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1 Introduction

Since the 1980’s great progress has been made in the field of model building utilizing smooth

Calabi-Yau compactifications of heterotic string and M-theory. A very large number of

models now exist which exhibit standard model charged particle content with no exotics,

vector-like or otherwise [1–7].1 The focus of these phenomenological investigations has

1For a selection of work on model building efforts in other heterotic contexts see [18–36]. For further

work related to the smooth compactifications cited in the text, see [8–17].
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now moved on to more detailed questions, such as reproducing the couplings between the

particles and the issue of proton stability.

The field of moduli stabilization has, by contrast, remained more problematic within

heterotic theories. The lack of Ramond-Ramond fluxes means that there is naively less

structure available to utilize in stabilizing the moduli than in the type II case. This is

especially true if one wants to work on a Calabi-Yau three-fold to preserve the model

building successes described in the previous paragraph. There are, however, fields beyond

the gravitational sector in heterotic compactifications — that is, gauge fields. It has long

been known that these could give rise to contributions to the potential for the moduli, even

in the case of Calabi-Yau compactifications [37, 38]. In the last couple of years it has been

realized how to explicitly construct bundles, typically in the hidden sector of the theory,

which stabilize complex structure moduli in this context [39, 40].

It should be stressed that there are moduli associated to the bundles which are intro-

duced to constrain the complex structure in this moduli stabilization mechanism. However,

one should not regard this procedure as introducing one set of moduli to stabilize another.

Vector bundles (or M5 branes) have to be present in a heterotic compactification to sat-

urate the integrability condition on the Bianchi Identity for the Neveu-Schwarz two-form.

As such one, is not introducing new moduli into the problem but, rather, making use of the

structure which is already necessarily present. The observation is simply that the combina-

tion of the bundle moduli and the complex structure gives an over-counting of the massless

fields which are actually present in the compactification. Work is currently being pursued

to build these successes into a complete moduli stabilization scenario in the heterotic case,

where the bundle moduli and other fields are also stabilized [41].

The mathematics which underpins complex structure stabilization by gauge bundles

is due to Atiyah [42]. Atiyah described the following. If one starts with a complex man-

ifold with a given value for its complex structure moduli, and a holomorphic bundle over

that space, one can ask what will happen as those fields are varied. In particular, is it

possible for the connection on the vector bundle to adjust such that the bundle remains

holomorphic no matter how the complex structure moduli are varied? The answer is in

the negative. There can be some infinitesimal changes in complex structure which are

such that a given holomorphic bundle simply can not adjust to stay holomorphic. Since

holomorphy is a requirement for supersymmetry in a heterotic compactification, such a

change in the complex structure moduli will break supersymmetry. The resulting potential

in the four-dimensional effective theory then constrains the complex structure moduli in

that direction — not allowing them to vary without a price in potential energy.

This mechanism for complex structure stabilization works well, and several explicit

examples have been elucidated. There is, however, a practical problem in applying the

formalism discussed by Atiyah to the physical problem of moduli stabilization. Within

combined complex structure and bundle moduli field space, there is typically a complicated

structure of vacua to the potential induced by the holomorphy of a given bundle. In physics

we are interested in this entire system of vacua. We are especially interested in any vacua

which restrict all of the complex structure — which are point like in that moduli space.

The problem is that the formalism developed by Atiyah, and described in [39, 40] in this

context, does not easily allow us to map out all of this structure.
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The Atiyah formalism tells us about fluctuations of moduli fields around a given start-

ing point. We choose a point in field space, perform a complex calculation, and this tells

us which moduli are fixed at that point. If we wanted to map out a complete system of

vacua, as described in the previous paragraph, we would have to repeat this calculation for

a continuum of points! If we somehow know where in complex structure space to start the

analysis, the formalism will confirm whether the moduli are stabilized. But to find that

initial point we are reduced to guess work - not a tantalising prospect in a high-dimensional

field space.

The goal of this paper is to provide a scanning mechanism which allows us to system-

atically map out the entire vacuum space carved out by the condition of holomorphy in

a large class of example bundles. The techniques we will describe provide a description

of the vacuum loci in complex structure moduli space as an algebraic variety. We will

illustrate this scanning procedure with several explicit examples and will show that even

simple bundles can lead to a rich structure of vacua in the moduli space of the Calabi-Yau

compactifications.

Once a description of the vacuum space has been obtained as an algebraic variety, a

number of established computational tools are available to study its structure. One of the

features which is quickly apparent in studying such systems is that in some, but not all, of

the branches of the vacuum space the complex structure values to which one is restricted

correspond to Calabi-Yau three-folds which are singular. This leads to a natural question.

Can we make sense of these singular branches in the vacuum space? In other words, can

we resolve the singularities in the Calabi-Yau three-fold while keeping analytical control

of our description of the complex structure stabilization mechanism? The answer to this

question is in the affirmative in some cases, and in the final portion of this paper we explain

exactly how this is achieved.

The structure of the rest of this paper is as follows. In the next section we describe the

procedure which allows us to map out the vacuum structure induced by bundle holomorphy

on complex structure moduli space. We begin with a general discussion in subsection 2.1

and give an explicit example in subsection 2.2. In section 3 we describe how to resolve

singularities which sometimes appear in the Calabi-Yau in this moduli fixing mechanism.

This section culminates in subsection 3.4 where we explicitly resolve the singularities in

some of the branches of the vacuum space found in subsection 2.2, maintaining our control

over the moduli stabilization mechanism as we do so. We conclude and discuss future work

in section 4, while a series of technical appendices introduce some mathematical results

which are required in the main text of the paper.

2 Vacuum varieties and bundle holomorphy

We want to compute whether or not a vector bundle is holomorphic as a function of complex

structure. Our starting point is to focus on classes of bundles where the complex structure

dependence can be isolated in a particularly calculable manner.

Line bundles are extremely simple with regard to the complex structure dependence of

their holomorphy. To see this, we briefly recall the relevant portions of Atiyah’s discussion.
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Given a vector bundle V over a complex manifold X with tangent bundle TX, Atiyah

defines a new object Q by extension:

0→ V ⊗ V ∨ → Q→ TX → 0 . (2.1)

Writing the long exact sequence associated to the short exact sequence (2.1), one obtains

a relationship between the cohomology groups of V , TX and Q. Assuming that X is

a Calabi-Yau manifold and, hence, that H0(X,TX) = H3(X,TX) = 0, the long exact

sequence is given by

0→ H1(X,V ⊗ V ∨)→ H1(X,Q)→ H1(X,TX)→H2(X,V ⊗ V ∨)→ . . . (2.2)

In physical langauge, Atiyahs states that the unstabilized complex structure moduli and

vector bundle moduli are now combined into a single cohomology, H1(X,Q). Extracting

the relevant information from (2.2), we see that

H1(X,Q) = H1(X,V ⊗ V ∨)⊕ ker
(
H1(X,TX)

α→ H2(X,V ⊗ V ∨)
)
, (2.3)

where

α =
[
F 1,1

]
∈ H1(V ⊗ V ∨ ⊗ TX∨) (2.4)

is the cohomology class of the field strength of the connection on the vector bundle V , the

so-called Atiyah class.

In the case where V is a line bundle on a Calabi-Yau three-fold, H2(X,V ⊗ V ∨) =

H2(X,OX) = 0. It follows that the target space of α is empty, ker(α) = H1(X,TX)

and, hence, H1(X,Q) contains the entirety of H1(X,TX). That is, no complex structure

moduli are stabilized by demanding that a line bundle be holomorphic. In other words, line

bundles always remain holomorphic for any complex structure, the connections on them

adjusting as necessary as the complex structure moduli change. Since the holomorphy

of line bundles is independent of the complex structure, they have no direct application

in the stabilization mechanism we are investigating. However, this very simplicity makes

them extremely useful in pursuing our goal of finding classes of bundles where the complex

structure dependence can be isolated in a computable manner.

There exist many techniques for building non-Abelian vector bundles out of line bun-

dles using exact sequences. Examples include two term monads and extension bundles,

as well as more complicated objects which are often not given specific names. The idea

is simply that one writes down a sequence, short exact or otherwise, where all but one of

the entries are sums of line bundles. The remaining entry is then taken to be the non-

Abelian bundle one is defining. The position of the non-Abelian bundle in the sequence

specifies which construction one is using. In such constructions, since the line bundles

themselves have no dependence on the complex structure moduli, all of the dependence of

the holomorphy of the non-Abelian bundle on those fields can only arise from the maps

in the sequences. These maps are given by elements of cohomology classes of sums of line

bundles. Thus, we have exchanged the problem of computing bundle holomorphy as a

function of complex structure for that of computing cohomology groups of line bundles as

a function of those variables.
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There is a large class of examples where such computations are eminently tractable.

We will phrase the discussion here in terms of Calabi-Yau three-folds which are complete

intersections in products of projective spaces (CICYs). Analogous results can be stated for

many other Calabi-Yau constructions, including the hypersurfaces in toric ambient spaces.

