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1 Introduction

As a powerful tool of understanding a variety of strongly coupled condensed matter sys-

tems, AdS/CMT has been entering an era from building purely theoretical models with

highly symmetric configuration to modelling more realistic condensed matter system with

less symmetry. In particular, instead of working within the probe limit, very recently the

authors in [1] and [2] have constructed some spatially inhomogeneous but periodic gravita-

tional backgrounds by fully solving the coupled partial differential equations numerically

with the Einstein-DeTurck method. Such gravitational backgrounds, by holography, corre-

spond to the boundary systems in the presence of a lattice, a key ingredient in the condensed

matter systems. Thus with such gravitational backgrounds, one can explore various lat-

tice effects in the holographic investigation of condensed matter systems. Actually for the

transport coefficients such as optical conductivity and thermoelectric conductivity, it has

been shown that not only does the presence of a lattice result in the Drude peak at low

frequencies but also induces a new intermediate scaling regime in which a robust power law

behavior is found with respect to the frequency [1, 2]. Remarkably such a result is in striking

agreement with the experiments on the cuprates, including the superconducting phase [3].

The purpose of this paper is to investigate how such a holographic lattice affects the

Fermi surface by putting the Dirac field in such bulk gravitational backgrounds. To achieve

this, in the next section we first build up the holographic framework to extract the spectral

function for fermions living on the boundary by solving the bulk Dirac equation in periodic

backgrounds. Then we shall present a numerical construction of two kinds of ultra cold

holographic lattices using the Einstein-DeTurck method in section III. After that, the nu-

merical results for the Fermi surface in the presence of such holographic lattices are detailed

in section IV. We shall conclude with some discussions as well as further directions in the

final section.
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2 Holographic setup for the bulk Dirac field in periodic backgrounds

Start from the bulk action for a Dirac field with mass m and charge q

SD = i

∫
d4x
√
−gζ (ΓaDa −m) ζ, (2.1)

in the static background as general as

ds2 = −gtt(x, z)dt2 + gzz(x, z)dz
2 + gxx(x, z)dx2 + gyy(x, z)dy

2 + 2gxz(x, z)dxdz,

A = At(x, z)dt. (2.2)

Here Γa = (eµ)aΓµ with (eµ)a a set of orthogonal normal vector bases and Γµ Gamma

matrices. In addition, Da is the covariant derivative, i.e.,

Da = ∂a +
1

4
(ωµν)aΓ

µν − iqAa, (2.3)

where Γµν = 1
2 [Γµ,Γν ], and (ωµν)a are the spin connection 1-forms given by

(ωµν)a = (eµ)b∇a(eν)b. (2.4)

With the following orthogonal normal vector bases

(e0)
a =

1
√
gtt

(
∂

∂t

)a
, (e1)

a =
1
√
gxx

(
∂

∂x

)a
, (e2)

a =
1
√
gyy

(
∂

∂y

)a
,

(e3)
a = −

√
gxx

gxxgzz − g2xz

(
∂

∂z

)a
+

gxz√
gxx(gxxgzz − g2xz)

(
∂

∂x

)a
, (2.5)

the non-vanishing components of spin connections can be calculated as follows

(ω01)a = −(ω10)a = − ∂xgtt
2
√
gttgxx

(dt)a,

(ω03)a = −(ω30)a =
gxx∂zgtt − gxz∂xgtt

2
√
gttgxx(gxxgzz − g2xz)

(dt)a,

(ω12)a = −(ω21)a = − ∂xgyy
2
√
gxxgyy

(dy)a,

(ω13)a = −(ω31)a =

(
− ∂zgxx

2
√
gxxgzz − g2xz

+
2gxx∂xgxz − gxz∂xgxx
2gxx

√
gxxgzz − g2xz

)
(dx)a

+
gxx∂xgzz − gxz∂zgxx
2gxx

√
gxxgzz − g2xz

(dz)a,

(ω23)a = −(ω32)a =
gxz∂xgyy − gxx∂zgyy

2
√
gxxgyy(gxxgzz − g2xz)

(dy)a. (2.6)

Thus the Dirac equation

ΓaDaζ −mζ = 0 (2.7)
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can be written as

−
√

gxx
gxxgzz − g2xz

Γ3∂zζ +
1
√
gtt

Γ0(∂t − iqAt)ζ +

(
1
√
gxx

Γ1 +
gxz√

gxx(gxxgzz − g2xz)
Γ3

)
∂xζ

+
1
√
gyy

Γ2∂yζ+

(
∂xgtt

4gtt
√
gxx

+
∂xgyy

4gyy
√
gxx

+

√
gxx∂xgzz

4(gxxgzz−g2xz)
+
gxz(gxz∂xgxx−2gxx∂xgxz)

