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1 Introduction

The hypersurface defined by a potential energy function V (~x;~a), with ~x = (x1, . . . , xN )

being the variables and ~a = (a1, . . . , ak) being a set of parameters, is called the potential

energy landscape (PEL) of a given physical model. The landscape, in particular, refers to

the potentially large number of parameters which constitutes a moduli space. The special

points of a PEL, defined as the critical (or stationary) points of ∂V (~x)
∂xi

= 0, with 1 ≤ i ≤ N ,

give crucial information about the physical system depending on the problem at hand.

In recent years, a huge influx of advancements have come through from many areas

in theoretical physics and chemistry in understanding the PEL and its relation to vari-

ous physical and chemical properties. The research areas where the PEL methods have

have been immensely successful in explaining the underlying physics or chemistry include

clusters [1–6], disordered systems and glasses [7, 8], biomolecules, protein folding, string

phenomenology [9], and within this area flux compactifications [10–16].

Due to the importance of these critical points of the PELs, finding them in realistic

models has been an active research area for quite some time. The stationary equations for

any realistic model are invariably non-linear which are known to be extremely difficult to

solve in general. Various numerical techniques exist based on the Newton-Raphson method

and its sophisticated variants [17–21] where a random initial guess is refined to attain a

single solution of the system. However, in all these methods, even after feeding a large

number of random initial guesses, one can never be sure of obtaining all the solutions.
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While many solutions as opposed to all solutions may be fine in many applications,

often one has to find all the solutions. The problem of not obtaining all the solutions

becomes crucial when one needs the information about all the local minima or the global

minimum, etc. For example, in string theory models, where in many cases the potential

energy landscape is defined by an effective four-dimensional, N = 1 supergravity scalar

potential V (K,W ) given a Kähler potential K, and a superpotential W , one has to find all

the minima. These minima are called string vacua and addressing the plethora of solutions

is one of the most important of current theoretical challenges.

Fortunately, in a large class of models, the equations are polynomials, or at least they

have polynomial-like non-linearity.1 Once they are identified as a system of polynomial

equations, we can use techniques from algebraic geometry, or more specifically, compu-

tational algebraic geometry to solve them by systematically transforming a given system

of multivariate polynomial equations to another system and has the same solutions as

the original one. The new system of equations is called a Gröbner basis (GB), and the

algorithm to compute one is called the Buchberger algorithm (BA).

The biggest advantage here is that one can find all the solutions of the given system

once the computation is finished. Computational algebraic geometry, which is essentially

a set of techniques based on the Gröbner basis method, has become one of the most useful

tools to study a number of phenomena in theoretical physics. Recently, the rich interplay

between algebraic geometry and theoretical physics, especially in gauge and string theory,

has been an active area of research [23]. Activities in these areas have been enhanced with

the increased power of computers and the development of algorithms in computational

algebraic geometry.

More specifically, a variety of methods have been used to study the moduli space of

vacua over the past few years [24, 25] based on symbolic computational algebraic geometry,

most of whose sub-methods and sub-algorithms rely on Gröbner basis techniques (cf. [26]

for an overview on the method). For convenience, a freely available computational package,

StringVacua, which is a Mathematica package specifically designed for phenomenologists [22,

27, 28] exists. StringVacua interfaces with the advanced computational algebraic geometry

package Singular [29]. Using StringVacua, one can extract important information such

as the dimension of the vacuum, the number of real roots in the system, stability and

supersymmetry of the potential, or the branches of moduli space of vacua, etc., using a

regular desktop machine in many circumstances.

However, the GB method is known to suffer from exponential complexity, i.e., the

computation time and the RAM required by the BA algorithm increases exponentially with

the number of variables, equations, degree, and terms in each polynomial; it is usually less

efficient for systems with irrational coefficient parameters ~a; and it is also highly sequential,

i.e., very difficult to parallelize the algorithm and put on a big cluster.

To overcome these shortcomings of the GB methods, a different approach called nu-

merical algebraic geometry (NAG) was recently introduced. Its core algorithm, called nu-

1 In the presence of non-perturbative effects where exponential terms contribute, one could still reduce

the system into polynomials of Lambert functions, perform standard polynomials manipulations and treat

the Lambert functions numerically [22].
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merical polynomial homotopy continuation (NPHC), guarantees to find all of the solutions

unlike other numerical methods such as the Newton-Raphson and its variants. Moreover,

unlike the Gröbner basis techniques, the NPHC method is “embarrassingly parallelizable”,

and hence one can solve more complicated systems efficiently using computer clusters.

NAG was introduced in particle theory and statistical mechanics areas in ref. [30].

Subsequently, the NPHC method was used to solve systems arising in numerous physical

phenomena in lattice field theories [31, 32], statistical physics [33–37], particle phenomenol-

ogy [38, 39], and string phenomenology [40–43].

1.1 Parametric potentials

As mentioned above, in generic physical applications, the potential energy function is

defined over a possibly vast parameter-space, where each point ~a represents a different

physical situation. For example, in a statistical mechanics model, the parameters are

the disorders [7]. Another example in theoretical chemistry where the models are Morse

clusters, the parameters represent the strength of the inter-particle potential [44–47]. As a

third example, in lattice field theory the parameters represent different background fields

in the models [31, 32, 48, 49]. Another situation is in flux compactifications within string

phenomenology where the parameters represent the flux quanta.

The flux quanta are discrete parameters that are given as integrals of n-forms along n-

cycles in a compact space, see section 4. Their discreteness arises as a Dirac quantization

condition. For many compactification manifolds, for instance Calabi-Yau spaces, these

cycles exist on the order of 10 to 100 where the flux quanta can be chosen independently.

This yields an exponentially large parameter space that is only limited by conditions of

conservation of certain charges in the compact space.

The stationary equations for parametric potentials obviously have parameters and if

we want to use the GB or NPHC methods directly, we have to specify numerical values

of the parameters before using the methods. In other words, we have to solve the system

separately from scratch for each point in the parameter space. In practice, due to the large

number of physically interesting parameter-points, this crude way of solving the problem

becomes prohibitively time consuming as well as computationally expensive.

In this paper, we introduce two methods which deal with parametric systems extremely

efficiently. The first method is called the Comprehensive Gröbner basis (CGB) method.

