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1 Introduction

A direct formulation of 6d non-Abelian M5 brane theory has been a long-standing prob-

lem. The recent proposal of [1, 2] that M5 brane theory compactified in the M-theory

circle direction with radius R, is dual to 5d maximally supersymmetric Yang-Mills theory

(henceforth referred to as N = 2 SYM or MSYM) as the worldvolume theory of D4 branes

is of particular interest in the sense that the latter may be used as a definition of the former

M5 brane theory. The 5d MSYM coupling is related to the circle radius R by

g2
YM = 4π2R (1.1)

This 5d MSYM theory involves a solitonic sector of instanton particles corresponding to

D0 branes bound to D4 branes, and the required KK spectra along the M-circle (fifth)

direction are correctly reproduced by them [2]. Indeed, for the U(1) case, the D4/M5 cor-

respondence has been checked explicitly by direct computation of partition functions from

both sides [3]. However the 5d U(N) MSYM theory with N ≥ 2 is certainly perturbatively

nonrenormalizable and turns out to involve infinity at six-loop order [4]. Hence the check

of the proposal is not possible in the standard field theoretic framework.

The DLCQ definition of M5 brane theory [5, 6] can be of rescue to this situation. (For

the effort along the idea of the deconstruction, see refs. [7–9].) The DLCQ description

of k D0-brane sector agrees with that of the N = 8 quantum mechanics (four complex

supercharges) on the moduli-space of k instantons based on the ADHM construction of the

5d MSYM theory [8, 10]. Our N = 8 quantum mechanics below is slightly different in the

sense that it involves a potential arising from turning on the scalar vacuum expectation

values (vev) [11] which introduce another mass scale φ0 = 〈φ6〉 to the problem in addition

to the M-circle radius R. This N = 8 quantum mechanics can be understood from the fol-

lowing DLCQ limit of the 5d MSYM theory. For the k instanton sector, the corresponding

KK momentum is given by

p5 =
k

R
(1.2)

and the energy by

p0 = E =
√
p2

5 +H⊥ (1.3)

where

H⊥ = Hmd +O[ p2
⊥(R2p2

⊥)n(R2φ2
0)m] +O[ p2

⊥(φ2
0p

2
⊥)n(R2φ2

0)m]

Hmd = p2
⊥ + V (1.4)

with n,m non-negative integers and n + m ≥ 1. p⊥ denotes the transverse directional

moduli momentum and V is the potential which is of order φ2
0. As the x5 direction is circle

compactified with the radius R, we have the identification

x5 ∼ x5 + 2πR (1.5)

and let us boost the system in the x5 direction with a velocity u

x′
0

=
1√

1− u2
(x0 − ux5), x′

5
=

1√
1− u2

(x5 − ux0), x′
i

= xi (1.6)
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Let us further introduce x± = 1√
2
(x0 ± x5), which, under the boost, transform as

x′
+

= εx+, x′
−

=
1

ε
x− (1.7)

with ε =
√

(1− u)/(1 + u). In the ε→ 0 (infinite momentum) limit, we have the identifi-

cation

(x′
+
, x′
−
, x′

i
) ∼ (x+, x− + 2πR′, xi) (1.8)

where R′ = R√
2ε

and we keep R′ finite by sending also R to zero. In this DLCQ limit with

k > 0,

p′− = p′
+

=
k

R′
+O(ε2) → k

R′
(1.9)

p′+ = p′
−

=
R′

2k
(p2
⊥ + V) +O(ε2) → R′

2k
(p2
⊥ + V) (1.10)

while the anti-instanton sector with k < 0 decouples from the instanton sector completely

because their states become infinitely heavy. A few comments are in order. The resulting

DLCQ Hamiltonian is precisely that of the moduli space approximation supplemented by

the above mentioned potential term. Its N = 8 supersymmetric completion is uniquely

fixed by the moduli space metric together with the triholomorphic Killing vector G [12–15],

which describes k D0 brane (Coulomb-branch) dynamics in the presence of N parallel D4

branes. Due to the potential, we do not have any possible danger since the potential is

confining asymptotically leading to a finite mass gap in the fluctuation spectra near the

instanton configurations. There are no interactions between different k sectors as is usual in

light-cone frame dynamics. Hence each k sector of the dynamics can be studied separately.

As we shall see below explicitly, this quantum mechanics for a finite k sector is indeed well

defined and regular.

In this paper, we study the k = 1, N = 8 quantum mechanics for the gauge group U(N).

In order to avoid the singularity of the modular space geometry, we turn on the spatial (anti-

self-dual) noncommutativity. We adopt then the ADHM construction [16, 17] of instanton

solutions with general ADHM data. By solving the ADHM constraints explicitly, we shall

find the moduli space for an arbitrary N , which corresponds to the Calabi space [18] times

the overall translation R4. By turning on the vev of φ6, the gauge symmetry is broken

down to U(1)N . We shall compute the potential explicitly in terms of the moduli-space

coordinates. Thus we claim that the resulting N = 8 quantum mechanics describes the

k = 1 sector of the circle-compactified M5 brane theory in the DLCQ limit.

We test the resulting quantum mechanics by computing the index partition functions

for their 1/4-BPS states and find a perfect agreement with the result in [19] from the

index computation using localization of the 5d MSYM theory. These 1/4-BPS states are

associated with the dyonic (electrically-charged) instantons (D0-F1 bound states) which

amount to F-strings stretched between D4 branes in the presence of instantons [11]. For the

minimal N = 2 case, we are led to the Eguchi-Hanson (EH) space [20] times the overall R4

as the moduli-space geometry [21]. We shall present rather detailed constructions of related

1/4-BPS states as well as their supermultiplet structures based on the results in [22].

– 3 –
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In order to compute the index partition function of the 1/4-BPS states, we use the

property of the deformation invariance of the number of 1/4-BPS states. A detailed account

of the relevant index theorem can be found in [23]. Here we present a brief account of the

index theorem relevant for our discussions. We note that our N = 8 Lagrangian admits a

deformation

L → τ2L (1.11)

under which the central charge Z(φ0, Q) as a function of only the vev and electric charges,

remains invariant. Furthermore the index

I+ = number of selfdual states− number of anti-selfdual states (1.12)

remains invariant. There is no net contribution coming from non-BPS states to the in-

dex [23]. Also it has been made plausible (and was proven for N = 2 [23]) that the number

of anti-selfdual 1/4-BPS states vanishes, so that the index counts precisely the number of

1/4-BPS states. Now in the limit where τ2 goes to infinity (R→ 0), the states are localized

around the zeroes of the potential which is non-negative definite. There are N such minima

around which the relative moduli-space becomes (R4)N−1 which we may interpret as the

world volume of N D4 branes where the dyonic instanton Hilbert space at one of these D4

branes has been deleted, henceforth referred to as deleted location.1 In each of the relative

R4, there lives a 4d N = 8 superharmonic oscillator, for which we shall find the 1/4-BPS

states explicitly. Due to these N deleted locations, the number of states of one instanton

involving a singly connected F-string scales as 16
9 N

3 for the large N , which is unexpected

from the N2 scaling of the MSYM field degrees of freedom.

It should be mentioned that our N = 8 quantum mechanics describes not just the

1/4-BPS states but also generic non-BPS ones of the system. This is contrasted to the

index computation in [19], where we do not know the way to deal with the non-BPS states

due to the lack of the formulation.

The paper is organized as follows. Section 2 presents the 5d U(N) MSYM theory with

the noncommutativity turned on. We give the basic properties of the dyonic instantons

which are 1/4-BPS. In section 3, the N = 8 quantum mechanical sigma model [12] is

described. Together with the potential, we set up the BPS equation [13] whose solutions

the 1/4-BPS states of dyonic instantons. In section 4, we review the ADHM construction

of the instanton moduli space. We obtain the moduli-space metric explicitly for the k = 1

sector leading to the Calabi metric of the relative space. We also compute the potential

as a function of moduli coordinates and identify the triholomorphic Killing vector G. In

section 5, we compute the number of states associated with an instanton involving an F-

string singly connected from one D4 to another D4. This is done adopting the τ2 → ∞
deformation of the quantum mechanics leading to N distinct localization points in the

relative space [24]. Each of the localized point is characterized by one deleted location of

D4 at which no dynamical degrees live. On the other hand, in each of the remaining D4

1If we compactify one spatial direction of D4 on a circle and T-dualize along that circle, then what we

refer to as deleted location corresponds to the D3 brane on which a dipole instead of a monopole is located,

and whose dipole charge corresponds to the noncommutativity parameter [24].
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branes, the associated part of the moduli-space becomes R4, in which lives one set of 4d

N = 8 superharmonic oscillator. Based on this localization, we compute the k = 1 index

partition function of dyonic instantons in section 6. Section 7 is devoted for the discussion

of the spin and R-symmetries of dyonic instanton states. In section 8, we take the EH case

of N = 2 and give the detailed description of states, spin and R-symmetry of the dyonic

instanton states based on the results of [22]. We also present the full general treatment of

1/4-BPS states of the 4d N = 8 superharmonic oscillator problem. Based on these results,

we compute the more refined version of the index partition function with extra chemical

potentials for the spin (J3+) and the R-charges (R3±) and find a full agreement with the

index computation of the 5d MSYM theory in [19]. Finally we show that the counting of

states has a smooth commutative limit. Various technical details as well as some explicit

constructions are collected in appendices.

2 Five-dimensional N = 2 SYM and the dyonic instanton

We will use 11d notation [2] for the 5d N = 2 super Yang-Mills (SYM) theory. The classical

action is given by

S =
1

g2
YM

∫
dtd4x tr

(
− 1

4
FµνF

µν − 1

2
Dµφ

ÂDµφÂ +
1

4
[φÂ, φB̂]2

+
i

2
χ̄ΓµDµχ+

1

2
χ̄ΓÂΓ5[φÂ, χ]

)
(2.1)

where

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] (2.2)

The spinor χ is subject to an 11d Majorana and a 6d Weyl condition

χ̄ = χTC

Γ(6)χ = −χ (2.3)

where Γ(6) = Γ012345. Our conventions for the gamma matrices are collected in appendix A.

The on-shell supersymmetry variations read

δφÂ = iω̄ΓÂχ

δAµ = iω̄ΓµΓ5χ

δχ =
1

2
ΓµνΓ5ωFµν + ΓµΓÂωDµφ

Â − i

2
ΓÂB̂ω[φÂ, φB̂] (2.4)

The supersymmetry algebra in a massive dyonic instanton background reads [2]

{Q,Q†} = M − Γ50 4π2k

g2
YM

+ Γ560QE (2.5)

Here the central charges are given by

k =
1

32π2

∫
d4xεijkltr (FijFkl)

QE =
1

g2
YM

∫
S3
∞

d3Ωitr
(
v6F0i

)
(2.6)
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This algebra shows that the dyonic instanton requires a nonvanishing vev v6 =
〈
φ6
〉
,

carries instanton charge k, electric charge QE , preserves 1/4 of SUSY and has the BPS

mass M = |k|/R+ |QE |. There are 12 broken supercharges out of which 6 become lowering

operators. Acting with these lowering operators on a highest weight state we generate

a supermultiplet with 26 = 64 states [2]. This analysis does not give us all the 1/4-

BPS states though. This is so because we have more fermionic zero modes than broken

supercharges, unless the gauge group is U(1) in which case we cannot have any vev and

no dyonic instanton. For gauge group U(2) we will obtain 2 copies of the above 64-state

supermultipliet.

In this paper we will explore the k = 1 sector of the dyonic instanton for higher-rank

gauge groups U(N). To find all 1/4-BPS states, we count number of solutions of the 1/4-

BPS equation by transcribing the fermionic zero modes into form-fields on moduli space.

For this analysis we need to regularize the instanton moduli space. We will make a

noncommutative deformation

[xi, xj ] = iθij (2.7)

where, for the selfdual instanton, we shall assume that θij is antiselfdual. Such a deforma-

tion breaks SO(4) = SU(2)+× SU(2)b rotation symmetry down to SU(2)+×U(1)b. To see

this we consider a variation

δ±xi = εI±ηI±ij xj (2.8)

This gives

δ±[xi, xj ] = iεI±[ηI±, θ]ij (2.9)

This commutator vanishes for δ+ which means that SU(2)+ ⊂ SO(4) is unbroken by this

antiselfdual noncommutativity deformation. On the other hand SU(2)b is broken down to

U(1)b.

