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1 Introduction

The exploration of the weak scale has marked an important step forward with the discovery
by the ATLAS [1] and CMS [2] collaborations of a boson with mass m; ~ 125GeV,
whose production cross section and decay rates are compatible with those predicted for
the Higgs boson of the Standard Model (SM). At the same time, no hint of the existence
of additional new particles has emerged yet, which might shed light on the origin of the
electroweak symmetry breaking (EWSB). One is thus faced with the problem of which is
the best strategy to describe the properties and investigate the nature of the new boson
h, beyond the framework of the Standard Model. In absence of a direct observation of
new states, our ignorance of the EWSB sector can be parametrized in terms of an effective
Lagrangian for the light boson. Such an effective description is valid as long as New Physics



(NP) states appear at a scale M > my, and is based on an expansion in the number of
fields and derivatives [3]. The detailed form of the effective Lagrangian depends on which
assumptions are made. Considering that the observation made by the LHC experiments
is in remarkable agreement with the SM prediction, although within the current limited
experimental precision, it is reasonable to assume that h is a CP-even scalar that forms
an SU(2)r doublet together with the longitudinal polarizations of the W and Z, so that
the SU(2)r x U(1)y electroweak symmetry is linearly realized at high energies. Under
these assumptions the effective Lagrangian can be expanded into a sum of operators with
increasing dimensionality, where the leading NP effects are given by dimension-6 operators.

The parametrization of the deviations of the Higgs couplings in terms of higher-
dimension operators started more than two decades ago. The experimental observation
of the Higgs boson, however, calls for a more detailed analysis. First, a compilation of
a complete and updated list of constraints on the various Wilson coefficients is in need.
Second, the rather precise estimation of the Higgs mass below the gauge boson thresholds
necessitates a careful computation including off-shell effects that have not been incorpo-
rated up-to-now when the SM Lagrangian is supplemented by higher-dimensional operators.
It is the purpose of this paper to perform such an updated analysis. We will also discuss in
detail the implications of the custodial symmetry on the generalized Higgs couplings and
clarify a few other issues which were not exhaustively addressed in the previous literature,
like for example the connection with the effective Lagrangian for a non-linearly realized
electroweak symmetry. Finally, a precise comparison of the Higgs couplings with the SM
predictions can only be done when higher-order effects are included in a consistent way,
and we will develop a strategy to this end.

The paper is structured as follows. In section 2 we review the construction of the
effective Lagrangian for a light Higgs doublet. By means of a naive power counting we
estimate the coefficients of the various operators and review the most important bounds
set on them by present experimental results on electroweak (EW) and flavor observables.
Focusing on Higgs physics, we then discuss in section 3 the relative effect of the various
operators on physical observables. Such an analysis, first proposed in ref. [4], will allow
us to identify which operators can probe the Higgs coupling strength to the new states
and which instead are sensitive only to the mass scale M. This is of key importance to
distinguish between weakly-coupled UV completions of the Standard Model, like Super-
symmetric (SUSY) theories, and theories where the EW symmetry is broken by a new
strongly-interacting dynamics which forms the Higgs boson as a bound state [4-13]. These
are the two most compelling scenarios put forward to solve the hierarchy problem of the
Standard Model. We conclude the section by discussing how the assumption of a Higgs
doublet and linearly-realized SU(2)r, x U(1)y can be relaxed. We illustrate the non-linear
effective Lagrangian valid for the case of a generic CP-even scalar h and discuss the impli-
cations of custodial invariance. Section 4 is devoted to clarify a few issues related to the
use of the effective Lagrangian beyond the tree level. We present our concluding discussion
in section 5. In the appendices A—C we collect useful formulas and give further details on
the construction of the effective Lagrangian. The details of how we derived the bounds on
the dimension-6 operators are reported in appendix D.



As an illustration of our analysis and to better demonstrate how the effective La-
grangian can be implemented into automatic tools for the computation of physical quan-
tities like Higgs production cross sections and decay rates, we have written eHDECAY,!
modified version of the program HDECAY [14, 15|, which includes the full list of leading
bosonic operators. We will describe the program in a separate companion paper [16].

2 Effective Lagrangian for a light Higgs doublet

The most general SU(3)c x SU(2), x U(1)y-invariant Lagrangian for a weak doublet H at
the level of dimension-6 operators was first classified in a systematic way in refs. [17-19].
Subsequent analyses [20—25] pointed out the presence of some redundant operators, and
a minimal and complete list of operators was finally provided in ref. [26]. As recently
discussed in ref. [4], a convenient basis of operators relevant for Higgs physics, assuming
that the Higgs is a CP-even weak doublet (this assumption will be relaxed in appendix C)
and the baryon and lepton numbers are conserved, is the following:

L=Lsy + Z ¢i0; = Loy + ALsiag + ALp + ALR, (2.1)

with
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The SM Lagrangian Lg3s and our convention for the covariant derivatives and the gauge
field strengths are reported for completeness in appendix A. In particular, A is the Higgs
quartic coupling and the weak scale at tree level is defined to be

1
v = = 246 GeV . (2.5)

(\fGF)l/Z

By iH'DEH we denote the Hermitian derivative iHY(D*H) — i(DFH)TH, and o™ =
i[y*,7"]/2. The Yukawa couplings y, 4; and the Wilson coefficients ¢ in eq. (2.3) are
matrices in flavor space, and a sum over flavors has been left understood. Note that the
assumption of a CP-even Higgs implies that the coefficients ¢,,¢q and ¢ are real. As
specified in eq. (2.1), we will denote as O; the dimension-6 operator whose coefficient is
proportional to ¢;.

Our higher-dimensional Lagrangian, which is supposed to capture the leading New
Physics effects, counts 12 (ALgrrm) + 8(ALER ) + 8(ALR,) = 28 operators. Five extra
bosonic operators,
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(2.6)
which affect the gauge-boson propagators and self-interactions but with no effect on Higgs
physics, should also be added to complete the operator basis, as well as 22 four-Fermi
baryon-number-conserving operators.? A comparison with ref. [26] shows that two of our
operators are actually redundant. As we shall explain in more detail in section 3 (see
egs. (3.5), (3.6)), it is well known [25, 28] that two particular linear combinations of the
fermionic operators in ALp, are equivalent to pure oblique corrections parametrized by
the operators Op, Oy and Op:

Oy =) YyOuy~0r,0p  and O, + Oy ~ Ow, (2.7)
P

where the sum runs over all fermion representations, ¢ = qr,uR,dgr, L1,lr, whose hyper-
charge has been denoted as Y. These two linear combinations have then to be excluded

2Notice that the last three operators in eq. (2.6) can be rewritten in favor of three additional independent
four-Fermi operators, as in the basis of ref. [26]. The coefficients ¢aw, €25 contribute respectively to the W
and Y parameters defined in ref. [27].



from AL, and we end up with exactly 53 linearly-independent operators as in ref. [26].3
Any other dimension-six operator can be obtained from these 53 operators by using the

equations of motion, or equivalently by performing appropriate field redefinitions.*

Even though our basis (2.2)—(2.4) is equivalent to the one proposed in ref. [26], we ad-
vocate that it is more appropriate for Higgs physics for at least three reasons [4]: i) Generic
models of New Physics generate a contribution to the oblique S parameter [27, 29] at tree-
level, which in the basis of ref. [26] would have to be encoded in the two fermionic operators
O}/M) and O}Iq + Oy, even in the absence of direct couplings between the SM fermions and
the New Physics sector. There is an advantage in describing the oblique corrections in terms
of the operators in (2.2) rather than in terms of the operators with fermionic currents, which
generate vertex corrections and modify the Fermi constant. i) The basis (2.1) isolates the
contributions to the decays h — v (from O,) and h — vZ (from O, and Ogw —Opp) that
occur only at the radiative level in minimally coupled theories. i) Our basis of operators
is more appropriate to establish the nature of the Higgs boson and determine the strength
of its interactions. For example, as we shall explain momentarily, if the Higgs boson is a
pseudo Nambu-Goldstone boson (pNGB) the coefficient of the operator O, hence the rate
h — ~7, is suppressed, while in the basis of ref. [26] this reflects into a cancellation in the
linear combination 4¢, + (éww — éwnr) (cf. footnote 4).

While a complete classification of the operators is essential, having a power counting
to estimate their impact on physical observables, hence their relative importance, is equally
crucial. In this sense a simple yet consequential observation was made in ref. [4]: when
expanding the effective Lagrangian in the number of fields and derivatives, any additional
power of H is suppressed by a factor g./M = 1/f, where g. < 47 denotes the coupling
strength of the Higgs boson to New Physics states and M is their overall mass scale; any
additional derivative instead costs a factor 1/M. If the light Higgs boson is a composite
state of the dynamics at the scale M, it is natural to expect g, > 1, hence f < M,
which implies that operators with extra powers of H give the leading corrections to low-
energy observables. On the other hand, in weakly-coupled completions of the Standard
Model where g, ~ g, all operators with the same dimension can be equally important. A
proper analysis of the experimental results through the language of the effective Lagrangian
can thus give indication on whether the dynamics at the origin of electroweak symmetry
breaking is weakly or strongly interacting. According to the power counting of ref. [4], one

3For completeness we collect in appendix C also the extra 6 bosonic operators of dimension-six that are
CP-odd.
“In particular, the following identities hold:

r
4m?,

1 1 pv 1
H'HW/.,W'* = Oww = Ow — Op + Onp — Onw + 19
(2.8)

/
mH O'ZHWL,B“ :OWB—OB_OHB—ZOW-



naively estimates (¢ = u,d,l,q, L)°
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where A\, denotes the coupling of a generic SM fermion ¢ to the new dynamics. It should be
stressed that these estimates are valid at the UV scale M, at which the effective Lagrangian
is matched onto explicit models. Renormalization effects between M and the EW scale mix
operators with the same quantum numbers, and give in general subdominant corrections
to the coefficients. We shall comment on these renormalization effects in section 4. Notice
that the estimates of ¢w B, Cry, E’H¢ and ¢p apply when these coefficients are generated
at tree-level. However, specific symmetry protections which might be at work in the UV
theory, like for example R-parity in SUSY theories, can force the leading corrections to
arise at the 1-loop level.

Equation (2.9) suggests that in the case of a strongly-interacting light Higgs boson
(SILH) the leading New Physics effects in Higgs observables are parametrized by the op-
erators Op 164, and, if the SM fermions couple strongly to the new dynamics, by the
fermionic operators of eq. (2.3) [4]. Notice that, compared to the naive counting, ¢gw,up,g,
are suppressed by an additional factor (¢2/1672). This is because the corresponding op-
erators contribute to the coupling of on-shell photons and gluons to neutral particles and
modify the gyromagnetic ratio of the W, and are thus generated only at the loop level in a
minimally coupled theory. Similarly, the dipole operators of eq. (2.4) are generated at the
loop-level only, hence their estimates have an extra loop factor.

A special and phenomenologically motivated case is represented by theories where the
Higgs doublet is a composite Nambu-Goldstone (NG) boson of a spontaneously-broken
symmetry G — H of the strong dynamics [4-13]. For these models the scale f must be
identified with the decay constant associated with the spontaneous breaking, and the naive
estimate of the Wilson coefficients ¢; is modified by the request of invariance under G in
the limit of vanishing explicit breaking. At the level of dimension-6 operators, O,, Oy,
O, Oy,q; and the dipole operators of eq. (2.4) violate the shift symmetry H — H' + ¢
(¢* = const.) that is included as part of the G/H transformations. This means that they
cannot be generated in absence of an explicit breaking of the global symmetry. It follows,
in particular, that the naive estimates of the operators O, and O, carry in this case an
additional suppression factor [4],

m? gé
- W
Cry,Cg ~ O<167T2f2> X E, (210)

®Notice that our normalization differs from the one of ref. [4], and it is more convenient than the latter
for a model-independent implementation of eq. (2.2) in a computer program. The factor multiplying each
operator in the effective Lagrangian has been conveniently defined such that the dependence on M and g.
is fully encoded in the dimensionless coefficients ¢;.



where ggz denotes any weak coupling that breaks the Goldstone symmetry (one of the SM
weak couplings in minimal models, i.e. the SM gauge couplings or the Yukawa couplings).
The operators Og, Oy, Oy, Oypw, Oyp have been defined so that their prefactor already
includes one spurion coupling, precisely the Higgs quartic coupling A in Og, and the Yukawa
coupling ¥y, in the other operators — indeed, both these couplings vanish for an exact NG
boson. The estimates of the corresponding coefficients ¢, ¢y, ¢y, Cyw, Cyp are thus not
modified.