4g
3/2
xx (gxxgzz − g2xz)

)
×Γ1ζ − 1

4
√
gxx(gxxgzz − g2xz)

×

×
(
∂zgxx−2∂xgxz+

gxz
gxx

∂xgxx+
gxx∂zgtt−gxz∂xgtt

gtt
+
gxx∂zgyy−gxz∂xgyy

gyy

)
Γ3ζ−mζ=0. (2.8)

To proceed, let us first make a transformation ζ = (gttgxxgyy)
− 1

4F . Then the above

equation turns out to be

−
√

gxx
gxxgzz−g2xz

Γ3∂zF+
1
√
gtt

Γ0(∂t−iqAt)F+

(
1
√
gxx

Γ1+
gxz√

gxx(gxxgzz−g2xz)
Γ3

)
∂xF

+
1
√
gyy

Γ2∂yF +

(
−∂xgxx

4g
3/2
xx

+

√
gxx∂xgzz

4(gxxgzz − g2xz)
+
gxz(gxz∂xgxx − 2gxx∂xgxz)

4g
3/2
xx (gxxgzz − g2xz)

)
Γ1F

+
1

4
√
gxx(gxxgzz − g2xz)

(
2∂xgxz − 2

gxz
gxx

∂xgxx

)
Γ3F −mF = 0 (2.9)

Next expanding F as F = F (x, z)e−iωt+ikix
i
, one can have

∆3Γ
3F + ∆0Γ

0F −∆1Γ
1F −∆2Γ

2F +mF = 0, (2.10)

where we have denoted

∆3 =:
1√

gxx(gxxgzz − g2xz)

(
gxx∂z − gxz∂x − ik1gxz −

1

2
∂xgxz +

gxz
2gxx

∂xgxx

)
,

∆0 =: i(ω + qAt)
1
√
gtt
,

∆1 =:

(
1
√
gxx

∂x +
ik1√
gxx
− ∂xgxx

4g
3/2
xx

+

√
gxx∂xgzz

4(gxxgzz − g2xz)
+
gxz(gxz∂xgxx − 2gxx∂xgxz)

4g
3/2
xx (gxxgzz − g2xz)

)
,

∆2 =:
ik2√
gyy

. (2.11)

Now if we choose our gamma matrices as

Γ3 =

(
−σ3 0

0 −σ3

)
, Γ0 =

(
iσ1 0

0 iσ1

)
,

Γ1 =

(
−σ2 0

0 σ2

)
, Γ2 =

(
0 σ2

σ2 0

)
, (2.12)
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and split the 4-component spinor into two 2-component spinors as F = (F1, F2)
T , then the

Dirac equation becomes

∆3

(
F1

F2

)
−mσ3 ⊗

(
F1

F2

)
+ ∆0σ

2 ⊗

(
F1

F2

)
± i∆1σ

1 ⊗

(
F1

F2

)
− i∆2σ

1 ⊗

(
F2

F1

)
= 0. (2.13)

Note that this is a coupled equation between F1 and F2 as opposed to the case in [4], where

F1 and F2 are decoupled. Furthermore, by the decomposition

Fα ≡

(
Aα
Bα

)
(2.14)

with α = 1, 2, the Dirac equation (2.13) can be expressed as

(∆30∂z + ∆31 ∓m)

(
A1

B1

)
∓ i∆0

(
B1
A1

)
+ i∆1

(
B1
A1

)
− i∆2

(
B2
A2

)
= 0, (2.15)

(∆30∂z + ∆31 ∓m)

(
A2

B2

)
∓ i∆0

(
B2
A2

)
− i∆1

(
B2
A2

)
− i∆2

(
B1
A1

)
= 0, (2.16)

where

∆30 =:
gxx√

gxx(gxxgzz − g2xz)
,

∆31 =:
−ik1gxz − 1

2∂xgxz + gxz
2gxx

∂xgxx√
gxx(gxxgzz − g2xz)

. (2.17)

Suppose our background field is periodic along the x direction with the periodicity c.

Then by the Bloch theorem, the solution to our Dirac equation can always be expanded

as follows (
Aα(x, z)

Bα(x, z)

)
=

∑
n=0,±1,±2,···

(
Aα,n(z)

Bα,n(z)

)
einKx (2.18)

with K = 2π
c .