3 The N = 8 quantum mechanics

The instanton background preserves 8 real supercharges. The low-energy dynamics of

zero modes of the instanton is therefore described by an N = 8 supersymmetric sigma

model in one dimension (quantum mechanics) with a potential for the charged or dyonic

instanton [11, 12, 14, 15]

S =
1

2

∫
dt

(
grs

(
ẊrẊs + iψ̄rγ0Dtψ

s
)

+
1

6
Rrstuψ̄

rψsψ̄tψu

−grsGrÂGsÂ − iDrG
Â
s ψ̄

r(ΩÂψ)s

)
(3.1)

N = 8 supersymmetry requires the moduli space metric grs to be hyper Kahler thus

supporting three covariantly constant complex structures (JI−)rs. The GrÂ must be tri-

holomorphic and mutually commuting Killing vector fields. The moduli space is on the

– 6 –
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form

M = R4 ×Mrel (3.2)

The three Kahler forms living on this space are on the form

KI = KI
R4 +KI

Mrel
(3.3)

and the associated complex structures obtained by rising one index by the inverse moduli

space metric, are on the form

JI− =

(
IIR4 0

0 IIMrel

)
(3.4)

In later sections when we discuss the relative moduli space we will use the shorter notations

II in place of IIMrel
. This action describes the dynamics of the moduli parameters Xr and

ψr (which thus have been given a time dependence) of a dyonic instanton particle. Here

ψr are two-component Majorana spinors. Despite we have just one time direction here,

it is useful to define gamma matrices (associated to an N = (4, 4), 1 + 1 dimensional

sigma model) as γ0 = iσ2, γ1 = σ1 and γ = σ3 where σ1, σ2, σ3 denote the 2 × 2 Pauli

sigma matrices. The R symmetry group is SO(5) which rotates Â as a vector index. If we

decompose Â = (I,m) where I = 1, 2, 3 and m = 4, 5, then the ΩÂ satisfy the half-Clifford

algebra of half-gamma matrices

{ΩI ,ΩJ} = 2δIJ

{Ωm,Ωn} = −2δmn

[ΩI ,Ωm] = 0 (3.5)

where ΩI are hermitian and Ωm are antihermitian. One gets hermitian generators of SO(5)

out of these as follows

RIJ =
i

4
[ΩI ,ΩJ ]

Rmn = − i
4

[Ωm,Ωn]

RIm =
i

2
ΩIΩm (3.6)

One could imagine that we had introduced full hermitian gamma matrices on a doubled

space

ΓI = ΩI ⊗ σ1

Γm = Ωm ⊗ (−iσ2) (3.7)

Being hermitian, we must take Ωm antihermitian. These satisfy the Clifford algebra

{ΓÂ,ΓB̂} = 2δÂB̂. Generators of SO(5) are KÂB̂ = i
4 [ΓÂ,ΓB̂] and KIJ = RIJ ⊗ 1,

Kmn = Rmn ⊗ 1 and KIm = RIm ⊗ σ3. We then project onto σ3 = 1 subspace where we

recover the above half-Clifford algebra. An explicit realization is given by

ΩI = i(JI−)rs

Ω4 = iδrsγ
1

Ω5 = iδrsγ (3.8)

– 7 –
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The covariant derivative is given by

Dtψ
r = ψ̇r + ΓrstẊ

sψt (3.9)

where Γrst is the Christoffel symbol. Conjugate momenta to Xr are

pr = grs

(
Ẋs +

i

2
Γstuψ̄

tγ0ψu
)

(3.10)

In this paper we will assume that GÂr = δÂ5Gr which corresponds to one SYM scalar field

acquires a vev
〈
φ6
〉

=diag(v1, . . . , vN ). In this case the 8 real supercharges are given by

Qα = ψrαpr + (γ0γ)α
βψrβGr

QIα = i(JI−)rs

(
ψsαpr + (γ0γ)α

βψsβGr

)
(3.11)

We have the supersymmetry algebra

{Qα, Qβ} = 2
(
Hδαβ − Zσ1

αβ

)
{QIα, QJβ} = 2δIJ

(
Hδαβ − Zσ1

αβ

)
(3.12)

where H is the Hamiltonian and Z is the central charge

Z = Grpr −
i

2
DrGsψ̄

rγ0ψs (3.13)

We define 4 complex supercharges

Q =
1√
2

(Q1 − iQ2)

QI =
1√
2

(
QI1 − iQI2

)
(3.14)

Also defining Q4 = Q and letting i = (I, 4), the superalgebra generated by them reads

{Qi,Qj†} = 2δijH

{Qi,Qj} = 2iδijZ (3.15)

This can be further rewritten as{
Qi ± iQi†,

(
Qi ± iQi†

)†}
= 4δij (H ± Z) (3.16)

Since the left-hand side is non-negative we see that H ≥ |Z| where equality holds for BPS

saturated states. The condition for a BPS state |Ω〉+ which corresponds to the case Z > 0

reads (
Qi − iQi†

)
|Ω〉+ = 0 (3.17)

and for an anti-BPS state we have the condition(
Qi + iQi†

)
|Ω〉− = 0 (3.18)

– 8 –
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which corresponds to Z < 0. If Z = 0 we require both BPS conditions, which amounts to

Qi |Ω〉0 = 0

Qi† |Ω〉0 = 0 (3.19)

and we have no broken supersymmetries in the N = 8 sigma model. This case corresponds

to a pure instanton.

The fourth supercharge has a particular nice form after transcribing it to form space

[13],

Q4 = −i (d− iG) (3.20)

and the dyonic instanton BPS equation with Z > 0 becomes[
(d− iG) + i(d† −G)

]
Ω = 0 (3.21)

The other BPS equations
(
QI − iQI†

)
|Ω〉+ = 0 will be automatically satisfied since the

mass of the solution saturates the BPS bound. We can then read the equation (3.16)

backwards. Its left-hand side would have been positive definite had
(
QI − iQI†

)
|Ω〉+ been

non-zero, contradicting the fact that the right-hand side is zero. Therefore solving (3.21)

will be sufficient.

4 Brief review of the ADHM construction

Here we review the ADHM construction of instantons [16, 17] which is necessary for our

construction of the moduli space metric and the corresponding potential induced by the

vev of the scalar field.

The basic object for the ADHM constraint is the (N +2k)×2k complex-valued matrix

∆λmα̇, which is assumed to be linear in the 4d spatial coordinates xi (i, j, · · · = 1, 2, 3, 4).

Only in this section we will assume a generic instanton number k and let the instanton

indices m,n, · · · run over 1, 2, · · · k. Later on we will fix k = 1. The indices λ, µ, · · · =

1, 2, · · · , N + 2k are decomposed as u ⊕mα, v ⊕ nβ, · · · with u, v, · · · = 1, 2, · · · , N . We

use the notation ∆̄mα̇,λ = (∆λ,mα̇)∗. Then ∆ can be parametrized as

∆λ,nα̇ = ∆u⊕mα,nα̇ =

(
wunα̇

(Ximn + xiδmn)q̄iαα̇

)
(4.1)

where q̄iαα̇ are as specified in eq. (A.4). We shall require the ADHM constraint

∆̄mα̇,λ∆λ,nβ̇ = δα̇
β̇

(f−1)mn (4.2)

where f is an x-dependent k × k Hermitian matrix. To get the instanton solution, one

introduces an (N + 2k)×N matrix Uλu satisfying

∆̄mα̇,λUλu = 0 , ŪuλUλv = δuv (4.3)

– 9 –
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Then the gauge field is given by

(Ai)
u
v = iŪuλ∂iUλv (4.4)

whose field strength is self-dual (F = ∗4F ). We choose noncommutativity parameter de-

fined by (2.7) as θij = ζη3−
ij as suitable for selfdual instantons. Then the ADHM constraint

becomes

0 = w̄mα̇,uwu,nβ̇(σI)β̇ α̇ + i[Xi + xi, Xj + xj ]
m
nη

I−
ij

= w̄mα̇,uwu,nβ̇(σI)β̇ α̇ + i[Xi, Xj ]
m
nη

I−
ij − 4ζδmn δ

I3 (4.5)

together with X†i = Xi.

4.1 Moduli space metric

The moduli space metric can now be computed starting from the flat metric

ds2 = trk
(
dw̄α̇dwα̇ + dXidXi

)
(4.6)

by imposing the ADHM constraint and an appropriate U(k) gauge fixing condition. We

will clarify this construction in section 5 where we obtain the moduli space metric for k = 1.

4.2 Potential

The scalar field equation in the instanton background

DiDiφ = 0 (4.7)

can be solved for any given ADHM data. The solution is given by (see for instance the

appendix in ref. [17])

φ = ŪJU = Ū

(
φ0 0

0 ϕ I2×2

)
U (4.8)

where φ0 is the vev of the scalar field (which we will choose as an N ×N diagonal matrix)

and ϕ is the k × k x-independent Hermitian matrix satisfying

[Xi, [Xi, ϕ]] +
1

2

(
w̄α̇wα̇ϕ+ ϕ w̄α̇wα̇

)
= w̄α̇φ0wα̇ (4.9)

The potential of the N = 8 supersymmetric quantum mechanics can then be obtained by

evaluating

V =
1

2g2

∫
d4xtrDiφDiφ =

1

2g2

∫
S3
∞

d3Ωi trφDiφ (4.10)

With a short computation, one has

Diφ = −Ū(∂i∆)f∆̄U − Ū∆f(∂i∆̄)U (4.11)

and

xiDiφ→
1

x2

(
φ0wα̇w̄

α̇ + wα̇w̄
α̇φ0 − 2wα̇ϕw̄

α̇
)

(4.12)

leading to the potential

V =
2π2

g2
tr
(
w̄α̇φ2

0wα̇ − w̄α̇φ0wα̇ϕ
)

(4.13)
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5 Calabi metric from ADHM constraints

Let us now consider k = 1 of U(N) noncommutative instanton problem. Since the center-

of-mass part of the metric decouples, we shall set Xi = 0 and consider only the relative

part. Our starting point is the flat metric on HN = R4N . We map 4N real coordinates yiu
(u = 1, · · · , N) into N quaternionic coordinates

yu = yiuqi (5.1)

using the quaternion basis (A.4). The flat metric on HN can be expressed as

ds2 =
N∑
u=1

dyudȳu (5.2)

Here we suppress the overall coefficient of this metric, which is given by k
R = 4π2

g2 with

k = 1.2 By introducing the Hopf map HN → R3N ,

yuq3ȳu = 4xIuqI (5.3)

the above flat metric takes the form [25]

N∑
u=1

(
Cud~x

2
u + C−1

u σ2
ψu

)
(5.4)

Here ~xu refers to xIu and

Cu =
1

xu
(5.5)

with xu =
√
~x2
u. Associated with the circle-fiber over R3N we define

σψu = dψu +Au (5.6)

The 4π-periodic angles ψu are defined from the quaternions by

yu = au exp

(
q3
ψu
2

)
(5.7)

with āu = −au purely imaginary. The vector potentials Au are related to the functions

Cu as

∗ dAu = dCu (5.8)

If we parametrize

~xu = xu(sin θu cosφu, sin θu sinφu, cos θu) (5.9)

2Our convention for the Lagrangian for the SUSY quantum mechanics is given in (3.1) and this fixes

the normalization of the moduli space metric grs.
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where the coordinates (θu, φu) are the usual polar coordinates on S2 base manifold, then

we have

Au = (1 + cos θu)dφu (5.10)

In the original Cartesian coordinates we find that

Au =
1

xu (xu − x3
u)

(
x1
udx

2
u − x2

udx
1
u

)
(5.11)

We present a derivation of this form of the flat metric in the appendix B.

The ADHM constraints (4.5) are expressed in terms of wuα̇ ∈ C2N . Therefore we wish

to have a map HN → C2N . In the 2× 2 realization of quaternions we find that

ȳu = y†u (5.12)

and

yu =

(
wu1̇ −w̄2̇u

wu2̇ w̄1̇u

)
(5.13)

where we define

wu1̇ = yu4 − iyu3

wu2̇ = yu2 − iyu1

w̄1̇u = yu4 + iyu3

w̄2̇u = yu2 + iyu1 (5.14)

This now defines a map HN → C2N .