In writing eq. (2.2) we have assumed that each of the operators O, q; is flavor-aligned
with the corresponding fermion mass term, as required in order to avoid large Flavor-
Changing Neutral Currents (FCNC) mediated by the tree-level exchange of the Higgs
boson (see for example ref. [30] for a natural way to obtain this alignment). This implies
one coefficient for the up-type quarks (¢,), one for down-type quarks (¢4), and one for the
charged leptons (&), i.e. the ¢, 4; are proportional to the identity matrix in flavor space.

2.1 Current bounds on flavor-preserving operators

It is useful to review some of the most important constraints on the coefficients ¢; that follow
from current experimental results, such as electroweak precision tests, flavor data and low-
energy precision measurements. For simplicity, we focus on the bounds on flavor-conserving
operators, keeping in mind that they can come also from flavor-changing processes. For a
discussion of the bounds on flavor-violating operators see for example the recent review of
ref. [31] as well as ref. [32].

Among the strongest bounds are those on operators that modify the vector-boson
self-energies. The operator O, for example, violates the custodial symmetry [33] and
contributes to the EW parameter €; [34, 35]. From the EW fit performed in ref. [36], it
follows, with 95% probability,

Aey =Ap=cp(my), —15x1073 <ép(my) <22x1073. (2.11)

Such a stringent bound can be more naturally satisfied by assuming that the dynamics at
the scale M possesses an (at least approximate) SU(2)y custodial invariance. In this case
cr(M) = 0, and a non-vanishing value will be generated through the renormalization-group
(RG) flow of this Wilson coefficient down to my in the presence of an explicit breaking of the
custodial symmetry, as due for example to the Yukawa or hypercharge couplings. We will
discuss these renormalization effects in more detail in section 4. Notice that all the other
dimension-6 operators in the effective Lagrangian are (formally) custodially symmetric and
their coefficients will not be suppressed at the scale M.5 The electroweak precision tests
also imply a strong bound on Oy + Op [4], since this linear combination contributes to
the parameter e3 [34, 35]. With 95% probability, one has [36]:

Aez = e (mz) +ép(mz), —1.4x 1073 < e (myz) +ép(myz) <1.9x 1073, (2.12)

SMore precisely, for all the other operators the only violation of the custodial symmetry comes from
the explicit breaking due to the gauging of hypercharge. As such, this breaking is external to the EWSB
dynamics, since it comes from the weak gauging of its global symmetries. Formal invariance of the operators
can be restored by uplifting the hypercharge gauge field to a whole triplet of SU(2)z. The top Yukawa
coupling is another source of explicit custodial breaking.



From the tree-level estimate of ¢y p reported in eq. (2.9), and assuming an approximate
custodial invariance to suppress ¢r as explained above, it follows that egs. (2.11) and (2.12)
set a lower bound M 2 a few TeV. This bound is quite robust and can be avoided only
in weakly-coupled UV completions where an extra symmetry protection suppresses the
leading contribution to ¢w,p by an additional loop factor. Notable examples are SUSY
theories with R-parity.

The fermionic operators in eq. (2.3) are strongly constrained by Z-pole measurements,
as they modify the couplings of the Z to quarks and leptons:

6gry _ 1 (=Crw + 2731 Cyy) dgry _ 1 emy
9L 2 Ty — Qsin’fy IRy 2 Qsin’Oy

(2.13)

where T57, and @ are respectively the SU(2);, and electric charges of the fermion v, and
U = {L,q} is the SU(2), doublet to which 1, belongs. We used the results of ref. [36] to
perform a fit on the coefficients ¢y, Crw, ¢y The details of our analysis can be found
in appendix D (see also ref. [37]). In the case of light quarks (u, d, s) we find the following

bounds
—0.02 <cgyp < 0.03, —0.002 < E}{ql < 0.003,
—0.003 < €gqg2 < 0.006, —0.003 < E’Hq2 < 0.006, (2.14)
—0.008 < ¢py < 0.02, —0.03 < ¢gg <0.02, —-0.03<cys <0.02,

while a fit on leptons and heavy quarks (c,b) gives

—0.0003 < ¢y + Cyp < 0.002, —0.002 < cyp—=Cyp<0.004, —0.0009 < ¢y < 0.001,
—0.003 < EHgy — Cpyp < 0.01,  —0.01 < g, < 0.02,
—0.008 < €pgy + 6'Hq3 < 0.002, —0.06 < cgp < —0.009.
(2.15)
All the above bounds have 95% probability and by the various coefficients we mean their
values at the scale myz. The weakest constraint is that on the operator Ogyp, which modifies
the coupling of by to the Z boson. The operator involving two right-handed top quarks,
Opt, is unconstrained by EW data, but it is also not relevant for the Higgs decays and will
be neglected in the following. The coefficient ¢y is severely constrained by the b — sy
rate. Indeed, the expansion of Opy, around the vacuum contains a vertex of the type

Wtgrbr, which at 1-loop gives a chirally-enhanced contribution to the rate (see for example
ref. [38]). We find, with 95% probability:

—0.4x107% < égp(mw) < 1.3 x 1073, (2.16)

For a given (v/f), the above bounds set a limit on the couplings of the SM fermions to
the new dynamics, see eq. (2.9). Unless the scale of New Physics is very large, or some
specific symmetry protection is at work in the UV theory (see for example the discussion
in ref. [37]), it follows that the SM fermions must be very weakly coupled to the new
dynamics, with the exception of the top quark.

The constraints on the dipole operators of eq. (2.4) come from the current experimental
limits on electric dipole moments (EDMs) and anomalous magnetic moments. The bounds



on the neutron and mercury EDMs for example strongly constrain the dipole operators
with u and d quarks. By using the formulas of ref. [39] we find, with 95% probability, that:

—7.01 x 1079 < Im(Gyp + Guw) < 7.86 x 107°
—9.42 x 1077 < Im(Cqp — Caw) < 8.40 x 1077,
—1.62 x 1079 < Im(G,q) < 2.01 x 1079,
—7.71 x 1077 < Im(Zqq) < 5.70 x 1077,

C,
C

(2.17)

where the coefficients are evaluated at the low-energy scale p ~ 1 GeV. According to the
naive estimate (2.9), for O(1) CP-violating phases these results imply a bound on (v/f)?
at the level of 1073. In natural extensions of the SM, such a strong limit clearly points to
the need of a symmetry protection mechanism. For a discussion, see for example ref. [37]
for the case of composite Higgs theories, and ref. [40] for the case of SUSY theories.

Among the heavier quarks the most interesting bounds are those on dipole operators
with top quarks [41]. These come from the experimental limit on the neutron EDM,

—1.39 x 1071 < Im(Gg) < 1.21 x 1074, (2.18)
the b — sy and b — slTI~ rates,
—0.057 < Re(@w + &) — 2.65Im(cuy + &) < 0.20, (2.19)
and the tt cross sections measured at the Tevatron and LHC,
—6.12x 107% < Re(¢g) < 1.94 x 1073 (2.20)

All these bounds have 95% probability and have been derived by making use of the formulas
reported in ref. [41].7 It is worth noting that the bounds of egs. (2.19) and (2.20) are still
about one order of magnitude weaker than the size of ¢, ¢ and ¢;g expected from the
naive estimate (2.9) with (v/f)? ~ 0.1. Additional weaker constraints arise from the limits
on anomalous top interactions based on top decays and single top production. From the
results of ref. [42] we find that, with 95% probability:

— 1.2 <Re(ew) < 1.1,  —0.01 < Re(cuy) < 0.02. (2.21)

where the coefficients are evaluated at the scale pu ~ my.

In the lepton sector, the current measurements and SM predictions of the muon [43, 44]
and electron [45, 46] anomalous magnetic moments and the limits on their EDMs [47-49]
imply the following 95% probability bounds:

—1.64 x 1072 < Re(Gep — Cow) < 3.37 x 1073,

1.88 x 107* < Re(¢,p — ¢uw) < 6.43 x 1074,
—2.97 x 1077 < Im(Gep — Cow) < 4.51 x 1077,
—0.26 < Im(¢,p — ¢uw) < 0.29,

(2.22)

(2.23)

"The coefficients are evaluated at the following scales: p = my (eqs. (2.18) and (2.20)), u = mw
(eq. (2.19)).



where the coefficients are evaluated at the relevant low-energy scale. Notice that the non-
vanishing value of Re(¢,3—¢,w ) follows from the known ~ 3.50 anomaly in the (¢g—2) of the
muon (see ref. [43] for an updated review). Among the bounds of egs. (2.21), (2.22), (2.23)
only those on Im(c.p — ¢ew) and Re(¢,p — ¢,w) have the sensitivity to probe the values
naively expected for these coefficients as reported in eq. (2.9). In particular, the first one
sets an upper bound on (v/f)? of order 1073 for an O(1) CP phase.

3 Estimates of the effects on physics observables

While the Lagrangian AL = ALgrg + ALp, + ALFE, is completely general, the basis of
operators of egs. (2.2)—(2.4) is particularly useful to characterize the interactions of the
Higgs sector. In fact, as already anticipated, one of the main results of ref. [4] is that
of identifying which operators, hence which observables, are sensitive to the strength of
the Higgs interactions, rather than merely to the value of the New Physics scale M. In
what follows we will discuss this point in greater detail and, starting from the analysis of
refs. [4, 50], we will try to highlight a possible strategy to determine whether the dynamics
behind the electroweak breaking is weak or strong. Our analysis will be based on the naive
estimates of the Wilson coefficients at the matching scale. In the next section, we will
discuss how the running from the matching scale to the weak scale affects these estimates.

3.1 Operators sensitive to a strongly-interacting Higgs boson

Let us start by considering the effects of the operators Op, Or, O, 4, and Og: they modify
the tree-level couplings of the Higgs boson to fermions, vector bosons and to itself. In the
unitary gauge and upon canonical normalization of the Higgs kinetic term, the Lagrangian
reads [51]

1 1 1 /3m?
£:28Mh8“h—2m;21h2—03<7;%> W

6
2WIWw—r (142 h 1222“1 2 h
+mW m + CWZ‘F +§mZ m + CZE—’—“. (31)
500 h
_ Z My P 1+c¢;+... +...
h=u,d,l

where the Higgs couplings c¢;—w,z 3, have been defined such that ¢; = 1 in the SM, and
v is defined by eq. (2.5). Their expressions as functions of the coefficients of the effective
Lagrangian (2.2) are given in table 1. The shifts from the SM value are of order

2

2,2
gv®
Hence, measuring the Higgs couplings probes the strength of its interactions to the new
dynamics. Notice that the effective description given by AL neglects higher powers of
(H/f), and is thus valid only if the shifts in the Higgs couplings are small: dc; ~ (v/f)? < 1.
If the Higgs doublet is the NG boson of a spontaneously broken symmetry G — H, on the

other hand, it is possible to resum all powers of (H/f) by making use of the invariance
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Higgs couplings ALsrra MCHM4 MCHMS5
cw 1— ey /2 VI—E JI-¢
cz 1—¢p/2—2er V1I-=¢& V1I-=¢&

co (0= u,d,l) 1= (@n/2+ ) T—¢ 11‘_255
c3 1+ ¢ —3cp/2 1-¢ 11_22
Cgg 8 (s /) &4 0 0
Coyry 8 sin®Oyy ¢, 0 0
CZ~ (EHB —CHw — 8¢y sin29w) tan Oy 0 0
cww —2cpw 0 0
Cczz -2 (EHW + ¢y p tan6y — 4c, tan6yy sin29W) 0 0

CW oW —2(¢w + ¢aw) 0 0
cz07 —2(ew + eaw) — 2 (Cp + eup) tanOy 0 0
CZ0v 2(¢p + ¢yp — ¢w — cyw) tan Oy 0 0

Table 1. The second column reports the values of the Higgs couplings ¢; defined in eq. (3.23) in
terms of the coefficients ¢; of the effective Lagrangian ALgrr . The last two columns show the
predictions of the MCHM4 and MCHM>5 models in terms of & = (v/f)?; the effects of the heavy
resonances have been neglected for simplicity, so that only the couplings cw, z 4,3 are non-vanishing.
The auxiliary parameter o is defined by eq. (3.20).

under (non-linear) G transformations. Such an improved effective Lagrangian thus relies
only on the expansion in the number of derivatives. For example, in models based on the
SO(5)/SO(4) coset [13, 52] the couplings of the Higgs boson to W and Z are predicted
to be ey = ¢z = cy = V1 —¢&, where &€ = (v/f)?. The couplings to fermions, on the
other hand, are not uniquely fixed by the choice of the coset, but depend on how the
SM fermions are coupled to the strong dynamics. The last two columns of table 1 report
the predictions of the Minimal Composite Higgs Model MCHM4 [13] and MCHMS5 [52],
where the SM fermions couple linearly to composite operators transforming as the spinorial
and fundamental representations of SO(5), respectively. For simplicity, the predictions are
derived by including only the effects of the Higgs non-linearities, and neglecting those from
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the heavy resonances, hence only the coefficients cy,cy; and c3 are non-vanishing. The
models MCHM4 and MCHMS5 will be considered as benchmarks in the rest of this work.