Below we will restrict ourselves to the following periodic background, i.e.,

ds2 =
1

z2
{−(1− z)P (z)Qtt(x, z)dt

2 +
Qzz(x, z)dz

2

P (z)(1− z)
+Qxx(x, z)[dx+ z2Qxz(x, z)dz]

2 +Qyy(x, z)dy
2},

A = (1− z)ψ(x, z)dt. (2.19)

Here

P (z) = 1 + z + z2 − µ21z
3

2
(2.20)

with the other variables regular from the horizon z = 1 all the way to the conformal

boundary z = 0. In particular, we require at the horizon

Qtt(x, 1) = Qzz(x, 1) (2.21)

– 4 –
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and at the conformal boundary

Qtt(x, 0) = Qzz(x, 0) = Qxx(x, 0) = Qyy(x, 0) = 1, Qxz(x, 0) = 0, ψ(x, 0) = µ(x). (2.22)

Hence such a geometry asymptotes AdS with the curvature radius L = 1 and the temper-

ature given by

T =
P (1)

4π
=

6− µ21
8π

. (2.23)

With the above background ansatz, our Dirac equation gives rise to

∂z

(
Aα,n
Bα,n

)
± ω

4πT

1

1− z

(
Bα,n
Aα,n

)
= 0 (2.24)

at the horizon. In order to obtain the retarded Green function on the boundary by holog-

raphy, the independent ingoing boundary condition should be imposed at the horizon, i.e.,(
Aα,n
Bα,n

)
=

(
1

−i

)
(1− z)−

iω
4πT (2.25)

for each α and n with the others turned off. On the other hand, near the AdS boundary,

our Dirac equation reduces to

(z∂z −mσ3)⊗

(
F1,n

F2,n

)
= 0 . (2.26)

Hence the solution can be asymptotically expanded near the AdS boundary as

Fα,n≈aα,nzm
(

1

0

)
+ bα,nz

−m

(
0

1

)
. (2.27)

Holography tells us that the retarded Green function can be obtained by the following

relation

aα,n(β, l) = Gα,n;α′,n′bα′,n′(β, l), (2.28)

where aα,n(β, l) and bα,n(β, l) are the asymptotic expansion coefficients in (2.27) of the

solution to the Dirac equation evolving from the ingoing boundary condition with the only

(β, l) mode turned on.

In what follows, for simplicity but without loss of generality, we shall work solely with

the case of m = 0.

3 Numerical construction of ultra cold holographic lattices

A holographic lattice background can be constructed in at least two ways. One way is to

introduce a neutral scalar field with the periodic boundary conditions along the spatial di-

rection. We would like to refer to this kind of holographic lattice as the scalar lattice. The

other kind of holographic lattice is induced directly by a periodic chemical potential to the

– 5 –
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gauge field on the boundary, which is referred to as the ionic lattice. This ionic lattice has

been discussed earlier but almost always treated perturbatively in [5–9]. In [2] it was treated

exactly without the scalar field. Both of these two kinds of holographic lattice can be numer-

ically constructed by the Einstein-Deturck method, which has been detailed in [1, 10, 11].

In order to see the lattice effect on the Fermi surface, we will follow the same route to con-

struct these two kinds of holographic lattice backgrounds with a rather cold temperature.

3.1 The scalar lattice

To construct an ultra cold scalar lattice, let us consider the following gravitational action

including a Maxwell field and a neutral scalar field, i.e.,

S =
1

16πGN

∫
d4x
√
−g
[
R+

6

L2
− 1

2
FabF

ab − 2∇aΦ∇aΦ− 2M2Φ2

]
, (3.1)

where L is the AdS radius as before, and M is the mass of the scalar field. In what follows,

we shall set L = 1 and M2 = −2. Then the equations of motion can be derived from the

above action as

Rab + 3gab − 2
(
∇aΦ∇bΦ− Φ2gab

)
−
(
FacF

c
b −

gab
4
FcdF

cd
)

= 0, (3.2)

∇aF ab = 0, (3.3)

�Φ + 2Φ = 0. (3.4)

Now with the ansatz in eq. (2.19) for our holographic lattice, the asymptotic behavior of

the scalar field is

Φ = zφ = z[φ1 + zφ2 +O(z2)] (3.5)

near the AdS boundary. Furthermore, the periodic structure can actually be induced by

setting the source

φ1(x) = A0cos(k0x), (3.6)

and keeping the chemical potential fixed as

µ(x) = µ. (3.7)