The ADHM constraints ∑
u

wuα̇(σI)
α̇
β̇w̄

β̇u = 4ζI (5.15)

can now be written as ∑
u

yuq3ȳu = 4ζIqI (5.16)

and can be solved as

~xN = −
N−1∑
A=1

~xA + ζê3 (5.17)

Our indices range as u, v, · · · = 1, · · · , N and A,B, · · · = 1, · · · , N − 1 respectively, and

ê3 = (0, 0, 1). We insert this into (5.4) to eliminate ~xN . Furthermore we have the U(1)

symmetry

yu → yu exp (q3t) (5.18)

which acts as a translation of the angles

ψu → ψu + 2t (5.19)
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Since we shall mod out this U(1) symmetry, we introduce U(1) invariant angles

ϕA = ψA − ψN (5.20)

and define corresponding one-forms

σϕA = dϕA +AA −AN (5.21)

As an intermediate step in obtaining the metric, we compute∑
u

1

xu
d~x2

u =
∑
A

1

xA
d~x2

A +
∑
A,B

1

xN
d~xA · d~xB

∑
u

xuσ
2
ψu =

∑
A

xA

(
σ2
ϕA
− 1

L
(xAσϕA)2

)
+L

(
σψN +

1

L
xAσϕA

)2

(5.22)

where we define

L =
∑
u

xu (5.23)

We now mod out by the U(1) gauge symmetry by putting the momentum conjugate to ψN
to zero. This kills the last term. The resulting metric is the Calabi space metric [18, 24,

26, 27]

ds2 = CABd~xA · d~xB + C−1
ABσAσB (5.24)

where

CAB =
δAB
xA

+
1

xN

C−1
AB = xAδAB −

1

L
xAxB (5.25)

6 The potential for the Calabi space

We take the scalar vev

φ0 = diag[v1, v2, · · · , vN ] (6.1)

For the k = 1 case, the scalar data ϕ is given by

ϕ =
w̄α̇φ0wα̇
w̄α̇wα̇

(6.2)

Then the potential becomes

V =
2π2

g2

(
w̄α̇φ2

0wα̇ −
(w̄α̇φ0wα̇)2

w̄α̇wα̇

)
(6.3)

Noting

w̄α̇wα̇ = 4L (6.4)
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which follows from (5.23) together with the usual relation between the radii of spheres,

4xu = wuα̇w̄
α̇u in the Hopf map S3 7→ S2, this is evaluated as

V =
2π2

g2
4
(∑
u=1

xuv
2
u −

1

L

(∑
u=1

xuvu
)2)

(6.5)

One may rewrite this as

V =
2π2

g2

4

L

∑
u<v

xuxv(vu − vv)2 =
2π2

g2
CAB2(vA − vN )2(vB − vN ) (6.6)

Hence one can see that each Killing direction ϕA is weighted by 2(vA − vN ), which cor-

responds to an F-string (W-boson) connecting D4N to D4A. When vu − vv 6= 0 for any

u 6= v, the U(N) gauge symmetry is maximally broken down to U(1)N . For this case, one

finds that the potential is non degenerate near any zeroes of the potential and receives

the nontrivial quadratic contributions. Finally the corresponding Killing vector G can be

identified as

G =

N−1∑
A

2(vA − vN )
∂

∂ϕA
(6.7)

The electric charge QA is defined by

QA = −2iL∂ϕA ∈ Z (6.8)

while QN = −
∑

AQA due to the overall U(1) invariance of the Calabi metric.

7 Localization to R4(N−1) and counting of 1/4-BPS states

We now come to the central part of this paper. We will count the number of 1/4-BPS

states for U(N) gauge group in the sector with instanton number k = 1. In subsequent

sections we will also classify these states according to their representations of the unbroken

global symmetry group G = SU(2)×SO(4) (this symmetry group will be explained in great

detail in subsequent sections. Let us for now only mention that G corresponds to unbroken

Lorentz times R-symmetries) of the underlying 5d SYM theory. We have not succeeded

to find exact solutions to the relevant 1/4-BPS equation (3.21), not even for the simplest

case when N = 2. (A vev when N = 1 has no significance so there would be no 1/4-BPS

states in that case.) Instead we will make use of the index (1.12) to count the number

of 1/4-BPS states. A detailed account of this index can be found in ref. [23]. The index

is invariant under the rescaling (1.11), which allows us to localize to points of minima of

the potential where the potential is that of an N = 8 supersymmetric harmonic oscillator,

and the moduli space metric is locally flat and on the form R4(N−1). Furthermore, it will

be sufficient to solve this BPS equation in R4 (corresponding to taking N = 2) due to a

factorization property of the harmonic oscillator. This BPS equation and its solutions have

been obtained in [23] by viewing R4 = C2. However for our purpose of classifying these

BPS states according to their representations of G we find it more convenient to obtain

these solutions in a vielbein basis which is constructed out of the Maurer-Cartan forms on
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3D4 D42 D41 D43 D42 D41 D43 D42 D41

Figure 1. We illustrate D4 brane configurations with various deleted locations for N = 3.

S3 = SU(2) and hence our view is that R4 = R+×S3. We present this BPS equation along

with detailed steps on how to obtain its solutions in appendix D.

Let us now describe how the Calabi metric near any of the minima of the potential

becomes flat R4(N−1). The Calabi metric can be expressed as

ds2 =

N∑
u=1

1

xu
d~x2

u +
1

x1 + · · ·+ xN

N∑
u>v=1

xuxv(σu − σv)2 (7.1)

where we define

σN ≡ 0 (7.2)

and we assume that

~x1 + · · ·+ ~xN = ~ζ (7.3)

The central charge is given by

G =
N∑
u=1

vuNQu (7.4)

Minima of the potential are uniquely characterized by specifying a D4 brane u0 that we

refer to as deleted location (see also [24]). We thus specify u0 = 1, · · · , N and take xu0 = ζ

while all other xu = 0 (u 6= u0). The metric near the minimum with a deleted location at

u0 is given by

ds2 =
∑
u6=u0

1

xu
d~x2

u +
∑
u6=u0

xu(σu − σu0)2 (7.5)

This metric is flat and describes the space R4(N−1). We identify this part of moduli space

with space of N − 1 out of N D4 branes as illustrated in figure 1.

The U(1)N−1 angles ϕu, where we define ϕN = 0, sit in the metric as

N∑
u=1

(dϕu − dϕu0)2 (7.6)

which motivates us to define local Ũ(1)N−1 angles

ϕ̃u = ϕu − ϕu0 (7.7)
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where apparently ϕ̃u0 = 0. The associated charges are related as

Qu = Q̃u , u 6= u0

Qu0 = −
N∑

u6=u0

Q̃u (7.8)

The relation (viewed as a map from N − 1 charges into N − 1 charges) can be inverted as

Q̃A = QA , A 6= u0

Q̃N = −
N−1∑
A=1

QA (7.9)

for u0 = 1, · · · , N − 1. If u0 = N , we have

Q̃A = QA (7.10)

The central charge can be expressed as

G =

N∑
u=1

(vu − vu0)Q̃u (7.11)

in terms of local charges.

In ref. [23] was obtained the number of 1/4-BPS states. We present another derivation

of this result as well as further details on representations of these states in section 9.2.

These studies show that as factorized 4d superharmonic oscillators, labeled by u 6= u0, one

has the following number of BPS states at each such u:

nu =


4|Qu| if (vu − vu0)Qu > 0

1 if vu − vu0 6= 0 and Qu = 0

0 otherwise

and the total number of 1/4-BPS states is given by the product

n =
∏
u6=u0

nu (7.12)

We are interested in the case of one connected F-string stretching from D4v to D4u (which

we denote by Fuv) where 1 ≤ u < v ≤ N and we may order the branes such that3

v1 > v2 > · · · > vN (7.13)

Such a string is associated with charges

qa = 1 (a = u, · · · , v − 1)

qa = 0 otherwise (7.14)

3This ordering of vev is always possible by utilizing a group element of the U(N) gauge symmetry which

is a permutation.
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Q1=1Q3=−1 Q2=0 Q3=0 Q2=−1Q1=1 Q2=−1 Q1=3Q3=−2

Figure 2. Various configurations of F-strings stretched between D4 branes and corresponding

charges are illustrated for N = 3.

The charge assignment of Qu can be understood from the caloron picture. An alternative

derivation of the Calabi metric starting from the caloron dynamics is presented in appendix

C and, there, the relation between Qu and the string charges qa is explained in detail. We

present here simply the result: the charges are related by

Q1 = q1 − qN
Q2 = q2 − q1

...

QN = qN − qN−1 (7.15)

where only N − 1 of these charges are independent due to the constraint
∑

uQu = 0. The

qA counts the number of F1A+1,A-strings. qN vanishes in the decompactification limit of

the caloron configurations.

In our case of an Fuv-string stretched between D4v and D4u, we now find that

Qu = 1

Qv = −1 (7.16)

and Qw = 0 for w 6= u, v. These charge assignments are illustrated in figure 2.

We now map this to charges as seen by the local flat metric near the minima. Let us

first assume that u = 1 and v = N . Then we have Q1 = 1, QN = −1 and all the other

charges are zero. Then

Q̃1 = 1

Q̃N = −1 (7.17)

if u0 6= {1, N}. If u0 = 1 then Q̃1 is not defined and the only nonvanishing charge is

Q̃N = QN = −1. If u0 = N then Q̃N drops out and the only nonvanishing charge is

Q̃1 = 1. If u0 = 1 then the central charge is

G =
(
vN − v1

)
Q̃N (7.18)

which is positive so this yields 4 BPS states. If u0 = N then the central charge is

G =
(
v1 − vN

)
Q̃1 (7.19)

which is positive, so this yields 4 BPS states. Let us now take u0 = 2, · · · , N − 1. Then

the central charge is

G =
(
v1 − vu0

)
Q̃1 +

(
vN − vu0

)
Q̃N (7.20)

Both terms are positive so we find 4× 4 = 16 BPS states.
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Let us now assume that 1 < u < v < N . Then qu = · · · = qv−1 = 0 and the rest is

vanishing. Then

Qu = 1

Qv = −1 (7.21)

For u0 6= u, v and we get

Q̃u = 1

Q̃v = −1 (7.22)

and all other charges are zero, including Q̃N . If u0 is not at the boundary of the F-string,

then the central charge is

G = (vu − vu0)Q̃u + (vv − vu0)Q̃v (7.23)

This is positive if u < u0 < v. Otherwise the two terms have opposite sign and we get no

BPS states, unless u0 is at the one boundary, say u0 = u and then Q̃u gets absent while

we get Q̃N = 0 and so the only non-vanishing charge is Q̃v = −1. The central charge is

G = (vv − vu)Q̃v (7.24)

and this is positive and so we find 4 BPS states. For the other boundary, u0 = v we find

Q̃u = 1 as the only non-vanishing charge. The central charge is

G = (vu − vv)Q̃u (7.25)

which is again positive and so we find 4 BPS states.

Let us summarize our findings. If an F1N -string is connected from D4N to D41, the

number of BPS states becomes

4× 2 + 16× (N − 2) (7.26)

where 8 comes from the two boundary deleted locations whereas the 16(N −2) comes from

the contributions of the internal deleted locations. If an Fuv-string is connecting D4u to

D4v with u < v, the number of BPS states is

4× 2 + 16× (v − u− 1) (7.27)

where 4×2 comes from the deleted locations at the boundaries D4u or D4v and 16×(v−u−1)

comes from the internal deleted locations. If the deleted locations are located at D4 branes

outside Fuv-string, one does not have any BPS states.

We have dyonic instantons which correspond to Fuv-strings with deleted locations at

either one of the two boundary D4 branes of the string. There are

2× 4
N(N − 1)

2
(7.28)

such dyonic instanton states. We also have dyonic instantons which correspond to Fuv-

strings with their deleted location at an internal D4 brane. The number of such states is

4× 4
N(N − 1)(N − 2)

6
(7.29)
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Figure 3. An F13-string connecting D41 to D43 with three deleted locations is illustrated.

8 The one-instanton partition function

In the brane picture we have N separated D4 branes with separations

vuv = vu − vv (8.1)

where again v1 > v2 > · · · > vN . We select an index u0 = 1, · · · , N and a corresponding

brane D4u0 . This brane is distinguished by that no 1/4-BPS states can be located at

this brane irrespectively how the F-strings are being stretched. The instanton partition

function is given by the sum over deleted locations

ZN =

N∑
u0=1

Zu0,N (8.2)

Assume that we have an Fuv-string that stretches between D4u and D4v. A deleted location

u0 can be classified into three types: internal if u < u0 < v, boundary if w = u or w = v,

and exterior otherwise. In figure 3 we illustrate two boundary deleted locations and one

internal deleted location for an F13-string connecting D41 to D43.

We will proceed by induction. When N = 2 we have two boundary deleted locations

only. From any one of these boundary deleted locations we have the contribution

Z2 = 1 +

∞∑
n=1

4ne−βnv12 = coth2 βv12

2
(8.3)

Here n counts the number of F -strings stretching between D31 and D32. In the exponent

we have the central charge or the BPS energy times a parameter β. These strings are BPS

and the energies add up so that n F -strings have the energy nv12. The degeneracy of a

state of energy nv12 is 4Q1 if the charge given by Q1 = q1 − q2 = n − 0 is positive. If

the charge vanishes, Q1 = 0, we have instead degeneracy 1 and we have n = 0 and energy

En=0 = 0. This state gives the contribution 1 to the instanton partition function Z2.