CICYs are defined as the common solution space of a system of polynomial equations in

an ambient space given by A = Pn1 × · · · × Pnm . Let us write the canonically normalized

Kähler form of each projective space as JPnr . Then line bundles on A can be denoted by

OA(k1, . . . , km) = OPn1 (k1)× . . .×OPnm (km), where OPnr (kr) is the line bundle associated

to the divisor which is Poincaré dual to krJPnr . We need K =
∑m

r=1 nr − 3 polynomial

equations to define a three-fold as a complete intersection within such an ambient space.

Denote the multi-degrees of these polynomials by qi = (q1
i , . . . , q

m
i ), where qri is the degree

of the i’th polynomial in the coordinates of the r’th projective space. The configuration

matrix of a CICY then simply arranges this data in the convenient form
Pn1 q1

1 q1
2 . . . q1

K

Pn2 q2
1 q2

2 . . . q2
K

...
...

...
. . .

...

Pnm qm1 qm2 . . . qmK


m×K

. (2.5)

For such a three-fold to be a Calabi-Yau manifold, the conditions

K∑
j=1

qrj = nr + 1 ∀ r = 1, . . . ,m . (2.6)

must be satisfied. Note that the CICYs defined in this way are simply connected manifolds.

Line bundles on such Calabi-Yau three-folds are defined by their first Chern class. As

discussed above, we want to focus on those line bundles whose cohomology can be readily

computed as a function of complex structure. As such, we will restrict ourselves to the

so-called “favorable” line bundles. These are defined to be line bundles L on X whose first

Chern class is a two-form which descends from the ambient space A. That is,

c1(L) = arJr where Jr = JPnr |X (2.7)

for some set of integers ar. We will denote the associated line bundle on the ambient

space by LA = O(ar). Choosing favorable line bundles means that the complex structure

dependence of their cohomology groups can be explicitly calculated using what is called

the Koszul sequence. We will see how this is achieved in the next subsection.

To recapitulate the logic, we want to build a non-Abelian bundle V on a CICY X out

of favorable line bundles. In doing so, all complex structure dependence of the holomorphy

of V will be encoded in the maps of its defining sequence, since the line bundles themselves

exhibit trivial dependence on these fields. These maps will be described by elements of line

bundle cohomology groups. Thanks to the use of favorable line bundles in the construction,

the complex structure dependence of these cohomology groups will be explicitly computable

using the Koszul sequence. The analysis is sufficiently complicated that it is best illustrated
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by focussing on one type of bundle construction. As such we will, in the next subsection,

carry out the kind of computations we have been describing here for the case of an extension

of two favorable line bundles.

Before we move on to the next section we should mention that there are two other

important properties that any vector bundle describing a heterotic vacuum should exhibit,

besides holomorphy. These are that the bundle should be slope poly-stable and should

have a second Chern class compatible with the anomaly cancelation condition of the theory

stemming from the integrability condition on the Bianchi Identity for the Neveu-Schwarz

threeform field strength. For every explicit example presented in this paper these two

conditions are satisfied in at least some sub-cone of the Kähler moduli space. We shall not,

therefore, discuss this issue further and shall concentrate instead on the holomorphy issues

which are central to the discussion of this article.

2.1 Complex structure dependence and cohomology

Consider a rank two vector bundle V defined by extension as

0→ L → V → L∨ → 0 . (2.8)

The line bundle L will be assumed to be favorable.2 The extent to which V is not a trivial

direct sum is controlled by the extension group Ext(L∨,L) = H1(X,L⊗2). Despite the fact

that, independently of the choice of complex structure, any line bundle is holomorphic, line

bundle cohomology groups such as this one can depend upon complex structure. That is,

it is possible for V , as defined by certain elements of Ext(L∨,L), to exist as a holomorphic

SU(2) bundle only at special loci in complex structure moduli space.

We are interested, therefore, in computing the cohomology H1(X,L⊗2) as a function

of the complex structure moduli of X. To simplify notation, and to emphasis that we are

computing the cohomology of a line bundle, we define L = L⊗2. Note that L remains a

favorable line bundle on X which descends from LA on A. One can extract the complex

structure dependence of the cohomology groups of L by studying the associated Koszul

sequence. For X constructed as a co-dimension K complete intersection in some ambient

space A, we have the following exact sequence:

0→ ∧KN∨ ⊗LA → ∧K−1N∨ ⊗LA → . . .→ LA → L → 0 . (2.9)

Here N is the normal bundle to X in A. Sequence (2.9) can be split up as

0→ K → LA → L → 0 , (2.10)

where K is a bundle defined by the long exact sequence

0→ ∧KN∨ ⊗LA → ∧K−1N∨ ⊗LA → . . .→ N∨ ⊗LA → K → 0 . (2.11)

2In addition, L is chosen to satisfy µ(L) < 0 where µ(L) =
∫
X
c1(L) ∧ J ∧ J for J a Kähler form on X.

It is straightforward to show that this condition is 1-1 with the slope stability of V for an extension of two

line bundles of the form given in (2.8).

– 6 –
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The usual analysis of short exact sequences and their associated long exact sequences in

cohomology tells us that

. . .→ H1(A,K)→ H1(A,LA)→ H1(X,L )→ H2(A,K)→ H2(A,LA)→ . . . (2.12)

This implies that

H1(X,L ) = coker
(
H1(A,K)→ H1(A,LA)

)
⊕ ker

(
H2(A,K)→ H2(A,LA)

)
.(2.13)

The general analysis of the complex structure dependence of H1(X,L ) from (2.13) is

somewhat involved. Before we describe this in detail, therefore, let us consider a slightly

simplified case. This will enable us to see more cleanly how the information of interest is

extracted, as well as being sufficiently general to cover the explicit examples given in this

paper. We will then return to the general case at the end of this section.

Consider an example with co-dimension one, that is, where K = 1. The Koszul

sequence then becomes the short exact sequence

0→ N∨ ⊗LA → LA → L → 0 . (2.14)

Hence, K is now simply given by K = N∨ ⊗LA. Expression (2.13) then becomes

H1(X,L ) = coker
(
H1(A,N∨ ⊗LA)→ H1(A,LA)

)
⊕ker

(
H2(A,N∨ ⊗LA)→ H2(A,LA)

)
. (2.15)

We can simplify the discussion further by considering a situation where H1(A,LA) = 0.

In this special case

H1(X,L ) = ker
(
H2(A,N∨ ⊗LA)→ H2(A,LA)

)
. (2.16)

How does one compute such a cohomology as a function of complex structure? Note

that the source and target spaces of the map in (2.16) are ambient space cohomology groups

and, as such, are independent of complex structure. Thus, all of this dependence is found

entirely in the map in (2.16) which, from its origin in the Koszul sequence, is determined

by the defining relation of the Calabi-Yau three-fold itself.

To describe the cohomology as a function of complex structure, we carry out the follow-

ing procedure. The source and target ambient space cohomology groups can be described

as free polynomial spaces via the theorem of Bott-Borel-Weil (see appendix B.3.1). More

precisely, these cohomology groups can be described in terms of spaces of polynomials in the

homogeneous coordinates of the projective factors of the ambient space A and also in the

inverses of those variables. Explicit examples of this will be given in the next subsection,

but for now we continue our discussion in generality. First, construct a general element

of the source as a linear combination of the polynomial basis {mi} of H2(A,N∨ ⊗LA).

That is,

S = sim
i where mi ∈ H2(A,N∨ ⊗LA) . (2.17)

– 7 –
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The si are, at present, arbitrary coefficients. Second, form a general defining polynomial

for the Calabi-Yau three-fold as a linear combination of the polynomial basis {nα} of

H0(A,N ). That is,

P = cαn
α where nα ∈ H0(A,N ) . (2.18)

The arbitrary coefficients cα in equation (2.18) represent a redundant description of the

complex structure moduli. P is a polynomial representation of the map in (2.16), consistent

with the Bott-Borel-Weil descriptions of the source and target spaces.

To determine which elements S are in the kernel of the map, multiply S by P and

ask that we get 0 in the target space H2(A,LA). Denoting a basis of this cohomology

by pI ∈ H2(A,LA), we then arrive at the following conditions for an element S to be

in the kernel:

Coefficient(sicαm
inα, pI) ∼= λiαI sicα = 0 ∀ I . (2.19)

Let us describe in a little more detail what we mean by this. Both S and P are polynomials

in the homogeneous coordinates of the ambient projective spaces and their inverses (indeed

P is a polynomial just in the coordinates themselves). Their product is therefore a sum

of terms which are fractions with numerator and denominator both being monomials in

the homogeneous coordinates. To implement (2.19) we first, in each term in SP , make

all cancelations possible between powers of homogeneous coordinates which appear both

in numerator and denominator. In the resulting polynomial (in variables and inverses)

we then take the coefficient of each basis element pI of the target space H2(A,LA), as

computed using the discussion in appendix B.3.1. This is what is meant by the left hand

side of (2.19). The rest of this equation is just the definition of λI and, by setting the result

to zero, we focus on the kernel of the map S. The resulting equation is bilinear in si and

cα. If we now remember that H1(X,L ) = H1(X,L⊗2) is the extension group controlling

the bundle (2.8), we can see that these equations describe a portion of the vacuum space

of the system.

