full result

is only marginal. This can be understood qualitatively. When a gluon is emitted at

large angle, it cannot resolve the small angle between g2 and q3. Thus, the gluon

is effectively emitted from an on-shell quark (q0). A similar argument holds for the

splitting g0 → g1q2q̄3 and leads to the non-abilian radiation dominating over the abil-

ian radiation in the tail, consistent with the bottom left panel of figure 4. The same

qualitative analysis yields that the tail of the angular distribution for the splitting

g → ggg is not ordered.

• Note that we plot the absolute value of the angular distribution for the identical-

particles term of the splitting q → q̄qq and the non-abelian term of the splitting

g → gqq̄. In both cases, the distribution is not always positive and could not be

shown in a logarithmic plot. In the first case the true contribution is positive for

θ01 < 10◦, zero for 10◦ < θ01 < 20◦ and negative for θ01 > 20◦. In the second

case, the true contribution is negative for θ01 < 10◦, zero for 10◦ < θ01 < 20◦ and

positive for θ01 > 20◦. The difference in sign between first and second case is due

to CF − CA/2 < 0. Both cases exhibit angular anti-ordering, as can be seen from

eq. (5.8). Indeed the radiation drops to zero between 10deg and 20deg. The radiation

outside this range but still inside the cone can be explained similarly to the residual

radiation outside the cone in the angular ordered case.

In conclusion, we find that inside the collinear parton shower there is no angular

ordering in contrast to the ultrasoft coherent branching. The implications of this result for

parton showers remain to be studied phenomenologically by concentrating on observables

related to collimated, isolated jets. This will be done elsewhere.

5.2 The dense QCD matter case

In section 4 we calculated the medium-induced splitting q0 → g1g2q3 using SCETG , which

was the most technically demanding part of this paper. See appendix A for details on

the full calculation and an approximate reduced formula valid in the small z1 limit. In

this section, we perform an analysis of the angular distributions of the medium-induced

splitting similarly to the one in vacuum. In vacuum, we considered five splittings and were

able to analize the angular distributions in the small z1 limit analytically. In medium, we

just perform a numerical analysis of the splitting q → ggq.

To model the QCD medium, we use the following input parameters: the Debye screen-

ing scale in the medium is µ = 0.75 GeV, the size of the medium L = 5 fm, and the elastic

scattering length of gluons in the medium λg = 1 fm. These values have been used in [21]

and are characteristic of the quark-gluon plasmas created at RHIC and LHC. The numer-

ical results are shown in figures 5, 6, 7. These plots are the medium equivalent of figure 4,

but this time we consider two different sets of parameters. In scenario 1 (figure 7 and top

plots in figures 5, 6) we use the similar values like in section 5.1 for vacuum: E0 = 100 GeV,

z1 = 0.03, z2 = 0.643, θ20 = 10◦, θ30 = 20◦. In scenario 2 (bottom plot in figures 5, 6) we

use: E0 = 100 GeV, z1 = 0.03, z2 = 0.282, θ20 = 25◦, θ30 = 10◦. We present the total
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Figure 5. Angular distributions of 1→ 3 splittings in vacuum and the medium. Color coding is as

follows: red — vacuum splitting, black — medium splitting. The first plot corresponds to scenario

1, the second plot to scenario 2. Further details are given in the text.

medium splitting (solid black curve), medium cascade (dot-dashed green curve) and the

vacuum splitting (dashed red curve). In figure 5 we compare medium to vacuum splitting,

in figure 6 medium splitting to the medium cascade and in figure 7 medium to vacuum

splitting but in three dimensions. We make the following observations:

• The collinear singularities are present in both single and double Born graphs. When

combining single and double Born graphs we find large (90% to 99%) cancellation for

both scenarios. The collinear behavior, corresponding to the gluon z1 being parallel

to the quark z3, is in both scenarios significantly reduced.
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Figure 6. Angular distributions of 1 → 3 splittings in the medium. Color coding is as follows:

black — medium splitting, green — medium cascade. The first plot corresponds to scenario 1, the

second plot to scenario 2. Further details are given in the text.

• For both scenarios the tail of the angular distribution is larger for the medium-

induced splitting than for the vacuum splitting. Moreover, in the direction of the

parent parton (small θ01) there is significant cancellation in the splitting probability.