For general N , the central charge is

G =
N−1∑
A=1

vANQA =
∑
u

vuu0Q̃u (8.4)

The state is BPS only if

vuu0Q̃u ≥ 0 (8.5)

for each u. Since vuu0 > 0 for u = 1, · · · , u0 − 1 and vuu0 < 0 for u = u0 + 1, · · · , N , this

condition is equivalent with

0 ≤ q1 ≤ q2 ≤ · · · ≤ qu0−1

qu0 ≥ qu0+1 ≥ · · · ≥ qN = 0 (8.6)

We illustrate this BPS condition in figure 4.
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Figure 4. Left picture is a BPS configuration in which the chages qu do not increase in the both

directions away from the deleted location. Right picture is a non-BPS configuration since the chages

qu increase at least once away from the deleted location. .

Let us assume that N = 3. For the various possible deleted locations at u0 = 1, 2, 3

respectively, we find the potential is given by

G(u0 = 1) = v21Q̃2 + v31Q̃3

G(u0 = 2) = v12Q̃1 + v32Q̃3

G(u0 = 3) = v13Q̃1 + v23Q̃2 (8.7)

We are only interested in BPS states. For u0 = 1 this means

Q̃2 = −m
Q̃3 = −n (8.8)

For u0 = 2 this means

Q̃1 = m

Q̃3 = −n (8.9)

and for u0 = 3 this means

Q̃1 = m

Q̃2 = n (8.10)

Here m,n = 0, 1, 2, · · · . The partition function is

coth2 βv12

2
coth2 βv13

2
+ coth2 βv12

2
coth2 βv23

2
+ coth2 βv13

2
coth2 βv23

2
(8.11)

where each term corresponds to u0 = 1, 2, 3 respectively. To see this, we use that for any

given deleted location, if m = n = 0 we have one state. For m = 0 and n > 0 we have

1× 4n states. For m > 0 and n = 0 we have 4m× 1 states. For m > 0 and n > 0 we have

4m× 4n states.

To obtain the partition function of higher N , let us first assume the deleted location

is on the first brane u0 = 1 and let us denote the partition function at N by Z1
N . Then

add an (N + 1)-th brane at vN+1. The corresponding partition function will then become

Z1
N+1 = Z1

N coth2 βv1,N+1

2
(8.12)

We also know that for N = 2 we have

Z1
2 = coth2 βv12

2
(8.13)
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The recursion relation can now be solved with this boundary condition as

Z1
N =

N∏
u=2

coth2 βv1,u

2
(8.14)

By reflection symmetry we also deduce that if the delocation point is u0 = N , then

ZNN =

N−1∏
u=1

coth2 βvu,N
2

(8.15)

We proceed by induction to compute ZN+1. Let us assume the partition function for N is

known and given by

ZN =
N∑

u0=1

Zu0
N (8.16)

By adding an (N + 1)-th brane at vN+1, we find that

Zu0
N+1 = Zu0

N coth2 βvu0,N+1

2
(8.17)

for u0 = 1, · · · , N . If the deleted location is placed on the brane u0 = N + 1 we get the

contribution

N∏
v=1

coth2 βuv,N+1

2
(8.18)

In summary we find

ZN+1 =

N∑
u0=1

Zu0
N coth2 βvu0,N+1

2
+

N∏
v=1

coth2 βuv,N+1

2
(8.19)

This recursion relation with given boundary condition is uniquely solved by

ZN =
N∑
u=1

∏
v 6=u

coth2 βvuv
2

(8.20)

Let us now compare this to the result that was obtained in [19]. In this reference a

generalized Witten index was computed. By specializing this to the one-instanton k = 1

sector and by choosing parameters appropriately,4 we can descend to the quantity

tr
k=1,1/4-BPS states exp (−β(H − vuQu)− µuQu) (8.21)

We can furthermore bring this into a partiton function over 1/4-BPS states, trk=1,1/4 BPS

exp (−βH), by taking

µu = βvu (8.22)

which leads to a perfect match with our partition function ZN .

4As explained in [19] this amounts in the notations of this reference to taking γ2 = π in order to cancel

the (−1)F factor in their index. Also we shall take γR = 0.
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Let us comment that the two methods to compute this partition function is very

different. While we rely on moduli space of dyonic instantons, ref. [19] makes no use of

this moduli space.

We can consider a refined index where the spin content of the 1/4-BPS states is taken

into account by including chemical potentials. We compute the refined index in section 10

but before that we need to understand the spin content of our 1/4-BPS states.

9 Spin and R-symmetry representations

We will now obtain the SU(2)+ × SO(4) representations of the 1/4-BPS states we have

constructed as p-forms on moduli space. Since the moduli space is on the form of (3.2) we

can study this problem for each factor of moduli space separately.

9.1 Center of mass R4 part of moduli space

We let δrAi denote bosonic zero modes where r = 1, · · · , dimMN is a curved index on the

one-instanton moduli space MN and i = 1, 2, 3, 4 is a spatial index of 5d SYM. We can

then express the fermionic zero modes χ as

χ = δrAiΓiE+ψ
r (9.1)

where ψr are 2-component Majorana spinors. Since these correspond to broken supersym-

metries, we take

Γ(4)χ = −χ
Γ(4)E+ = E+ (9.2)

Here E+ is a commuting spinor. We represent the 5d MSYM gamma matrices relevant for

us as

Γi = γi ⊗ 1

ΓÂ = γ(4) ⊗ γÂ (9.3)

These can be used to construct generators of SU(2)+×SO(5) rotational times R-symmetry.

Here γ(4) = γ1234. We reserve the 5th index for the M-theory circle. Our R symmetry

indices range over Â = 6789(10). From our realization we see that Γ(4) = γ(4)⊗1. We may

then write out all 2-component spinor indices

χβ
′γ′′
α = δrAiqiαβ̇E

β̇β′

+ ψrγ
′′

(9.4)

Here β′ and γ′′ are 2-component indices such that β′γ′′ is a 4-component spinor label of an

SO(5) R symmetry spinor, ψrγ
′′

is a 2-component Majorana spinor. Let us first consider

the SU(2)+ rotation

δχ =
1

4
ε+ijΓijχ (9.5)

This amounts to

δχα =
i

4
ε+ijη

I+
ij (σI)α

βχβ (9.6)
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We next note that

1

4
ε+ijη

I+
ij (σI)α

βqkβγ̇E γ̇+ = −ε+kjqjαβ̇E
β̇
+ (9.7)

as a consequence of the gamma matrix identity 1
4εij [γij , γk] = −εkjγj . This means that we

can write

δχα = −δrAiε+ijqjαβ̇Eβ̇ψ
r (9.8)

We next expand

ε+ij = εI+ηI+ij (9.9)

and we use the identity

δrAiη
+I
ij = −δsAj(J+I)sr (9.10)

where we define

(JI±)rs =

∫
tr (δrAiδsAj) η

I±
ij (9.11)

Using the completeness relation of modes [29] it can be shown that JI± obey the same

algebra as ηI±ij . We now find the following SU(2)+ action on the Fermi zero modes

δψr = εI+(JI+)rsψ
s (9.12)

A subgroup of SO(4) R symmetry5 is the SU(2)− generated by three complex struc-

tures. By the same analysis as for SU(2)+ we find that SU(2)− acts as

δψr = εI−(JI−)rsψ
s (9.13)

Since SU(2)− commutes with SU(2)+ we shall associate JI− with SU(2)−. We can

also understand the appearance of JI− for the SU(2)− R symmetry by studying how

supersymmetry is induced from 5d MSYM. We have the following supersymmetry variation

of the gauge potential,

δAi = iω̄α̇q
α̇β
i σ1χβ (9.14)

In the moduli approximation we may put

δAi = δXrδrAi (9.15)

by including a gauge variation. We then act by
∫
d4x tr δsAi, expand the zero mode χ in

collective coordinates ψr, and we get

δXr = iε̄ψr + iε̄I(JI−)rsψ
s (9.16)

5The original SO(5) R symmetry is broken to SO(4) by the vev.
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Here ε̄ = ω̄σ1E+ and ε̄I = ω̄σI ⊗ σ1E+. By the well-established theory of the N = 8 (four

complex supercharges) sigma model, we can now reliable identify JI− as the generator of

SU(2)− subgroup of the SO(4) R symmetry generated by the three complex structures on

moduli space.

In order to map spinors to forms, we first define complex spinors

ξr = ψr1 − iψr2 (9.17)

We then map

ξr ' dXr (9.18)

For the overall R4 part of the moduli space on which lives one-forms dXi (i = 1, . . . , 4), we

further define complex one-forms

dw1̇ = dX4 − idX3

dw2̇ = dX2 − idX1 (9.19)

The generators are realized as follows. The SU(2)+ generators act on dXi as

(JI+)ijdXj = − i
2
ηI+ij dXj (9.20)

The SU(2)− generators act as

(JI−)ijdXj = − i
2
ηI−ij dXj (9.21)

We can establish this by noting that for the overall R4 part of the moduli space, the zero

modes are

δjAi = Fji (9.22)

From this, we find that JI±ij ∼ η
I±
ij . It is important to note that JI− may be identified with

the subset 1
2εIJKRJK of the R symmetry generators (3.6). This means that we must have

the vector embedding of SU(2)− ' SO(3) into SO(5). In terms of complex coordinates we

have

J3+


dw1

dw2

dw̄1

dw̄2

 =
1

2


dw1

dw2

−dw̄1

−dw̄2

 , J3−


dw1

dw2

dw̄1

dw̄2

 =
1

2


dw1

−dw2

−dw̄1

dw̄2

 (9.23)

To find the third Cartan generator we change the sign when acting on the last two entries,

compared to how J3− acts, so that

K3


dw1

dw2

dw̄1

dw̄2

 =
1

2


dw1

−dw2

dw̄1

−dw̄2

 (9.24)
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We can verify that this gives a consistent embedding of SU(2)− in SO(4) R symmetry

by extending this construction to the other generators JI− and construct corresponding

generators KI by again changing the sign when they act on the two last entries. This way

we find that RI± = 1
2

(
JI− ±KI

)
generate SU(2)L × SU(2)R which is consistent with the

fact that JI− define a vector embedding in SO(4).

Given this, we build a multiplet of states

1

dwα̇ dw̄α̇

dw1̇dw2̇ dwα̇dw̄
β̇ dw̄1̇dw̄2̇

dw̄1̇dw̄2̇dwα̇ dw1̇dw2̇dw̄
α̇

dw1̇dw2̇dw̄
1̇dw̄2̇

(9.25)

with corresponding weights of Cartan generators (J3+, J3−,K3)

(0, 0, 0)

(1
2 ,±

1
2 ,±

1
2) (−1

2 ,∓
1
2 ,±

1
2)

(1, 0, 0)
(0, 0,±1)

(0,±1, 0)
(−1, 0, 0)

(−1
2 ,±

1
2 ,±

1
2) (1

2 ,∓
1
2 ,±

1
2)

(0, 0, 0)

(9.26)

We then recognize that these states fill up a 16-dimensional massive instanton-particle

multiplet

(3; 1, 1)⊕ (1; 2, 2)⊕ (1; 1, 1)⊕ (2; 2, 1)⊕ (2; 1, 2) (9.27)

of the SU(2)+ × SO(4). Here we label the representations of SO(4) by the dimensions of

SO(4) = SU(2)L × SU(2)R whose Cartans are

R3± =
1

2

(
J3− ±K3

)
(9.28)

It should be noted that SU(2)− which is generated by JI− = RI+ + RI− is the diagonal

subgroup of SU(2)L × SU(2)R.

But for the charged instanton this is not the full story as the dyonic instanton-particle

also carries internal degrees of freedom whose spin quantum numbers we will obtain in the

next section.

9.2 Relative part of moduli space — localization to R4 and classification of

BPS states

In this section, we shall describe the localization of states to the flat space, R4, starting

from the Eguchi-Hanson space. Since the index is essentially invariant under the scaling

of the potential and the corresponding central charge is basically determined by charges,

we may compute the 1/4 BPS free energy exactly by taking the limit where the vacuum

expectation value (vev) of the scalar field becomes large. In this limit the states of the
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system are localized around the zeroes (minima) of the potential. We have shown that,

at each localization point, the space becomes R4(N−1). At each copy of R4, the system is

described by the N = 8 supersymmetric quantum mechanics of 4d harmonic oscillators.

Below we investigate multiplet structures of this N = 8 quantum mechanics focusing on

its BPS sectors.