This is a completely symbolic method where given a parametric system of equations, CGB

yields a new system, leaving all the parameters in the symbolic form, which is a GB for

all values of the parameters and also for all the specializations, i.e., special values of the

parameters. Once we obtain a CGB for a given system, it then only amounts to inputting

the specific values of parameters and extracting the corresponding solutions out. Thus,

we can efficiently solve the system for as many parameter-points as we desire since the

system is solved for the whole parameter space. However, as one may surmise, this method

has the same aforementioned short-comings as the usual GB method. Nevertheless, when

successful in finishing the computation, the CGB method reduces the amount of work in

finding string vacua over a large space of flux parameters drastically.
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The second method is called coefficient-parameter polynomial continuation (CPPC),

which is based on NAG. In NPHC, one first has to estimate an upper bound on the number

of solutions of the given system so that one can then construct another system which has

the same number of solutions as the estimate. To reduce the computation in this method,

we must come up with a tighter upper bound on the number of solutions. Three of the

most important solution bounds were demonstrated in our previous works [30, 31, 33, 41].

However, in most of the realistic systems, the sparsity of the systems (i.e., the number of

monomials in each equation may be only a few) is not fully taken into account. Thus, even

though the original system may have only a few solutions, we may have to track many paths

making it computationally expensive. CPPC relies on the fact that the maximum number

of solutions of a parametric system of polynomial equations over all the parameter-points

is that at a generic parameter-point [50]. The number of paths to be tracked is usually

drastically smaller than any of the other upper bounds for the CPPC.

The second, and perhaps the most crucial, advantage is that in the CPPC method, we

obtain the start system once for for a generic parametric system, i.e., we then can use the

same start system for arbitrary parameter-points in the entire parameter-space. Several

more advantages of this method exist when solving these systems on a computer cluster,

but most importantly the method is “embarrassingly parallelizable”, a subject matter to

which we shall later return.

A very efficient package, which is yet to be publicly available, called Paramotopy [51],

uses all the computational advantages of the method in our favor and can deal with hun-

dreds of thousands of parameter-points. In this paper, we heavily rely on Paramotopy for

our computations.

We would like to compute solutions as a function of the parameters. We can do

this, although, implicitly, with the use of the Paramotopy package. Paramotopy allows

the user to define the parameter points using a Monte-Carlo style file, and so a user can

impose the necessary relationship on the parameters. In addition, one could treat all the

parameters (or just some of them) as variables when necessary and use the conventional

polynomial continuation methods. One then adds appropriate equations that correspond

to the real values of the parameter points. Alternatively, one can also do the same with

GB methods. However, in both situations, introducing more variables decreases the speed

in these calculations. Hence, the Paramotopy package provides a much quicker method for

computing solutions at multiple parameter values of interest.

We would like to make the clarification that the above two methods are based on

complex algebraic geometry which means that the variables are first considered to be

complex, and then once the solutions are obtained, only purely real solutions are retained

for analysis if the system was supposed to be made of real variables. However, there is a

more recent method from real algebraic geometry, based on the discriminant varieties [52,

53], which treats both variables and parameters as reals from the beginning and gives a

different set of information than the methods described in this paper. The details on this

method with applications arising from physics will be addressed in forthcoming works.

We first introduce the Comprehensive Gröbner basis method and solve a few toy models

in section 2. Then, to make the paper self-contained, we briefly explain the NPHC method
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before explaining the coefficient-parameter polynomial continuation that is implemented

in section 3. Therein, we also introduce the salient features of the Paramotopy package.

In section 4, we solve several toy models as well as more realistic models such as flux

compactifications on the quintic manifold. We will extract some interesting physics using

the string vacua of these models over a large space of fluxes. Finally, we conclude with

remarks and prospects in section 5.

2 Algebraic geometry & the comprehensive Gröbner basis method

In this section, we explain the concept of a Comprehensive Gröbner basis in more detail

and some basics of algebraic geometry to set the nomenclature and also to facilitate the

reader. We first introduce few technical terms leading to the definition of a Gröbner basis.

Then, we will explain what a Comprehensive Gröbner basis is. Readers uninterested in the

technicalities involved in the definition may freely skip subsection section 2.1 after reading

the next two paragraphs.

Roughly speaking, given a system of polynomial equations, the Buchberger Algorithm

(BA), or its refined variants, compute a new equivalent system of polynomials, called a

Gröbner basis [54] which has nicer properties; using the BA on multivariate polynomial

systems is analogous to Gaussian elimination for linear systems. Nowadays, efficient vari-

ants of the BA are available, e.g., F4 [55], F5 [56], and Involution Algorithms [57]. Symbolic

computation packages such as Mathematica, Maple, Reduce, etc., have built-in commands

to calculate a Gröbner basis. Moreover, Singular [29], COCOA [58], and Macaulay2 [59] are

specialized packages for computational algebraic geometry available freely. MAGMA [60] is

also such a specialized package available commercially.

A system of polynomial equations with parameters is called a parametric system;

finding the critical points of a polynomial PEL is precisely such a system. If one is interested

in solving the system at finitely many points on the parameter-space, then inserting the

numerical values of the parameters in the system and obtaining a Gröbner basis is a quick

escape, especially for a small number of parameters. A natural question to ask is if it is

possible to obtain a Gröbner basis for a given monomial ordering in terms of the symbolic

form of the parametric coefficients, valid for all its special cases, called specializations. One

can indeed compute such a ‘parametric Gröbner basis’ called Comprehensive Gröbner basis

(CGB) [61]. Algorithmically, we use the internal libraries of Singular to compute the CGB

in this paper.

2.1 The comprehensive Gröbner basis

The technicalities in this subsection will lead to a very useful result, namely that we can

transform a given system of multivariate polynomial equations to another one which has

the same solutions but is easier to solve. Here, the original system is considered as a basis

of an algebraic object, called an ideal. Then an important result, that an appropriate

change of this basis leaves the solution space unchanged, is used.

– 5 –
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Polynomial rings. We define a polynomial f as

f =
∑
α

aαx
α. (2.1)

Here, the sum is over a finite number of m-tuples α = (α1, . . . , αm) and xα = xα1
1 . . . xαm

m is

a monomial with all αi being non-negative integers. The coefficients aα and the variables

xi take values from the field K. However, to use the results of Algebraic Geometry to its

full extent, unless otherwise specified, we will take K = C.

Now, if K[x1, . . . , xm] is the set of all polynomials in variables x1, . . . , xm with coef-

ficients in K, then f ∈ K[x1, . . . , xm] can be viewed as a function f : Km −→ K where

Km is the affine space of all coefficients. Thus, the sum and product of two polynomials is

a polynomial, and a polynomial f divides a polynomial g if and only if g = fh, for some

h ∈ K[x1, . . . , xm]. Using this, it can be shown that under addition and multiplication,

K[x1, . . . , xm] satisfies all of the field axioms except for the existence of a multiplicative

inverse because 1
x is not a polynomial. Indeed, K[x1, . . . , xm] satisfies the axioms for a

commutative ring, or more precisely a polynomial ring 2.