In general, a shift of the tree-level Higgs couplings of order (v/f)? implies that the
theory gets strongly coupled at energies ~ 4x f, unless new weakly-coupled physics states
set in to regulate the energy growth of the scattering amplitudes. The dominant effect
comes from the energy growth of the VzVy — ViV (V = W*, Z9) scattering amplitudes,
which become non-perturbative at the scale Ay = 4mv/ \/@ . A modified coupling to
the top quark leads instead to strong VpV — tt scattering at energies of order Ay =
167202 /(my+/|Cu + cr|). The scale of New Physics is thus required to lie below, or at, such
ultimate range of validity of the effective theory: M < Ag.

3.2 Operators sensitive to the scale of New Physics

The operators Oy, Op can be generated at tree-level by the exchange of heavy particles,
for example heavy spin-1 states. In the unitary gauge they are written in terms of the
following three operators®

(DHWJV)W— Yh, ("Zw)Z"h, (0"vuw)Z"h (3.3)

plus terms with zero or two Higgs fields. The fact that there are three possible operators
in the unitary gauge indicates that their coefficients are related by one identity if the Higgs
boson belongs to an SU(2) doublet, see eq. (3.25). We will discuss this point in greater
detail in section 3.6.

It is easy to see that Oy, Op give corrections to the tree-level Higgs couplings and
generate quartic interactions with one vector boson and two SM fermions that contribute
to the three-body decays h — VV* — Vy1p.? Indeed, by making use of the equations of

motion,'"

O_Z

. - — . -o! . g i -
iD'W,, = g H' o5 DvH =g, i B, = 3 H'D , H —ig oYy, (3.4)
one can rewrite Oy and Opg as

4
Ow = —20 + ﬁ(HTH)]DMHP + Oy + Of1 (3.5)

Op = 2tan®0y (—Or + Ofry) (3.6)

where the linear combination O, has been defined in eq. (2.7). Upon the field redefinition
H — H —2ew (HVH)H/v?, the operator (HTH)|D, H|? can be rewritten in terms of those

8Here and in the following, derivatives acting on operators in the unitary gauge are covariant under local
U(1)em transformations. Operators like (0" Z,,)y"h or (0"yu,)y"h obviously cannot be generated since
they break the U(1)em local symmetry.

9We thank Riccardo Rattazzi for pointing this out to us.

OFor simplicity we have left a sum over all fermion representations v understood in eq. (3.4).
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in eq. (2.2). Specifically, eq. (3.5) becomes:*!

Ow = =605 +2 ((Oy + O4+ Op) + h.c.) =806 + Oy, + Op, - (3.8)

From the estimates of ¢y, ¢g and ¢g, €7, ¢y, Cs in eq. (2.9) one can see that the shifts to the
tree-level Higgs couplings due to Oy, Op are of order (my/M)?, hence subdominant in
the case of a strongly interacting Higgs boson. Notice that the couplings of the Higgs boson
to W and Z get different shifts from Op (since Aér # 0). In practice, the constraint (2.12)
bounds this custodial-symmetry breaking effect down to an unobservable level, unless some
fine tuning is in place in the combination ¢y + ¢p so that ¢p can be large. Notice that
despite the operator O is generated after using the equations of motion, its contribution
to Ae; (corresponding to a non-vanishing 7' parameter [27, 29]) is exactly canceled by the
vertex correction implied by the linear combination of fermionic operators which is also
generated.'? This is of course expected, since Oy, Op only contribute to €3, and not to €;.

In general, the contribution of Oy, Op to inclusive observables, in particular to the
Higgs decay rates, is of order (m#,/M?):

ST(h = VV)
I'(h—VV)

m2
~ O<W> , (3.9)
Ow,0OB M?

where in this case VV = WHW*, Z2() 2%, Z(*)fy,fy*y. This implies that these operators are
sensitive only to the value of the scale of New Physics M, and do not probe the coupling
strength g.. From the quantitative side, the constraint (2.12) suggests that their effects in
inclusive Higgs decay rates is too small to be observable. For example, we find that for small
cw,B the tree-level correction to the WW and ZZ partial rates is well approximated by:!3

T'(h — WHW*) ['(h — Z™*) Z*)
L(h — WEW*) g T(h— Z&Z*)sm

~ 14226y, ~ 1+ 2.0 (ew + tan*6y cp) .

(3.10)
Notice that despite its custodial invariance, the operator Oy affects in a slightly different
way the decay of the Higgs boson into WIW and ZZ, due to the fact that at least one of
the two final vector bosons is off-shell.'* At the one-loop level Oy also contributes to the

"By means of eqs. (3.6) and (3.8) it is thus always possible to remove Ow and Op provided the coefficients
of the other operators are shifted as follows: ¢; — ¢; + Ac;, with

Aéy = —6ew, Aér = —2tan’0w ¢s, Aég = —8ew, Ay = 2ew
Ay = Aty = tw (3.7)

6A5Hq = %AEHu = —3ACyqg = —2ACyr = —ACH; = f2tan29w CB .

12See for example eq. (9.10) of ref. [28].

13Here and in the following our approximated formulas have been obtained by using eHDECAY [16] with
myp, = 125 GeV. QCD corrections to the decay rates are fully included. Electroweak corrections are instead
not included, since their effect on the numerical prefactor appearing in front of the coefficients ¢; is of order
(v*/f?)(a2/47) and thus beyond the accuracy of our computation. See ref. [16] for more details.

141t is easy to check that for my > 2mz and on-shell decays one has:

I'(h— WW) I'(h— 27)
T(h — WW)sar T(h— ZZ)sm

These formulas coincide with those of egs. (79)—(80) of ref. [4], which are thus valid only for on-shell decays.

~1+4ew, ~1+4 (ew + tan’0w cp) . (3.11)
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Higgs decays into Z+ and v (while Op does not). We find:

I'(h — Z~)
F(h — ZV)SM

['(h — vy)

~1+442¢ ALt VRS
Rsav L(h = yy)sm

~1+5.0ay, (3.12)

which agree with eqs. (82) and (83) of ref. [4].1% For ¢y 5 ~ 1072 the above approximate
formulas imply corrections too small to be observed at the LHC. On the other hand, one
could try to take advantage of the different predictions in terms of angular and invariant
mass distributions which are implied by the dimension-6 operators compared to the tree-
level SM prediction. The most promising strategy could be in fact that based on the
analysis of the angular distributions of the final fermions [53-55]. In the ideal case in
which one is able to kill completely the SM tree-level contribution by means of appropriate
kinematic cuts, the relative effect of NP becomes of order

dU(h — VV) dU(h — VV) _ 1672
<
70 / < 70 . S1+cwn 2 (3.13)

which might leave room for observable effects even for ey p ~ O(1073). Clearly, a more
precise assessment of the efficiency of such a strategy requires a dedicated analysis [56].

3.3 Operators generated at the one-loop level

Let us now focus on the operators Opw,Onp, O, and Og4, which are generated at the
one-loop level. In the unitary gauge, Ogw,u B, are rewritten in terms of

WiIW™Mh,  Z,Z"h, 5w "h, Zuy"h (3.14)

plus other terms with zero or two Higgs fields. Since the coefficients of the above four
operators are functions of ¢y, crp and ¢y, they are related by one identity, see eq. (3.24).
We will discuss this point in greater detail in section 3.6.

As implied from the naive estimates (2.9), the contribution of Ogw rp~ to the WW
and ZZ inclusive rates is of order (VV = WW, ZZ)

ST(h = VV) < m2, >
o ~0 . (3.15)
T(h=VV) 0. 0w 0ns 1672 f2

Although such an effect depends on the Higgs interaction strength, it is suppressed com-

15The easiest way to compute the one-loop contribution of Ow to the Zv and v rates is by using eq. (3.5)
to rewrite this operator in terms of the others. Among the operators generated in this way, only On gives
a contribution. Notice that if eq. (3.8) is used instead, one has to take into account also the contribution
of (Oy + Og4 + Op) and the shift to the Fermi constant induced by Oy, + O .
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pared to eq. (3.9) by a loop factor. We find that the following approximate formulas hold!®

L'(h — WHW*)
I'(h — W(*)W*)SM

T(h — Z®) Z%)
I'(h — Z(*)Z*)SM

~1+4+3.7¢cgw,
(3.17)

~ 1+ 3.0 (Cyw + tan®Oy eyp) — 0.26 ¢, .

While the contribution due to ¢yp and ¢, explicitly violates the custodial symmetry and
thus differentiates WW from ZZ, the different numerical factor multiplying ¢pyy in the two
formulas above is due to the off-shellness of at least one of the two vector bosons, similarly
to eq. (3.10). Although there is currently no stringent bound on the coefficients ¢yw, mB ~,
the estimate (2.9) suggests that their correction to inclusive rates is unobservable at the
LHC. As discussed in the previous section, on the other hand, a study of the angular
and invariant mass distributions of these decays can potentially uncover the effect of New
Physics. In particular, an estimate similar to that of eq. (3.13) can be derived also for
CHW,HB,~-

The processes h — vy, h — Z~ and h — gg (or equivalently gg — h) can in principle
test the Higgs interaction strengths much more powerfully, since they arise at the one-loop
level in the SM. Naively one expects:

oT'(h — 99,77, Z7) ol (3.18)
r'(h— Z7) r?) .
949,77, &7 04,04,0aw,Oup

We find that the following approximate formulas hold to good accuracy for small ¢;’s:

I'(h — g9) _Ar
— 77 ~14+22.2¢, —
I'(h = 99)sm Ty
['(h — ~7) _ Arw
————~1-0.54¢ , 3.19
F(h - ’77)5M K Oem ( )
I'(h — Z7) A

~1+0.19 (egw — Cup + 8¢, sin®Oy)

I'(h — Zv)sm Vv O20em ’

where we have conveniently defined

_ V2GEm?,
7T )

a2

(3.20)

and by ae,, we indicate the value of the running electromagnetic coupling e, (¢? = 0) in
the Thomson limit. If the Higgs boson is a NG boson, the coefficients ¢, and ¢, are further

SFor my, > 2mz and on-shell decays, we find instead

'(h — WW)
T'(h—WW)su

I'(h— ZZ)
P(h — ZZ)SJW

~148caw,
(3.16)
~ 14 8(Caw + tan® Ow cup) — 16 tan? Ow sin? Ow cy .