For our purpose we would like to construct an ultra cold lattice whose temperature is

controlled by the parameter µ1 in eq. (2.23). This can be achieved by solving the coupled

Einstein-Maxwell-scalar equations numerically using the Einstein-DeTurck method. Our

numerical method is changing the partial differential equations into non-linear algebraic

equations by the standard pseudospectral collocation approximation, and then solving

them by employing a Newton-Raphson method. As an example, we show a solution to

these equations in figure 1 with A0 = 1.5, k0 = 2, µ = µ1 = 2.35, which corresponds to a

lattice with T/µ = 0.0081. Note that different from the scalar field whose period is given by

2π/k0, the corresponding solutions of all the components of the metric as well as the gauge

field have a period of π/k0 along the x direction, which comes essentially from the fact that

in our first equation of motion the stress tensor is quadratic in the scalar field Φ. Since the

– 6 –
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Figure 1. We show Qzz, Qxz, ψ and φ for k0 = 2, A0 = 1.5, µ = 2.35 and T/µ = 0.0081.

scalar field does not appear in the Dirac equation, we claim that the lattice constant that the

probe Dirac field feel is π/k0. Therefore, the parameter K in eq. (2.18) is given by K = 2k0.

It is worthwhile to point out that during the course of numerical analysis the lower the

temperature is, the harder monitoring the accuracy is. In order to guarantee the conver-

gence of our method at the given temperature, we are required to demonstrate the decaying

tendency of the charge discrepancy ∆N which is defined as ∆N = |1 − QN/QN+1| with

QN the charge on the boundary when the number of grid points takes N . As shown in

in figure 2, such a decay is exponential, implying our results are exponential convergence

with the increasing of the grid points. Moreover, we have also checked the behavior of

the DeTurck vector field ξa which is defined in [1] and found that for our solution ξaξa is

smaller than 10−10, ensuring that our numerics is leading to an Einstein solution rather

than a Ricci soliton.

– 7 –
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Figure 2. On the left we show the boundary charge density ρ as a function of x, which can be

read off by expanding ψ = µ + (µ − ρ)z + O(z2). On the right we show the charge discrepancy

∆N as a function of the number of grid points N , where the boundary charge is defined as

Q =
∫ 2π/k0
0

dxρ. The vertical scale is logarithmic, and the data is well fit by an exponential decay:

log(∆N ) = −2.96− 0.20N .

3.2 The ionic lattice

Compared to the scalar lattice, the ionic lattice can be generated simply by turning off the

scalar field in (3.1) and imposing the spatially varying boundary condition for the chemical

potential as

ψ(x, 0) = µ[1 +A0cos(k0x)]. (3.8)

As an example, we illustrate a solution of Qxz and ψ in figure 3 with k0 = 2, A0 = 0.1, µ =

µ1 = 2.3, which corresponds to T/µ = 0.01. We stress that this type of solutions are differ-

ent from those for the scalar lattice. Namely the chemical potential is periodic rather than

a constant in the scalar lattice. As a result, the boundary charge density in the ionic lattice

is expected to vary more dramatically than that in the scalar lattice. This can easily be

seen in our plot for the charge density in figure 3. In this sense, one will also expect that the

effect onto the Fermi surface due to the ionic lattice should be much stronger than that due

to the scalar lattice. We shall show in the subsequent section that this is actually the case.

4 Numerical results for the Fermi surface

The existence of Fermi surfaces for holographic fermionic liquids has been shown in various

circumstances. We refer to [12] and [13] for a recent review. In this paper we focus on

reporting the following two new results relevant to the Fermi surface when a lattice is

introduced for the gravitational background. One is the shape of Fermi surface. In general

one expects that the shape of Fermi surface is not circular any more since the rotation

symmetry is broken in the presence of the lattice along the x direction. But how the Fermi

surface would change appears obscure since the Dirac equation becomes very complicated

in this case. Even in the case in which the lattice effect can be treated by conventional

condensed matter approach, there is no some kind of universal result on the shape of

Fermi surface. Instead the shape will depend on the specific behavior of periodic potential.

Nevertheless to our surprise, our numerical analysis gives us a very simple and elegant

– 8 –
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Figure 3. We show Qxz and ψ for k0 = 2, A0 = 0.1, µ = 2.3 and T/µ = 0.01 in the top and the

corresponding boundary charge density as well as the tendency of charge discrepancy in the bottom.

answer to this issue. That is, when our holographic Fermi surface is located within the first

Brillouin zone, the shape is always an ellipse irrespective of the specific value of parameters

in question. The other is the emergence of band gap at the intersection of the Fermi surface

with the Brillouin zone boundary. This phenomenon coincides perfectly with the familiar

lattice effect as one expects. Now let us demonstrate our numerical results in detail.