Ideal. One can now view all the polynomials of a system of polynomial equations as

elements of a polynomial ring. Hence, one can also define a corresponding vector space,

called an ideal. More specifically, an ideal I is a subset of K[x1, . . . , xm] with the following

properties:

1. 0 ∈ I,

2. f + g ∈ I for all f, g ∈ I, and

3. hf ∈ I for f ∈ I and h ∈ K[x1 . . . , xm].

Consider any f ∈ I ⊂ K[x1, . . . , xm]. If f can be written as f =
∑

α aαhα with aα ∈ K
and hα ∈ K[x1, . . . , xm], then we write I = 〈hα〉 ⊂ K[x1, . . . , xm]. If the indexing set α

is finite, say with cardinality t, then I is called a finitely generated ideal. The polynomials

h1, . . . , ht are then said to be a finite basis of I, and we write I = 〈h1, . . . , ht〉.

Affine variety. So far, we have introduced the algebraic counterpart of Algebraic Geom-

etry. The solution space of a given ideal is called a variety. Specifically, an affine variety

of an ideal I = 〈h1, . . . , ht〉 is the set of common zeros of polynomials h1 . . . , ht in affine

space, denoted as V (h1, . . . , ht) or V (I).

Gröbner basis. The formalism of Algebraic Geometry turns out to be very helpful. In-

terpreting the polynomials hi as a basis of I, we can change the basis to, say, 〈H1, . . . ,Hs〉.
Then, it can be shown that the solution space remains unchanged in an appropriate change

of basis, that is, V (h1, . . . , ht) = V (H1, . . . ,Hs). In essence, we use computational tech-

niques to find a basis that is easier to deal with than the original one, in a certain sense.

Such a basis is called a Gröbner basis.

2For a nice discussion on related topics, the reader is referred to [54, 62].
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In linear algebra, such a change of basis can be done via Gaussian Elimination, and the

new basis is the familiar Row-Echelon form. In general, an algorithm to obtain a Gröbner

basis performs a specific set of algebraic operations including factorizing and dividing the

polynomials. In any algorithm that computes a Gröbner basis, the division requires one to

impose a total order among the monomials. This is called a monomial ordering.

A monomial ordering is a relation ‘�’ on the set of monomials xα, α ∈ Zn≥0, satisfying

the following properties:

1. the ordering always tells which of two distinct monomials is greater,

2. the relative order of two monomials does not change when they are each multiplied

by the same monomial, and

3. every strictly decreasing sequence of monomials eventually terminates [63].

Different types of monomial orderings exist that satisfy the aforementioned properties

such as lexicographic, graded lexicographic, graded reverse lexicographic, or degree lex-

icographic. Different monomial orderings are useful depending on the algorithm that is

employed to compute the Gröbner Basis. Lexicographic orderings will be primarily used

throughout our discussion. To learn more about monomial ordering, the reader is referred

to [54, 62].

By fixing a monomial order, we define a leading term for each polynomial of a

given ideal, denoted as 〈LT (h1), . . . , LT (ht)〉. One can always find a finite subset

G = 〈H1, . . . ,Hs〉 of an ideal I (except for the trivial case I = 〈0〉) such that every

leading term of f ∈ I can be generated by 〈LT (H1), . . . , LT (Hs)〉. Here, f ∈ I means

that f is an algebraic combination of h1, . . . , ht, as is required for I to be an ideal. Such a

subset G is called a Gröbner basis with respect to the specific monomial order.3

One can show that for any given monomial order, every nontrivial ideal I ⊂
K[x1, . . . , xm], has a Gröbner basis and that any Gröbner basis for an ideal I is a ba-

sis of I. One can also show that V (I) can be computed by any basis of I, and so the

solutions of I are the same as that of any of its Gröbner basis for any monomial ordering.

A well-defined procedure exists to compute a Gröbner basis for any given ideal and

monomial ordering, called the Buchberger algorithm. It should be noted that the Buch-

berger algorithm reduces to Gaussian elimination in the case of linear equations, as it is a

generalization of the latter. Similarly, it is a generalization of the Euclidean algorithm for

the computation of the Greatest Common Divisors of a univariate polynomial.

Comprehensive Gröbner basis. If the leading coefficient of each element of the basis is

1 and no monomial in any element of the basis is in the ideal generated by the leading terms

of the other elements of the basis, the basis is called a reduced Gröbner basis. A reduced

Gröbner basis is unique for a given ideal and monomial ordering, unlike a Gröbner basis.

3It should be noted here that a Gröbner basis may not be unique for a fixed monomial ordering. So,

we call it a Gröbner basis rather than the Gröbner basis. However, the so-called reduced Gröbner basis is

unique for a given monomial ordering. The reader is referred to ref. [54, 62] for more details.

– 7 –
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Now, if we have a parametric ideal, i.e., I = 〈f1, . . . , fs〉 ⊂ R[x1, . . . , xn; a1, . . . , am],

where R is a unique factorization domain, then a Comprehensive Gröbner basis (CGB) is

the distinct reduced Gröbner basis for all possible values of the parameters a1, . . . , am [61].

There are several algorithms available to compute the CGB [64–66]. We refer the reader

willing to learn more about the actual algorithm and related issues to these references, and

leave the section by noting that we use the internal libraries of Singular to compute the

CGB in this paper.

Let us illustrate with a trivial example of a nonlinear parametric equation ax2+bx+c =

0; this equation defines an ideal in C[x] with parameters a, b, c in one variable x. Singular’s

CGB library yields that there are three cases:

1. Case-1: for a = b = c = 0, the solution is the whole C, i.e. all x ∈ C;

2. Case-2: for a = 0 and b 6= 0, the solution is the line bx+ c = 0; and

3. Case-3: for a 6= 0, the solution is the quadric ax2 + bx+ c = 0,

as is clearly expected.

Next, let us consider a more involved example. Take the bi-variate system of two

equations 〈f1 = ax2y2 + bxy+ 2 = 0, f2 = bx+ ay+ 2 = 0〉, where a and b are parameters

and x and y are variables. Fix the lexicographic ordering x � y. Then, the leading terms

are clearly LT (f1) = ax2y2 and LT (f2) = bx. The Comprehensive Gröbner basis is as

follows:

1. Case-1: for a = b = 0, the solution set empty;

2. Case-2: a 6= 0, b = 0, the solution space is given by ay + 2 = 0 = −2x2 − a;

3. Case-3: a = 0, b 6= 0, the solution space is given by −y + 1 = 0 = bx+ 2;

4. Case-4: ab 6= 0, the solution space is given be −a3y4−4a2y3+(b2−4)ay2+2b2y−2b2 =

0 and bx+ ay + 2 = 0;

the last three cases can, of course, be checked by simple substitution.