Comparing with the analog formulas in egs. (79) and (80) of ref. [4], we find that in these latter there is a

missing factor 2 and the term proportional to ¢, was not included either. Notice also that the effect of the
off-shellness of the gauge bosons is rather large, as one can see by comparing eq. (3.16) with eq. (3.17).
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suppressed by a factor (gg/ g+)?, see eq. (2.10), where gg is a weak coupling. This implies
that in this class of theories the corrections to I'(h — ) and I'(h — gg) depend only on
the scale of New Physics and not on the Higgs interaction strength. In fact, in the case of
minimal models with linear couplings, like for example the MCHM4 and MCHMS5, the low
energy theorem [57-59] implies that the leading contribution to the vy and gg decay rates
from the virtual exchange of heavy fermions is additionally suppressed [60-63] due to a
cancellation between the effect parametrized by ¢, , and the one that follows from the shift
in the top Yukawa coupling due to ¢, and ¢y (see ref. [62] for an interesting exception). In
general, in theories with a pNGB Higgs boson the local corrections to the rates I'(h — )
and I'(h = gg) from O, and O, are expected to be small and subdominant compared to
the effect from the modified tree-level Higgs couplings.

3.4 Fermionic operators

The fermionic operators in ALp, are sensitive to the strength of the couplings of the Higgs
boson and of the SM fermions to the new dynamics. They lead to contact corrections to
the three-body decays h — VV* — Vaip which are naively of order

n 2
SL(h = Vi) 0(”2 Al”) . (3.21)
I'(h = Vipy) f? g2
Compared to the corrections from Oy and Opg, the effect of the fermionic operators is
potentially enhanced by a factor ()\i /g?). In practice, the possibility of large fermionic
couplings Ay is strongly constrained by LEP, see egs. (2.14)—(2.16). Scenarios in which a
large degree of compositeness of either the left- or right-handed quarks is not ruled out
are generically those in which the corresponding operators in ALp, are not generated as
due to some protecting symmetry (see for example refs. [37, 64, 65]). Large corrections to
the inclusive rate of the three-body decays h — V1) from AL, are thus excluded, while
the possibility of detecting the effects of these operators through the analysis of differential
distributions should be explored, similarly to what has been discussed for Oy and Op.
Among the dipole operators in ALp,, those with light fermions are already strongly
constrained by current precision data, but potentially sizable effects could still come from
the operators involving the top quark. For example, the contribution of O to gg — h,
g9 — tt, gg — tth is of order E?/(1672f?), where E is the energy scale relevant in the
process. More in detail

do(gg — h ) do(gg — tt R s do(gg — tth s
dolgg = h) . 0 doleg=t) . Vs LNQGT, (3.22)
a(gg — h)

o(gg — tt) my o(gg — tth) m;
where we have defined ¢, = Re(¢i) (m?/m3y) ~m? /(1672 f2) ~ 3 x 1073(v?/ f?). Notice
that the experimental limit on the neutron EDM puts an upper bound on the imaginary
part of ¢ at the 1074 level, see eq. (2.18), which indicates that this is currently the most
sensitive experiment on Im(¢;). Some mechanism is however required to suppress the
imaginary parts of the dipole operators involving light fermions, in order to satisfy the
stringent constraints of eq. (2.17). By the same mechanism also Im(¢) could be sup-
pressed, so that the processes of eq. (3.22) are essential to probe the contribution of O;g
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due to Re(¢yg). From eq. (3.22) and the naive estimate of ¢ it follows that the most sensi-
tive process is perhaps gg — tt, in particular the events at large invariant mass, although a
precision larger than the one currently achieved is required to constrain (v/f). To this aim,
the analysis of differential distributions and spin correlations could be a successful strat-
egy [41, 66-68]. The NP contribution to the process gg — tth can in principle get the largest
enhancement from a cut on /s, but the small rate might limit the actual sensitivity achiev-
able at the LHC [69]. Finally, additional information comes from the experimental limits on
top anomalous couplings obtained at the Tevatron and the LHC, although their sensitivity
on NP is expected to be much smaller by naive estimate. The operator Oy, in particular,
gives the largest effect and generates the anomalous coupling gr(g/mw)brLo™ W, tr [42].
Naively one expects gr = (4my/mw ) G ~ mymy /(1672 f2) = 1.5 x 1073 (v/ f)?, an effect
too small to be observed even for f of order v.

3.5 Non-linear Lagrangian for a Higgs-like scalar

Summarizing, by working in the unitary gauge and in the basis of fermion mass eigenstates,
the effective Lagrangian relevant for Higgs physics reads as follows [51]

1 1 1 /3m? I h
L=50,h 0"h— Gmih? —cs ¢ <’:h) W= " myn Oyl (1 eyt )
P=u,d,l

h 1 h
+miy WIW—# <1+2CWU+...)+2TI’LQZZ#Z‘“ <1+2cZU+...>+...

<>

C C c
+ (CWW le’_/W_MV + % ZwZ" + czy Z " + % Y Y+ % GZyG”‘”)

W h
+ (cwaW (W, DWH + hee) + czoz Zu0uZM + czo4 Zyapﬁuu) . + ..
(3.23)

where, we recall, v is defined in eq. (2.5). We have shown only terms involving up to three
bosonic fields, and we have omitted in particular those involving fermions that follow from
ALp, + ALp,. Their form can be easily derived from egs. (2.3) and (2.4). The relations
between the couplings appearing in eq. (3.23) and the coefficients of the dimension-6 opera-
tors in eq. (2.2) are reported in table 1. It is worth noting that the same Lagrangian (3.23)
applies also to the case in which the electroweak symmetry SU(2)z, x U(1)y is non-linearly
realized and h is a generic CP-even scalar, singlet of the custodial symmetry, not necessarily
connected with the EW symmetry breaking. Indeed, each of the terms in (3.23), being in-
variant under local U(1), transformations, can be dressed up with the Nambu-Goldstone
bosons that are eaten to form the longitudinal W and Z polarizations and made manifestly
SU(2)r x U(1)y gauge invariant [70, 71] (see also ref. [72]). The explicit expression in such
a basis has been given in refs. [73, 74] at the level of four-derivative operators. In this
sense the effective Lagrangian (3.23) is a generic tool to understand the origin of the newly
discovered boson and the role it plays in the electroweak symmetry breaking dynamics. It
is valid for arbitrary values of the couplings ¢; appearing in eq. (3.23), and it can be used
to make computations of observable quantities at a given order in an expansion in E/M
and in agpr/4m, where by the latter we indicate the generic SM loop expansion parameter.
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That is in full analogy with other well-known effective theories, see ref. [3]. It should be
stressed that, according to a well established methodology and similarly to eq. (2.2), in
this effective Lagrangian all quantum fluctuations associated to short-length modes (high-
energy modes) have already been considered and are parametrized by local operators with
an increasing number of derivatives, while quantum fluctuations (loop diagrams) involving
the light modes still have to be taken into account. For instance, top loops will give an
additional contribution to the on-shell h-gluon-gluon coupling. While eq. (3.23) is general,
the effective Lagrangian (2.2) assumes that h is part of an SU(2) 7 doublet and further relies
on the expansion in powers of H/f. As such, it is valid only in the limit of small deviations
of the Higgs couplings from their SM values and up to corrections of order O(v?/f?).

3.6 Implications of custodial symmetry

Another difference between the non-linear Lagrangian (3.23) and the SILH Lagrangian (2.2)
is that the first one contains two more free parameters. This means that there are two
relations among the couplings of eq. (3.23) which hold at the level of dimension-6 operators
if the Higgs is part of a doublet. As noticed in sections (3.2) and (3.3), the first identity
relates cyww, czz, czy and ¢y, while the second relates cyow, czoz and czpy. They read:

CWw — Czz OS2 Oy = cz~sin 20 + ¢y sin®0yy (3.24)

c
Cwow — Czoz oS Oy = %{h sin 20y . (3.25)

In fact both identities are not special to the case in which the Higgs is a doublet, but
are a general consequence of custodial symmetry. This latter is accidental in the SILH
Lagrangian if one restricts to the operators that lead to derivative couplings of the Higgs
to vector bosons. Starting at the dimension-8 order, it is possible to write cutodial-breaking
operators that lead to couplings that violate the relations (3.24) and (3.25). For instance

Gww g <HTW5,,0“H> (HTWb,uVO.bH> i iCsw g (H%“H) (D*W,,,) (HTﬁH> (3.26)

2 02 202
my, v vimy,

gives rise to

czoz = —4Csw, czoy = —4tan Oy cgwy , (3.27)

czz =8 COSQQV[/ESWW y,  Czy = 4 sin 20y eésww Cyy = 8 Sin29wégww R

and the relations (3.24) and (3.25) are not fulfilled.'”
A third relation holds on the non-derivative couplings ¢y and cz if one assumes that
custodial symmetry is an invariance of the Lagrangian (2.2), so that ¢z = 0; it reads:

Cw = Cygz . (328)

As said above, while all three identities (3.24), (3.25) and (3.28) are a consequence of
custodial symmetry, the first two are accidental at the level of dimension-6 operators if the
Higgs is part of a doublet.

"The two operators in (3.26) give rise to the oblique parameter U, see for instance ref. [27]: U =
—Csw — 2¢sgw while S’ = C8SHW -
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To show that egs. (3.24), (3.25) and (3.28) follow from custodial invariance, let us
consider the case in which the EWSB dynamics has a global SU(2);, x SU(2)r symmetry,
and imagine to fully gauge this group by enlarging the hypercharge to a whole triplet of
SU(2)g. In this case the diagonal custodial SU(2)y is exact even though ¢’ # g. The left
and right gauge fields couple to the conserved currents of SU(2), x SU(2)g and the inter-
actions among two gauge fields and the Higgs boson are fully characterized in momentum
space by three form factors:

(CLo)iy (p1,p2) Ly L b + (CLr)ly (p1,p2) L, RLh + (TrR); (p1,p2) R, RLh. (3.29)

Here p1, po are the momenta of the gauge fields and each form factor can be computed
in terms of a Green function with two conserved currents, I'Y = (JI'J¢|h). In addition
to the usual massive W and Z bosons, which form a triplet Vlf of the custodial group,
in this case there is a whole triplet of massless SU(2)y gauge fields (the photon plus its
charged companion), VJ. The mass eigenstates V), and Vu are related to the left and
right gauge fields through a rotation by an angle 6y, where tanfy = ¢’/g. Their cubic
interactions with the Higgs boson are thus characterized by three form factors, which are
linear combinations of those in eq. (3.29):

. sin 26
T'yvy :SIDQQWrLL+ w (FLR+FRL)+COS29WFRR
in 260 in 260
Ty = Sm2 WP + (cos?9T g — sin®0Tgr) — MW (3.30)

sin 20y,

5 (Trr + Tre) + sin®0w Trp

Loy = cos29W 'y —
where we have defined T (p1,p2) = T'/'5(p2,p1). Notice, in particular, that in this case
the same form factor I'j,;; describes the interaction of two W’s and two Z’s to the Higgs
boson, as due to custodial invariance.

The physical limit where only SU(2)7, xU(1)y is gauged is obtained by simply switching
off the unphysical RL’Q fields. The interactions of two neutral vector bosons to the Higgs

are still described by the relations of eq. (3.30), where I'yz = T' I'yvy = I'yy and

I'zy =Ty, In the charged sector, instead, the W corresponds to avp‘)/ure left gauge field,
since it has no mixing with right-handed ones. This implies that its form factor is given by
the last formula of eq. (3.30) with Oy = 0, that is: T'yyw = I'rz. The four physical form
factors are linear combinations of the three defined in eq. (3.29), and are thus related by

one identity:

sin 20y,
2 (3.31)

T (p1,p2) — T (p1, pa) cos”® Oy = (F%(phpz) + F}Z(pz,p1)>
+ Fﬁ;:(pl,pg) sin? Oy .