These features are in agreement with the previously noted features of medium-induced

radiation. Namely, the O(αs) q → qg splitting in dense QCD matter is wider than

in the vacuum [14].

• As one can see in figure 6, the cascade formula for the medium-induced splitting

describes the features of the full splittings for angles between the peaks and in the

tail reasonably well. The cancellation of the splitting probability along the direction

of the parent quark is not reproduced by the cascade.

• We compared our full medium splitting formula to the approximate formula presented

in appendix A.2, which includes only topologies two and four and is valid for small

z1. For both scenarios the difference between the exact and approximate formula is

smaller than the visible thickness of the lines in our logarithmic plot, figure 5. This

is a nice cross check on our numerics.

• In figure 7 the spacial distribution of the medium-induced splitting is compared to

that of vacuum. The collinear radiation is significantly reduced in the medium, while

the medium-induced radiation is larger in the far tail.

In conclusion, the medium-induced splitting exhibits no angular ordering or angular

anti-ordering, similarly to the vacuum splitting. The splitting probability distribution is

larger in the tail in comparison to the vacuum splitting. Moreover, there is a cancellation of
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Figure 7. Angular distributions of 1 → 3 splittings in vacuum and medium. Further details are

given in the text.

this probability in the direction of the original parton. These features have been described

previously for the lowest order medium-induced parton branchings. From a practical point

of view, our results imply that in constructing Monte Carlo generators to describe jet

physics in heavy ion collisions, an approach without angular ordering would be preferred.
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6 Conclusions

In this paper we studied the angular distributions of final-state 1 → 3 collinear splitting

functions at order O(α2
s) in vacuum and in dense QCD matter. We concentrated on the

splitting q → ggq. In the vacuum, by comparing the angular distribution of this splitting

function to the ones of the other splitting functions, for instance g → ggg, we showed that

q → ggq is a representative example. Using SCET, we calculated the vacuum splitting

function to demonstrate that collinear modes are sufficient to reproduce the result obtained

by Catani and Grazzini [8]. In dense QCD matter we used SCETG to derived the medium-

induced q → ggq splitting to first order in opacity, keeping the full z1, z2 dependence.

In the vacuum, we studied all fiveO(α2
s) splitting functions, originally derived in ref. [8].

In all cases we find no angular ordering. This result is also supported by the fact that the

angular distribution of the q → ggq splitting can be reproduced well by a parton cascade

based on binary branchings. Note that our approach differs from the coherent branching

ansatz which yields angular ordering and is widely used in parton shower generators like

HERWIG. We study angular distributions of collinear splittings instead of ultrasoft gluon

emissions. Thus, the momentum scaling in our approach differs from the one in coherent

branching and hence, the different result is not unexpected. Nevertheless, the qualitative

argument of color screening used to explain Sudakov effect in QED still works in our case.

In large angle gluon emission from a qg antenna, the emitted gluon is only sensitive to the

color charge of the initial quark.

Our results indicate that the proper angular distributions inside the collinear parton

shower are different from the traditional coherent branching ansatz. Still, the traditional

approach to parton showers, which applies angular ordering to the collinear splitting func-

tions, is claimed to resum large infrared Sudakov logarithms and is phenomenologically suc-

cessful. One thing which would be interesting to verify is whether the amount of collinear

radiation leaking outside of the angular ordered cones leads to a significant correction to

parton shower phenomenology. This would have to be checked for intra-jet observables,

such as jet shapes of well-isolated jets. We leave this for future work. The same conclusion

holds for the medium induced parton shower. Our detailed analysis found no evidence

of angular ordering or angular anti-ordering. An important feature is that the notice-

ably broader angular distribution compared to vacuum, found in O(αs) 1→ 2 branchings,

persists to higher order.

A Medium-induced splitting functions

In this appendix we review the basic formulas for medium-induced splitting functions and

how they are related to the splitting kernels.