Let us explain the last comment of the previous paragraph further. The coefficients

si in S are a parameterisation of the possible extensions describing V . The coefficients

cα in P are a redundant description of the complex structure moduli. The redundancy

in this description is well understood, and can be removed if desired. Equations (2.19),

viewed as describing an algebraic variety in combined (si,cα) space, define the loci of points

where the given complex structure, cα, is compatible with the existence of a holomorphic

extension of the type defined by si via (2.17). In other words, equations (2.19) describe

the vacuum space of the theory in a redundant description of combined complex structure

and extension space with the redundancies being explicitly understood. This is everything

we need to analyze the vacuum structure of the system.

At this stage, we have a large set of equations describing the vacuum structure of

the system as an algebraic variety. We now need to extract information in a useful form.

Fortunately, there is a ready-made set of tools available to do so — those of computational

algebraic geometry. For example, one may want to know which complex structure moduli

– 8 –
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can stabilized. That is, which loci in complex structure moduli space can support holo-

morphic bundles which can not adjust in any way to stay holomorphic when we perturb

the system off of those loci?

To perform this analysis, we follow a number of steps.

• First compute the minimal associated primes of the ideal
〈
λiαsicα

〉
⊂ C[si, cα].

By definition, the minimal associated primes in this context are a set of ideals,

IA ⊂ C[si, cα], with A = 1 . . . N where N is the number of irreducible components of

the vacuum space. If a given minimal associated prime is generated by a set of poly-

nomials GA, that is IA = 〈GA〉, then the A’th irreducible component of the vacuum

space is described by the equations obtained by setting each of the polynomials in

the set GA to zero. In simple terms, then, this computation takes the one large set of

equations (2.19) which describes the entire vacuum manifold and breaks it up into N

smaller sets of equations, one describing each irreducible component of that space.

• By performing a Gröbner basis elimination procedure on the si variables, one can

then find the generators of a new ideal IA ⊂ C[cα] where IA = IA ∩ C[cα]. These

ideals are generated by the set of equations describing the allowed space of complex

structure in each branch of the vacuum manifold of the system. Geometrically, we

are taking the varieties describing the irreducible pieces of the vacuum manifold in

the combined space of cα and si variables and are projecting this down onto the space

spanned soley by the complex structure degrees of freedom cα.3 A graphical depiction

of this kind of projection can be found in figure 1. In this figure, the notationM(J),

for an ideal J , refers to the space of solutions to the equations generating the ideal

in the space of its variables.

• Once the equations describing each branch of the vacuum space have been found, one

can simply count the number of stabilized complex structure moduli by computing

the dimension of the associated ideal IA. This is achieved by computing a Gröbner

basis for the ideal, examining the leading monomials, and performing elementary

combinatorial manipulations. A detailed discussion of the mathematics of this, and

the other computational methods employed in this set of three steps, can be found

in this text [43].

It is important to perform the step of decomposition into associated primes, prior to

projecting onto the subspace of complex structure variables. This is because these two

processes do not commute. As a simple example, a solution to (2.19) is always furnished

by si = 0, ∀ i. This solution holds for any complex structure. In this branch of the

vacuum space, V is simply the Abelian sum of two line bundles and the complex structure is

unconstrained. By projecting this single component onto the subspace of complex structure

variables, the full complex structure space is obtained. This situation is depicted in figure 1.

Here M(I0) is the trivial component of the vacuum space just described. We are, of

course, interested in the other, more interesting, branches of the vacuum space. Let the

3Strictly speaking, elimination is the algebraic equivalent to the algebraic closure of this projection.
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Figure 1. An illustration of the vacuum space.

blue locus M(I1) denote one less trivial branch of solutions. Projecting M(I1) to the

complex structure plane we obtain M(I1), a restricted locus in moduli space to which we

are stabilized. If, however, we project both M(I0) and M(I1) simultaneously, we see that

the former will cover the entire complex structure plane and the interesting structure of

M(I1) will be missed.

The separation in the space of possible extension classes, s1 in figure 1, is crucial in this

discussion. If M(I1) were to lie entirely within M(I0), then physically we would not be

able to stabilize the system to the locusM(I1). Algebraically this subtlety is taken care of

by computing minimal associated primes in the first step of the procedure above, and not

performing a primary decomposition of a potentially non-radical ideal. This ensures that

none of the pieces of the vacuum space which are obtained, M(IA), are wholly embedded

within any of the others. In the next subsection, we illustrate this procedure with a specific

example. We finish this subsection with a further discussion of the general case (2.13).

To encompass all possibilities that can arise in a general example, one must extend

the above discussion in two important regards. First, we should consider the case where

the cokernel in (2.15) is non-zero. Second, we should generalize our analysis to higher

co-dimension K. A non-zero cokernel in (2.15) is no more difficult to describe than the

kernel discussed above. The crucial observation is that

coker
(
H1(A,N∨⊗LA)→ H1(A,LA)

) ∼= ker
(
H2(A,LA∨)→ H2(A,N ⊗LA

∨)
)
. (2.20)

We can, therefore, express the cokernel in (2.15) as a kernel, and compute it in exactly

the same manner as we computed the kernel above. With this in mind, expand a general

element, T , of H2(A,LA∨) in terms of a polynomial basis {qa} as

T = taq
a where qa ∈ H2(A,LA∨) . (2.21)

We then repeat the computations that were performed above with S. A complete cal-

culation of H1(X,L ) then results in a set of equations describing the vacuum space in

(si,ta,cα) space. In other words, we obtain an ideal for the vacuum space, I ⊂ C[si, ta, cα].

As before, this can be decomposed as I = ∩AIA. An elimination can then be performed to

obtain the IA = IA ∩ C[cα].
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The final generalization we need to make is to extend our analysis to the case where the

co-dimension of the Calabi-Yau three-fold, K, is greater than one. This is straightforward,

if laborious. Start with the sequence (2.11) defining K. Inserting appropriate cokernels

and kernels, it is possible to break this sequence into a series of short exact sequences.

This having been achieved, one can write down the long exact sequences in cohomology

associated to each of these short exact sequences. Finally, it is necessary to perform

the types of cokernel and kernel computations described in this subsection to obtain an

expression for H∗(A,K). This can then be used as the source spaces in (2.13) to perform

the remainder of the computation.

2.2 An example: a multi-branch vacuum space and its properties

To make the discussion in the proceeding subsection more concrete, let us give an explicit

example. In addition to analyzing the structure of the vacuum space, we will encounter a

natural set of questions about these heterotic geometries which will then be addressed in

the following section.

We start by presenting the Calabi-Yau three-fold. First consider the tetra-quadric

hypersurface in a product of four P1’s,

X̃ =


P1 2

P1 2

P1 2

P1 2


4,68

−124

. (2.22)

In terms of moduli, h1,1(X̃) = 4 and h2,1(X̃) = 68. Let (xi,0 : xi,1) denote the homogeneous

coordinates of the i’th P1. The three-fold X̃ admits a freely acting Z2 × Z4 symmetry, Γ,

with generators γ1 and γ2 acting on the ambient space coordinates as

γ1 : xi,a → (−1)a+i+1xi,a (2.23)

γ2 : xi,a → xσ(i),a+i+1 where σ = (12)(34) .

Here, we have employed the standard cycle notation in describing the permutations σ.

One can, therefore, define a smooth Calabi-Yau three-fold X = X̃/Γ. It is this three-fold

we will work on. The manifold X is favorable. By this, we mean that the restriction of

the Kähler forms of the complex projective space factors of the ambient space, A, to the

Calabi-Yau three-fold furnish a basis of harmonic (1, 1) forms. Indeed, the manifold X has

h1,1(X) = 4, and h1,2(X) = 10.

Over X, consider the extension bundle

0→ OX(−2,−2, 1, 1)→ V → OX(2, 2,−1,−1)→ 0 . (2.24)

This is of the form (2.8), with the bundle relevant to the associated Ext group being

L = OX(−4,−4, 2, 2). The Calabi-Yau three-fold X is co-dimension one and, in addition,

H1(A,OA(−4,−4, 2, 2)) = 0 . (2.25)
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Therefore, this is precisely one of the simplified cases considered in the previous subsection.

Note that the ambient space line bundle OA(2, 2,−1,−1) is equivariant under Γ and,

thus, it and its dual descend to X intact. Hence, the extension sequence (2.24) is well-

defined on X.