As we show in appendix E, the Calabi metric when N = 2, is equivalent with the

Eguchi-Hanson metric

ds2 = α2

[
dρ2

K2
+
ρ2

4

(
dθ2 + sin2 θdφ2 +K2(dψ + cos θdφ)2

)]
= α2

[
dρ2

K2
+
ρ2

4

(
σ2

1 + σ2
2 +K2σ2

3

)]
(9.29)

by a coordinate transformation. Here K2 = 1− 4ζ2

ρ4 , the overall coefficient is α2 = 2× 4π2

g2

and

σ1 + iσ2 = eiψ (idθ + sin θdφ)

σ3 = dψ + cos θdφ (9.30)

where the coordinate ranges are φ ∈ [0, 2π] and ψ ∈ [0, 2π], such that in the limit ζ → 0

the Eguchi-Hanson space degenerates to the orbifold C2/Z2. In particular the Calabi space

fiber coordinate ϕ = 2φ is ranged in [0, 4π]. From the form of the Killing vector in eq. (6.7),

which in our case of N = 2 reduces to

G = v
∂

∂φ
(9.31)

where v = v1 − v2, we see that the potential takes the form

V =
1

2
grsG

rGs =
1

2
gφφv

2 =
1

8
α2v2

(
ρ2 − 4ζ2

ρ2
cos2 θ

)
(9.32)

The localization occurs at the points where V becomes zero, and there are two localization

points for the case of N = 2: one is at the north pole θ = 0 of the sphere ρ2 = 2ζ and the

other at the south pole θ = π of the same sphere.

Around the north pole, we introduce coordinates

α
ρ

2
K = ρ̃→ 0 , α

ρ

2
θ = θ̃ → 0

By introducing ρ̃ = ρ̄ cos θ̄2 and θ̃ = ρ̄ sin θ̄
2 , the metric, to the quadratic order in ρ̄, becomes

ds2 = dρ̄2 +
ρ̄2

4

[
dθ̄2 + sin2 θ̄dψ2 + (2dφ+ (cos θ̄ + 1)dψ)2

]
= dρ̄2 +

ρ̄2

4

[
σ̄2

1 + σ̄2
2 + σ̄2

3

]
(9.33)

where

σ̄1 + iσ̄2 = eiφ̄
(
idθ̄ + sin θ̄dψ̄

)
σ̄3 = dφ̄+ cos θ̄ dψ̄ (9.34)
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with

φ̄ = 2φ+ ψ

ψ̄ = ψ (9.35)

Note that φ̄ is ranged over [0, 4π]. We have two U(1) charges corresponding to two com-

muting Killing vectors

qφ̄ = −iL∂φ̄
qψ̄ = −iL∂ψ̄ (9.36)

which can be related to the following two commuting Killing vectors of Eguchi-Hanson

metric,

Qφ = −iL∂φ
Qψ = −iL∂ψ (9.37)

as

Qψ = qψ̄ + qφ̄
Qφ = 2qφ̄ (9.38)

Here Qψ/qψ̄ and Qφ/qφ̄ are integral/half-integral quantized.

Around the south pole, we introduce coordinates

α
ρ

2
K = ρ̃→ 0 , α

ρ

2
(π − θ) = θ̃ → 0 (9.39)

By introducing ρ̃ = ρ̄ sin θ̄
2 and θ̃ = ρ̄ cos θ̄2 , the metric, to the quadratic order in ρ̄, becomes

ds2 = dρ̄2 +
ρ̄2

4

[
dθ̄2 + sin2 θ̄dψ2 + (2dφ+ (cos θ̄ − 1)dψ)2

]
= dρ̄2 +

ρ̄2

4

[
σ̄2

1 + σ̄2
2 + σ̄2

3

]
(9.40)

where

φ̄ = 2φ− ψ
ψ̄ = −ψ (9.41)

The angle φ̄ is again ranged over [0, 4π] and

Q−ψ = qψ̄ + qφ̄
Qφ = 2qφ̄ (9.42)

where the minus sign in front of ψ reflects the change of the relative orientation of the

tangent space at the south pole in comparison with that of the north pole. We furthermore

have that Q−ψ = −Qψ. Introducing vielbeins by

ē0 = dρ̄, ēI =
ρ̄

2
σ̄I (9.43)
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the metric for R4 takes the form

ds2 = ē0ē0 + ēI ēI (9.44)

Furthermore,

G = v̄∂φ̄,

v̄ := 2v (9.45)

and the potential becomes

V =
1

8
v̄2ρ̄2 (9.46)

locally near the north or the south pole.

In order to construct the generators for the SU(2)L part of the R-symmetry, we need

the expressions for the three complex structures given by

II = e0ieI − eIie0 + εIJKe
J ieK (9.47)

Upon localization, they are reduced to

II = E0iEI − EIiE0 + εIJKE
J iEK (9.48)

where the new set of vielbein is defined as

E1 + iE2 =
ρ̄

2
eiψ̄
(
idθ̄ + sin θ̄dφ̄

)
,

E0 + iE3 = dρ̄+ i
ρ̄

2
(dψ̄ + cos θ̄ dφ̄) (9.49)

These satisfy

IIIJ = −δIJ + εIJKIK (9.50)

9.2.1 BPS states in R4

In this subsection, we would like to describe the general structure of BPS states of the

N = 8 supersymmetric harmonic oscillator in R4. We are interested in the solutions of the

BPS equation [
(d− iG) + i(d† −G)

]
Ω = 0 (9.51)

where d† = − ∗ d∗. Since the BPS operator Q − iQ† is commuting with the self-dual or

anti-self-dual projections, one can separate states into a sum of self-dual and anti-self-dual

parts

Ω = Ω+ + Ω− (9.52)

Within the BPS sector, the even-form and the odd-form part of the wave functions are de-

coupled from each other. We shall call the even-form/odd-form part as bosonic/fermionic,
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the meaning of which will be clear when we discuss the spin content of BPS multiplets.

The BPS states are characterized by the central charge

Z = v̄ q ≥ 0 (9.53)

where the charge q is half-integral quantized with the charge operator

q̂ = −iL∂φ̄ (9.54)

Below we shall concentrate on the BPS states with v̄ > 0 and q ≥ 0 and the case with

v̄ < 0 and q ≤ 0 will be briefly discussed at the end. The BPS solutions exist only in the

self-dual sector. To classify the solutions we will use spherical coordinates (ρ, θ̄, φ̄, ψ̄) on

R4 and we introduce the Wigner D-function

Dj
mq = 〈jm|σ|jq〉 (9.55)

where |jm〉 denotes a spin-j state of SU(2) with m, q = −j,−j + 1, · · · , j. We define

σ̄ = ḡ−1dḡ

ḡ = eiψ̄J3eiθ̄J2eiφ̄J3 (9.56)

where JI generate SU(2) with commutation relations [JI , JJ ] = iεIJKJK . The components

of σ̄ = σ̄IJI are given in (9.34). Expressing the D-function as

Dj
mq = eimψ̄+iqφ̄djmq(θ̄) (9.57)

we see that

q̂Dj
mq = qDj

mq (9.58)

When q = 0, 1/2, 1, 3/2, · · · we find the following bosonic multiplet of charge q̂ = q states

as solutions to the 1/4-BPS equation (9.51)

Ωq
mq = Dq

mq ρ̄
2q e−

v̄
4
ρ̄2

(1 + ē1ē2)(1 + ē0ē3) (9.59)

Ωq−1
mq = Dq−1

m,q−1 ρ̄
2(q−1) e−

v̄
4
ρ̄2

(ē0 + iē3)(ē1 + iē2) (9.60)

Our notation is such that the states Ωj
mq carry charge q̂ = q and fall in a j-multiplet of

states with m = −j,−j + 1, · · · , j. We will occasionally suppress the labels mq and write

these states as Ωq and Ωq−1. The j = q − 1 multiplet exists only for q ≥ 1 and has charge

q̂ = q as a consequence of q̂(ē1 + iē2) = 1. We obtain these states in appendix D by solving

the BPS equation. By acting with the supercharge Q + iQ† on these bosonic states, we

obtain two j = q− 1
2 multiplets Ω±,q−

1
2 when q ≥ 1

2 . These multiplets are fermionic and we

will describe their spin content below. Therefore, for q > 0, we have the following multiplet

of 1/4 BPS states

(2q + 1) ⊕ (2q − 1) ⊕ 2q+ ⊕ 2q− (9.61)
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Here representations of SU(2) are labeled by their dimension. The physical role of this

SU(2) will be clarified shortly and will be identified as the unbroken SU(2)+ Lorentz sym-

metry. Thus we find in total 8q states for q = 1/2, 1, 3/2, · · · . For q = 0 we have on the

other hand a unique state

Ω0 = e−
v̄
4
ρ̄2

(1 + ē1ē2)(1 + ē0ē3) (9.62)

which is annihilated by all supercharges

QΩ0 = Q†Ω0 = 0 (9.63)

Therefore no new odd-form state is generated by the action of the supercharges and the

corresponding q = 0 state is unique.

For v̄ negative, the charge q has to be non-positive definite, since the central charge Z
is non-negative definite, and the corresponding number of degenerate states remains. To

show this, one may use the parity symmetry of the system

ψ̄ → ψ̄ + π, θ̄ → π − θ̄, φ̄→ −φ̄, (9.64)

and

v̄ → −v̄ (9.65)

Consequently, one finds the same number of states as is demonstrated in the appendix

explicitly. Therefore, the number of degenerate BPS states with charge q is

nq =


8|q| = 4|Q| if v̄q > 0

1 if q = 0 and v̄ 6= 0

0 if v̄q < 0

(9.66)

where Q is the eigenvalue of the integral-valued (F-string) charge

Q̂ = 2q̂ = −iL∂φ (9.67)

9.2.2 Rotation- and R-symmetries

The Eguchi-Hanson space is invariant under the action of SU(2)/Z2×U(1) transformation.

The SU(2)/Z2 isometry generated by the Killing vectors

LEH1 + iLEH2 = eiφ
(
i∂θ − cot θ∂φ +

1

sin θ
∂ψ

)
LEH3 = ∂φ (9.68)

acts triholomorphically as

LLEHI IJ = 0 (9.69)

as a consequence of LLEHI σJ = 0 where σJ are the Maurer-Cartan forms given by eq. (9.30).

The remaining U(1) generated by ∂ψ has nothing to do with the F-string charge. As derived

in the context of ADHM construction, the triholomorphic vector field G relevant for the

F-string charge has to do with the other U(1) generated by ∂φ. In the presence of the
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potential, the SU(2)/Z2 symmetry of the quantum mechanical system is further broken

down to the U(1)φ. Hence once the vev of the scalar is turned on, the quantum mechanics

is no longer invariant under SU(2)/Z2×U(1)ψ
6 but only under U(1)φ×U(1)ψ. The SO(4)

little group of the SO(5) R-symmetry will remain and below we shall focus on the SO(3)

subgroup of this SO(4). As discussed in the previous section, this SO(3) R symmetry is

generated by the action of the three complex structures II . Their action on a form is

multiplicative and satisfies the usual Leibniz rule:

IIdx
i = dxj(II)j

i (9.70)

and

IIdx
i ∧ dxj = (IIdx

i) ∧ dxj + dxi ∧ (IIdx
j) (9.71)

We would now like to understand the multiplet structure of the states we have con-

structed by the localization to R4. In case of the R symmetry, the story is rather clear

since the complex structures II of the Eguchi-Hanson space has a natural realization in

R4: their explicit form in R4 is given in (9.48). Next we would like to identify the SU(2)+

spatial rotation. Since R4 has SU(2) × SU(2) symmetry, it is rather clear that a par-

ticular combination of the SU(2)’s realizes the SU(2)+. Let us denote the two SU(2)’s

by SU(2)φ and SU(2)ψ where U(1)φ and U(1)ψ subgroups are included into SU(2)φ and

SU(2)ψ respectively.

For reasons described below, we find that SU(2)+ = SU(2)ψ. First of all, the multiplets

are labeled by a fixed U(1)φ charge, which is physically interpreted as F-string charge of

the dyonic instantons. If the SU(2)+ rotation involves this U(1)φ, then there is no way

to understand the multiplet structure of the above states. Secondly the U(1)φ belongs to

SU(2)/Z2 of the EH space which is originated from the SU(N) gauge symmetry of the

SYM theory instead of any spacetime symmetries. Finally, with the choice of SU(2)ψ for

the rotation symmetry, one can understand the full multiplet structure in a natural manner

as we shall demonstrate shortly. A similar choice can be realized for the general SU(N)

Calabi space upon localization and the rotational SU(2)+ in each R4 should be chosen such

that this SU(2)+ do not include the U(1) responsible for the F-string charges.