Notice that this relation is a consequence of our initial assumption of SU(2); x SU(2)r
invariance of the EWSB dynamics. The custodial SU(2)y is broken in this case only by
the gauging of hypercharge. For ¢’ = 0 the custodial symmetry is unbroken and eq. (3.31)
implies 'y = I'zz. It is straightforward to derive the relations (3.24), (3.25) and (3.28)
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from eq. (3.31). At quadratic order in the momenta, the form factors can be computed
from the effective Lagrangian (3.23); one has:

w(p1,p2) =2miyew " — 2eww Ply’ — cwow (P + PYY)
p17p2

~\P1, P2

) =
)= QZcZn“V—chzprQV—CZBZ (P{w'i‘Pgw)

I (3.32)
)

v
— 2czyPly — czoy Py

AAAA

F
F
F plupQ = 26"/’YP1N2 )

where we have defined P = nt*p? —p/'p¥, Py = n*p3 —phpy and Py’ = n**p1-ps —piph.
This is in fact the most general decomposition which follows at the O(p?) level for an on-
shell Higgs boson by assuming CP invariance and requiring that: i) the I'yw, I'zz and
I, form factors are symmetric under the exchange {p1, u} <> {p2,v}; @) the I'y, and T'z,
form factors satisfy the Ward identities implied by U(1).y, local invariance:

P15 (p1,p2) = 0 = p2, IEN (p1, p2) | p2uT’§I;(p17p2) =0. (3.33)

Additional structures proportional to p1, and pz, can be omitted since they give vanishing
contributions both when the vector bosons are on-shell and when they decay into a pair of
fermions by coupling to the corresponding conserved current. Inserting eq. (3.32) into (3.31)
one then obtains the identities (3.24), (3.25) and (3.28).

From the above discussion it follows that if custodial symmetry is an invariance of
the EWSB dynamics, the effective Lagrangians (3.23) and (2.2) have the same number
of free parameters, in terms of which all observables can be computed. This is true also
if one considers the fermionic operators (for a Higgs doublet these are listed in eqs. (2.3)
and (2.4)), as long as one focuses on terms with one Higgs boson. This means that by using
single-Higgs processes alone, one cannot distinguish the case in which the Higgs boson is
part of a doublet from the more general situation. The only possible strategy to this aim
is exploiting the connection among processes with zero, one and two Higgs bosons which
is implied by the Lagrangian (2.1) at O(v?/f?) and does not hold in the case of the more
general non-linear Lagrangian. As a consequence of such connection, the bounds that EW
and flavor data set on operators with zero Higgs fields severely constrain the size of the NP
effects in Higgs processes, as discussed in section (2.1). If one were to find that single-Higgs
processes violate these constraints, this would be an indication that the Higgs is not part
of a doublet. Furthermore, processes with double Higgs boson production can be predicted
to a certain extent in terms of single-Higgs couplings, and can thus be used to probe the
nature of the Higgs boson [75].

4 Implementing the Higgs effective Lagrangian beyond the tree level

In this section we address a few issues related to the use of the effective Lagrangians (2.1)
and (3.23) beyond the tree level, as required to make Higgs precision physics without
assuming the validity of the Standard Model. While the methodology is well established
and various examples of its application exist in several different contexts, we think that a
dedicated discussion can be useful to better clarify some specific points (see also ref. [76]
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for a recent discussion). As an illustrative though important example, we will consider the
calculation of the Higgs partial decay widths, and show how the corrections from dimension-
6 operators can be incorporated in a consistent way. As a by-product of our analysis and to
better demonstrate its applicability, in a companion paper [16] we will present a modified
version of the program HDECAY [14, 15] that features a full implementation of the effective
Lagrangian ALgrrm, eq. (2.2), as well as its generalization to the case of a non-linearly
realized EW symmetry, eq. (3.23).

A first difficulty which arises when using either eq. (2.1) or (3.23) is the presence of
multiple expansion parameters. For generic values of the Higgs couplings ¢;, the validity
of the effective Lagrangian (3.23) is based on a double perturbative expansion in the SM
couplings, agps/4m, and in powers of E/M. The effective Lagrangian (2.1) further assumes
(v/f) < 1, which implies small shifts in the Higgs couplings: ¢; = 1 + d¢;, with d¢; S
O(v?/f?). All these expansion parameters must be properly taken into account when
performing calculations. Furthermore, the non-renormalizability of the effective theory
implies the presence of additional divergences compared to the SM case which must be
absorbed by a renormalization of the Wilson coefficients of local operators.

4.1 RG evolution of the Wilson coefficients

Let us discuss the issue of the renormalization and RG evolution of the Wilson coefficients
first. As done in the previous sections, we will assume that the Higgs boson is part of an
SU(2)r, doublet and use the Lagrangian (2.1). Since we are only interested in the divergent
structure of the diagrams, it is convenient to work in the limit of unbroken SU(2), x U(1)y
and compute the Green functions in terms of the Higgs doublet H. The only 1-loop
diagrams which generate additional logarithmic divergences are those featuring one inser-
tion of the effective vertices from dimension-6 operators. By dimensional analysis, further
insertions of the effective vertices lead to power-divergent contributions to dimension-6
operators (which are irrelevant to determine the RG running) and log-divergent contribu-
tions to higher-dimensional operators. The same counting holds also at higher loop level:
the only log-divergent contribution to dimension-6 operators comes from diagrams with
one insertion of the effective couplings, and is thus suppressed by extra powers of the SM
expansion parameter agys/4m. This is in analogy with the renormalization of the pion
effective Lagrangian in the chiral limit, see ref. [77]. It thus follows that the RG equation is
linear and homogeneous in the ¢;, and different operators with the same quantum numbers
will in general mix with each other. At leading order in agps, with agsy = aem, @2, asg,
respectively, in the case of electromagnetic, weak and QCD corrections, one has

i) = (85495 S hog (1) ) a0, (@)

where *y-((.)) is the leading-order coefficient of the anomalous dimension. Some elements of

7
. . . (0
the anomalous dimension matrix 'y(.)

;; have been recently computed in refs. [78, 79].

In the case in which the Higgs boson and possibly the SM quarks (in particular the
top and the bottom) are strongly coupled to the new dynamics, the leading RG run-
ning effect comes from loops of these particles and can be as large as A¢;/¢;(M) ~
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Figure 1. One-loop diagrams relevant for the RG running of ¢y and ¢g. Dashed, continuous
and wiggly lines denote, respectively, a weak doublet H, a fermion and a vector field V = W, B.
The symbol ® denotes the insertion of the effective vertex from Og (in diagram (a)) or Ogy (in
diagram (b)).

(g2/1672) log(M/p) or (/\121}/16772) log(M /). This must be compared to the effects of order
(9%,,/167%) log(M /) from loops of gauge fields. For example, the insertion of ¢y in the
diagram (a) of figure 1 leads to a renormalization of Oy g = Ow + Op:

_ _ 1 a9 1% _
- M) — = 22 (7) M), 4.2
cwp(u) = ew+p(M) — = - —log (- ) en(M) (4.2)
where ay has been defined in eq. (3.20). It is well known that this RG running is associated
with the IR contribution to the €3 parameter, and the same coefficient ’yl(,g)Jr g = —1/6

can indeed be extracted from self-energy diagrams [80]. From the estimates of eq. (2.9),
cu(M) ~ OW?/ f?), ew,s(M) ~ O(m¥,/M?), it follows that the correction to ¢y p from
its RG evolution down to the scale j is of order Ay +p/cw (M) ~ (g2/1672) log(M/p)
as anticipated. Similarly, the insertion of ¢gy into a loop of fermions, like in diagram (b)
of figure 1, leads to a renormalization of ¢y and ¢p:

a2 N
ACI/V,B =~ NC47T log <M> CHw(M) s (43)

where N, = 3 is a color factor. In this case the RG correction is of order ()\i /1672) log(M /)
compared to the UV value of the coefficients, as one can immediately verify by using the
estimates (2.9).

Loops of EW gauge fields give corrections which are suppressed by a weak loop factor
(g%/1672), and the associated RG evolution is therefore generically small. An important
exception is the case in which the Wilson coefficient has a value suppressed at the scale M.
For example, if the dynamics behind the EW symmetry breaking is custodially invariant,
then ép(M) = 0. The insertion of ¢y into a loop of hypercharge gauge bosons, as in
diagram (a) of figure 2, renormalizes ¢ and gives

o

3
er(p) = 3 tanZfy, 4; log (ﬁ) (M) . (4.4)

Compared to the naive estimate of eq. (2.9), ¢r(M) ~ O(v?/f?), valid in absence of custo-
dial symmetry, the above correction is further suppressed by a factor (g'2/1672) log(M /).
Although small, such a low-energy value of ¢r has a strong impact on the EW precision
tests performed at LEP [80].1® On the other hand, it is too small to be observable through

8For example, ér(mz) ~ 1072 for (M) ~ 0.1.
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Figure 2. One-loop diagrams relevant for the RG running of ér. Dashed, continuous and wiggly
lines denote, respectively, a weak doublet H, a fermion and a hypercharge field B. The symbol ®
denotes the insertion of the effective vertex from O (in diagram (a)) or Opy (in diagram (b)).

a measurement of the Higgs couplings at the LHC. A similar renormalization of ér also
follows from loops of SM fermions through the insertion of ¢, as illustrated by diagram
(b) of figure 2. The explicit calculation for the case of a composite right- and left-handed
top quark was performed for example in ref. [81]. Naively, the effect goes like

2
Aep ~ NCIZ‘;Q log (ﬁ) Crp(M), (4.5)
and is of order (yy/9')%(A\y/g«)? compared to the one from loops of hypercharge.?

In general, although small, the RG evolution of the Wilson coefficients due to EW loops
must be properly taken into account in order to precisely match the experimental results
obtained at low energy with the theory predictions at high energy. This is even more true
in the case of QCD loop corrections, which can be large and will affect the coefficients of
the dimension-6 operators with quarks and gluon fields.?® The effect of the running of the
Wilson coefficients can be easily incorporated in programs for the automatic calculation
of production cross sections and decay rates by using the effective Lagrangian (2.1) and
identifying the coefficients appearing there as their values at the relevant low-energy scale.

4.2 Decay rates at the loop level with the effective Lagrangian

In addition to the short-distance effects discussed above, which are parametrized in terms
of the evolution of the coefficients of local operators, one-loop diagrams also lead to
long-distance corrections to the observables under consideration. Specifically, while short-
distance effects are related to the divergent terms, the long-distance contributions corre-
spond to the finite parts and are defined in a given renormalization scheme. In general,

9Notice that in case of a sizable fermion coupling Ay, a numerically larger contribution to ér comes from
fermionic loops with two insertions of ¢gy. The corresponding diagram is quadratically divergent, so that
it gives a threshold correction to ¢r at the scale M, but does not contribute to its running. An explicit
calculation can be found in ref. [81] for the case of a composite top quark. Naively the effect is of order
Aer ~ Ne(v/£)? (Mg /167%)(Ay/g+)?, and can be numerically large. For example, if both ¢ and tr couple
with the same strength A¢, = Aty ~ (/=¥ to the new dynamics, then it follows Aér ~ N.(v/f)*(y7 /1677).

2ONotice that g2¢, is not renormalized at one-loop by QCD corrections. This follows from the RG-
invariance of the operator (8(gs)/gs)GuvG*” which contributes to the trace of the energy-momentum ten-
sor [82-84]. See also the recent discussion in ref. [78].
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the decay amplitude can be expanded as follows:?!

A= ASM 1+ ATM L AAy+ AA; + .. (4.6)

where ASM (A$™M) is the tree-level (one-loop) SM amplitude, and AAg (AA;) is the tree-
level (one-loop) contribution from the dimension-6 operators of the effective Lagrangian in
egs. (2.2)—(2.4). The dots denote higher-loop contributions as well as the corrections due
to higher-order operators.