The normal bundle of X is N = OA(2, 2, 2, 2). Looking at (2.16) and the method

outlined in the previous subsection, we see that we must first write down a general element

of H2(A,N∨⊗LA) = H2(A,OA(−6,−6, 0, 0)) as in (2.17). In this case, using Bott-Borel-

Weil and remembering that the ambient space for X is (P1 × P1 × P1 × P1)/Γ, we have

S = s1

(
1

x2
1,0x

2
1,1x

2
2,0x

2
2,1

)
+ s3

(
1

x4
1,0x

2
2,0x

2
2,1

+
1

x4
1,1x

2
2,0x

2
2,1

+
1

x2
1,0x

2
1,1x

4
2,0

+
1

x2
1,0x

2
1,1x

4
2,1

)

+s2

(
1

x3
1,0x1,1x3

2,0x2,1
+

1

x1,0x3
1,1x

3
2,0x2,1

+
1

x3
1,0x1,1x2,0x3

2,1

+
1

x1,0x3
1,1x2,0x2,1

)
(2.26)

+s4

(
1

x4
1,0x

4
2,0

+
1

x4
1,1x

4
2,0

+
1

x4
1,0x

4
2,1

+
1

x4
1,1x

4
2,1

)
.

The defining relation for X is the most general degree [2, 2, 2, 2] polynomial consistent

with the symmetry Γ in (2.23). This is the polynomial P in (2.18) for this case, and is

explicitly given by the following.

P = c1x1,0x1,1x2,0x2,1x3,0x3,1x4,0x4,1+c9

(
x2

1,0x3,0x3,1x4,0x4,1x
2
2,0+x2

1,1x3,0x3,1x4,0x4,1x
2
2,0

+x2
1,0x

2
2,1x3,0x3,1x4,0x4,1 + x2

1,1x
2
2,1x3,0x3,1x4,0x4,1

)
+ c3

(
x2

1,1x2,0x2,1x4,0x4,1x
2
3,0

+x1,0x1,1x
2
2,1x3,1x

2
4,0x3,0 + x1,0x1,1x

2
2,0x3,1x

2
4,1x3,0 + x2

1,0x2,0x2,1x
2
3,1x4,0x4,1

)
+

c4

(
x1,0x1,1x

2
2,0x4,0x4,1x

2
3,0 + x2

1,1x2,0x2,1x3,1x
2
4,0x3,0 + x2

1,0x2,0x2,1x3,1x
2
4,1x3,0

+x1,0x1,1x
2
2,1x

2
3,1x4,0x4,1

)
+ c5

(
x1,0x1,1x

2
2,1x4,0x4,1x

2
3,0 + x2

1,0x2,0x2,1x3,1x
2
4,0x3,0

+x2
1,1x2,0x2,1x3,1x

2
4,1x3,0 + x1,0x1,1x

2
2,0x

2
3,1x4,0x4,1

)
+ c6

(
x2

1,0x2,0x2,1x4,0x4,1x
2
3,0

+x1,0x1,1x
2
2,0x3,1x

2
4,0x3,0 + x1,0x1,1x

2
2,1x3,1x

2
4,1x3,0 + x2

1,1x2,0x2,1x
2
3,1x4,0x4,1

)
+

c7

(
x2

1,1x
2
2,1x

2
3,0x

2
4,0 + x2

1,0x
2
2,1x

2
3,1x

2
4,0 + x2

1,1x
2
2,0x

2
3,0x

2
4,1 + x2

1,0x
2
2,0x

2
3,1x

2
4,1

)
+

c8

(
x2

1,0x
2
2,1x

2
3,0x

2
4,0 + x2

1,0x
2
2,0x

2
3,1x

2
4,0 + x2

1,1x
2
2,1x

2
3,0x

2
4,1 + x2

1,1x
2
2,0x

2
3,1x

2
4,1

)
+

c2

(
x1,0x1,1x2,0x2,1x

2
3,0x

2
4,0 + x1,0x1,1x2,0x2,1x

2
3,1x

2
4,0 + x1,0x1,1x2,0x2,1x

2
3,0x

2
4,1

+x1,0x1,1x2,0x2,1x
2
3,1x

2
4,1

)
+ c10

(
x2

1,1x
2
2,0x

2
3,0x

2
4,0 + x2

1,1x
2
2,1x

2
3,1x

2
4,0 + x2

1,0x
2
2,0x

2
3,0x

2
4,1

+x2
1,0x

2
2,1x

2
3,1x

2
4,1

)
+ c11

(
x2

1,0x
2
2,0x

2
3,0x

2
4,0 + x2

1,1x
2
2,0x

2
3,1x

2
4,0 + x2

1,0x
2
2,1x

2
3,0x

2
4,1

+x2
1,1x

2
2,1x

2
3,1x

2
4,1

)
(2.27)

Note that, while X has only ten complex structure moduli, there are eleven independent

coefficients in (2.27). This is because the cα’s are a redundant description of the complex

structure. In this case, the only redundancy is that a simultaneous rescaling of all the

coefficients in (2.27) does not change the locus P = 0 in (P1×P1×P1×P1)/Γ. Therefore,

it does not correspond to a complex structure modulus of X.

To construct a general element of H1(X,L ) we compute, following the procedure

outlined in the previous subsection, the kernel ker
(
H2(A,N∨ ⊗LA)→ H2(A,LA)

)
. We
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multiply (2.26) and (2.27) together and take the coefficients in the result of a basis of

the target cohomology. The target, H2(A,LA), is represented by taking combinations of

polynomials of degree [−2,−2, 2, 2] which are invariant under the symmetry action Γ. This

is described in detail in appendix B.3.1. Since both the source element and the defining

relation P respect the symmetry Γ, their product does as well. As such there is no need

to carefully construct a basis for H2(A,LA). One can simply take the coefficients of

monomials of the correct degree in the product and set these to zero to get the conditions

on the si’s such that S is in the kernel of the map. Our procedure then leads to the

following equations, the equivalent of (2.19) for this case.

36s2c2 + 16s1c7 + 96s3c8 + 96s3c10 + 576s4c11 = 0

36s2c2 + 96s3c7 + 16s1c8 + 576s4c10 + 96s3c11 = 0

36s2c1 + 16s1c9 + 22s3c9 + 576s4c9 = 0

36s2c2 + 96s3c7 + 576s4c8 + 16s1c10 + 96s3c11 = 0

36s2c2 + 576s4c7 + 96s3c8 + 96s3c10 + 16s1c11 = 0

16s1c3 + 36s2c4 + 36s2c5 + 96s3c6 = 0 (2.28)

36s2c3 + 16s1c4 + 96s3c5 + 36s2c6 = 0

36s2c3 + 96s3c4 + 16s1c5 + 36s2c6 = 0

96s3c3 + 36s2c4 + 36s2c5 + 16s1c6 = 0

16s1c2 + 36s2c7 + 36s2c8 + 36s2c10 + 36s2c11 = 0

16s1c1 + 144s2c9 = 0

The equation system in (2.28) describes the complete, reducible, vacuum space structure

in combined complex structure/bundle moduli space induced by the presence of the bun-

dle (2.24). We want to further analyze this set of equations to a) see which loci in complex

structure moduli space the bundle V can stabilize us to and b) what properties the Calabi-

Yau three-fold exhibits on these loci.

Our first task is to perform a full primary decomposition (more accurately, we need

only compute the minimal associated primes) of the ideal generated by (2.28). This will

give us a number of sets of equations, with each system describing one irreducible com-

ponent of the vacuum space. Such a primary decomposition can be performed, using the

algorithm of Gianni, Trager and Zacharias [44] as implemented in the computer algebra

system Singular [45]. We also make use of the Mathematica interface Stringvacua for this

calculation [46–48]. Primary decomposing the ideal generated by (2.28), we find 25 non-

trivial branches to the vacuum space. The trivial branches are given by si = 0, ∀i and

cα = 0, ∀α respectively. Clearly, the second of these is not physically relevant. To find

the loci in complex structure moduli space that one is restricted to by the 25 interesting

branches to the vacuum space, we perform a Gröbner basis elimination on each one in turn,

as described in the previous subsection. The results are presented in table 1.

The first thing to note about the result in table 1 is that, even in the case of this

relatively simple bundle, there are many different loci to which one may be stabilized. It

is reasonable to expect the structure to be even richer in more complicated examples. A
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Equations Dimension Sing. Dim.