By localization the symmetry U(1)ψ is enhanced to SU(2)ψ. On the other hand, by

turning off the noncommutativity parameter the rotation symmetry SU(2)+ gets enhanced

to SU(2)+×SU(2)b. Very naively then, since we have enhancements to SU(2)ψ and SU(2)b
both being related to the noncommutativity parameter in various limits, one may think

that these two SU(2) shall be identified. But this is incorrect. Localization limit effectively

means sending noncommutativity parameter to infinity which is a completely different

limit from turning off the noncommutativity parameter. The noncommutativity parameter

is related to the localization point because the potential, and its zeroes, depend on the

noncommutativity parameter. As we approach the localization point the U(1)ψ symmetry

is enhanced to SU(2)ψ and the localization point is not rotated by SU(2)ψ which is a tangent

space symmetry at the localization point. Neither is the noncommutativity parameter

6Note here that, without introducing the noncommutativity, the U(1)ψ is enhanced to SU(2)b symmetry,

which apparently rotates the noncommutativity parameter θij .
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rotated by SU(2)+. This shows that we cannot identify SU(2)ψ with SU(2)b which would

rotate the noncommutativity parameter. We conclude that we must identify SU(2)ψ =

SU(2)+ since SU(2)+ leaves the noncommutativity parameter fixed, just like the tangent

space group SU(2)ψ at the localization point is supposed to leave the localization point

fixed.

The SU(2)ψ is generated by the the Killing vectors

L̄1 + iL̄2 = eiψ̄
(
i∂θ̄ − cot θ̄∂ψ̄ +

1

sin θ̄
∂φ̄

)
L̄3 = ∂ψ̄ (9.72)

The orbital angular momentum is generated by the Lie derivatives

MI = −iLL̄I = −i(diL̄I + iL̄Id) (9.73)

It is straightforward to demonstrate that the vielbein ēa = (ē0, ēI) is invariant under the

action of MI :

MI ē
a = 0 (9.74)

One then recognizes that the states Ωq and Ωq−1 fall in (2q + 1) and (2q − 1) dimensional

representations of SU(2)ψ.

The R-symmetry generators

RI =
i

2
II (9.75)

satisfy the SU(2) algebra

[RI , RJ ] = iεIJKRK (9.76)

It is straightforward to show that RI transforms

[MI , RJ ] = iεIJKRK (9.77)

as a triplet under MI . The desired total angular momentum including the spin part should

be chosen as [22]

JI = MI −RI (9.78)

which satisfy the SU(2) algebra

[JI , JJ ] = iεIJKJK (9.79)

Furthermore, one finds that the R-symmetry and the rotation generator commute, i.e.

[JI , RJ ] = 0 (9.80)

which is required from the first principle construction of the generators starting from the

SYM theory. One finds that Ωq and Ωq−1 are SU(2)L R-symmetry singlets,

RIΩ
q = 0

RIΩ
q−1 = 0 (9.81)
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so that

Ωq = (2q + 1, 1) , Ωq−1 = (2q − 1, 1) (9.82)

where the first and the second numbers in the bracket denote the dimensions of represen-

tations of SU(2)+ × SU(2)L.

Let us now turn to the case of odd-forms. As we said before, the odd-forms can

be generated by applying the combination of supercharges to the even-form solutions. To

understand the corresponding multiplet structure, we note that the supercharges transform

as a singlet plus a triplet under MI = JI +RI ,

[MI ,Q] = 0 [MI ,QJ ] = iεIJKQK (9.83)

As the four supercharges belong to doublets under RI , they must form doublets under JI
as well. Indeed one may construct one doublet of JI by

Q−+ = i(Q3 − iQ4) , Q−− = i(Q1 − iQ2) (9.84)

with [R3,Q−±] = −1
2Q
−
±. The second combination

Q+
+ = i(Q1 + iQ2) , Q+

− = −i(Q3 + iQ4) (9.85)

forms a doublet under JI with [R3,Q+
±] = 1

2Q
+
±. Then by the action of the appropriate

combination of Q−± to Ωq ⊕Ωq−1, one generates states Ω−,q−
1
2 while, by Q+

±, one generates

states Ω+,q− 1
2 . Thus the odd form states form the representation

Ω+,q− 1
2 ⊕ Ω−,q−

1
2 = (2q, 2) (9.86)

For q = 0, there is a unique state

Ω0 = (1, 1) (9.87)

which is 1/2 BPS. The minimal q = 1
2 multiplet is

(Ω
1
2 )⊕ (Ω+,0 ⊕ Ω−,0) = (2, 1)⊕ (1, 2) (9.88)

which consists of 4 states.

The 1/4-BPS dyonic instanton multiplet with 64 states [2] can be obtained by taking

the tensor product of the 16 states in R4 with the above 4 states at the localization point,(
(3; 1, 1)⊕ (1; 2, 2)⊕ (1; 1, 1)⊕ (2; 2, 1)⊕ (2; 1, 2)

)
⊗
(

(2; 1, 1)⊕ (1; 2, 1)
)

(9.89)

Here we have included the trivial representation (which is 1) of the additional representation

of an SU(2)R which is inside the full unbroken SO(4) = SU(2)L×SU(2)R R-symmetry and

which is not generated by the three Kahler forms which generate the SU(2)L. Thus the

above denotes representations of SU(2)+ × (SU(2)L × SU(2)R). Expanding out the tensor

product we recover the multiplet of [2].
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10 Refined partition function and index

The spin content can be seen by computing a refined partition function

Z(β, a, b, c) = tr1/4 BPS

(
e−βHeJ

3+a+R3+b+R3−c
)

(10.1)

where J3+, R3± are Cartans of SU(2)+ × SU(2)L × SU(2)R. For BPS states over which we

trace, the Hamiltonian can be replaced by the central charge. For N = 2 this is given by

Z = vQ = 2vq. Furthermore, as we have identified SU(2)+ = SU(2)ψ, we shall take

J3+ = ±Qψ = q + qψ̄ (10.2)

on north and south pole respectively. Using this, we get

Z = tr1/4 BPS

(
e−q(2βv−a)eqψ̄a+R3+b+R3−c

)
(10.3)

and explicitly

Z = 1 +
∑
q

e−q(2βv−a) [s(2q + 1, 1) + s(2q − 1, 1) + s(2q, 2)] (10.4)

where we define

s(2j + 1, 2k + 1) =
∑
m,n

eam+bn (10.5)

and m = −j,−j + 1, · · · , j − 1, j and n = −k,−k + 1, · · · , k − 1, k. We find

s(2j + 1, 2k + 1) =
sinh

(
a
2 (2j + 1)

)
sinh

(
b
2(2k + 1)

)
sinh a

2 sinh b
2

(10.6)

We get

Z =
cosh 2βv−a−b

4 cosh 2βv−a+b
4

sinh βv−a
2 sinh βv

2

(10.7)

We can now also compute the index

Index = tr
(

(−1)F e−βHeJ
3+a+R3+b+R3−c

)
(10.8)

as follows

Index = 1 +
∑
q

e−q(2βv−a) [s(2q + 1, 1) + s(2q − 1, 1)− s(2q, 2)] (10.9)

with the result

Index =
sinh 2βv−a−b

4 sinh 2βv−a+b
4

sinh βv−a
2 sinh βv

2

(10.10)
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We may notice that

Index(b+ 2πi) = Z(b) (10.11)

and indeed this relation can be explained by noticing that e2πiR3+
= (−1)F . Finally we

notice that our result agrees with [19] if we make the following identifications

a = 2iγR
b = 2iγ2

βv = µ (10.12)

where definitions of parameters on the right-hand side are found in [19].

In the index we do not need to restrict ourselves to 1/4-BPS states since all non-

BPS states are paired by a superpartner state with opposite (−1)F . But for the partition

function over 1/4-BPS states we can not drop the projection onto 1/4-BPS states. However

this can again be expressed as an index by noting that

trnon-BPS(−1)F+2R3+
= 0 (10.13)

To see this we first note that none of the supercharges Q±± can annihilate a non-BPS state.

As we act with a sequence of these supercharges on some bosonic/fermionic non-BPS state

they will generate 8 states with (−1)F = +1/ − 1 representations (3; 1, 1) ⊕ (1; 1, 1) ⊕
(1; 2, 2) and (−1)F = −1/+ 1 representations (2; 2, 1)⊕ (2; 1, 2) (tensor multiplied with the

representation of the non-BPS states with which we started). By inspection we see that

the sum of (−1)F+2R3+
cancels for the 8 bosonic and 8 fermionic states separately. We can

now express the 1/4-BPS partition function as the following index

Z(β, a, b, c) = tr
(

(−1)F+2R3+
e−βHeJ

3+a+R3+b+R3−c
)

(10.14)

where we can drop the explicit projection onto 1/4-BPS states due to the cancelation

between non-BPS states as we argued for above.

11 The commutative limit

Our index and partition function do not depend on the noncommutativity parameter ζ.

We claim that noncommutativity parameter can be smoothly taken towards zero. We can

justify this claim for U(2) gauge group. In the commuting limit the Eguchi-Hanson space

becomes the orbifold C2/Z2 with metric

ds2 = dρ2 +
ρ2

4

(
dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

)
= dρ2 +

ρ2

4

(
dθ2 + sin2 θdψ2 + (dφ+ cos θdψ)2

)
(11.1)

where φ and ψ are 2π ranged. The fact that we can exchange ψ and φ in this metric can

be traced to the fact that S3 can be described either in terms of left-invariant or right-

invariant Maurer-Cartan forms. This symmetry is present only in the commutative limit

and is not a symmetry of the Eguchi-Hanson metric.
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By now substituting θ, ψ, φ with θ̄, ψ̄, φ̄, we see that we have already obtained all these

1/4-BPS solutions in eq. (9.61). The only difference is that here φ is 2π-ranged instead

of 4π-ranged, so that the corresponding electric charge Qφ = −iL∂φ is integer quantized.

Let us denote the charge integer-eigenvalue on a state by Q. Then the bosonic states with

charge Q are given by

ΩQ
mQ|ζ=0 = DQ

mQρ
2qe−

vρ2

4
(
1 + e1e2

) (
1 + e0e3

)
ΩQ−1
mQ |ζ=0 = DQ−1

m,Q−1ρ
2(Q−1)e−

vρ2

4
(
e0 + ie3

) (
e1 + ie2

)
(11.2)

Let us comment that it seems out of reach to find corresponding exact BPS solutions away

from ζ = 0 where we instead must rely on localization computations.

These states carry U(1) charges that is most conveniently labeled by Qφ = Q and by

Qψ = m. To understand that the commutative limit is smooth, we need to match the

U(1) charges of these states with corresponding U(1) charges of the states we found on the

Eguchi-Hanson space by the localization computation. Since Q is integer quantized and q

from localization computation are half-integer quantized, we must have that

Q = 2q (11.3)

since otherwise we could never hope to match these states in a one-to-one fashion. On the

north pole we have the states Ωq
mq and Ωq−1

mq and we have corresponding states on the south

pole. All these states carry charge Qφ = 2q. We then recall the relations

Qψ = ±
(
qψ̄ + qφ̄

)
(11.4)

where + is for the north pole and − is for the south pole. Then we find on the north pole

that the j = q multiplet has Qψ = m + q = 0, 1, · · · , 2q and the j = q − 1 multiplet has

Qψ = m + q = 1, 2, · · · , 2q − 1. On the south pole we find that the j = q multiplet has

Qψ = −2q, · · · , 0 and the j = q− 1 multiplet has Qψ = −(2q− 1), · · · ,−1. Thus collecting

the states, and recalling that Q = 2q, we see that we indeed have states with

Qψ = −Q, · · · , Q
Qψ = −(Q− 1), · · · , Q− 1 (11.5)

which matches with the multiplet of states ΩQ|ζ=0 ⊕ ΩQ−1|ζ=0 that we found above. The

odd-form parts can be related in a similar manner.

Let us finally confirm that these bosonic states in the orbifold limit are really singlets

under the SU(2)L R symmetry generated by the three complex structures on the Eguchi-

Hanson space in the orbifold limit. We have the Kahler form

K3 = e0e3 + e1e2 (11.6)

and indeed the corresponding complex structure

I3 = e0ie3 − e3ie0 + e1ie2 − e2ie1 (11.7)
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leaves all the bosonic states invariant,

I3ΩQ|ζ=0 = 0

I3ΩQ−1|ζ=0 = 0 (11.8)

We thus find exactly the same states in the orbifold limit and so we conclude that the

orbifold limit appears to be smooth, although we do not have a direct proof for this for the

higher-dimensional Calabi spaces.

12 Discussion

We have computed the index and the partition function of one 1/4-BPS dyonic instanton

in noncompact 5d MSYM with U(N) gauge group being maximally broken to U(1)N−1

by a generic vev of one of the five scalar fields, which induces a potential term in the

corresponding sigma model. The number of states does not quite sum up nicely to the

anomaly coefficient ∼ N(N2− 1) but probably there is no reason to expect this number to

emerge here as we only consider the k = 1 instanton sector.

One obvious direction to look at further is the higher k generalization. The general form

of the metric and the potential are not known yet especially with the noncommutativity

turned on. We leave this for the future study.

It would be very interesting if one can understand what happens when the gauge group

is not maximally broken.