A.1 Leading order O(αs) splittings

The medium-induced splitting kernels have been calculated in ref. [20, 21] retaining the

full x dependence (beyond the soft gluon approximation) using SCETG . We rewrite them
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k α
(q→qg)
k α

(g→gg)
k α

(g→qq̄)
k

1 b·
(
b− c + a−b

N2
c

)
2b·
(
b− a− c−a

2

)
2b·
(
b− a + c−a

N2
c−1

)
2 c·(2c− a− b) 2c·

(
c− a− b−a

2

)
2c·
(
c− a + b−a

N2
c−1

)
3 b·c b·c −2 b·c

N2
c−1

4 a·(d− a) a·(d− a) 2a·(a−d)
N2

c−1

5 −a·d −a·d 2 a·d
N2

c−1

Table 1. The coefficients needed for the evaluation of the medium-induced 1 → 2 splitting func-

tions. Further details are given in the text.

in a slightly more compact form:

dN (i)

dx d2k⊥
=

αs
2π2

P (i)
vac(x)

∫
d∆z

λi(z)
d2q⊥

1

σel

dσel

d2q⊥

5∑
k=1

α
(i)
k (1− cos Φk). (A.1)

We define the transverse vectors

A⊥ = k⊥, B⊥ = k⊥ + xq⊥, C⊥ = k⊥ − (1− x)q⊥, D⊥ = k⊥ − q⊥. (A.2)

In terms of these vectors, the five phases Φk are equal to

Φ1 = ΨB2
⊥, Φ2 = ΨC2

⊥, Φ3 = Ψ(C2
⊥ −B2

⊥), Φ4 = ΨA2
⊥, Φ5 = Ψ(A2

⊥ −D2
⊥),

where Ψ =
∆z

x(1− x) n̄·p0
. (A.3)

We recall that ∆z is the spacial separation between the hard scattering, producing the

collinear parent parton, and one of the subsequent medium interactions via a Glauber gluon

exchange. The coefficients α
(i)
k are summarized in table 1. To relate the medium-induced

splitting function to the splitting kernel we have to remove the phase space contributions;

recall that

dσn+1 = dσn
dN (i)

dx d2k⊥
dx d2k⊥, (A.4)

dΦn+1 = dΦn
1

x(1− x)

1

16π3
dx d2k⊥. (A.5)

Using that the splitting function is defined as a ratio between the squared matrix element

after emission and before emission gives

〈P (1)〉(i)1→2 = P (i)
vac(x) k2

⊥

∫
d∆z

λi(z)
d2q⊥

1

σel

dσel

d2q⊥

5∑
k=1

α
(i)
k (1− cos Φk), (A.6)

where the coefficients α
(i)
k are provided in the table 1. Table 1 uses the notation a = A⊥/A

2
⊥

and similar definitions for b, c,d. Note that the q → gq kernel is obtained from the q → qg
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kernel via the substitution x → 1 − x. For the normalized elastic scattering cross-section

we get

1

σel

dσel

d2q⊥
=

µ2

π
(
q2
⊥ + µ2

)2 , (A.7)

consistent with section 3.

A.2 Next-to-leading order O(α2
s) splittings

For the q → ggq splitting function to first order in opacity we find

〈P (1)〉q→ggq =
2

Nc

s2
123

4
z3

∫
d∆z

λg(z)

∫
d2q⊥

1

σel

dσel

d2q⊥

(
ρ1 + ρ(2c)

)
, (A.8)

where ρ1 and ρ(2c) are provided in general form in eq. (4.21). For the special case when

parton one has softer momentum than the other two partons, z1 � z2, z3, these formulas

reduce to12

ρ1 ≈ 4

(
1−z2 +

z2
2

2

) 10∑
k′, k=1

〈e(1)′

k′ |Γ
(1)|e(1)′

k 〉 C̃
(1)
k′ C̃

(1)
k

(
U

(11)
k′ ·U

(11)
k

)(
U

(12)
k′ ·U

(12)
k

)
×Re I

(1)∗
k′ I

(1)
k ,

ρ(2c) ≈ 4

(
1−z2 +

z2
2

2

) 10∑
k′=1,2;k=1,18

〈e(0)′

k′ |Γ
(2)|e(2)′

k 〉 C̃
(0)
k′ C̃

(2)
k

(
U

(21)
k′ ·U

(21)
k

)(
U

(22)
k′ ·U

(22)
k

)
×2 Re I

(2c)
k , (A.9)

where for ρ1 the sum over k runs over the 10 single Born graphs of topologies 2 and 4;

for ρ(2c) the sum over k runs over the 18 graphs of topologies 2 and 4. In the vacuum

only topologies 2 and 4 matter in this limit. Our notation for U(11),U(12),U(21),U(22) is

as follows. For a given single Born graph, U(11),U(12) are the first and second transverse

vectors in the corresponding entry in the third raw in the table 2. Similarly, U(21),U(22)

are the first and second transverse vectors in the corresponding entry in the third raw in the

table 3. Γ(1) and Γ(2) are defined in eq. (4.22) and eq. (4.23). All other ingredients follow

from the rules in section 4 for longitudinal integrals, coefficients Ck and color operators ek.