Let us consider for example the decay h — W®W*. In this case the operators that
can contribute at tree-level are Oy, Ow, Ogw, Oyw, O}w, as well as Og,q in the case
in which the off-shell W decays into a pair of quarks. Based on the naive estimates of
eq. (2.9) and according to the discussion of section 3, we can quantify the various effects
encoded by AAq as follows:

AAy N 2 E2 . E2
Ag’M(W( )W ) —CH X O<f2> +CW X O<M2> —|—CHW X O<167‘[‘2f2>

02 A ALY Emy
+CHUd><O<f2 g* >+cHwXO<f2 +C¢WXO<167T2JC2 .

(4.7)

Here EF = my, is the relevant energy of the process and we have conveniently defined each
of the O(1) parameters ¢; to be equal to ¢;(my) divided by its naive estimate in eq. (2.9):

f? M?
éi:,UQC(mh) i:H7T767¢7 éZ:%EZ(mh% ZZVV?B’
16 2 r2
b= T L e mn), i = HW, HB,~,g,0W, 4B, 0G,
myy
2 42 2 2 2
¢ = i;/}igci(mh)a &= %LC (mp), i=H1, CHud = )\g)\ / 5 Crud(mnp) -
(4.8)

When the Higgs boson is pNGB, the two parameters ¢, and ¢, are not of order one but are
further suppressed by a factor gé /g2. From eq. (4.7) one can see that the contribution of
the dipole operators Oy is suppressed by (my,/my,) compared to that of Oy, while that
of Opyug and O}w is expected to be small given the existing constraints on the couplings
Ay (see the discussion in section 2.1). The dominant NP contribution thus comes from
the terms in the first line of eq. (4.7), among which the one proportional to ¢y is the
leading effect for g, > g. The 1-loop electroweak amplitude A*lgM gives a contribution of
order AYM/JASM ~ (ag/4m). We thus see explicitly that A4y and A7™ encode the NLO

corrections in the three expansion parameters which we are considering: ag /47 (electroweak

21 Tn the strict sense this equation is valid for the genuine EW corrections only, while for simplicity we
include the (IR-divergent) virtual QED corrections to the SM amplitude in the same way. The corresponding
real photon radiation contributions to the decay rates are treated in terms of a linear novel contribution
to the Higgs coupling for the squared amplitude in order to obtain an infrared finite result. Pure QED
corrections factorize as QCD corrections in general so that their amplitudes scale with the modified Higgs
couplings. However, they cannot be separated from the genuine EW corrections in a simple way.
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expansion), E2/M? (derivative expansion) and v?/f2. The contribution due to 1-loop
diagrams with one insertion of the effective vertices has not been computed yet, but we
can easily estimate its size:

2 2 2
jﬁ\}(W(*)W*) = ép X O(;2 Z;) + 6y X O(Jvc2 Z;) +é6 % O(U aQ) +o (49
0

where the dots denote the subleading terms due to the other operators. The terms shown
in eq. (4.9) arise from the same 1-loop diagrams that give the SM amplitude AfM , Where
each of the Higgs couplings gets shifted by ¢p, ¢, and ¢g. By neglecting the unknown AA;
one is omitting terms of order (v2/f?)(aa/47), that is, of the same size of the tree-level
contribution due to the operator Opyw, see eq. (4.7), since E = my, ~ myy. This latter
contribution can be easily computed and it is included in the formula of the decay rate to
WW (and similarly that of Ogw and Ogp to ZZ is also included) implemented in the
program eHDECAY discussed in ref. [16]. The addition of the tree-level correction from O gy
is clearly the first step towards a full inclusion of the O[(v?/f?)(az/47)] corrections, where
the missing part will have to be computed from 1-loop diagrams featuring one insertion of
Opg, O, and Og. It is worth noting that these diagrams, in general, contain logarithmic
divergences which must be reabsorbed by a renormalization of the Wilson coeflicients and
contribute to their RG evolution as explained in the previous section. The finite part is
the contribution to AA; which awaits to be computed.

By approximating the amplitude as A ~ ADSM + AlsM + A Ap one obtains the following
formula for the decay rate:?

45T
02 2 ag 2 a9\ 2
*O((H <4f><4>>}

where T'§M (W) W*) denotes the tree-level SM decay rate. For simplicity, we have not

NGRS rgM(W<*>W*){1 SR Re[(AgM)* (A7 + AAO)}
(4.10)

shown terms involving powers of E?/M? among the neglected contributions, since for
E = my ~ my one has E2/M? < v?/f?if g, 2 g. As mentioned, this formula incorporates
the O(v?/ f?%), O(ag/4m) and O(m3 /M?) corrections (NLO in the perturbative expansion),
and can be easily implemented in existing codes for the automatic computation of the decay
rate. The inclusion of the O(m? /M?) tree-level correction due to Oy is justified as long
as g« < 4m, since it is parametrically larger than the neglected O[(v?/f?)(az/47)] terms
by a factor (1672/¢2). Notice that in the limit of large deviations of the Higgs couplings
from their SM values, (v/f)? ~ O(1), the neglected terms of O[(v?/f?)(aa/47)] become
as important as those included through AfM . In other words, a proper inclusion of the
EW corrections in the limit v ~ f requires a complete 1-loop calculation where each of the
diagrams is rescaled by the appropriate coupling factor.

22The same remark as in footnote 21 applies.
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A similar discussion applies to the Higgs decay into a pair of fermions, h — 1. In
this case only Of and Oy, (¢ = u,d,l) contribute at tree level,

AAg - cy . 02
AV () = <2 + c¢) X O<fg) , (4.11)
while the one-loop EW diagrams featuring one effective vertex give a correction of order
AA; v? s v? v?
ASMW?/)) CHXO(f24 +¢éy x O I +¢é6 x O 71 +... (4.12)

where the dots indicate the subleading terms due to the other operators. The calculation
of AA; has not been performed yet, while the 1-loop EW corrections are known in the
SM, A7M. Their inclusion is thus possible as long as (v/f) < 1, so that the neglected
terms in AA; are subleading. The case of QCD radiative corrections is different, since at
leading order they factorize with respect to the expansion in the number of derivative and
fields and can thus be resummed up to higher orders. In the case of the Higgs decay into
a pair of quarks one can for example approximate A ~ AgM + AfM + AAg and obtain the
following formula for the decay rate:*?

2 *
ag) = T (a0 HQCD{l R4 (47 + 8

() (7))}

where T5™(qq) is the SM tree-level rate and k2¢P encodes the QCD corrections. This
formula includes the leading O(v?/f?), O(ag/47) and QCD corrections. Mixed electroweak
and QCD corrections can also be included by assuming that they factorize, as the non-

(4.13)

factorizable terms are known to be small. Compared to the decay rate into WW, eq. (4.13)
apparently does not include corrections of order m,% /M?. While there is indeed no oper-
ator whose contribution starts at that order, such corrections can arise from subleading
contributions to ¢y and ¢,. For example, the tree-level exchange of heavy fermions can
lead to a wave-function renormalization of the SM ones, which can be re-expressed in our
notation as a contribution to ¢, of order )\?pvg /M2

A similar resummation of the QCD corrections also works for the decay h — gg. In
this case the SM tree-level amplitude vanishes, AgM = 0, while the leading contribution
arises from the 1-loop exchange of top quarks. The two-loop EW corrections are known
in the SM and give a correction of order ASM /AYM ~ ay/47. Among the dimension-6
operators, only O, contributes at tree-level,

AA 2
Aiﬂg (99) = ¢4 X O<f2> ) (4.14)

As discussed in section 2 (see eq. (2.10)), the above estimate is suppressed by an additional
factor (gé /g2) in the case of a NG Higgs boson. At the one-loop level one has

AA c R v? v2 42
ASJ‘} (99) = (; + cu> X O<f2> + & ¥ O<f2 1‘75; ) (4.15)
1

23The same remark as in footnote 21 applies.
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Thus, the one-loop effect of Oy and O, is expected to be as important as the tree-level
one from Oy, and even larger if the Higgs is a NG boson, as discussed in section 3.3. This
is in fact not surprising, since ¢, arises at the 1-loop level in minimally coupled theories,
while ¢y and ¢, can be generated at tree level. The contribution from the dipole operator
Osq is suppressed by a factor y?/16m2 compared to that from Opy and O,, as expected
from the fact that ¢, is generated at the 1-loop level in minimally coupled theories. For
this reason it can be neglected. It should be noted that without a complete computation
of the NLO EW corrections of order (ag/4m)(v?/f?), the LHC data on Higgs physics are
not sensitive to the range of values of ¢;¢ expected using the naive estimate (2.9) with
(v/f)? ~ 0.1. Furthermore, we stress that in order to distinguish the effect of Oyg from
that of Oy, the tth channel should be measured [69] (single top production in association
with the Higgs could also provide complementary information [85]). Also in this case,
there are no operators giving m}% /M? corrections, although these terms will in general
appear as subleading contributions to ¢4, ¢y and ¢,, as discussed above. It is well known
that higher-order a corrections are large, so they must be included consistently in our
perturbative expansion. This can be done easily in the approximation my < 2my, which is
reasonably accurate for my = 125 GeV. In such a limit one can integrate out the top quark
and match its one-loop contribution to that of the local operator O4. Then it trivially
follows that the QCD corrections associated to the virtual exchange and real emissions of
gluons and light quarks below the scale m; factorize in the rate, the multiplicative factor
being the same for both the top quark and New Physics terms. By approximating A ~
AFM 1 ASM 4 A Ao+ A Ay, one arrives at the following formula for the h — gg decay rate:

| A7 2

() (25)- () }

where FfM (g99) is the 1-loop SM decay width. The factor ceg includes all the dependence

2¢, \
T'(g9g) =TT (99) Ksoft {Cgff TR Re[(AfM) (ASM ot + AAg + AA; Ceff)}
(4.16)

on my and accounts for virtual QCD corrections to A*lgM above that scale, while r,f¢
parametrizes the soft radiative effects. By using eq. (4.16), the existing four-loop calcula-
tions of ce [86-89] and riso st [90-94] allow one to include the QCD corrections up to N3LO.

The contributions to the decay h — vy follow a similar pattern as for h — gg. At tree

level: N )
. v
Afﬂg (yy) = ¢ x O<f2) . (4.17)
At one loop:
AA R 1)2 . 1}2 R m2
arv =i x0( )+ 0 ) +ew <0 )

, (4.18)

2,2

N my, A N VT Yy
+ CHw X O<]_67‘('2f2) + (CtW + CtB) X O<f2 ]_67'(2> .
The 2-loop electroweak corrections have been computed in the SM and can be included for
(v2/f%) < 1, so that unknown O[(v?/f?)(ag/47)] effects arising from 2-loop diagrams with
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one effective vertex are negligible. From eq. (4.18) one can see that the 1-loop contribution
due to Opw is of the same order as such neglected terms. The 1-loop correction from
Ow, on the contrary, is parametrically larger by a factor (1672 /g2) and should be included
for g, < 4m. The easiest way to compute it is by rewriting Oy in terms of the other
operators through the equations of motion [4], see eq. (3.8). The 1-loop correction due to
the dipole operators is suppressed by a factor y? /1672 and can be neglected. Approximating
A APM 4 ASM 4 AAg + AA; one finds:

2 .
L(yy) =7 (17) {1 i Re|(4f™M)" (A5M + Adg + A4))]

(4.19)
v2 2 ay V2 a9\ 2
cof () (7))
Finally, the estimate of the corrections to h — ~Z is the following:
AA 2 R R 02
ASAS(Z’)/) —07><0<f2> +(cHW—cHB)xo<fz> , (4.20)
1
() rewo(a) raexo () vam<o (i)
Z cg x0 4+ ¢y x O + e x O + ¢ x O
AfM( ) =¢n 72 72 w WE HW 1672 f2 a21)

7)2 y2 '1)2 y
~ O s i O t
e <f2 167r2> o <f2 1672 >

In this case the 1-loop electroweak corrections are not known in the SM, so that the formula
for the decay rate reads:

N(Z7) = 15(2) {1 + g Re[ (A7) (A + A +O((f2)2 (”)) }
(4.22)

where only the contributions from Op, O, and Ow should be retained in AA; for consis-
tency.