3 Numerical algebraic geometry and coefficient-parameter polynomial

continuation

Having expounded on the virtues of the CGB, we now introduce a parallel method, which

attacks our problem from an entirely different perspective. The numerical polynomial

homotopy continuation (NPHC) method [63] is a recently introduced numerical method

that finds all the solutions of the given system of polynomial equations. It has been used

in various problems in particle theory and statistical mechanics in refs. [30–36, 38, 40, 41].

Here we briefly explain the NPHC method to make the paper self-contained.

For a system of polynomial equations, P (x) = 0, where P (x) = (p1(x), . . . , pm(x))T

and x = (x1, . . . , xm)T , which is known to have isolated solutions, the Classical Bézout

Theorem asserts that for generic values of coefficients, the maximum number of isolated

– 8 –
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solutions in Cm is
∏m
i=1 di, where di is the degree of the ith polynomial. This bound, the

classical Bézout bound (CBB), is exact for generic values. The genericity is well-defined

and the interested reader is referred to ref. [63, 67] for details.

Based on the CBB, a homotopy H(x, t) can be constructed as

H(x, t) = γ(1− t)Q(x) + t P (x), (3.1)

where γ is a generic complex number and Q(x) = (q1(x), . . . , qm(x))T is a system of poly-

nomial equations with the following properties:

1. the solutions of Q(x) = H(x, 0) = 0 are known or can be easily obtained. Q(x) is

called the start system and the solutions are called the start solutions;

2. the number of solutions of Q(x) = H(x, 0) = 0 is equal to the CBB;

3. the solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number of smooth

paths, called homotopy paths, each parameterized by t ∈ [0, 1); and

4. every isolated solution of H(x, 1) = P (x) = 0 can be reached by some path originating

at a solution of H(x, 0) = Q(x) = 0.

We can then track all the paths corresponding to each solution of Q(x) = 0 from t = 0

to t = 1. The paths which reach P (x) = 0 = H(x, 1) are the solutions of P (x) = 0.

By implementing an efficient path tracker algorithm, all isolated solutions of a system of

multivariate polynomials system can be obtained: it is shown [63] that for a generic γ,

there are no singularities (i.e., paths do not cross each other) for t ∈ [0, 1). Thus, in the

end, we obtain all the solutions of the system P (x) = 0. In this respect, the NPHC method

has a great advantage over all other known methods for finding stationary points.

Several sophisticated numerical packages well-equipped with path trackers exist, such

as Bertini [68], PHCpack [69], HOMPACK [70], and HOM4PS2 [71, 72], which are all available

as freewares from the respective research groups.

3.1 Coefficient-parameter polynomial continuation

The advantages of the homotopy based on the CBB are (1) the CBB is easy to compute,

and (2) the start system based on the CBB can be solved quickly. The drawback of it is

that the CBB does not take the sparsity of the system into account; systems arising in

practice have far fewer solutions than the CBB, so a large portion of the computational

effort is wasted.

Hence, one can also use homotopies based on tighter upper bounds. For example,

the 2-Homogeneous Homotopy is constructed by first writing Cm = Ck × Ck−m for some

k where 0 < k < m, which is accomplished by partitioning the original variables into

two groups. This has the advantage of incorporating some of the structure of the given

polynomial system P (x) into the start system Q(x). The corresponding bound, called

the 2-Homogeneous Bézout Bound (2HomBB), is often tighter than the CBB when the

polynomial system P (x) has a naturally arising partition of the variables, which occurs
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in the examples below. Given a partition, the 2HomBB is easy to compute and the start

system can be solved quickly via linear algebra.

Another important homotopy is the Polyhedral Homotopy which uses the mono-

mial structure of the given polynomial system P (x) based on the Bernstein-Khovanskii-

Kushnirenko (BKK) Theorem [73–75] to yield the BKK bound. Essentially, this upper

bound on the number of complex solutions is obtained by computing the mixed volume

of the convex hull of the Newton polytope (which is based on the exponents of the mono-

mials appearing) of each equation. The interested reader from the physics community

is referred to ref. [30, 41] for these above two bounds. We note that, as with the CBB,

the 2HomBB and BKK bounds are also generically sharp with respect to the family of

polynomial systems under consideration.

However, in the realistic systems, we do need to take the sparsity of the systems fully

into account. Indeed, even though the original system may have only a few solutions,

we may have to track many paths making it computationally expensive. The coefficient-

parameter polynomial continuation method is a much more practical way to overcome this

difficulty. The crux of using this method relies on a theorem, which we state without its

proof below, that states that the maximum number of solutions of a parametric system

of polynomial equations over all the parameter-points is the one at a generic parameter-

point [50, 76]:

Theorem 1. Let P (x, λ) = 0 be a system of polynomial equations, p1(x, λ), . . . , pn(x, λ) =

0, where λ = (λ1, . . . , λm) ∈ Cm are parameters and x = (x1, . . . , xn) ∈ Cn be variables.

Then, there exists an open, dense, full-measure set U ⊂ Cn+m such that for

(b∗1, . . . , b
∗
n, λ
∗
1, . . . , λ

∗
m) ∈ U the following holds:

1. The set X∗ of solutions x = (x1, . . . , xn) of the system

p1(x1, . . . , xn, λ
∗
1, . . . , λ

∗
m) + b∗1 = 0,

. . .

pn(x1, . . . , xn, λ
∗
1, . . . , λ

∗
m) + b∗n = 0

consists of d0 isolated points for d0 ≤ d, where d is the total degree of the system for

a generic λ.

2. Smoothness and accessibility properties (Properties 3 and 4 of homotopies) still hold

for coefficient-parameter polynomial continuation which is given as follows:

H(x, t) = P (x1, . . . , xn, (1− t)λ∗1 + t1, . . . , (1− t)λ∗m + tλm) + (1− t)b∗

where b∗ = (b∗1, . . . , b
∗
n). It follows that every solution of P (x) = 0 is reached by a

path beginning at a point of X∗.
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Another way of viewing this is to say that a “special” choice of our coefficients may

cause the system to be deficient in the maximum number of solutions. If we let D be the

set of all λ that cause these deficiencies, then D is a set of measure 0. Hence, CPPC relies

on the fact that we choose generic, or random, values of the coefficients. If we choose

random values for λ∗, then with probability 1, λ∗ /∈ D.

Algorithmically, for a given parametric system P (x, λ) = 0 where λ = (λ1, . . . , λm) are

parameters, we first simply need to solve P (x, λ) at a generic parameter-point λ∗ ∈ Cm.