B Feynman graphs

In section 4 we presented rules to extract an analytic expression for any single and double

Born Feynman diagram. eq. (4.9) and eq. (4.10) are valid for any Feynman graph. In this

appendix we give explicit expressions for all coefficients Ck, longitudinal integrals Ik and

transverse vectors Upk1 ,pk2
,Upk3 ,pk4

.

12For any diagram, vacuum, single born, double Born, we have defined C̃k = Rk Ck, where Rk = 2 (1−z2)

for topology 2 and Rk = −2 z2 for topology 4.
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k Ck Uj1
pk1 ,pk2

Uj2
pk3 ,pk4

I
(1)
k

1 1/s123 − I1(Ω0)

2 1/n̄·p0 − I2(Ω0,Ω2)

3 1/n̄·p0 − I2(Ω0,Ω1)

4 1/n̄·p0 − I2(Ω0,Ω3)

5 1/s13s123 Uj1
p1,p3U

j2
p2,p3+p1 I1(Ω0)

6 1/n̄·p0s13 Uj1
p1,p3U

j2
p2−q,p3+p1 I2(Ω0,Ω2)

7 1/(n̄·p0)2(z1 + z3) Uj1
p1−q,p3U

j2
p2,p3+p1−q I3(Ω0,Ω1,Ω5)

8 1/(n̄·p0)2(z1 + z3) Uj1
p1,p3−qU

j2
p2,p3−q+p1 I3(Ω0,Ω3,Ω5)

9 1/n̄·p0s13 Uj1
p1,p3U

j2
p2,p3+p1−q I2(Ω0,Ω5)

10 1/s23s123 Uj1
p2,p3U

j2
p1,p3+p2 I1(Ω0)

11 1/n̄·p0s23 Uj1
p2,p3U

j2
p1−q,p3+p2 I2(Ω0,Ω1)

12 1/(n̄·p0)2(z2 + z3) Uj1
p2−q,p3U

j2
p1,p3+p2−q I3(Ω0,Ω2,Ω4)

13 1/(n̄·p0)2(z2 + z3) Uj1
p2,p3−qU

j2
p1,p3−q+p2 I3(Ω0,Ω3,Ω4)

14 1/n̄·p0s23 Uj1
p2,p3U

j2
p1,p3+p2−q I2(Ω0,Ω4)

15 1/s12s123 Uj1
p1,p2U

j2
p1+p2,p3 I1(Ω0)

16 1/(n̄·p0)2(z1 + z2) Uj1
p1,p2−qU

j2
p1+p2−q,p3 I3(Ω0,Ω2,Ω6)

17 1/(n̄·p0)2(z1 + z2) Uj1
p1−q,p2U

j2
p1−q+p2,p3 I3(Ω0,Ω1,Ω6)

18 1/n̄·p0s12 Uj1
p1,p2U

j2
p1+p2,p3−q I2(Ω0,Ω3)

19 1/n̄·p0s12 Uj1
p1,p2U

j2
p1+p2−q,p3 I2(Ω0,Ω6)

Table 2. Entries for single Born graphs.