We can also ask what happens if we compactify one direction of D4 on a circle. In that

case we expect the theory to have an S-duality, and it would be interesting to confirm that

the 1/4-BPS dyonic instanton states and the monopole-string states carry the same spin

quantum numbers so that they can be mapped into each other under S-duality [19, 28].

As it was argued in [8], showing that 5d MSYM is S-dual would also give strong evidence

that 5d MSYM and the corresponding 6d (2, 0) theory on a circle, are equivalent.
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A Spinor conventions

We represent the 11d gamma matrices as

Γ0 = γ(4) ⊗ iσ2 ⊗ 1

Γi = γi ⊗ 1⊗ 1

Γ5 = γ(4) ⊗ σ1 ⊗ 1

ΓÂ = γ(4) ⊗ σ3 ⊗ γÂ (A.1)
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where we split µ = (0, i) and i = 1, 2, 3, 4. We define γ(4) = γ1234. We let Â = 6, 7, 8, 9, (10)

and reserve the index 5 for the M-theory circle. The 11d charge conjugation matrix is

chosen as

C = Γ0 (A.2)

We represent SO(4) gamma matrices in quaternion Weyl basis

γi =

(
0 qα̇βi
q̄iαβ̇ 0

)
(A.3)

Here

qi = (−iσI , 1)

q̄i = (iσI , 1) (A.4)

are quaternions and their conjugates in the 2× 2 representation where

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(A.5)

are the Pauli matrices. We have the relations

qiq̄j = δij + iηI−ij σI
q̄iqj = δij + iηI+ij σI (A.6)

where the selfdual and antiselfdual ’t Hooft tensors are given by

ηI±ij = εIij4 ± (δIi δ
4
j − δIj δ4

i ) (A.7)

B Flat metric on H = R4

Let us begin with a description of H. We introduce a coordinates y = yiqi in H where

(yi) ∈ R4. Thus yi 7→ y = yiqi is a map R4 → H. The flat metric reads

ds2 = dydȳ = dyidyi (B.1)

Note that the quarternion y can be represented as y = aeq3ψ/2 with a being purely imagi-

nary, i.e. a = −ā . We further introduce

4xIqI = yq3ȳ = aq3ā (B.2)

With this definition, one finds

4x3 = y2
3 + y2

4 − (y2
1 + y2

2) = a2
3 − (a2

1 + a2
2) (B.3)

2(x1 + ix2) = y3y1 + y4y2 + i(y3y2 − y4y1) = a3(a1 + ia2) (B.4)
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Representing a by

a = 2
√
x sin

θ

2
(q1 cosφ+ q2 sinφ) + 2q3

√
x cos

θ

2
(B.5)

one finds

xIqI = x
(

sin θ (q1 cosφ+ q2 sinφ) + q3 cos θ
)

(B.6)

The flat metric dqdq̄ then becomes

ds2 = dadā+
1

4
aādψ2 +

1

2
dψ(aq3dā− daq3ā) (B.7)

Introducing b by a = 2
√
xb, the metric can be presented as

ds2 =
dxadxa
x

+ x (dψ + bq3db̄− dbq3b̄)
2 (B.8)

Note that

d(bq3db̄− dbq3b̄) = ∗3d
1

x
(B.9)

By explicit compution, one can show

σψ = dψ + (bq3db̄− dbq3b̄) = dψ +A = dψ + (cos θ − 1)dφ (B.10)

Therefore one is led to

ds2 =
d~x2

x
+ xσ2

ψ (B.11)

C Calabi metric from the caloron dynamics

In this section we shall derive the Calabi metric for the k = 1 instanton starting from the

known caloron dynamics. This will be helpful in understanding the corresponding brane

picture. We begin with the metric for the U(N) caloron [24],

ds2 =
4π2

g2
L4

[
Muvd~yu · d~yv +M−1

uv σξuσξv
]

(C.1)

where

Muvd~yu · d~yv =
N∑
u=1

mu d~y
2
u +

d~y2
1N

y1N
+
d~y2

21

y21
· · ·+

d~y2
NN−1

yNN−1
(C.2)

with

~yuv = ~yu − ~yv +
ζ

L4
δNu δ

N−1
v (C.3)

The coordinate ξu is ranged over [0, 4π] and we introduce

σξu = dξu + ~wuv · d~yv (C.4)

where
~∇p × ~wuv = ~∇pMuv (C.5)
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L4(= 2πR4) is the circumference of the x4 circle of D4 branes on R1,3 × S1 and the mass

parameter mu

mu =
εu
L4

(C.6)

with
∑N

u=1 εu = 1 is related to the Wilson line expectation value 〈A4〉. The caloron system

is related to the dynamics of N distinct monopoles sustained between T -dual D3 branes,

whose total magnetic charges vanish. ~yu is the position of monopole (D-string) connecting

D3u and D3u+1 (with D3N =D30) and the mass parameter is then related to the mass of

each distinct monopole. The positivity of mu implies that we order the D3 brane locations

along the x4 direction monotonically.

Starting from this metric, we now derive the Calabi metric of k = 1 U(N) instanton.

First we introduce the relative and the center-of-mass coordinates by

~xA = ~yAA−1 (A = 1, 2, · · ·N − 1) (C.7)

and

~xN = ~xcom =

∑
umu~yu∑
umu

(C.8)

and we shall denote this transformation by

~xu = Uuv ~yv (C.9)

Introducing

M̃ = (UT )−1MU−1 (C.10)

the metric becomes

ds2 =
4π2

g2
L4

[
M̃uvd~xu · d~xv + M̃−1

uv σϕuσϕv

]
(C.11)

where we introduce

ϕu = ξvU
−1
vu , σϕu = σξvU

−1
vu (C.12)

Then the derivative ∂
∂ϕu

satisfies ∂
∂ϕu

= Uuv
∂
∂ξv

, i.e.

∂

∂ϕA
=

∂

∂ξA
− ∂

∂ξA−1
(C.13)

and
∂

∂ϕN
= L4

∑
u

mu
∂

∂ξu
(C.14)

where we have used the fact
∑

umu = 1/L4. Note that the charge qu ≡ −2i ∂
∂ξu

is integral

quantized, i.e. qu ∈ Z and QA ≡ −2i ∂
∂ϕA

= qA − qA−1 ∈ Z. Thus it is clear that ϕA is

again ranged over [0, 4π]. One can check that

σϕu = dϕu + ~Auv · d~xv (C.15)

where
~∇p × ~Auv = ~∇pM̃uv (C.16)
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Let us introduce the relative mass µAB by

N∑
u=1

mu d~y
2
u =

d~x2
com

L4
+ µABd~xA · d~xB (C.17)

The metric then takes the form

ds2 =
4π2L4

g2

[
d~x2

com

L4
+ L4dϕ

2
N + M̃ABd~xA · d~xB + M̃−1

ABσϕAσϕB

]
(C.18)

where

M̃ABd~xA · d~xB = µABd~xA · d~xB +
d~x2

1

x1
+ · · ·+

d~x2
N

xN
(C.19)

Now the Calabi limit is defined by taking the decompactification limit L4 → ∞ with

the rescaling

~xA →
1

L4
~xA (C.20)

In this limit the metric becomes

ds2 =
4π2

g2

[
dxicomdx

i
com + CABd~xA · d~xB + C−1

ABσϕAσϕB
]

(C.21)

Here xi = (~xcom, x
4
com) where x4

com = L4ϕN is noncompact after taking the limit. The

matrix CAB is as defined in (5.25).

Since we are taking the decompactification limit, putting an electric charge to the

monopole connecting D3N to D31 becomes impossible. Hence in our interpretation of

electric charges, the corresponding charge qN vanishes.

D Dyonic instanton BPS states in R4

The instanton 1/4 BPS equation localized to R4 reads[
d− iG + i(d† −G)

]
Ω± = 0 (D.1)

where

G =
v̄ρ̄

2
ē3 (D.2)

using the notation of section 9.2. We use the same letter for the one-form as for the

corresponding dual vector field. We make the following Bose (even-form) ansatz

Ωq± = DqΛ0± +Dq−1Λ1± +Dq+1Λ−1± (D.3)

where

Λ0± = f±(1± ē0ē1ē2ē3) + g±(ē0ē3 ± ē1ē2)

Λ1± = c±(ē0 ± iē3)(ē1 + iē2)

Λ−1± = d±(ē0 ∓ iē3)(ē1 − iē2) (D.4)
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and Dq denotes here the highest weight Dj
jq. Note that j ≥ q. The states with

Dj
mq = e−imψ̄−iqφ̄djmq(θ̄) (D.5)

can be obtained by applying the lowering operator L̄− using the SU(2) rotational symmetry.

Further using the rotational symmetry, the coefficient functions f±, g±, c± and d± are only

functions of ρ̄.

By applying exterior derivative, we get

dΛ0± = f ′ē0 ± g′ē0ē1ē2 − δdown
4g

ρ̄
ē0ē1ē2

dΛ1± = ±c′iē0ē3ē+ − iδdown
4c

ρ̄
ē0ē3ē+

dΛ−1± = ∓d′iē0ē3ē− − iδup
4d

ρ̄
ē0ē3ē− (D.6)

where we define δdown = 1 for lower sign and δdown = 0 for upper sign, and δup = 1− δdown.

We use

dDq = iDq
2q

ρ̄
ē3 +

iµq
ρ̄
Dq−1ē

+ +
iλq
ρ̄
Dq+1ē

− (D.7)

where

µq =
√
j(j + 1)− q(q − 1)

λq =
√
j(j + 1)− q(q + 1) (D.8)

and

ē3Λ0± = fē3 ± gē1ē2ē3

ē±Λ0± = fē± + gē0ē3ē±

ē3Λ1± = −cē0ē3ē+

ē3Λ−1± = −dē0ē3ē−

ē−Λ1± = −2ic(ē0 ± iē3)ē1ē2

ē+Λ−1± = 2id(ē0 ∓ iē3)ē1ē2

ē+Λ1± = 0

ē−Λ−1± = 0 (D.9)

and

∗ ē3 = −ē0ē1ē2

∗ē0 = ē1ē2ē3

∗ē± = ∓iē0ē3ē± (D.10)

and the fact that ∗∗ = −1 on all these odd-dimensional forms. We also note that

iGē
3 =

v̄ρ̄

2
iGē

0 = 0

iGē
± = 0 (D.11)
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We now find

dΩq± = ē3iDq
2q

ρ̄
f

+ē0Dq f
′

+ē1ē2ē3iDq

[
±2q

ρ̄
g ± λq−1

ρ̄
2c± µq+1

ρ̄
2d

]
+ē+iDq−1

µq
ρ̄
f

+ē−iDq+1
λq
ρ̄
f

+ē0ē3ē+iDq−1

[
µq
ρ̄
g − 2(q − 1)

ρ̄
c± c′ − δdown

4c

ρ̄

]
+ē0ē3ē−iDq+1

[
λq
ρ̄
g − 2(q + 1)

ρ̄
d∓ d′ − δup

4d

ρ̄

]
+ē0ē1ē2Dq

[
λq−1

ρ̄
2c− µq+1

ρ̄
2d± g′ − δdown

4g

ρ̄

]
(D.12)

and

i ∗ dΩ = ē3iDq

[
λq−1

ρ̄
2c− µq+1

ρ̄
2d± g′ − δdown

4g

ρ̄

]
+ē0Dq

[
±2qg ± λq−1

ρ
2c± µq+1

ρ
2d

]
+ē1ē2ē3iDq f

′

+ē+iDq−1

[
µq
ρ̄
g − 2(q − 1)

ρ̄
c± c′ − δdown

4c

ρ̄

]
+(−)ē−iDq+1

[
λq
ρ̄
g − 2(q + 1)

ρ̄
d∓ d′ − δup

4d

ρ̄

]
+ē0ē3ē+iDq−1

µq
ρ̄
f

+(−)ē0ē3ē−iDq+1
λq
ρ̄
f

+ē0ē1ē2Dq
2q

ρ̄
f (D.13)

We also have

iGΩ =
v̄ρ̄

2

[
iDq(fē

3 ± gē1ē2ē3)− iDq−1cē
0ē3ē+ − iDq+1dē

0ē3e−
]

and

iGΩ =
vρK

2

[
Dq(∓fe0e1e2 − ge0)± iDq−1ce

+ ∓ iDq+1de
−] (D.14)

The BPS equation is

dΩ− iGΩ = ±i ∗ dΩ + iGΩ (D.15)

that we write as

dΩ∓ i ∗ dΩ = iGΩ + iGΩ (D.16)
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The l.h.s. now becomes