c3 − c4 − c5 + c6 =c2 − c7 − c8 − c10 − c11 =c1 − 4c9 =0 7 0

c3 + c4 + c5 + c6 =c2 + c7 + c8 + c10 + c11 =c1 + 4c9 =0 7 0

c9 =c2 =c1 =c7 + c8 + c10 + c11 =c4 + c5 =c3 + c6 =0 4 0

c7 − c8 − c10 + c11 =c4 − c5 =c3 − c6 =c2 =c1 =0 5 0

c7 − c8 − c10 + c11 =c6 =c5 =c4 =c3 =c1c8 − 2c2c9 + c1c10 =0 4 0

c11 =c10 =c9 =c8 =c7 =0 5 0

c9 =c6 =c5 =c4 =c3 =c2 =c1 =c8 + c10 =c7 + c11 =0 1 0

c9 =c2 =c1 =c8 + c10 =c7 + c11 =c5 + c6 =c4 + c6 =c3 − c6 =0 2 0

c9 =c2 =c1 =c8 + c10 =c7 + c11 =c5 − c6 =c4 − c6 =c3 − c6 =0 2 0

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c3 − c4 − c5 + c6 =0 2 0

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c3 + c4 + c5 + c6 =0 2 0

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c4 + c5 =c3 + c6 =0 1 0

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c4 − c5 =c3 − c6 =0 1 0

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c5+c6 =c4 + c6 =c3 − c6 =0 0 2

c11 =c10 =c9 =c8 =c7 =c2 =c1 =c5 − c6 =c4−c6 =c3 − c6 =0 0 2

c10−c11 =c8−c11 =c7 − c11 =c6 =c5 =c4 =c3 =0 3 0

c10−c11 =c8−c11 =c7−c11 =c6 =c5 =c4 =c3 =c2c9−c1c11 =0 2 2

c10 − c11 =c8−c11 =c7−c11 =c4 + c5 =c3 + c6 =c2c9−c1c11 =0 4 −1

c10 − c11 =c8 − c11 =c7 − c11 =c5 + c6 =c4 + c6 =c3 − c6 =c2c9 − c1c11 =0 3 1

c10 − c11 =c8 − c11 =c7 − c11 =c5 − c6 =c4 − c6 =c3 − c6 =c2c9 − c1c11 =0 3 1

c8 − c10 =c7 − c11 =c6 =c5 =c4 =c3 =c2c9 + 50c1c10 + 50c1c11 =0 3 0

c10 + c11 =c9 =c6 =c5 =c4 =c3 =c2 =c1 =c8 + c11 =c7 − c11 =0 0 2

c10 + c11 =c9 =c2 =c1 =c8 + c11 =c7 − c11 =c4 − c5 =c3 − c6 =0 2 0

c10 + c11 =c9 =c2 =c1 =c8 + c11 =c7 − c11 =c5 + c6 =c4 + c6 =c3 − c6 =0 1 2

c10 + c11 =c9 =c2 =c1 =c8 + c11 =c7 − c11 =c5 − c6 =c4 − c6 =c3 − c6 =0 1 2

Table 1. The loci in complex structure moduli space to which the Calabi-Yau three-fold X̃/Γ can

be stabilized by the bundle V in equation (2.24). The “Dimension” column refers to the complex

dimension of the given locus. The “Sing. Dim.” column gives the dimension of the singularities in

the Calabi-Yau three-fold associated with a generic complex structure in the locus.

second important point to make is that, even though some of the loci presented lie inside

others in complex structure moduli space, it is still possible to be stabilized to the smaller

loci. This is because the extension classes corresponding to these embedded solutions can

be different, and the bundle can not undergo a discrete jump in its defining morphisms as

it attempts to adjust with complex structure to remain holomorphic.

In addition to the dimension of each locus in complex structure moduli space, table 1

also has an entry labelled ”Sing. Dim.”, denoting “singular dimension”. In restricting

the complex structure to lie on a given sub-manifold of moduli space, we specialize the

associated Calabi-Yau three-fold. It must be checked whether or not the resulting Calabi-

Yau manifold is singular. This can be achieved by forming a “nodal ideal” on each patch
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of an open cover of the ambient space A. This, by definition, is an ideal generated by the

defining relations of the three-fold and the K by K minors of the matrix,

Hj
m =

∂P j

∂ym
. (2.29)

Here the P j , where j = 1 . . .K, are the defining relations of the Calabi-Yau three-fold and

the ym, where m = 1 . . .K+3, are the affine coordinates on the coordinate patch of A which

is being considered. The dimension of this ideal, computed using the same techniques as

described in the previous subsection, is the dimension of the singular locus of the Calabi-

Yau manifold inside the patch of A which is being considered, and in particular a dimension

of −1 indicates that the three-fold is smooth on this open set. Performing this computation

for each patch in an open cover of A then maps out the singularity structure of the Calabi-

Yau three-fold in detail. Note that it is much more computationally expedient to perform

this computation in the patch by patch manner described here than to use the equivalent

global formulation that is sometimes employed and which involves just a single dimension

computation. This is due to the smaller number of variables involved in the calculation

described here providing a large increase in speed given the scaling properties of Gröbner

basis computations.

Applying this analysis to the case at hand where K = 1, we find that either the Calabi-

Yau associated with a generic complex structure in a locus is singularity-free, or it has a

singularity of some dimension.4 Naturally, if we go to special, non-generic points, in the

complex structure locus, the Calabi-Yau three-fold will exhibit worse singular behaviour.

The set of points where this occurs is measure zero within the locus. The final column

in figure 1 gives the minimal dimension of the singular points of a Calabi-Yau three-fold

whose complex structure is restricted to each locus.5 Only one of the non-trivial, complex

structure moduli stabilizing loci in figure 1 corresponds to a smooth Calabi-Yau manifold.

This case has the “Sing. Dim.” entry denoted by −1. All of the other loci, however,

force the Calabi-Yau to become singular. One might imagine that these singular manifolds

are physically uninteresting and, hence, can be ignored. However, as we show in detail in

the following section, when these singular manifolds can be smoothed out to a singularity

free Calabi-Yau three-fold via a “splitting transition”, it is possible to take our moduli

stabilization mechanism through this blowing up process in a consistent manner. Hence,

the singular loci in table 1 serve as a “platform” for deriving singularity free examples.

Clearly, we want to investigate this structure in more detail. This will be the subject of

the next section.

We have achieved the goal we set for ourselves at the start of this section. We have

mapped out exactly where in complex structure moduli space the vacuum can be stabilized

4For any given choice of complex structure there may be singularities of different dimensionalities at

various locations on the Calabi-Yau three-fold. We take the dimension of the singularity of the Calabi-Yau

manifold for such a complex structure to be that of the largest singular locus on the three-fold.
5Note that this is the dimension of sinuglarity induced on the three-fold for generic values of the complex

structure on the given locus. For more special points on the complex structure locus, the singularity

dimension on the associated Calabi-Yau three-fold may or may not increase.
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by a large class of vector bundles over Calabi-Yau three-folds. There are many ways in

which even more interesting structure can be induced on the complex structure moduli

space. For example, having a direct sum of vector bundles in a compactification leads to

an intersection of their respective loci as the allowed vacua in complex structure moduli

space. At this stage, however, we will content ourselves with the example presented in this

section, and will move on to discuss the singularities that can occur in stabilizing complex

structure moduli in this manner.

3 Splitting transitions and resolving singular points

3.1 Resolving singularities in the Calabi-Yau threefold

The previous section makes it clear that the locus in complex structure moduli space to

which a holomorphic bundle can restrict a heterotic system can, in some cases, correspond

to singular Calabi-Yau three-folds. It is therefore of interest to understand the appearance

of these singularities and to decide if they can be resolved.

In general, the question of whether or not singular loci on an arbitrary Calabi-Yau

three-fold can be resolved, how to describe this resolved geometry and how the resolution

process effects the vector bundle V is a difficult one. In some cases, for example, Calabi-Yau

three-folds defined as hypersurfaces in toric varieties [49], the resolution of singularities can

be dealt with more or less systematically. For the data set of CICY three-folds in products of

projective spaces [50] considered in this paper, however, fewer tools are available. However,

the resolution of some point-like “conifold”-type singularities are well understood [51]. For

these “splitting transitions” to a new Calabi-Yau three-fold, X̂, where the singularites

have been resolved, it will be possible to make substantial progress. In particular, one

can straightforwardly identify line bundles on X̂ whose “jumping locus” is closely related

to that of the original line bundle on X. We begin by briefly reviewing the notion of a

“splitting transition” for a CICY three-fold. We then turn our attention to the question of

bundles and complex structure stabilization on the geometries related by these transition.

3.2 A rapid review of splitting transitions

Calabi-Yau three-folds defined as complete intersection hypersurfaces in products of projec-

tive spaces are known to be simply related to one another via geometric transitions [51–53].

Indeed, all 7890 such manifolds [50] can be connected through these “splitting” (conifold)

type transitions. Let us briefly recall the basic setup (see [52, 58] for more detailed reviews).

Following the notation of section 2, consider the pair of CY three-folds given by

X1 = [P4| 5]1,101
−200 , X2 =

[
P1 1 1

P4 1 4

]2,86

−168

. (3.1)

The superscripts on the configuration matrices represent the Hodge numbers (h1,1, h2,1)

and the subscript denotes the Euler number. Let the homogeneous coordinates of P4 be

y0, . . . y4, and those of P1 be x0, x1. Then the defining equations of X2 can be written,

– 16 –



J
H
E
P
0
7
(
2
0
1
3
)
0
1
7

without loss of generality, as

x0l1(y) + x1l2(y) = 0 (3.2)

x0q1(y) + x1q2(y) = 0

where l1,2 and q1,2 are linear and quartic polynomials respectively in the homogeneous

coordinates of P4. It is clear that (3.2) can be rewritten as a matrix equation(
l1 l2
q1 q2

)(
x0

x1

)
= 0 . (3.3)

This has a solution if and only if

det

(
l1 l2
q1 q2

)
= l1q2 − l2q1 = 0 . (3.4)

But l1q2−l2q1 is nothing less than a quintic polynomial in P4, exactly the type of polynomial

equation defining the quintic three-foldX1. However, X1 andX2 are not the same manifold,

precisely because the locus defined by l1q2− l2q1 = 0 is a singular quintic three-fold.6 The

manifolds X1 and X2 are topologically distinct Calabi-Yau three-folds that share a singular

locus in their complex structure moduli spaces. Phrased differently, by tuning the complex

structure of X1 (that is, shrinking a set of three-cycles, S3, to zero), we arrive at the singular

three-fold in (3.4). This singular geometry can be deformed back to X1 or resolved (by

introducing P1’s at each of the nodes) to give the smooth three-fold X2.