To proceed, we would like to remark on how to identify the Fermi surface in our

current setting. Note that we are working with holographic fermionic liquid in the presence

of lattice at very low but non-zero temperature, where the Fermi surface is somewhat ill

defined, because the concept of Fermi surface can only be defined at zero temperature with

translation symmetry unbroken. However, as pointed out in [7], the ARPES experiment

is actually blind to the lattice by smearing it into a continuum. The measured spectral

function can be captured by the imaginary part of diagonal components of retarded Green

function, namely A(ω, kx = k1 + nK, ky = k2) = Im(G1,n;1,n + G2,n;2n). Furthermore,

taking into account that our ultra cold lattice only smears the Fermi surface in a negligible

way, we can locate the position of Fermi surface by searching the peak of A(ω, kx, ky) with

the tiny frequency ω in the momentum space. Such an identification of Fermi surface is

also described in [14] and similar to the operational definition given in [15].

– 9 –
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Figure 4. We show the 3d plot of A(ω, kx, 0) for k0 = 2, A0 = 1.5, µ = 2.35, T/µ = 0.0081 and

q = 1.7. A sharp peak near ω = 0 implies a Fermi surface with the Fermi momentum kF = 2.634.

With this in mind, we show in figure 4 an example with the 3d plot of A(ω, k) for

the fixed ky = 0. A sharp peak occurs near ω = 0, indicating a Fermi surface with the

Fermi momentum kF = 2.634. Similarly, we may locate the positions of the Fermi surface

for other values of ky such that the shape of the Fermi surface can be plotted in the

momentum space. We illustrate our results in figure 5 for the case of k0 = 2, A0 = 2,

µ = 2.35, T/µ = 0.0081 and q = 1.3, which corresponds to a Fermi surface located within

the first Brillouin zone, namely kF < K/2 = 2. Although the shape of Fermi surface

appears like a circle in the plot, our data clearly tells us that it is not a circle any more.

As a matter of fact, it can be precisely fit by an equation of ellipse as follows

k2x
a2

+
k2y
b2

= 1 (4.1)

with a = 1.8991 and b = 1.8511. We find this fitting has a very high accuracy, which can

be seen from our error bar analysis presented on the right side of figure 5. Remarkably

such a result is universal in the sense that our elliptical Fermi surface is robust against

the values of parameters in question except that the longer axis as well as the shorter axis

is varied as it should be. Now let us see how our elliptical Fermi surface varies with our

relevant parameters. As such, we introduce two quantities, namely, the difference between

the longer axis and shorter axis d = a− b as well as the eccentricity e =
√
a2 − b2/a. The

relevant results are listed in table 1, 2, and 3. Obviously, we observe the following behaviors

• As we increase the amplitude of our periodic source A0, both d and e are increased.

• As we lower the temperature by increasing µ1, both d and e are increased.

• As we increase the charge q, the Fermi surface is enlarged with e suppressed.

– 10 –
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-2 -1 1 2 kx

-2

-1

1

2

ky

Figure 5. We show the shape of Fermi surface on the left and the error bar fit by the ellipse in

the polar coordinate on the right for k0 = 2, A0 = 2, µ = 2.35, T/µ = 0.0081 and q = 1.3, where

the Fermi momenta kF < 2, namely the Fermi surface is located within the first Brillouin zone.

A0 0.5 1 1.5 2 2.5

d 0.004 0.013 0.029 0.048 0.069

e 0.06414 0.1187 0.1742 0.2242 0.2675

Table 1. The variation of d and e with the amplitude A0, where we have fixed the other parameters

as k0 = 2, µ = 2.35, T/µ = 0.0081 and q = 1.3.

µ1 2 2.1 2.2 2.3 2.4

d 0.019 0.021 0.024 0.027 0.031

e 0.1487 0.1546 0.1610 0.1696 0.1792

Table 2. The variation of d and e with the temperature which is controlled by µ1, where we have

fixed the other parameters as k0 = 2, A0 = 1.5, µ = 2.35 and q = 1.3.

q 0.5 0.7 0.9 1.1 1.3

d 0.013 0.018 0.022 0.026 0.029

e 0.2479 0.2258 0.2010 0.1871 0.1742

Table 3. The variation of d and e with the charge q, where we have fixed the other parameters as

k0 = 2, A0 = 1.5 and µ = µ1 = 2.35.