(ē3i∓ ē0ē1ē2)Dq

[
−g′ − 4δdown

g

ρ̄
+

2q

ρ̄
f ∓ λq−1

ρ̄
2c± µq+1

ρ̄
2d

]
+ (ē0 − ē1ē2ē3i)Dq

[
f ′ − 2q

ρ̄
g − λq−1

ρ̄
2c− µq+1

ρ̄
2d

]
+ (ē+i∓ ē0ē3ē+i)Dq−1

[
−c′ − 4δdown

c

ρ̄
+
µq
ρ̄

(f ∓ g)± 2(q − 1)

ρ̄
c

]
+ (ē−i± ē0ē3ē−i)Dq+1

[
−d′ − 4δup

d

ρ̄
+
λq
ρ̄

(f ± g)∓ 2(q + 1)

ρ̄
d

]
(D.17)

The r.h.s. is the sum of

iGΩ =
v̄ρ̄

2

[
iDq(fē

3 ± gē1ē2ē3)− iDq−1c ē
0ē3ē+ − iDq+1d ē

0ē3ē−
]

and

iGΩ =
v̄ρ̄

2

[
Dq(∓fē0ē1ē2 − gē0)± iDq−1c ē

+ ∓ iDq+1d ē
−] (D.18)

Thus r.h.s. is

v̄ρ̄

2
×
[
(ē3i∓ ē0ē1ē2)Dq f

+ (ē0 ∓ ē1ē2ē3i)Dq(−)g

+ (ē+i∓ ē0ē3ē+i)Dq−1(±)c

+ (ē−i∓ ē0ē3ē−i)Dq+1(∓)d
]

(D.19)

Subtracting r.h.s. - l.h.s. , we have

(ē3i∓ ē0ē1ē2)Dq

[
−g′ + 2q

ρ̄
f ∓ λq−1

ρ̄
2c± µq+1

ρ
2d− v̄ρ̄

2
f − δdown

4

ρ̄
g

]
+ (ē0 − ē1ē2ē3i)Dq

[
f ′ − 2q g − λq−1

ρ̄
2c− µq+1

ρ̄
2d+

v̄ρ̄

2
g

]
+ (ē+i∓ ē0ē3ē+i)Dq−1

[
−c′ + µq

ρ̄
(f ∓ g)± 2(q − 1)

ρ̄
c∓ v̄ρ̄

2
c− δdown

4c

ρ̄

]
+ (ē−i± ē0ē3ē−i)Dq+1

[
−d′ + λq

ρ̄
(f ± g)∓ 2(q + 1)

ρ̄
d± v̄ρ̄

2
d− δup

4d

ρ̄

]
Thus for upper sign (SD case) we have the BPS equations

− g′ + 2q

ρ̄
f − λq−1

ρ̄
2c− µq+1

ρ̄
2d− v̄ρ̄

2
f = 0

f ′ − 2q

ρ̄
g − λq−1

ρ̄
2c+

µq+1

ρ̄
2d+

v̄ρ̄

2
g = 0

−c′ + µq
ρ̄

(f − g) +
2(q − 1)

ρ̄
c− v̄ρ̄

2
c = 0

−d′ + λq
ρ̄

(f + g)− 2(q + 1)

ρ̄
d+

v̄ρ̄

2
d− 4

ρ̄
d = 0 (D.20)
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and for lower sign (ASD case) we have the BPS equations

− g′ + 2q

ρ̄
f +

λq−1

ρ̄
2c− µq+1

ρ̄
2d− v̄ρ̄

2
f − 4g

ρ̄
= 0

f ′ − 2q

ρ̄
g − λq−1

ρ̄
2c− µq+1

ρ̄
2d+

v̄ρ̄

2
g = 0

−c′ + µq
ρ̄

(f + g)− 2(q − 1)

ρ̄
c+

v̄ρ̄

2
c− 4

ρ̄
c = 0

−d′ + λq
ρ̄

(f − g) +
2(q + 1)

ρ̄
d− v̄ρ̄

2
d = 0 (D.21)

For the upper sign, we define h = f + g and s = f − g. Then the equations become

s′ − v̄ρ̄

2
s+

2q

ρ̄
s− λq−1

ρ̄
4c = 0

c′ +
v̄ρ̄

2
c− 2(q − 1)

ρ̄
c− µq

ρ̄
s = 0

h′ +
v̄ρ̄

2
h− 2q

ρ̄
h− µq+1

ρ̄
4d = 0

d′ − v̄ρ̄

2
d+

2(q + 1)

ρ̄
d− λq

ρ̄
h = 0 (D.22)

First consider the case of j > q. One finds that λq−1 = µq and λq = µq+1 are

all nonvanishing. Requiring the normalizability of the wave function, one can show that

s = c = h = d = 0. Hence such states do not exist. The brief discussion of the proof is as

follows. Let us consider the first two coupled equations. Eliminating s, one finds[(
ρ̄
d

dρ̄

)2
+ 2ρ̄

d

dρ̄
− v̄2ρ̄4

4
+ 2qv̄ρ̄2 − 2q(q − 1)

]
c = 4µ2

qc (D.23)

One can rearrange this equation to the following form[
− 1

ρ̄3

d

dρ̄
ρ̄3 d

dρ̄
+
( v̄ρ̄

2
− 2q

ρ̄

)2
]
c = −4

(µ2
q − q)
ρ̄2

c (D.24)

Note that µ2
q − q > 0 since we are interested in coupled case requiring j ≥ q when q ≥ 1

2

and j ≥ 1 if q = 0. Performing an integration with respect to ρ̄ after multiplying (D.24)

by ρ̄3c∗ (i.e.
∫∞

0 dρ̄ρ̄3c∗ (D.24)) , one finds that the l.h.s. is positive definite while the r.h.s.

is negative definite unless c = 0. Therefore we conclude that s = c = 0 once the two

equations are coupled with each other. A similar argument goes through for the latter two

equations leading to h = d = 0.

For j = q, λq−1 and µq are nonvanishing while λq = µq+1 = 0. Then again requiring

the normalizability, one finds s = c = d = 0 and

f = g = ρ̄2qe−
v̄ρ̄2

4 (D.25)

which leads to the j = q multiplet. For j = q − 1, h = s = d = 0 by definition. One has

c = ρ̄2(q−1)e−
v̄ρ̄2

4 (D.26)

– 45 –



J
H
E
P
0
7
(
2
0
1
3
)
0
2
1

Similarly one can show that the ASD sector does not have any solution based on the

fact that four are all coupled among themselves.

For the case with negative v̄, q has to be non-positive definite. One finds the following

solutions by the same argument as the positive v̄ case in the above. For j = |q|, one finds

f = −g = ρ̄2|q|e−
|v̄|ρ̄2

4 (D.27)

with c = d = 0. For j = |q + 1| with q ≤ −1, one has

d = ρ̄2(|q+1|)e−
|v̄|ρ̄2

4 (D.28)

with f = g = c = 0.

E Eguchi-Hanson metric

For N = 2 we can directly solve the ADHM constraints as

(w1̇u w2̇u) = g

(√
ρ2 + 2ζ 0

0
√
ρ2 − 2ζ

)
(E.1)

where

g =

(
u1 −u2

u2 u1

)
(E.2)

and

u1 = cos
θ

2
ei(ψ+φ)/2

u2 = sin
θ

2
ei(ψ−φ)/2 (E.3)

We can in addition make a U(1) gauge transformation

wα̇u → e−iξwα̇u (E.4)

of our solution. After this transformation, the metric (4.6) induces the metric

ds2 = 2ρ2

(
dξ +

α

2ρ2

)2

+ dwα̇udw̄
α̇u − α2

2ρ2
(E.5)

where

α = −iwα̇udw̄α̇u + idwα̇uw̄
α̇u (E.6)

Here ξ is a cyclic coordinate, in the sense that the metric does not depend on ξ (but only

on dξ). The conjugate momentum

pξ = dξ +
α

2ρ2
(E.7)
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to ξ is a conserved quantity. Modding out by U(1) gauge symmetry amounts to putting

pξ = 0. An alternative approach is to define a covariant derivative

Dwα̇u = dwα̇u − iAwα̇u (E.8)

define the moduli space metric as

ds2 = Dwα̇uDw̄
α̇u (E.9)

and use the Gauss law constraint, which amounts to extremizing this metric with respect

to A. Either way the moduli space metric becomes

ds2 = 2

 1

1− 4ζ2

ρ4

dρ2 + ρ2duαdu
α − 4ζ2

ρ2
(iuαduα)2

 (E.10)

From (E.3) we get

duαdu
α =

1

4

(
dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2

)
iuαduα = −1

2
(dψ + cos θdφ) (E.11)

and thus

ds2 = 2

 dρ2

1− 4ζ2

ρ4

+
ρ2

4

(
σ2

1 + σ2
2 +

(
1− 4ζ2

ρ4

)
σ2

3

) (E.12)

where

σ2
1 + σ2

2 = dθ2 + sin2 θdφ2

σ3 = dψ + cos θdφ (E.13)

This is the Eguchi-Hanson metric.

E.1 Coordinate map from Eguchi-Hanson to Calabi metric

We have seen two different ways to obtain the moduli space metric from ADHM constraints

by factoring out the U(1) gauge symmetry. For N = 2 the two methods must give the same

moduli space, which means that the Calabi metric must be equivalent to the Eguchi-Hanson

metric by means of a coordinate transformation. To find the coordinate transformation we

will now more carefully compare the two methods we used to obtain these two metrics.

In the Calabi case and for N = 2 we eliminate ~x2 by expressing it in terms of the

Calabi space coordinates

~x1 =
1

4
w1α̇~σ

α̇
β̇w̄

β̇
1 (E.14)

From (E.1) we have

w1α̇ = (u1ρ+,−u2ρ−) (E.15)
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where we define ρ± =
√
ρ2 ± 2ζ. Using the parametrization (E.3), we get

x1
1 =

1

4
(−ρ+ρ− sin θ cosψ)

x2
1 =

1

4
(ρ+ρ− sin θ sinψ)

x3
1 =

1

4

(
ρ2 cos θ + 2ζ

)
(E.16)

and we may recall that x1
2 = −x1

1, x2
2 = −x2

1 and x3
2 = ζ −x3

1. It is convenient to introduce

the notation z+ = x3
1 and z− = x3

2. Then

z± =
1

4

(
±ρ2 cos θ + 2ζ

)
r± =

√
x2

1 + x2
1 + z2

± (E.17)

Quite remarkably we find the square root of a perfect square

r± = λ
(
ρ2 ± 2ζ cos θ

)
(E.18)

From (5.25) we then get

C =
2ρ2

λ (ρ4 − (2ζ)2 cos2 θ)
(E.19)

The fiber coordinate and gauge potential in Calabi coordinates is given by

ϕ = ψ1 − ψ2

A = A1 −A2 (E.20)

respectively, where

Au =
1

ru (ru − zu)
(xudyu − yudxu) (E.21)

In Eguchi-Hanson coordinates the Calabi space gauge potential becomes

A =
2(ρ4 − (2ζ)2) cos θ

ρ4 − (2ζ)2 cos2 θ
dψ (E.22)

We shall identify

ϕ = 2φ (E.23)

in order to match Calabi metric with Eguchi-Hanson metric. Thus the fiber direction which

is parametrized by ψ in the Eguchi-Hanson metric shall not to be confused with the fiber

over R3 of the Calabi metric which is parameterized by ϕ.
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E.2 Properties of Calabi space

The Eguchi-Hanson metric gives us the vierbein

e1 =
ρ

2
σ1

e2 =
ρ

2
σ2

e3 =
ρ

2
Kσ3

e4 =
dρ

K
(E.24)

up to a local SO(4) rotation. We define the spin connection ωab by

dea + ωabeb = 0 (E.25)

Defining ε1234 = 1 we have [20]

ωab =
1

2
εabcdωcd (E.26)

The three Kahler forms are now given by

II =
1

2
ηI−ab e

a ∧ eb (E.27)

We can see that these are closed by the following argument. We first obtain

dII = ηI−ab ω
acec ∧ eb (E.28)

We then expand the selfdual spin connection as ωac = ηJ+
ac ω

J and we find that

dII = [ηI−, ηJ+]abe
a ∧ eb = 0 (E.29)

To obtain Kahler forms on Calabi space we start with flat space HN = C2N with

metric (5.4). Three Kahler forms are given by

II =

N∑
u=1

ηI+ab e
a
u ∧ ebu (E.30)

where the vielbein is given by

eIu = C
1
2
u dx

I
u

e4
u = C

− 1
2

u σψu (E.31)

By using

dσψu =
1

2x3
u

εIJKxIudx
J
u ∧ dxKu (E.32)

we may check that

dII = 0 (E.33)

To derive the Kahler forms on Calabi space we eliminate ~xN using the ADHM con-

straint (5.17) and we define σϕA as in (5.21). We then get

II = dxIA ∧ σA +
1

2
εIJKCABdx

J
A ∧ dxKB (E.34)
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