Through the above discussion we sketched how the effective Lagrangian can be imple-
mented beyond the tree level in the calculation of physical quantities. In the case of the
Higgs partial decay widths, in particular, we have seen how the EW and QCD corrections
can be included consistently with the expansion in the number of fields and derivatives.
As a more concrete illustration of these considerations, we have written a modified version
of the program HDECAY, which we dub eHDECAY, where the corrections from all the local
operators of the effective Lagrangians (2.2) and (3.23) are included at NLO. A detailed
description of the code is given in ref. [16], where more explicit formulas for each of the
Higgs partial widths are provided.

5 Discussion

The discovery of a resonance with a mass around 125GeV similar to the long-sought
Standard Model Higgs boson brings the exploration of the electroweak symmetry breaking

_ 98 —



sector under quantitative scrutiny. The LHC experiments, together with those at the
Tevatron, report the signal strengths, i.e. the product of the Higgs production cross section
times its decay branching ratio, for various final state channels. The main task of the
community is now to interpret these data and understand the implications for the theory
of New Physics that is expected to lie beyond the weak scale.

The EW oblique parameters provide a bound on the scale of New Physics but do not
give detailed information about the nature of the NP sector. In order to understand how the
weak scale is stabilized at the quantum level, i.e. how the hierarchy problem is solved, one
crucial question is whether EW symmetry breaking proceeds by weak or strong dynamics.
The direct observation of new degrees of freedom would provide a straightforward answer.
But a glimpse of New Physics can also be caught from a dedicated study of the Higgs
boson itself, and in particular from a measurement of its couplings, if a departure from the
SM predictions is ever observed. It is useful to parametrize the deviations from the SM by
the effective Lagrangian of eq. (2.1). By measuring its Wilson coefficients ¢; one can infer
what kind of UV theory completes the SM.

If the coupling strength of the Higgs boson to the NP sector is of the order of the SM
weak couplings, g, =~ g, then our power counting (2.9) shows that the coefficients of the
operators that can be generated at tree-level, Op, O, 41, Ow and Op, are expected to be
all of the same order, m%v /M?, where M is the typical mass scale of the NP spectrum,
unless some special selection rule suppresses some of them. It is instructive to examine
the predictions of the archetypal example of weakly-coupled UV completions: the Minimal
Supersymmetric Standard Model (MSSM). First, R-parity protects the EW oblique pa-
rameters from any tree-level contributions, hence ¢y and ¢g are of order (m,/M?)(az/4r)
and thus small. Second, the couplings of the lightest Higgs boson to the massive gauge
bosons are given by ¢y = sin( — «), where « is the rotation angle to diagonalize the CP-
even mass matrix and tan g is the ratio of the vacuum expectation values of the two neutral
CP-even Higgs bosons. In the decoupling limit, o« — 8—7/2, one has ¢y = 1+0(m%/m?,),
where my is the mass of the heaviest CP-even scalar (for a general treatment of the de-
coupling limit see for example ref. [95]). This means that at tree-level the deviations of the
Higgs-gauge boson couplings are generated by dimension-8 operators [96], while ¢y arises
only through loop effects and is naively of order (mj,/M?)(az/4x). At the same time, the
couplings to up- and down-type quarks read, respectively,

2 4
Cu =+ cose g —i—2m220052500825+0<m42>
sin 3 miy miy (5.1)

€4 =— | —2m2Zsin2ﬁcos2ﬁ+O<m%> .
cos 3 m%{ mj%{

For moderately large tan 8 this implies ¢ ~ mQZ /m%{, while ¢, is further suppressed by
a factor ~ 1/tan? 3 (see for example refs. [97, 98] and the recent discussion in ref. [99]).
A pattern with small values of ¢y, cw, ¢g and ¢, but with a ~ 15% enhancement of the
Higgs coupling to down-type quarks due to ¢4, for example, would be indicative of the
MSSM with large tan § and the additional Higgs bosons around 300 GeV. Generic two-
Higgs doublet models lead to a similar pattern of couplings, while models where the Higgs
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boson mixes with a scalar that is singlet under the SM gauge group can generate ¢y at
the tree level. In the MSSM, loops of light stops or staus as well as charginos can also
give sizable contributions to the effective couplings of the light Higgs boson to photons and
gluons, with ¢4, ¢ satisfying the naive estimates (2.9). For example, loops of stops lead to
Cg ~ (gf/lGWQ)(m%/V/mg), where g, =y or Ay/my.

This situation has to be contrasted with the case of strongly coupled theories. There,
our power counting (2.9) singles out ¢g, ¢, 4 as the dominant Wilson coefficients (¢g controls
only the Higgs self-interaction and measuring it at the LHC will be challenging), while ¢y
and ép are suppressed by the ratio (g/g«)?. Furthermore, a composite Higgs boson can
be naturally light if it is the pseudo Nambu-Goldstone boson associated to the dynamical
breaking of a global symmetry of the strong dynamics. This implies that the coefficients
¢y and ¢, will also be suppressed by a factor (ggz/ g+)?, where gg is some weak spurion
breaking the Goldstone symmetry. The modifications in the gluon-fusion production cross
section and in the decay rate to photons are thus controlled by ¢z and ¢,.

The harvest of data collected by the LHC certainly calls for a definite theoretical
framework to describe the Higgs-like resonance and compute production and decay rates
accurately in perturbation theory without restricting to the SM hypothesis. Effective
Lagrangians are one of the tools at our disposal to achieve this goal. Elaborating on the
operator classification of ref. [4], we estimated the present bounds on the Wilson coefficients
and provided accurate expressions for the Higgs decay rates including various effects that
were previously omitted in the literature. Assuming that the observed Higgs-like resonance
is a spin-0 and CP-even particle, we discussed two general formulations of the effective
Lagrangian, one of which relies on the linear realization of SU(2)z, x U(1)y at high energies.
One of the questions that can be addressed by considering these two parametrizations is
whether the theory of New Physics flows to the SM in the infrared, that is, whether the
Higgs-like resonance is part of an EW doublet. If all the Higgs signal strengths measured
at the LHC converge towards the SM prediction, it would be a very suggestive indication
that indeed the Higgs boson combines together with the longitudinal components of the
W and Z to form an EW doublet, since any other alternative requires some tuning to fake
the SM rates. On the other hand, the doublet nature of the Higgs boson would be less
obvious to establish if the signal strengths exhibit deviations from their SM predictions
(but note that some deviations in the signal strenghts could unambiguously indicate that
the Higgs boson is not part of a doublet, this is in particular the case if a large breaking
of the custiodial symmetry is observed in conflict with the strong bound already existing
from EW precision data). We have pointed out that, if the EWSB dynamics is custodially
symmetric, it is not possible to test whether the Higgs boson is part of a doublet by
means of single-Higgs processes alone. A direct proof can come only from processes with
multi-Higgs bosons in the final states [75], which are however challenging to study at the
LHC. Precisely establishing the CP nature of the Higgs boson is another question that also
requires accurate computations. If there is little doubt that the observed resonance has
a large CP-even component, the possibility of a small mixing with a CP-odd component
remains alive, and dedicated analyses will have to be performed to bound the mixing angle
between the two components. To this aim too, an effective Lagrangian including the CP-

— 30 —



odd operators listed in appendix C provides the theoretical framework where this question
can be addressed quantitatively.

The absence so far of direct signals of New Physics at the LHC indicates that the road
to unveil the origin of the electroweak symmetry breaking might be long and go through
precision analyses rather than copious production of new particles. For such a task, the
well established technology of effective field theories is the most powerful and general tool
we have to analyze the Higgs data and put them into a coherent picture together with the
existing experimental information without assuming the validity of the Standard Model.
There is still time for the LHC to disprove this pessimistic eventuality by reporting the
discovery of new light particles or large shifts in some of the Higgs couplings. It is clear,
however, that if the New Physics continues to remain elusive, a precise investigation of the
Higgs properties will become the most urgent programme in high-energy physics both for
the experimental and the theoretical community.

Acknowledgments

We thank B. Gavela, A. De Rujula, J.R. Espinosa, A. Falkowski, E. Franco, L. Merlo,
A. Pomarol, R. Rattazzi, F. Riva, L. Silvestrini, M. Trott for insightful discussions, and
the participants of the LHC Higgs XS Working Group, in particular A. David, A. Denner,
M. Diihrssen, M. Grazzini, G. Passarino and G. Weiglein for discussions and comments.
We also thank J.F. Kamenik for useful explanations on the results of ref. [41] and we thank
A. Pomarol and E. Masso for pointing out a sign error in eq. (2.13) and we thank F. Maltoni
for reminding us about the Bianchi identities. This research has been partly supported
by the European Commission under the ERC Advanced Grant 226371 MassTeV and the
contract PITN-GA-2009-237920 UNILHC. C.G. is supported by the Spanish Ministry
MICNN under contract FPA2010-17747. The work of R.C. was partly supported by the
ERC Advanced Grant No. 267985 FElectroweak Symmetry Breaking, Flavour and Dark
Matter: One Solution for Three Mysteries (DaMeSyFla). M.M. is supported by the DFG
SFB/TR9 Computational Particle Physics.

A SM Lagrangian: notations and conventions

In this appendix, we collect the conventions used throughout this paper. The field content
decomposes under SU(3)¢ x SU(2) x U(1)y as

H=(1,2,1/2), L =1(1,2,-1/2), b=(1,1,-1), (A1)
qz = (372, 1/6)7 “3% = (37 172/3)7 ZR = (37 1, _1/3)7 (AQ)

where the hypercharge is defined as Y = Q—T3y,, and i = 1,2, 3 is a flavor index. The action
of the gauge group is fully characterized by the conventions used to define the covariant
derivative. For instance, for the left-handed quark doublet, we have

Dpuqr = (a“ = 595A"g = 590" W — 69/Bu) qr (A.3)
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where X%, a = 1...8, and ¢%,i = 1...3, are the usual Gell-Mann and Pauli matrices.
Accordingly, the gauge-field strengths are defined as

G4, = 9u9% — Ougl + gs ™" ghgs (A.4)

where f%¢ are the SU(3) structure constants.
The Yukawa interactions of the up-type quarks involve the Higgs charge-conjugate
doublet defined as
H¢ = io’H*. (A.5)

The renormalizable Lagrangian of the SM thus reads:
1 a yapy 1 i iy 1 uv wrr\t
Lsy = — ZG’“’G — ZW’“’W — ZBWB + (D"H)"(D,H)
+1 (I_/L'YHDMLL + ZR’}/‘“DNZR + (jL’)/‘uDqu + ﬂR’y‘uDMuR + CzR'Y'LLDudR) (A.6)

+ i HYH — NHYH)? + (yo G H up + ya qrHdr + y LLHlg + h.c.)

B Electroweak Chiral Lagrangian in non-unitary gauge

We report here the expression of the EW chiral Lagrangian valid in a generic gauge and in
the most general case in which the SU(2)7, x U(1)y is non-linearly realized. For simplicity,
we will restrict to the case in which the EWSB dynamics has a custodial invariance. The
scalar h is assumed to be CP-even and a singlet of the custodial symmetry, and does not
necessarily belong to an SU(2);, doublet. The Lagrangian can be expanded in terms with

an increasing number of derivatives
L=Ly+ LEwSB, Lewsp=—V(h)+LP + LW+ (B.1)

where Ly contains the kinetic terms of the SU(3). x SU(2)1, x U(1)y gauge fields and of the
SM fermions, Lgwsp describes the sector responsible for EWSB, and V' (h) is the potential
for h [51]:

1

1 /3m?
V(h) = 2mih2+@,6< Th>h3+... (B.2)

Under the request of SU(2)y custodial symmetry, the longitudinal W and Z polarizations
correspond to the NG bosons of the global coset SU(2), xSU(2)g/SU(2)y and are described
by the 2 x 2 matrix

N(x) = exp (i0"x*(z)/v) , (B.3)

where 0 are the Pauli matrices. SU(2); x U(1)y (local) transformations read as
S(z) = US(x)Ul ., Up =exp(iato®), Uy = exp(iayo®) (B.4)
and the covariant derivative is defined by

ig a _a ig/ 3
Dy = 8,8 — S Wio" S+ B, 8o’ (B.5)

~32 -



At the level of two derivatives one has [51]:

1 v2 h
(2 _ = 2, 7 T pHu T
L 2((9uh) + 1 Tr (DME D E) <1 + 2cy ” + )

— 2 @ dNy s (D, 0)" <1+cuh +) +hc.
v ' (B.6)
v (i) (i iNT h '
_EA?J’ (@, d?") s (0,d?) (1—|—cdv+~~-> +hee.
v

= EA@. @D 1) 5 (0,180 " <1 +o % +o > + hec.
where the dots stand for terms with two or more Higgs fields and an implicit sum over flavor
indices 7,5 = 1,2,3 has been understood. After rotating to the fermion mass eigenbasis
and by choosing the unitary gauge X(z) = 1, the sum of (B.2) and (B.6) coincides with
the first two lines of eq. (3.23) with ¢y = cz = cv.