This type of geometric transition relates all of the CICY three-folds to one another.

Indeed, it has been speculated [57] that the totality of Calabi-Yau three-folds may be

connected by such transitions. For the data set of Calabi-Yau three-folds discussed here,

it is important to note that the singular points in moduli space connecting two manifolds

may not be just “conifold” type singularities of the form f1f2 − f3f4 = 0, as in the case

above. Rather, they can be more general “split” defining equations which correspond to

the vanishing loci of larger n × n matrices M of polynomials; that is, where det(M) = 0.

These correspond to introducing a new Pn into the configuration matrix instead of the

P1 in the example above. For instance, another “split” of the configuration matrix of the

quintic X1 is given by

X3 =

[
P2 1 1 1

P4 1 2 2

]2,58

−112

. (3.5)

In this case, the defining equations can be written as f1
1 f1

2 f1
3

f2
1 f2

2 f2
3

f3
1 f3

2 f3
3


 x0

x1

x2

 = 0 , (3.6)

6More precisely, as explained in [51], the quintic three-fold defined by l1q2 − l2q1 = 0 is singular at

sixteen points. These sixteen points can be blown-up by introducing P1’s at each of the sixteen nodes. This

blowing-up is captured in the configuration matrix by the new P1 direction in X2. Thus, X2 resolves the

singularities of the quintic three-fold in (3.4) and the inclusion of the 16 P1’s explains the change in Euler

number: χ(X2) = χ(X1) + 16χ(P1).
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where xi, i = 0, 1, 2 are the homogeneous coordinates of P2 and f1
j are general linear

functions on P4 while f2
j and f3

j are quadratic. The singular locus in complex structure

moduli space connecting X1 and X3 is defined by the vanishing of the determinant of the

3× 3 matrix in (3.6),

det(fkj ) = 0 . (3.7)

The “splitting” process seen in these examples is, in general, not unique. Given a starting

CICY, there is a large family of new manifolds that can be constructed in such ways.

To discuss such geometric transitions more generally for the dataset of three-folds at

hand, we can define a “splitting transition” as follows

X = [A | c C] −→ X̂ =

[
Pn 1 1 . . . 1 0

A c1 c2 . . . cn+1 C

]
, c =

n+1∑
α=1

cα . (3.8)

We begin with an initial CICY three-fold, X, defined above by a starting configuration

matrix of the form [A | c C] where A = Pn1 × . . .Pnm and c and C form an m×K matrix

of polynomial degrees for the K equations defining the complete intersection hypersurface.

The first column of this matrix, c, has been explicitly separated from the remainder of

the columns, denoted by C, to facilitate the rest of our discussion. Since X is a three-fold,∑m
r=1 nr−K = 3. We can split X by introducing the new configuration matrix X̂ where the

vector c has been partitioned as the sum of n+ 1 column vectors ci (of dimension m) with

nonnegative components, as indicated. Since X̂ is still a three-fold, the new configuration

matrix is (m+ 1)× (K+n) dimensional. While the process of going from X to X̂ is called

“splitting”, the reverse process, in which X̂ → X, is called a “contraction” [52]. In the

simple example given in equation (3.1) for example, C is an empty matrix, c = 5, c1 = 1

and c2 = 4.

In some cases, a splitting transition of the form (3.8) will not produce a new Calabi-

Yau three-fold, but rather a new description of the same manifold. To see when this is

the case we must define the determinental variety for a general splitting of this type. This

definition is taken in direct analogy to (3.7) and (3.4). That is, we write the subset of the

defining relations of X̂ corresponding to the first n + 1 columns on the right hand side

of (3.8) as follows. 
f1

1 f1
2 . . . f1

n+1

f2
1 f2

2 . . . f2
n+1

...
...

. . .
...

fn+1
1 fn+1

2 . . . fn+1
n+1



x0

x1

...

xn

 = 0 , (3.9)

Here fαk is of degree cα for all k. The determinental variety is then a special choice of the

defining relations for X where the polynomial of degree c is taken to be det(fαk ) and the

remaining polynomials, whose degrees are determined by C, are taken to be arbitrary. We

denote the locus in the complex structure moduli space of X where the defining relations

take on this determinental form as follows.

M(Idet
X̂

) = {Subset of complex structure moduli space of X such that the first

defining equation takes the specialized form : det(fαk ) = 0} ⊂MCS
X . (3.10)
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If, for all choices of complex structure in M(Idet
X̂

), the corresponding three-folds are

singular then the splitting transition produces, from X, a topologically distinct three-fold

X̂. In this case, the “splitting” of X into X̂ is called “effective”. If the determinental variety

is smooth for any choice of complex structure inM(Idet
X̂

), then X and X̂ are diffeomorphic

and the splitting is said to be “ineffective” [52]. One simple way to determine whether the

splitting is effective is by considering the Euler number. As in the quintic example above,

in moving from X to X̂ the Euler number changes [51] by

χ(X̂) = χ(X) + 2(# of nodes) . (3.11)

Thus, the two manifolds are distinct if and only if the Euler number changes in a splitting

transition. In this case, h1,1(X̂) > h1,1(X), while h2,1(X̂) < h2,1(X).

With these observations, we are ready to use the splitting relationships between the

CICY three-folds as a tool to resolve some of the singularities arising from complex structure

stabilization in the previous sections. Before we begin, however it is important to give

a word of warning on the necessary limitations we will face in comparing Calabi-Yau

three-folds related by such transitions. Unlike in Type II string theories [59], dynamical

conifold transitions between Calabi-Yau three-folds in heterotic theories are not presently

understood in the effective theory. As a result, for all physical vacua, we will stay far away

from these singular points in moduli space. The geometric relationships between three-folds

will only be used to gain insight into new smooth geometries and to compare independent

calculations of complex structure stabilization on both sides of a splitting transition. As a

first step towards this goal, we now turn to how divisors, line bundles and their cohomology

change under geometric transitions.

3.3 Divisors, line bundles, and cohomology in splitting transitions

We shall begin this section with the observation that the dimension of the Picard Group

increases in a splitting transition as X → X̂. This is to be expected from the fact that,

in a conifold-type transition, the Euler number is changing by a positive quantity (that is,

2(# of nodes)) and that three-cycles in X are “exchanged” for two-cycles in X̂. Moreover,

recall that in this paper we consider only “favorable” divisors and their associated line

bundles L. As defined in section 2, these are the restriction of divisors on the ambient

space A = Pn1 × . . .Pnm . An inspection of the structure of the Picard groups reveals that

favorable divisors on X are “carried through” the splitting transition and lead to favorable

divisors7 in X̂.

Recall that we take Jr, r = 1, . . .m = h1,1(X) to be a basis of harmonic {1, 1} forms

on X and let us label the associated ample divisors by Dr ⊂ X. As was discussed in

the previous section, via the line bundle/divisor correspondence, a line bundle on X can

be uniquely determined by its first Chern class where L = OX(a1D1 + . . . + amDm) =

OX(a1, . . . , am) = OX(ar) has c1(L) = arJr. The divisors Dr are “carried through”

the splitting transition and can be thought of as also belonging to the Picard Group of

7Note, however, that since h1,1(X̂) > h1,1(X), generically the “new” divisors in X̂, that is, those not

carried through the transition, will not be favorable with respect to the CICY description of X̂.
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the “blown-up” geometry X̂. In addition, since h1,1 increases, there exists a set of p =

h1,1(X̂) − h1,1(X) additional new divisors, Dα, where α = 1̂, 2̂, 3̂, . . ., associated to the

resolution of the singularities in the determinantal variety (3.10).

With these definitions in mind, one can now consider how the Chern classes, inter-

section numbers and line bundle cohomology groups are related as we move from X to a

splitting X̂. Recall that the triple intersection numbers, drst on X are defined by

drst =

∫
X
Jr ∧ Js ∧ Jt . (3.12)

One useful identity on the triple intersection numbers (see appendix A) is

dXrst = dX̂rst for r, s, t = 1, . . . h1,1(X) . (3.13)

That is, the intersection numbers of the “spectator divisors” that are carried through a

splitting stay the same across the transition. The remaining triple intersection numbers,

dαrs, dααr, and dαβγ , must be worked out on a case-by-case basis.