This part has to be solved using a homotopy based on total degree, 2-homogeneous, or

the BKK root counts. Then, in the second part, the system P (x, λ∗) = 0 becomes the

start system of all other parameter-points λ ∈ Cm − {λ∗} and the solutions of this system

become the start solutions. Finally, each path is tracked with the below homotopy:

H(x, λ, t) = (1− t)P (x, λ∗) + t P (x, λ). (3.2)

The most important trick here is to choose the generic parameter-point from the complex

space. Once the generic parameter-point is chosen from the complex space, the other

parameter point can be chosen to be real if the physical situation requires. Also note that

the gamma trick is implicitly employed since the λ∗ are generic.

The advantage of coefficient-parameter polynomial continuation over the usual NPHC

is huge. When using CPPC, the number of start solutions is drastically smaller than any

of the other upper bounds usually (in the worst case, it is equal to the smallest of all the

other upper bounds), and hence the number of paths to be tracked reduces a lot. A crucial

advantage is that in coefficient-parameter polynomial continuation, we can obtain the start

system for a generic parametric system once during a computationally expensive ‘offline’

run. This allows us to use the same start system for any number of parameter-points in

the parameter-space and compute the solutions at each parameter point of interest with a

much faster ‘online’ run.

Moreover, the system at each parameter-point can be solved completely independent

from any other parameter-point. In addition, while solving the system at each parameter-

point, each path can also be tracked independently of all others, making it “doubly paral-

lelizable”. We should emphasize that the packages like Bertini and PHCpack now have an

implementation of coefficient-parameter polynomial continuation in addition to the usual

NPHC method.

A recently developed software module of Bertini, called Paramotopy [51], is a differ-

ent implementation of the coefficient-parameter polynomial continuation method than the

standard one already provided with Bertini and can deal with a huge number of parameter

points in parallel. In this paper we have extensively used this software. Several salient

features of this new software are:

1. It offers a few options on choosing the parameter-points: the user can demand the

package to discretize the parameter-space within a given range in as many parameter-

points as required or the package can also be fed in a list of parameter-points provided

by the user.
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2. Paramotopy first stores the data in the RAM before writing to the hard-disk which

is an efficient data-management practice making the package more efficient while

dealing with many parameter-points simultaneously.

3. The package is able to disregard any information other than the type of solutions

the user requires in the end, i.e., it can be asked to save only real affine solutions, or

only non-singular solutions, etc. This is an important aspect of the package because

by not including all the information produced in a regular run, it eliminates massive

data proliferation.

4. If, for any parameter-point where certain paths require higher precision, Paramotopy

informs us so that the user can re-run these specific parameter-points at higher pre-

cision settings. Note that the parameter-points may lie on some algebraic subset in

which exists an algebraic relationship on the parameters. In this case, the number of

complex solutions shrinks, and hence the related paths may require higher precision.

4 Illustrative examples

Having explained our methods in detail, in this section, we will illustrate with examples

coming from a variety of physical situations, commencing with a toy model and moving

onto more serious and involved cases.

4.1 Sys1 : a single-modulus example

We begin with a single-modulus toy example. First, we recall that given the Kähler po-

tential K and superpotential W , both as polynomials in fields φA=1,...,n one can proceed

to construct the scalar potential from the standard formulae [77]:

V = eK
[
KAB̄DAWDB̄W̄ − 3|W |2

]
. (4.1)

As usual the DA represents the Kähler derivative ∂A + ∂A(K), and KAB̄ is the inverse of

the field space metric

KAB̄ = ∂A∂B̄K . (4.2)

Our example of this problem requires the solution of the critical set

∂AV = 0, for A = 1, . . . , n . (4.3)

We can further classify the solutions to (4.3) by the amount of supersymmetry they pre-

serve, the value of the bare cosmological constant they dictate, and so forth. The most

relevant examples are:

• SUSY, Minkowski: ∂AV = 0, DAW = 0 for all A and W = 0;

• SUSY, AdS: ∂AV = 0, DAW = 0 for all A but W 6= 0.
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Thus prepared, let us take a single field example, which is addressed in the demo

of StringVacua and with which we can compare. Let the Kähler potential K and super-

potential W of an N = 1 supersymmetric theory in a single complex moduli field T be

given as

K = −3 log(T + T̄ ) , W = a+ bT 8 . (4.4)

Note that the field T comes along with its complex conjugate. Even though they can be

treated as different variables by merely relabeling them, they are not actually independent

variables. To avoid this problem, we can write them in terms of real and imaginary parts,

i.e., T = t+ i τ where t and τ are real. The potential, using (4.1), is

V =
1

3t
(4b(5b(t2 + τ2)7 − 3a(t6 − 21t4τ2 + 35t2τ4 − 7τ6))) (4.5)

which has 2 variables. To find the stationary points of V , we need to compute the zero

locus of the partial derivatives of V with respect to variables t and τ :

∂V

∂t
=

1

3t2
(4b(5b(13t2 − τ2)(t2 + τ2)6 − 3a(5t6 − 63t4τ2 + 35t2τ4 + 7τ6))) = 0,

∂V

∂τ
=

1

3t
(56bτ(5b(t2 + τ2)6 + a(9t4 − 30t2τ2 + 9τ4))) = 0 . (4.6)

For general values of parameters a and b the system already becomes difficult to analyze

using symbolic methods and one could solve the system for specific values such as a = b =

1 [26, 27].

We also note that the stationary equations in this example involve denominators. Since

we are not interested in the solutions for which the denominators are zero, we clear them

out by multiplying them with the numerators appropriately. In these equations, all the

denominators are multiples of t. The condition that none of the denominators is zero can

be imposed algebraically by adding an additional equation, 1 − y t = 0, with y being an

additional variable. Thus, we now have 3 equations in 3 variables. The CGB library of

Singular can deal with this system. The expression of the CGB of this system is quite large

so we do not write it down here.

We can also solve this system using CPPC. For the range of values of a and b given

in figure 1 we find that there are either 6 solutions for a, b > 0 and a, b < 0 or 4 solutions

for a < 0, b > 0 and a > 0, b < 0; these are indicated by different colors in figure 1. We

scan over a total of 100,150 parameter points and find a total of 582,676 solutions. Exactly

half of the solutions are physical, i.e. t > 0 which corresponds to a positive volume of the

cycle associated to the Kähler modulus T . We did our computation on a desktop machine

on single processor (Linux machine with 2.1GHz cloak speed). First, Bertini takes around

30 minutes to solve the system from scratch for a given parameter-point. This means that

it would have taken around 5.731 years to solve the system at all the 100, 150 parameter-

points. With the CH method, however, we solved them in only 55 hours.