In figure 2 and 3 all 19 single Born and 34 double born Diagrams are shown, re-

spectively. The corresponding analytic components can be read off tables 2 and 3. The

frequencies are defined as

Ω0 = Ω(p1 + p2 + p3,q⊥),

Ω1 = Ω(p1,q⊥), Ω2 = Ω(p2,q⊥), Ω3 = Ω(p3,q⊥),

Ω4 = Ω(p2 + p3,q⊥), Ω5 = Ω(p1 + p3,q⊥), Ω6 = Ω(p1 + p2,q⊥), (B.1)

and

Ω̄l = Ωl(q⊥ → 0), Ω̃l = Ωl(q⊥ → −q⊥), where l = 0, 1, 2, 3, 4, 5, 6. (B.2)
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k Ck Uj1
pk1

,pk2
Uj2

pk3
,pk4

I
(2c)
k /(−i)

1 1/s123 − I1(Ω̄0)/2

2 1/n̄·p0 − I2(Ω̄0, Ω̄2)/2

3 1/n̄·p0 − I2(Ω̄0, Ω̄1)/2

4 1/n̄·p0 − I2(Ω̄0, Ω̄3)/2

5 1/n̄·p0 − I2(Ω̄0, Ω̃2 + Ω3)

6 1/n̄·p0 − I2(Ω̄0, Ω̃1 + Ω3)

7 1/n̄·p0 − I2(Ω̄0, Ω̃2 + Ω1)

8 1/s13s123 Uj1
p1,p3U

j2
p2,p3+p1

I1(Ω̄0)/2

9 1/n̄·p0s13 Uj1
p1,p3U

j2
p2,p3+p1

I2(Ω̄0, Ω̄2)/2

10 1/(n̄·p0)2(z1 + z3) Uj1
p1,p3U

j2
p2,p3+p1

I3(Ω̄0, Ω̄1, Ω̄5)/2

11 1/(n̄·p0)2(z1 + z3) Uj1
p1,p3U

j2
p2,p3+p1

I3(Ω̄0, Ω̄3, Ω̄5)/2

12 1/n̄·p0s13 Uj1
p1,p3U

j2
p2,p3+p1

I2(Ω̄0, Ω̄5)/2

13 1/(n̄·p0)2(z1 + z3) Uj1
p1,p3−qU

j2
p2+q,p3−q+p1

I3(Ω̄0, Ω̃2 + Ω3, Ω̃2 + Ω5)

14 1/(n̄·p0)2(z1 + z3) Uj1
p1−q,p3+qU

j2
p2,p3+p1

I3(Ω̄0, Ω̄5,Ω1 + Ω̃3)

15 1/(n̄·p0)2(z1 + z3) Uj1
p1−q,p3

Uj2
p2+q,p3+p1−q I3(Ω̄0, Ω̃2 + Ω1, Ω̃2 + Ω5)

16 1/n̄·p0s13 Uj1
p1,p3U

j2
p2+q,p3+p1−q I2(Ω̄0,Ω5 + Ω̃2)

17 1/s23s123 Uj1
p2,p3U

j2
p1,p3+p2

I1(Ω̄0)/2

18 1/n̄·p0s23 Uj1
p2,p3U

j2
p1,p3+p2

I2(Ω̄0, Ω̄1)/2

19 1/(n̄·p0)2(z2 + z3) Uj1
p2,p3U

j2
p1,p3+p2

I3(Ω̄0, Ω̄2, Ω̄4)/2

20 1/(n̄·p0)2(z2 + z3) Uj1
p2,p3U

j2
p1,p3+p2

I3(Ω̄0, Ω̄3, Ω̄4)/2

21 1/n̄·p0s23 Uj1
p2,p3U

j2
p1,p3+p2

I2(Ω̄0, Ω̄4)/2

22 1/(n̄·p0)2(z2 + z3) Uj1
p2,p3−qU

j2
p1+q,p3−q+p2

I3(Ω̄0, Ω̃1 + Ω4, Ω̃1 + Ω3)

23 1/(n̄·p0)2(z2 + z3) Uj1
p2−q,p3+qU

j2
p1,p3+p2

I3(Ω̄0, Ω̄4,Ω2 + Ω̃3)

24 1/(n̄·p0)2(z2 + z3) Uj1
p2−q,p3

Uj2
p1+q,p3+p2−q I3(Ω̄0, Ω̃1 + Ω2, Ω̃1 + Ω4)

25 1/n̄·p0s23 Uj1
p2,p3U

j2
p1+q,p3+p2−q I2(Ω̄0,Ω4 + Ω̃1)