Considering a general Pn splitting as in (3.8). Using the notation for line bundles

above, one can denote a generic line bundle L̂ on X̂ as L̂ = OX̂(b1, . . . , bp, a1, . . . am)

where p = h1,1(X̂) − h1,1(X) = h1,1(X̂) − m. For the purposes of this paper, we will

be interested in comparing the properties of line bundles that are “carried through” the

splitting transition;8 that is, pairs of line bundles L and L̂ on X and X̂, respectively, of

the form

L = OX(a1, . . . , am) L̂ = OX̂(0, . . . 0, a1, . . . , am) . (3.14)

A useful collection of facts regarding such pairs (L, L̂) can now be compiled. With L, L̂ de-

fined as in (3.14), and the triple intersection numbers satisfying (3.13), it is straightforward

to verify that the total Chern character and index of L and L̂ satisfy

ChX(L) = ChX̂(L̂) (3.15)

IndX(L) = IndX̂(L̂) . (3.16)

The above equality implies that the coefficients of ChX̂(L̂) are identical to those of ChX(L)

when expanded in the basis of “spectator divisors” Jr. Further results (including a useful

formula for the relationship between the second Chern class of X and X̂) can be found

in appendix A.

3.3.1 Line bundle cohomology in splitting transitions

One can, in fact, do better than an index calculation. For the pair of line bundles (L, L̂),

it is possible to compute the exact relation between H1(X,L) and H1(X̂, L̂). We state the

result in the form of a simple Lemma.

Lemma 1. Suppose that X and X̂ are two Calabi-Yau three-folds realized as complete in-

tersections in products of projective spaces and related by a “splitting transition” of the type

8Note that a similar notion of “carrying” simple bundles through a conifold transition was explored in

the mathematics literature in [56].
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described in (3.8). Let L = OX(a1, . . . , am) be a “favorable” line bundle on X — that is,

a line bundle corresponding to a divisor D ⊂ X such that D = DA|X is the restriction of

a divisor DA in the ambient space. Then the calculation (and dimension) of the cohomol-

ogy of L̂ = OX̂(0 . . . , 0, a1, . . . , am) is identical to that of L on the “determinantal locus”

(defined by (3.8) and (3.10)) shared by the complex structure moduli space of X and X̂.

The proof of this Lemma is provided in appendix C. Here, we will begin with an illustrative

example. Consider the following pair of Calabi-Yau three-folds

X =

[
P2 3

P2 3

]2,83

−162

, X̂ =

P1 1 1

P2 1 2

P2 2 1


3,51

−96

. (3.17)

As described in the previous section, these two manifolds share a special (singular) locus

in their complex structure moduli spaces. To see this, note that, without loss of generality,

the defining equations for X̂ can be written as

z0f
1
1 + z1f

1
2 = 0 (3.18)

z0f
2
1 + z1f

2
2 = 0

where (z0, z1) are homogeneous coordinates on P1, {f1
1 , f

1
2 } are generic polynomials of

multi-degree (1, 2) in the coordinates of P2 × P2 and, similarly, {f2
1 , f

2
2 } are generic poly-

nomials of degree (2, 1). As above, (3.18) can be written(
f1

1 f1
2

f2
1 f2

2

)(
z0

z1

)
= 0 . (3.19)

This has a solution if and only if the determinant of the matrix vanishes, giving rise to the

special bi-cubic (that is, degree (3, 3)) hypersurface in P2 × P2 defined by

f1
1 f

2
2 − f1

2 f
2
1 = 0 . (3.20)

As expected from the change in Euler number, the complex structure moduli in this “de-

terminantal variety” give rise to Calabi-Yau three-folds that are singular at 33 points and

link the complex structure moduli space of X and X̂.

Now, having discussed the base geometries, let us consider the favorable line bundle

L = OX(−3, 3) (3.21)

defined on X. As outlined in section 2, we can describe the cohomology H∗(X,L) via a

Koszul sequence (see appendix B for a review). Using the fact that

N∨ = OA(−3,−3) , (3.22)

this takes the form

0→ OA(−3,−3)⊗ LA → LA → L → 0 (3.23)
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where A = P2 × P2 and LA = OA(−3, 3). Taking the long exact sequence in cohomology

associated to (3.23), we find that H0(X,L) = H3(X,L) = 0 and

H1(X,L) = ker(φ) (3.24)

H2(X,L) = coker(φ) (3.25)

where

φ : H2(A,OA(−6, 0))→ H2(A,OA(−3, 3)) . (3.26)

Here we have used the formalism of Bott-Borel-Weil (see appendix B) to establish the

vanishings we have stated. We can employ the same formalism to obtain explicit polynomial

representatives of elements of source, target and map in (3.26) as

H2(A,OA(−6, 0)) : c(abc)
1

xaxbxc
(3.27)

H2(A,OA(−3, 3)) : g(αβγ)yαyβyγ

φ ∈ H0(A, O(3, 3)) : φ = P(3,3)

where P(3,3) = 0 is the explicit defining polynomial of the Calabi-Yau hypersurface. The

index a = 0, 1, 2 runs over the homogeneous coordinates, xa, of the first ambient P2 factor

and, similarly, α = 0, 1, 2 for the coordinates, yα, of the second P2. The calculation to

determine the rank of φ can be performed at any point in the complex structure moduli

space of X; that is, for any defining polynomial P(3,3). Let us now consider the same

calculation for H1(X̂, L̂).

For X̂, the Koszul sequence (2.9) takes the form

0→ OÂ(−2,−3,−3)⊗ LÂ → (OÂ(−1,−1, 2)⊕OÂ(−1,−2,−1))⊗ LÂ → K → 0 (3.28)

0→ K → LÂ → L̂ → 0 (3.29)

where now, Â = P1 × P2 × P2, and the cokernel K has been introduced to split the Koszul

sequence into two short exact pieces. Taking the long exact sequences in cohomology

associated to (3.28) and (3.29) we get

H1(X̂, L̂) = ker(φ̂) (3.30)

H2(X̂, L̂) = coker(φ̂) (3.31)

φ̂ : H2(Â,K)→ H2(Â,OÂ(0,−3, 3)) (3.32)

H2(Â,K) ' H3(Â,OÂ(−2,−6, 0)) (3.33)

The question now arises, how are ker(φ) and ker(φ̂) related? Does the “jumping” of the L-

valued cohomology on X and the resulting constraints on complex structure tell us anything

about the jumping of L̂ and the complex structure of X̂? To answer these questions, the

first obstacle one encounters is how to explicitly define the map φ̂. To do this, we turn

first to the explicit tensor descriptions of the relevant ambient cohomology groups before

looking in detail at the polynomial description. According to Bott-Borel-Weil, one has

φ̂ : H2(Â,K)→ H2(Â,OÂ(0,−3, 3)) (3.34)

φ̂ : ε[AB]c(abc) → g(αβγ) (3.35)
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where A,B = 0, 1 count the homogeneous coordinates, zA, of the P1 factor appearing in

Â and ε[AB] is the two-index fully antisymmetric tensor. Now, as shown in appendix B, in

this case the map φ̂ takes the form

f
Aa(αβ)
1 f

B(bc)γ
2 (3.36)

where (f1, f2) are the two defining polynomials given in (3.18) of multi-degree degree

(1, 1, 2) and (1, 2, 1) respectively. At first sight, one might worry that the antisymmetric

tensor appearing in (3.35) might take us outside the realm of simple polynomial descrip-

tions of the cohomology map. Fortunately, however, this is not the case. Simply writing

out the tensorial expression

c(abc)(ε[AB]f
Aa(αβ)
1 f

B(bc)γ
2 ) = g(αβγ) , (3.37)

it is clear that one can, in fact, still view this as a map between polynomial spaces. Specifi-

cally, it is a map from the space of symmetrized “down index” tensors/inverse-polynomials

c(abc) equivalently c(abc)
1

xaxbxc
(3.38)

to symmetrized “up index” tensors/ordinary polynomials

g(αβγ) equivalently g(αβγ)yαyβyγ , (3.39)

where we have included the antisymmetric tensor in the definition of the map. The map

in question, that is, ε[AB]f
Aa(αβ)
1 f

B(bc)γ
2 , is a very special polynomial indeed. Writing out

the contraction with the ε[AB] tensor above, we see that the polynomial map is

f
1a(αβ)
1 f

2(bc)γ
2 − f2a(αβ)

1 f
1(bc)γ
2 = 0 . (3.40)

But this is precisely the special bi-cubic hypersurface appearing in the determinantal variety

in (3.20)! That is, for the calculation of both H1(X,L) and H1(X̂, L̂) one must compute

the kernel of a map from

φ or φ̂ : c(abc)
1

xaxbxc
→ g(αβγ)yαyβyγ . (3.41)

For H1(X,L), the map in question, φ, is the defining degree (3, 3) polynomial of the Calabi-

Yau hypersurface X itself. “Carrying” the line bundle L through the splitting transition,

we find that H1(X̂, L̂) is determined by the exact same calculation. However, in this case,

the map φ̂ is simply the defining polynomial of the determinantal variety, the factorized

(3, 3) polynomial of (3.20) and (3.40). As we will see in the following section, this simple

fact will allow us to use our scans/results about holomorphic bundles on X to determine

non-trivial information about how holomorphic bundles on a new manifold X̂ will restrict

its complex structure moduli.
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3.4 An algorithm for determining smooth stabilized loci in complex structure

moduli space

Given these results, we are now in a position to return to the questions raised in section 2.