We remark that above phenomena can be observed in the ionic lattice background as

well. Interestingly, we find that in ionic lattice case, the longer axis of the ellipse changes

from x to y direction.

When the charge q is large enough, the Fermi surface will go beyond the first Brillouin

zone with kF > K/2. Now let us turn to such a situation by first demonstrating the band
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Figure 6. Band structure for q = 1.7,k0 = 2, A0 = 1.5 and µ = µ1 = 2.35(kF > 2).

Figure 7. There are two peaks for the imaginary part of the Green function at kx = 2(BZ

boundary). The left one is for A0 = 1.5 while the right one for A0 = 2, with q = 1.7,k0 = 2, and

µ = µ1 = 2.35 fixed.

structure of Fermi surface in figure 6 for the scalar lattice. Note that the Fermi surface

exhibits a periodic structure along the kx direction as it should be the case guaranteed by

Bloch theorem. On the other hand, it appears that our Fermi surface does not show the

band gap structure at the intersection of the Fermi surface with the Brillouin zone bound-

ary, which is at odds with the familiar lattice effect. In order to see if this is really the case,

we zoom in the Fermi surface precisely at the Brillouin zone boundary. The corresponding

result is plotted in figure 7. To our pleasure, the band gap shows up and becomes large with

the increase of the amplitude of periodic source. So to see a clearer band gap structure, it
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Figure 8. Band structure in ionic lattice model for kF > K/2(q = 1.7, A0 = 0.3, µ = µ1 = 2.3)

and kF > K(q = 1.7, A0 = 0.1, µ = µ1 = 2.3). Note that for the left one we have set k0 = 4 such

that K = 4, while for the right one k0 = 2 such that K = 2.

is better to move on to the ionic lattice in which the lattice effects should be much stronger

as we discussed in previous section. As shown in figure 8 for the ionic lattice, the gap is

evidently observed as one expects. From this figure we also notice that the band structure

becomes richer when the Fermi surface intersects with more than two Brillouin zones.

5 Conclusion

We have investigated the lattice effect on the Fermi surface by putting the bulk Dirac field

in the ultra cold holographic lattices, where both the background equations and the probe

Dirac field are solved by pseudo-spectral method numerically. One interesting result is that

the Fermi surface is always modified by the lattice from a circle to an ellipse. Suppose that

such a Fermi surface is formed by some kind of exotic free fermionic quasi-particles, then the

elliptical shape means that the effective mass along the x direction in scalar lattice (or the y

direction in ionic lattice) becomes more massive by some kind of renormalization effects due

to the presence of the lattice. In any case, such a universal behavior of holographic Fermi

surface begs for a deeper understanding. In addition, we holographically reproduce the

band gap structure at the intersection of the Fermi surface and the Brillouin zone boundary,

which is a well known lattice effect on the Fermi surface in condensed matter theory.

Note that such a band gap structure is also obtained in [7]. We would like to compare

our work with [7]. The lattice considered in that paper is a weak ionic lattice, where the

back reaction of the periodic chemical potential to the bulk geometry is ignored. The ad-

vantage of such a weak potential limit is two fold. One is that such a lattice can be put at

zero temperature, and the other is that the analytic technique developed in [4] can be bor-

rowed heavily to the relevant perturbation calculation. The disadvantage is also obvious.

First, the amplitude of spatially varying chemical potential must be small enough, other-
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wise the perturbation calculation will break down. Second, the neglect of the back reaction

may lead to the loss of some significant physics. For example, the elliptical Fermi surface

we find does not appear in the perturbation calculation.1 Third, when such a perturbation

calculation is made to higher order or for the non-diagonal components of retarded Green

function, the analysis will become much involved. Compared with this, the full retarded

Green function can be obtained by our numerics once and for all. In this sense, our paper

and [7] are complementary to each other.

We conclude with various issues worthy of further investigation. First, even though

it is numerically harder, it is apparently better to construct the zero temperature holo-

graphic lattices for our probe Dirac field to propagate in. Second, pertaining to the STM

experiment, it is important for us to extract the retarded Green function in the position

space, which can be achieved in the following two ways. One is to Fourier transform our

resultant Green function in the momentum space to the position space. The other is to

work directly in the position space by imposing Dirac delta source on the AdS boundary.

We hope to address these issues in the near future.
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