The scalar masses of the moduli t and τ which can be calculated as the eigenvalues of

the Hessian of V are found to be positive for all parameter points with t > 0. We give the

moduli masses and the gravitino mass

m2
3/2 = eK |W |2 , (4.7)
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Figure 1. Scanned values for a and b for the one-modulus example in Sys1. The corresponding

number of solutions of the system per parameter point is indicated by the color. The total number

of parameter points is 100,150 and the spacing between the points is equidistant.

Figure 2. Masses of the moduli t and τ as eigenvalues of the Hessian (left) and the gravitino mass

(right) for the one-modulus model Sys1.

which determines the scale of supersymmetry breaking in figure 2, which is a frequency

plot of the mass values for our space of 100, 150 parameters.

4.2 Sys2 : a two-moduli model

Now, let us move on to a model with two moduli fields. Consider the Kähler potential and

superpotential

K = −3 log(T + T̄ )− log(S + S̄),

W = aS + bST + cT 2, (4.8)
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Figure 3. Scanned values for a and b and c for the two-moduli example Sys2. The total number of

parameter points is 100, 672, and the spacing between the points is equidistant. The blue regions

indicate that there are 6 solutions to Sys2.

with two fields, a Kähler modulus T = t + iτ and the axio-dilaton S = s + iσ. Hence,

using (4.1), the stationary equations to be solved are:

0 = (3a2(s− σ)(s+ σ) + 6at(b(−s2 + σ2) + 2cστ) + 2bcστ(t2 − 3τ2)

−b2(s− σ)(s+ σ)(5t2 − 3τ2) + c2(5t2 − 3τ2)(t2 + τ2)),

0 = (−9a2(s2 + σ2) + b2(s2 + σ2)(5t2 − 9τ2) + 2bcτ(σt2 + 18stτ − 9στ2)

+c2(−5t4 + 2t2τ2 − 9τ4) + 6a(2b(s2 + σ2)t+ c(5st2 + 4σtτ − 3sτ2))),

0 = (−(cσt(6a+ bt)) + (6acs+ 3b2(s2 + σ2)− 18bcst− 2c2t2)τ + 9bcστ2 + 6c2τ3),

0 = (3a2σ − 6at(bσ + cτ) + b(−5bσt2 − ct2τ + 3bστ2 + 3cτ3)),

0 = 1− zts .

The first four equations arise from setting the numerators of the various partial derivatives

of V to zero, and the last is an auxiliary equation to ensure that the denominator does not

vanish. Therefore, this system is 5 equations in 5 variables with 3 parameters. Again, this

is an example used in StringVacua, but a, b and c are parameters that were chosen to be

1,−1, 1 respectively in [26, 27]. Now, we can undertake the much more challenging task of

taking a huge range of parameter-values in our computation.

Again, for generic choice of the values for a, b and c, it becomes difficult for the tradi-

tional GB method. However, we can compute the CGB for this system; The output from

Singular of the CGB for this system is quite large, and, hence, we do not write it here.

Using Paramotopy on the other hand, we easily scan over 100, 672 parameter points,

see figure 3. We find 6 solutions per parameter point which yields a total of 604, 032

solutions. The physicality condition for the case of this model demands again t > 0 and

also s = g−1
s > 0, i.e. positive string coupling. This is fulfilled by 503, 299 solutions. As

for Sys1, we did our computation on a desktop machine. Bertini takes around 40 minutes

to solve the system from scratch for a given parameter-point. Hence, for all the 100, 672

parameter-points, it would have taken 7.682 years. However, using the CPPC method,

we solved them all in 125 hours. When evaluating the Hessian of V , we find that there

is always at least one negative eigenvalue, i.e. no vacua exist for this model for the set of

parameters we considered.
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4.3 Sys3 : the quintic

An area of string phenomenology where one can make use of the power of CPPC is the

landscape of flux vacua in type IIB string theory [12, 13, 15, 16]. As mentioned in Sys1, if

one goes to a particular corner of the moduli space, the equations

DiW = 0 (4.9)

that determine the supersymmetric vacuum state of the no-scale scalar potential [78, 79]

V = eKKab̄DaWDbW , (4.10)

are polynomial equations in the complex structure moduli fields φa = τ, U1, . . . , Uh2,1 ,

where τ = σ + i s (= iS̄) is the axio-dilaton. The parameters of these equations are the

flux integers

1

(2π)2α′

∫
Aa

F3 = f1a ∈ Z ,
1

(2π)2α′

∫
Ba

F3 = f2a ∈ Z ,

1

(2π)2α′

∫
Aa

H3 = h1a ∈ Z ,
1

(2π)2α′

∫
Ba

H3 = h2a ∈ Z ,
(4.11)

where F3 and H3 are the RR and NS three-form flux of type IIB string theory, and 〈Aa, Bb〉
is a symplectic basis for the b3 = 2h2,1 + 2 three-cycles. The flux integers are to be chosen

freely as long as the D3 tadpole constraint

L =
1

(2π)4(α′)2

∫
X3

H3 ∧ F3 = h1f2 − h2f1 (4.12)

is not violated.

For supersymmetric flux configurations, F3 and H3 always combine into an imaginary-

self-dual (ISD) flux G3 = F3 − τ H3 [12, 80], which can be written as [9]

∗6 sH3 = −(F3 − σH3) . (4.13)

Consequently, one only has to consider 2h2,1 + 2 independent directions of the original

4h2,1 + 4 flux integers defining

H3 =

(
h1

h2

)
and F3 =

(
−h2

h1

)
, (4.14)

Then, the D3 tadpole eq. (4.12) manifests as a positive definite form, i.e.

L = h2
1 + h2

2 , (4.15)

for a symplectic basis of three-cycles. With this form of the D3 tadpole, we can use

Paramotopy to find all flux vacua, i.e. solutions to eq. (4.9) for all flux configurations h1,

h2 with D3 tadpole L < Lmax for a given maximal tadpole Lmax. We have to take into

account the SL(2,Z) invariance of IIB string theory in order to consider only physically
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equivalent flux configurations. It was shown in [81] that for fluxes of the form (4.14), only

the configurations (
h1

h2

)
∼=

(
−h1

−h2

)
∼=

(
−h2

h1

)
∼=

(
h2

−h1

)
. (4.16)

are related by SL(2,Z), and hence physically equivalent.