At the level of four derivatives, there are 6 independent bosonic operators which affect
cubic vertices with one h field:?*

h h h
LW =y W, W e —+cyp Tr(zﬁ We,o" s BWU3) —+ g Bu B
d — 4 —
+ W prye, Tr(zTa%' D Vz) h— B orp,, Tr(sz' 0,5 03) h (B.8)
mw mw
h

Cgg
+?GZVG““”;+...

The dots stand for terms which have two or more h fields or do not lead to cubic vertices,
see refs. [73, 74] for the complete list of bosonic operators in L£® . In the unitary gauge,
eq. (B.8) coincides with the last three lines of eq. (3.23). More specifically, the coefficients
CWW, €zZ, CZ~, Cyy Can be written as linear combinations of ¢jy v, ¢gg, g

/
CWWwW — 2CWW
Cz7 = 2(c0520w Cww — 2sin Oy cos Ow iy g + sin?6y )

(B.9)
oy = 2(sinOyy clyryy + 28in Oy cos Oy g + cosOw )
¢z = 2(sin Oy cos Oy cyyy + cos 20w g — sin By cos Oy ),
while cyaw, czaz can be expressed in terms of ¢}y, ¢g:
/
cwow = deyy
czoz = 4cy + 4tan by g (B.10)

czoy = 4tanby ey —4cp.

24 Another convenient basis, which can be more easily compared to eq. (3.23), is one in which the first
two operators of eq. (B.8) are replaced by

W, Tr [2*0%‘3“2} 8°h, B, Tr [2%‘3“203] 8h. (B.7)

This is in fact the basis adopted in ref. [73].
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Notice that egs. (B.9) and (B.10) are directly implied by eq. (3.30), which follows from
custodial invariance. It is simple to verify that the identities (3.24) and (3.25) are satisfied
by the couplings appearing on the left-hand sides of respectively eq. (B.9) and (B.10).

The above discussion shows explicitly that every operator in eq. (3.23) can be dressed
up with NG bosons and made manifestly invariant under local SU(2)z, x U(1)y transfor-
mations.?>

The part of eq. (B.1) which does not depend on the Higgs field h coincides with the
non-linear chiral Lagrangian for SU(2);, x U(1)y [100-102], in the limit of exact custodial
symmetry. This latter assumption can be relaxed by specifying the sources of explicit
breaking of the custodial symmetry, i.e. its spurions, in terms of which one can construct
additional operators formally invariant under SU(2);, x U(1)y local transformations. For
example, the list of operators that follows in the case in which custodial invariance is broken
by a field with the EW quantum numbers of hypercharge has been recently discussed in
ref. [74]. Since the choice of quantum numbers of the spurions is model-dependent (and
in fact the strongest effects are expected to arise from the breaking due to the top quark,
rather than hypercharge), we do not report here any particular list of operators, and prefer
to refer to the existing literature for further details.

C Relaxing the CP-even hypothesis

If one relaxes the hypothesis that h is CP-even, there are six extra dimension-6 operators
that need to be added to the effective Lagrangian (2.2):

-~ !
1CHB Y

ALcp = chli, W9 (DrH)'o' (DY HYW, + S (D!H) (DY H) B,
w w
~ 12 ~ 2
+ 99 H'HB,B™ + 295 giHGE, G (C.1)
myy myy

1 W wqivipgeiihe 4 SGIS paeguvghogen,
myy My

where the dual field strengths are defined as F;w = %EWPUFP" for ' = W, B,G (e is the
totally antisymmetric tensor normalized to €p123 = 1). Furthermore, the coefficients of the
operators involving fermions will be in general complex numbers.

In the case of the effective chiral Lagrangian with SU(2)z x U(1)y non-linearly realized,
there are four additional operators, to be added to those of eq. (B.8), which can affect cubic
vertices with one h field:

_ h - h
ALY, = &y, W W Sy T [2* W00 s Bwaﬂ -
h h

~ c ~
~ B, BH 99 ra apy =
+ CBB DPuv v + 2 GuuG v

(C.2)

ZNotice that h is invariant under SU(2)r x SU(2)r (hence SU(2)r, x U(1)y) transformations. In the
case in which h belongs to an SU(2). doublet H, this follows from the fact that h parametrizes the norm
of the doublet: H'H = (v + h)?/2.
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In the unitary gauge, both Lagrangians ALcp and Aﬁgl)g are matched onto:

; c > : ¢ ca) B
ALEp = (éww WhEW ™ + 2L 2,2 + ey ZuA™ + Ty + L %GW) !

2 2 v
+ ... (C.3)

When the EW symmetry is linearly realized, the coefficients of eq. (C.3) are related to the
Wilson coefficients of eq. (C.1) through the same relations reported in table 1 with the
simple exchange ¢; — ¢ (and with ¢y = ¢g = 0). In the non-linear case, éww, €2z, Cyy
and ¢z, are given in terms of the Wilson coefficients of eq. (C.2) by relations identical to
the ones of eq. (B.9) (with ¢; — ¢ and ¢z = 0). Notice that the Bianchi identities ensure
that D#f/’“’ = 0 and therefore there are no CP-odd analog to the operators Oy gy .

Finally, it should also be noted that when the CP-invariance assumption in the Higgs
sector is relaxed, the couplings ¢, 4; are allowed to take some complex values.

D Current bounds on dimension-6 operators

In this appendix we explain how we derived the bounds on the coefficients of the dimension-
6 operators reported in section 2.1. For a given observable we construct a likelihood for
the coefficients ¢; as follows:

L(e;) o exp [=(Osnr + 00(€i) = Ocap)?/ (2 802,,)] (D.1)

where Oczp &= AOcy, is the experimental value of the observable, Ogys denotes its SM pre-
diction and 00(¢;) is the correction due to the effective operators. If several observables
constrain the same coefficients ¢;, the global likelihood is constructed by multiplying those
of each observable. We include the theoretical uncertainty on the SM prediction by in-
tegrating over a nuisance parameter whose distribution is appropriately chosen. We then
quote the bound on a given coefficient by marginalizing over the remaining ones.

Let us consider for example the bounds of egs. (2.14) and (2.15). To derive them
we used the EW fit performed in ref. [36] by the GFitter collaboration, and constructed
a likelihood for the various coefficients by computing their contributions to the Z-pole
observables. For the latter, we used the SM predictions and experimental inputs reported in
table 1 of ref. [36], treating the uncertainties on the SM predictions as normally distributed.
We performed two separate fits: one on the coefficients of the operators involving the light
quarks (u,d, s), and one on those with charged leptons and heavy quarks (c,b). We thus
neglected, for simplicity, the correlations between these two sets of coefficients. The relevant
observables in the first fit are I'iot, opeq and R;. They depend on the Wilson coefficients
only through the following linear combination:

1 1. _ . 1 1 _ _ _ _
[ = <—4 =+ g Sln29W) (Cqu — C/qu) + <4 - 6 51n29w> (Cqu + c{qu + CHqZ -+ Cj‘fq?)

1. _ 1. _ _
+ 3 sin®0y Cry — 6 sin?0y (Gprq + Cns)

(D.2)
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which with 95% probability is constrained to lie in the interval
—0.63x107% <1< 1.2x1073. (D.3)

Although there are no further observables at the Z-pole which can resolve the degeneracy
implied by this result, we thought it useful to report the limits that one obtains from
eq. (D.3) by turning on one coefficient at the time. These are the bounds reported in
eq. (2.14).

The second fit, performed on the coefficients of the operators with leptons and heavy
quarks, makes use of all the observables at the Z pole and counts 7 unknowns, specifically:
T; = {(EHqQ — élfqu)’ CHe, (EHqg + E}{q3), CHb, CHI, (5HL + EIHL), (EHL - E}{L)}' For simplicity
we assume lepton universality, and thus take the coefficients ¢y, €mr, ¢y, to be the
same for all the leptonic generations. In terms of the above variables, the result of the
fit is summarized by their central values z;, standard deviations o; and by the correlation

matrix p;;:
CHg2 — ch2_(5Si44) x 1073
= (5.94+85) x 1073
ch3+ch = (=3.14+2.7) x 1073
= (—3.5+1.3) x 1072 (D.4)

cr = (1.6 £5.4) x 107*
err + &y = (7.6 £5.2) x 1074
crr — Eyr = (5.5+£15) x 1074

1.0 0.74 -0.037 —0.072 0.24 —-0.057 -0.14
0.74 1.0 -0.078 —0.085 0.11 0.15 0.030
—0.037 —0.078 1.0 0.85 —0.40 —0.21 0.068
p=1-0.072 -0.085 0.85 1.0 —-0.40 —-0.33 —0.0024 (D.5)
024 011 -0.40 -0.40 1.0 0.11 0.28
-0.057 0.15 -0.21 -0.33 0.11 1.0 —-0.35
—0.14 0.030 0.068 —0.0024 0.28 —0.35 1.0

The limits of eq. (2.15) have been obtained by making use of the above formulas and
marginalizing over all the coefficients except the one on which the bound is reported.

For the limits of egs. (2.11) and (2.12) we have used the fit on S and T performed in
ref. [36], by marginalizing on one parameter to extract the bound on the other.

To derive eq. (2.17) we have used the theoretical predictions of the EDM of the neutron
and mercury given in ref. [39] in terms of the dipole moments of the quarks (see egs. (2.12),
(3.65) and (3.71) of ref. [39]), and the experimental results for these observables given
respectively in ref. [103] and ref. [104]. We included the theoretical errors by assuming that
they are uniformly distributed within the stated intervals. Only two linear combinations of
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the coefficients ¢; can be constrained in this way, since two are the observables at disposal:

2m m
1 =— miQd [Im(édg) + 1.3Im(EdB — EdW)] — m2u [Im(éu(;) —0.64 Im(EuB + Euw)]
w w
2my, _ 2myg _ (D.6)
lo =—— Im(cuq) + —5 Im(Gqq) -
myy myy

Using m,, = 2.3MeV and my = 4.8 MeV we obtain, with 95% probability:
—1.59x 1072 GeV ! <13 < 1.78 x 1072 GeV ™!
—1.82x 1072 GeV ! <y <137 x 1072 GeV ™!,
From the above result, by turning on one coefficient at the time, one obtains the limits
given in eq. (2.17). The bound on Im(éq) of eq. (2.18) has been similarly derived from the
neutron and mercury EDMs by following ref. [41] and making use of the formulas given
there.

The limits of eq. (2.22) have been obtained from the experimental measurements of the

(D.7)

electron [45] and muon [43] anomalous magnetic moments and their SM predictions (taken
respectively from ref. [46] and refs. [43, 44]). In this case we have included the theoretical
errors by assuming that they are normally distributed. All the remaining bounds reported
in section 2.1, namely those of egs. (2.19)—(2.21) and eq. (2.23) have been obtained by
simply translating into our notation the results given in the references quoted in the text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License which permits any use, distribution and reproduction in any medium,
provided the original author(s) and source are credited.
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