26 1/s12s123 Uj1
p1,p2U

j2
p1+p2,p3

I1(Ω̄0)/2

27 1/(n̄·p0)2(z1 + z2) Uj1
p1,p2U

j2
p1+p2,p3

I3(Ω̄0, Ω̄2, Ω̄6)/2

28 1/(n̄·p0)2(z1 + z2) Uj1
p1,p2U

j2
p1+p2,p3

I3(Ω̄0, Ω̄1, Ω̄6)/2

29 1/n̄·p0s12 Uj1
p1,p2U

j2
p1+p2,p3

I2(Ω̄0, Ω̄3)/2

30 1/n̄·p0s12 Uj1
p1,p2U

j2
p1+p2,p3

I2(Ω̄0, Ω̄6)/2

31 1/(n̄·p0)2(z1 + z2) Uj1
p1,p2−qU

j2
p1+p2−q,p3+q I3(Ω̄0, Ω̃3 + Ω2, Ω̃3 + Ω6)

32 1/(n̄·p0)2(z1 + z2) Uj1
p1−q,p2

Uj2
p1−q+p2,p3+q I3(Ω̄0, Ω̃3 + Ω1, Ω̃3 + Ω6)

33 1/(n̄·p0)2(z1 + z2) Uj1
p1−q,p2+qU

j2
p1+p2,p3

I3(Ω̄0, Ω̄6,Ω1 + Ω̃2)

34 1/n̄·p0s12 Uj1
p1,p2U

j2
p1+p2−q,p3+q I2(Ω̄0, Ω̃3 + Ω6)

Table 3. Entries for double Born graphs.
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C Longitudinal integrals

In this appendix we derive all necessary formulas to calculate the single and double Born

longitudinal integrals that appear in our paper. All single Born diagrams are of the form

I(1)
nq

(αi, δz) =

∫
dq−

2π
eiq
−δz

nq∏
i=1

1

αi − q−
, (C.1)

where nq is the total number of q-dependent propagators in the graph and αi = Ω(Qi,q⊥)+

iε/n̄·Qi. Integration is straightforward using Cauchy’s theorem

I(1)
nq

(αi, δz > 0) = (−i)
nq∑
i=1

θ (Imαi) eiαiδz

nq∏
l=1,l 6=i

1

αl − αi
, (C.2)

I(1)
nq

(αi, δz = 0) = lim
δz→+0

I(1)
nq

(αi, δz), if nq > 1, (C.3)

I(1)
nq

(αi, δz = 0) =
1

2
lim

δz→+0
I(1)
nq

(αi, δz), if nq = 1. (C.4)

The first two equations simply follow from Cauchy’s theorem when closing the contour

above. The third case is more subtle since the boundary term at infinity cannot be ne-

glected, which causes the factor 1/2. We explain this in more detail at the end of this

section. The single Born diagrams in this paper take values of nq = 1, 2, 3 only. The three

corresponding master formulas for these longitudinal integrals are

I
(1)
1 (α1, δz) = −i eiα1δz, (C.5)

I
(1)
2 (α1, α2, δz) = i

eiα2δz − eiα1δz

α2 − α1
, (C.6)

I
(1)
3 (α1, α2, α3, δz) = i

(
eiα2δz − eiα1δz

α2 − α1
− eiα3δz − eiα1δz

α3 − α1

)
1

α3 − α2
. (C.7)

Any double Born integral can be written as

I(2)
nq1 ,nq2 ,nq3

(αi;βj ; γk, δz1, δz2) =

∫
dq−1
2π

dq−2
2π

eiq
−
1 δz1+iq−2 δz2

(nq1∏
i=1

1

αi − q−1

)
×

nq2∏
j=1

1

βj − q−2


×

(nq12∏
k=1

1

γk − q−1 − q
−
2

)
, (C.8)

where αi, βj , γk are frequencies that appear in the poles of ∆g(Qi, q) with Glauber gluon

momenta q1, q2, q1+q2, respectively. Performing the q−2 integration using Cauchy’s theorem,
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the remaining q−1 integration can be expressed by a single Born integral

I(2)
nq1 ,nq2 ,nq3

(αi;βj ; γk, δz1, δz2) = (C.9)

(−i)
nq2∑
j=1

θ (Imβj) eiβjδz2
nq2∏

l=1,l 6=j

1

βl − βj
I

(1)
nq1+nq12

(αi; γk − βj , δz1)

+(−i)
nq12∑
k=1

θ (Im γk) eiγkδz2(−1)nq2

nq12∏
m=1,m 6=k

1

γm − γk
I

(1)
nq1+nq2

(αi; γk − βj , δz1 − δz2).