This problem to find all supersymmetric flux vacua in the large complex structure

limit was carried out for the compactification manifold CP4
11169[18] in [81] in the context

of de Sitter model building in the Kähler uplifting scenario [82, 83]. To present a simple

example, we consider the one complex structure modulus ψ of the mirror quintic which

has h1,1 = 101 and h2,1 = 1. In the limit of large complex structure, this describes the one

moduli subspace of the quintic [84] given by the vanishing of the polynomial

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψ x0x1x2x3x4 , (4.17)

in CP4
11111 with coordinates x0, . . . , x4. To obtain a polynomial system let us introduce the

complex coordinate U = ν + i u which relates to ψ as

U ' − 5

2πi
log(5ψ) , (4.18)

up to corrections of O(Uke2πiU ) that are exponentially suppressed in the large complex

structure limit Im(U) → ∞. This moduli space can be described by an approximately

polynomial prepotential in the large complex structure limit

G = ω2
0

(
−5

6

(
ω1

ω0

)3

− 11

4

(
ω1

ω0

)2

+
25

12

ω1

ω0
− 25ζ(3)χ

2(2πi)3

)
, (4.19)

with χ = 2(h1,1 − h2,1) = 200 and ωa and Gb are the periods

ωa =

∫
Aa

Ω , Gb =

∫
Bb

Ω . (4.20)

for a, b = 1, 2 and Gb = ∂ωb
G. ω0 can be interpreted as the normalization Ω of the

holomorphic three-form, such that the one physical variable is U = ω1/ω0. Eq. (4.19)

is valid up to corrections O(e2πikU ) that are exponentially small in the limit of the large

complex structure. We define the large complex structure limit as Im(U) > 2 such that

these corrections to G are smaller than 10−3G.4

4Note that there is a conifold singularity at ψ5 = 1 that is excluded from the large complex structure

limit Im(U) > 2 according to eq. (4.18).
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Figure 4. Left: distribution of all algebraic solutions to eq. (4.9) with s > 0 and u > 0 for the

Kähler potential and superpotential (4.21) in Sys3. The gray shaded area indicates the space of

physical solutions, i.e. s > 0 and u > 2. Middle: distribution of the dilaton τ = σ + i s. Right:

distribution of the superpotential W0.

Together with the axio-dilaton, τ this yields a two moduli example described by the

Kähler potential and superpotential

K = Kk − log

(
−i
∫
X3

Ω(U) ∧ Ω̄(Ū)

)
− log (−i(τ − τ̄)) ,

= − log

(
i

2∑
a=1

(ω̄aGa − ωaḠa)

)
− log (−i(τ − τ̄)) ,

W0 =
1

2π

∫
X3

(F3 − τH3) ∧ Ω(U) ,

= 2π
2∑

a=1

[(f1a − τ h1a)Ga − (f2a − τ h2a)Ua] ,

(4.21)

where Kk is the Kähler potential of the Kähler moduli and setting α′ = 1.

We solve eqs. (4.9) for (4.21) up to a maximal tadpole of Lmax = 625. This corresponds

to 481, 825 flux parameter points for which we find a total of 1, 726, 334 solutions, i.e. on

average ∼ 3.6 solutions per parameter point. Only 20, 280 are physical solutions, i.e.

g−1
s = s > 0 and u > 2, see figure 4. If we were to solve it at each parameter-point from

scratch, then it takes 72 minutes per parameter-point. This means that for total 481, 825

parameter-points that we solved the system for, we would have taken 481, 825 × 72/60 =

578, 190 hours. But instead, using Paramotopy, we solved all of them in only 3776 hours,

i.e., around 26.4 human hours with a cluster of 144 processors. We could not obtain the

CGB for this system in a reasonable time.

We can make use of the SL(2,Z) symmetry of IIB string theory, to transform each

solution to the fundamental domain

− 1

2
≤ Re(τ) ≤ 1

2
and |τ | > 1 , (4.22)

via the successive transformations

τ ′ = τ + b , W ′0 = W0 , and τ ′ = −1/τ , W ′0 = W0/τ (4.23)
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Figure 5. For Sys3 ((4.9) and (4.21)), the distribution of the masses m2 of the moduli t, τ, s and

σ, i.e. all eigenvalues of the Hessian of V (left) and the gravitino mass m2
3/2 (right) in units of M2

P

for V = 100.

with b ∈ Z. We show the distribution of the obtained values for τ = σ + i s and the flux

superpotential W0 in figure 4. We see that the the strongly coupled region s = 1/gs ∼ 1 is

preferred and values of W0 ∼ O(102 − 103) are preferred. The same qualitative behavior

was observed in [81] for the manifold CP4
11169[18].

Finally, we give the masses m2 of the moduli t, τ, s and σ and the gravitino mass m2
3/2

in figure 5. For this, we have to specify the value of the Kähler moduli Kähler potential in

eq. (4.21). For a Calabi-Yau compactification, this is given as Kk = −2 logV, where V is

the volume modulus of the Calabi-Yau and its vacuum expectation value depends on the

stabilization mechanism of the Kähler moduli. Here we choose V = 100 in string units for

definiteness.

4.4 Further applications: Sys4

As mentioned in the introduction, large systems with a multitude of parameters are ubiq-

uitous. Thus, our methods above should be applicable to far more situations than finding

the extrema of a PEL in the context of effective supersymmetric Lagrangians. In this

subsection, as a parting example, let us see the power of the Paramotopy software applied

to the geometry of Calabi-Yau manifolds.

For concreteness and continuing along the vein of Sys3, let us focus on the problem of

finding the singular locus (or the absence thereof) given a family of quintics.5

Let us consider the family of quintic manifolds given by as a homogeneous hypersurface

in CP4 with coordinates x0, . . . , x4, and let

Q(x0, . . . , x4; a, b, c) = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + ax0x1x2x3x4 + bx4

0x1 + cx3
1x2x3, (4.24)

5 Recently there has been much activity in study the database of so-called complete intersection Calabi-

Yau (CICY) manifolds of which the quintic is the simplest example as well their smooth quotients. Checking

smoothness for models with this database of 7890 Calabi-Yau threefolds and their descendents, for example,

is a crucial step [85–87].
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#sol 0 1–10 11–100 101–240

P0 35, 613 93, 162 1, 250 2, 626

P1 0 109, 326 20, 724 2, 601

P2, P3 0 126, 159 6, 441 51

P4 60 129, 990 0 2, 601

Table 1. Distributions of the number of solutions #sol for the five systems Pi.

where a, b, c are complex parameters. Of course, the most general family of quintics has 101

deformation parameters corresponding to h2,1 of the manifold, but this example suffices to

show the power of the method. Now, for b = c = 0, we have the one most familiar to us,

with a = −5 being the conifold point in the complex structure moduli space. The singular

locus of Q is given by the Jacobian ideal 〈∂xiQ〉 for i = 0, . . . , 4, excluding the origin and

defined up to scaling of the projective coordinates.

It is more convenient to work over affine patches of CP4 which can be rescaled to be

Pi = {xi = 1} for i = 0, . . . , 4. For each of the five patches, we compute the four remaining

partial derivatives, the solution of which is then the system we need to analyze. That is,

we need to perform Paramotopy on

∂xj 6=i
Q(xi = 1; a, b, c) = 0 , i = 0, . . . , 4 . (4.25)

All of the 5 systems are of the same size and we take a, b, c ∈ [−25, 25] in increments of one,

i.e. 513 = 132, 651 parameter points. Bertini takes from 144 to 223 seconds at a parameter-

point if solved from scratch, hence it would have taken from 0.6057 to 0.938854 years for all

132651 parameter-points. Paramotopy solved each of these systems for all parameter-points

in from 19.216 to 92.9002 hours (using 72 processors, it took 960.812 to 4645.01 seconds).

Obtaining the CGB for this system is quite fast as well; however, obtaining the solutions for

each parameter-point from the CGB takes the same amount of time as Paramotopy. Hence,

we show the results only obtained from Paramotopy here. We show the number of solutions

per parameter point indicated by the different colors in figure 6 and table 1. The solution

space of the systems P2 and P3 is identical since eq. (4.24) is invariant under x2 ↔ x3.

5 Conclusion and outlook

Parametric systems of non-linear equations arise very naturally and frequently in theoretical

physics. The parameters add one more hurdle in solving such systems in addition to the

non-linearity of the equations as one has to solve the system many times. In the present

paper, we have demonstrated that two of the sophisticated algebraic geometry methods

can solve such systems very efficiently provided that the nonlinearity is polynomial-like.

The first method is the Comprehensive Gröbner basis (CGB) which is a symbolic

method based on Gröbner bases. Given a (non-parametric) system of equations, we can

systematically find another system of equations which has the same solution space as the

original one and is easier to solve, called a Gröbner basis. If we have a parametric system
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Figure 6. The number of solutions at each parameter point {a, b, c} for system P0 (top left), P1

(top right), P2 and P3 (bottom left) and P4 (bottom right) indicated by the different colors.

of equations, then we can compute the CGB which is a Gröbner basis for all values of the

parameters including their special values. To obtain the solutions of the system at a specific

parameter-point, one then needs to input the values of the parameters in the CGB and

solve the system using the traditional methods. However, the algorithmic complexity to

compute the CGB is the same, or in many cases even worse, as the Gröbner basis method,

i.e., the memory required by the algorithm blows up exponentially with increasing number

of variables, equations, monomials, and degree. Moreover, the related algorithm is highly

sequential and unparallelizable. Hence, though the CGB method is extremely useful in

the cases where we can finish the computation, but for many physical systems the method

often falls short.

The second method we described in this paper is called coefficient-parameter polyno-

mial continuation. Here, one first solves the given parametric system of polynomial equa-

tions at a generic parameter-point because it is shown that the number of solutions at such

a parameter-point is an upper bound on the number of solutions at any other parameter-

points. Then, one tracks solution-paths from the solutions at the generic parameter-point

to the ones at which the system needs to be solved using the numerical polynomial homo-

topy continuation method. This method is highly parallelizable, and, hence, we can solve

the system at thousands of parameter-points in a short time on a computer cluster. We
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System Number of parameter points single-processor CPPC

Sys1 100, 150 5.731 yr 55 h

Sys2 100, 672 7.682 yr 125 h

Sys3 481, 825 66.003 yr 3776 h

Sys4 132, 651 0.6− 0.9 yr 19.2− 92.9 h

Table 2. Number of parameter points and computation time for the examples under consideration.

use a package called Paramotopy which is not only a highly efficient implementation of the

related algorithm, but also does data and memory management effectively. These features

allow for a huge number of parameter-points to be solved simultaneously.

We have used these two methods on various examples arising from computing the

extrema of potential energy landscapes, especially in the context of moduli stabilization

in string phenomenology. However, obtaining the solutions for each parameter-point from

the CGB (for the cases it is possible to obtain the CGB) takes the same amount of time

as Paramotopy; hence, we show the results only obtained from CPPC in this paper.

The examples are given as a 4D N = 1 effective supergravity scalar potential, defined

by a Kähler potential K and a superpotential W . Our first two examples Sys1 and Sys2

are toy models of one and two complex scalar fields, respectively.

We looked for stationary points of these scalar potentials for ∼ 105 parameter points,

finding half of the stationary points are vacua in the case of Sys1 and finding no vacua in

the case of Sys2, i.e., at least one tachyonic direction always exists. Finally, we looked at

flux compactifications on a realistic Calabi-Yau, the quintic in the case of two moduli. We

look for flux vacua for ∼ 5 · 105 flux configurations, which corresponds to a maximal D3

tadpole of L = 625. Our results indicate preferences of strongly coupled vacua gs & 1 and

values of the superpotential W0 ∼ O(102 − 103).

The applicability of the methods described here is, of course, much wider and is in-

tended for any large parametric polynomial systems, with the parameters appearing ex-

plicitly as coefficients. Indeed, these methods should provide an extremely powerful tool

for many areas in theoretical physics such as potential energy landscape, statistical me-

chanics, particle phenomenology, string phenomenology, and non-linear dynamics. As an

illustration, we have applied CPPC to the geometry of Calabi-Yau manifolds in the case

of Sys4.

If we were to solve Sys1, Sys2, the quintic, and the Calabi-Yau systems from scratch

for each parameter-point using the numerical homotopy continuation method, a single

processor machine would have taken 5.731 years, 7.682 years, 66.003 years, and 0.6057-

0.938854 years, respectively. But using coefficient-parameter polynomial continuation, we

solved them in 55 hours, 125 hours, 3776 hours and 19.216-92.9002 hours, respectively.

This is a drastic reduction of the computational efforts, see also table 2.

We emphasize that the two methods are based on complex algebraic geometry which

means that the variables are first considered to be complex, and then only purely real so-

lutions are retained, if desired. Because in many applications we only have real parameters
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and only real solutions are physically important, a natural question to ask is if any method

exists which can deal with systems with both parameters and variables defined over reals.

Indeed, a more recent method exists from symbolic real algebraic geometry, based on the

discriminant varieties [52, 53], which treats both variables and parameters as reals from

the beginning and gives a different set of information than the methods described in this

paper. This certainly constitutes a direction worthy of pursuit. On the numerical side,

little progress exists in this direction, and so far methods exist to extract only limited infor-

mation out for the whole parameter space. For example, in ref. [88], a numerical method is

proposed which can tell us the maximum and minimum number of real solutions over the

whole parameter-space. It is our hope that the applications in this paper will also become

a motivation to develop such methods and making them more for real-life applications.

One can also certify if a given solution is indeed in the quadratic convergence region of the

system using Smale’s α-theory which is used in the potential energy landscape areas in [89].

In future, we plan to combine CPPC method and the certification method to achieve the

’exact’ solutions of a given system.
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