This equation solves any longitudinal integral of the double Born graphs in this paper.

For the first order in opacity calculation we need the contact limit of this integral, i.e.

I
(2)
nq1 ,nq2 ,nq3

(αi;βj ; γk, δz, δz). The result can be obtained by applying eqs. (C.2)–(C.4)

to eq. (C.9).

The longitudinal integral of any double Born diagram in this paper can be relateed

to one of seven master integrals by nk = (nq1 , nq2 , nq12). This master integrals can be

calculated to

I
(2c)
k = (−i)·



I1(γ1)/2, if nk = (1, 0, 1)

I2(γ1, γ2)/2, if nk = (1, 0, 2)

I3(γ1, γ2, γ3)/2, if nk = (1, 0, 3)

I2(α1 + β1, γ1), if nk = (1, 1, 1)

I3(α1 + β1, α2 + β1, γ1), if nk = (2, 1, 1)

I3(α1 + β1, α1 + β2, γ1), if nk = (1, 2, 1)

I3(α1 + β1, γ1, γ2), if nk = (1, 1, 2)


, (C.10)

where the functions I1, I2, I3 are the same as in eqs. (C.5)–(C.7). There is one technical

issue when deriving eq. (C.10). By definition αi, βj , γk all have positive imaginary parts,

due to the iε-prescription. However, one has to be careful when considering the complex

number γk − βj in eq. (C.9). For all calculation we are concerned with, this number has a

negative imaginary part. We have also checked that the results of the double Born integrals

do not depend on the sign of the imaginary part of γk − βj . The crucial point is that none

of these numbers lie on the real axis.

Now let us return to the subtlety in I
(1)
1 (α1, δz = 0). For nq = 1 and δz = 0 the

boundary term at infinity does not vanish and the integral I
(1)
1 (α1, δz = 0) becomes ill-

defined. To solve this issue one has to recall that the factor ṽ(q) also depends on q−,

ṽ(q−,q⊥) ∼ 1
µ2+q2

⊥+(q−)2
, but we dropped this dependence since it is power-suppressed.

Re-introducing this extra q− dependence cures the boundary term probem and yields

I
(1)
nq (αi, δz = 0) = −i/2 and the overall factor ṽ(0,q⊥). One can convince oneself that

in the other integrals, like I
(1)
nq>1(αi, δz = 0) or I

(1)
nq (αi, δz > 0), re-introducing the factor

ṽ(q−,q⊥) does not change anything to leading power in the EFT.
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D Color operators

In this appendix we present the color operators of all single and double Born graphs in the

paper. For the single Born graphs the color operators in terms of the basis vectors given

in eq. (4.18) are 

e1a

e1b

e2a

e2b

e3a

e3b

e4a

e4b

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15

e16

e17

e18

e19



=



1 0 0 0 0 0

0 0 0 1 0 0

1 −1 0 0 0 0

0 0 0 0 1 −1

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

0 0 0 0 0 1

0 0 0 0 1 0

1 0 0 −1 0 0

1 −1 0 0 −1 1

0 1 −1 −1 1 0

0 0 1 0 0 −1

1 0 −1 −1 0 1



, (D.1)
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For the double Born graphs the color operators in terms of the basis given in eq. (4.19) are



e1a
e1b
e2a
e2b
e3a
e3b
e4a
e4b
e5a
e5b
e6a
e6b
e7a
e7b
e8
e9
e10
e11
e12
e13
e14
e15
e16
e17
e18
e19
e20
e21
e22
e23
e24
e25
e26
e27
e28
e29
e30
e31
e32
e33
e34



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 1 1 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 1 1 0 0 0 0 −1 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 −1 1 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 −1 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 1 −1

0 0 0 −1 1 0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0 0 0 0 0

1 0 −1 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 −1

0 0 1 0 0 0 0 0 −1 0 0 −1 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 1 0 0 1 0 0 −1 0 0 0 0 0 0 0 0 0

0 1 −1 0 0 0 0 −1 1 0 0 0 0 0 0 −1 1 0 0 0 0 1 −1 0

0 0 1 0 0 −1 0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0


(D.2)
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