Suppose that in using a gauge bundle to fix complex structure moduli, as described in

section 2, we find that one of the resulting stabilized loci in complex structure moduli space

generically gives rise to a singular Calabi-Yau three-fold. We can now use the techniques of

the previous section to try to resolve these singularities via a splitting-type transition. But

what does the “jumping” of one line bundle cohomology on X tell us about the jumping

of a line bundle cohomology on a “split” of the starting CICY? Roughly, the idea is as

follows. Begin with a generically non-holomorphic vector bundle of the form

0→ L → V → L∨ → 0 , (3.42)

whose defining extension class Ext1(L∨,L) = H1(X,L ), where L = L⊗2, “jumps” in

dimension to non-zero values at the loci M(I) in the complex structure moduli space of

X. Can one induce a complex structure stabilizing bundle V̂ on the “split” manifold X̂? A

natural starting point is to choose the line bundles in question on X̂ to be of the “spectator”

form L̂ = OX̂(0, . . . , 0, a1, . . . , am). Now define the extension

0→ L̂ → V̂ → L̂∨ → 0 . (3.43)

with associated extension class Ext1(L̂∨,L) = H1(X, L̂ ), with L̂ = L̂⊗2. Then using

Lemma 1 from the previous section, we have at our disposal the following powerful result:

Lemma 2. Let (X,L ) and (X̂, L̂ ) be defined as in Lemma 1. The “jumping” locus

M jumping

X̂
(I) ⊂M cs

X̂
of the extension class Ext1

X̂
= H1(X̂, L̂ ) on X̂ is given by

Mjumping

X̂
(I) =M(Idet

X̂
) ∩Mjumping

X (I) , (3.44)

where Mjumping
X (I) ⊂M cs

X is the “jumping” locus of Ext1X = H1(X,L ) on X.

Thus, our approach for finding useful complex structure stabilizing bundles can be

outlined algorithmically as follows:

1. Choose a line bundle L on X, such that H1(X,L ) = 0 for generic values of the

complex structure of X.

2. Find all possible sub-lociM(Ii) in the complex structure moduli space of X for which

H1(X,L ) “jumps” to a non-zero value.

3. If all sub-loci lead to smooth Calabi-Yau manifolds, stop. If any sub-loci lead to gener-

ically singular three-folds X, consider all possible “splittings” X̂ of the form (3.8).

4. For each such split manifold X̂, consider the induced line bundle L̂ as defined

in (3.14).

5. Determine the “jumping” of L̂ on X̂ by evaluating the intersection in (3.44).
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6. For each X̂ which yields a non-trivial intersection in (3.44), check whether the loci

Mjumping

X̂
(IA) yield smooth Calabi-Yau three-folds. If all are smooth, stop.

7. For each singular Mjumping

X̂
(IB) locus on a split X̂, iterate the procedure with split-

tings of X̂ in turn.

It should be stressed again that we are not presenting here a complete solution to

the problem of singular, stabilized loci in complex structure moduli space raised in sec-

tion 2. Once we have chosen a pair (X,L ), and found the loci in complex structure moduli

space where L defines the extension class of a generically non-holomorphic bundle, we do

not in general know how to follow the bundle defined by extension through the resolu-

tion of singularities of the Calabi-Yau three-fold. Instead, in the algorithm outlined above

we provide a prescription for how to analyze a subset of these singular loci where the

holomorphic vector bundle can be clearly understood in the resolved geometry. Phrased

differently, given a starting bundle and a Calabi-Yau three-fold, the above results give us

a list of “nearby geometries” where we now also have non-trivial information about gener-

ically non-holomorphic (complex structure “stabilizing”) vector bundles, whose stabilized

loci M jumping(I) may give rise to smooth Calabi-Yau three-folds. One benefit of this pro-

cedure is that the results of the previous sections, at the very least, save us a great deal of

computational effort. Having found a “complex structure fixing” bundle V on X, we know

that such bundles exist on many other three-folds related to X by splitting transitions. The

stable loci in the new complex structure moduli spaces can be easily obtained as subspaces

of M jumping
X (I).

There are, however, several obstructions that can arise. First, although V on X defined

by the extension 0 → L → V → L∨ → 0 leads to the existence of an extension bundle V̂

on X̂ defined via 0 → L̂ → V̂ → L̂∨ → 0, the following non-trivial consistency conditions

on a heterotic vacuum must be checked.

3.4.1 Obstructions to “carrying a bundle through” a splitting transition

1. It is possible that for a particular split X̂ of X, M(Idet
X̂

) ∩ Mjumping
X (I) = ∅. In

this case, Ext1(L̂∨, L̂) = H1(X̂, L̂ ) = 0 everywhere in the complex structure moduli

space of X̂ and one cannot use the resulting V̂ to restrict the complex structure of X̂.

2. The size and structure of the Kähler cone changes in moving from V on X to V̂ on

X̂. As a result, the slope stability of V̂ is not guaranteed and must be explicitly

checked in any given example. Indeed, in some cases V̂ may be everywhere unstable

on X̂ and, hence, not suitable for our purposes.

3. The anomaly cancellation condition c2(V ) ≤ c2(TX) which we impose in our starting

geometry does not guarantee that c2(V̂ ) ≤ c2(TX̂). This too must be explicitly

checked in each case. Since ch2(L̂ )A = ch2(L̂ )rsdrsA for A = (α, r), we have

ch2(L̂ )r = ch2(L )r (3.45)

ch2(L̂ )α = ch2(L )rsdX̂rsα , (3.46)
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where we recall that indices r, s, . . . label the second cohomology classes common to

X and X̂ while α, β, . . . refer to the new classes which appear on X̂. If V satisfies

the anomaly cancellation condition, then it is guaranteed that

c2(V )r ≤ c2(TX)r =⇒ c2(V̂ )r ≤ c2(TX̂)r (3.47)

(see appendix A). However, it remains to be checked whether or not

c2(V̂ )α ≤ c2(TX̂)α . (3.48)

4. Practically, many of the Gröbner basis calculations described in this work are too slow

to be completed for large polynomial spaces. As a result, we frequently first quotient

the Calabi-Yau three-fold by a discrete symmetry, Γ, to produce a three-fold, X/Γ,

with fewer parameters. In some case, no compatible discrete automorphism, Γ̂, exists

for the split manifold, X̂. As a result, in such cases we lack the computational power

to fully execute the algorithm outlined above.

The astute reader may also worry at this point that having begun this exercise with the

goal of reducing the number of moduli in the theory, it is dissatisfying to have to introduce

new H1,1 moduli in moving from X to X̂. However, it should be noted that while the

splitting transitions do increase the number of Kähler moduli, this increase is in general

negligibly small compared to the number of complex structure moduli removed. We will

see an explicit example of this type in the following section.

It is worth noting that for the purposes of model building, any phenomenologically

relevant, MSSM-like heterotic models should be constructed on the final smooth (resolved)

manifold, X̂, with fully stabilized complex structure moduli. However, in the interests of

better understanding the web of geometries connected by conifold transitions, it is natural

to ask what happens to the phenomenology of a realistic model on the initial space X,

as we move to the new manifold, X̂? The first consideration is of course, the possible

obstructions outlined above. Assuming that no such obstruction arises, it should then

be observed that for any heterotic Standard Model constructed in a straightforward way

from line bundles (for example, via sums of line bundles [5, 7], the monad construction [4],

Extensions or the Serre Construction [1]), the results of Lemma 1 can be directly applied.

Not only the chiral index, Ind(V ), but also the dimension of the individual cohomology

groups, h∗(X,V ), are generically preserved in the splitting transition. Thus, the zero-mode

particle spectrum of the two models on X and X̂ is identical in these cases. It would be

interesting in the future to compare more detailed properties of these paired models, such

as the textures of their tri-linear Yukawa couplings (Yoneda products in cohomology [16]).

Having developed the formalism to carry “complex structure stabilizing” bundles

through splitting transitions and the above Algorithm (complete with caveats) in this

section, we are ready at last to take another look at the example of section 2 and its

complicated vacuum structure.
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3.5 An example: resolving singular branches in a multi-branch vacuum space

In this section, we return to the example given in section 2.2 and to the loci in complex

structure moduli space that were given in table 1. As noted in section 2, many of the loci

in table 1 correspond to singular Calabi-Yau three-folds. As an example, in this subsection

we will consider one of these singular loci and ask if the associated Calabi-Yau three-

fold, which generically has point-like singularities, can be resolved using the algorithmic

approach described in section 3.4?

Consider the fourth locus in table 1. This locus in complex structure moduli space is

given by the equations

c1 = c2 = 0 , c3 = c6 , c4 = c5 , c7 − c8 − c10 + c11 = 0 . (3.49)

Following section 3.4, we must find a collection of three-folds X̂ related by splitting tran-

sitions to the “tetra-quadric” of (2.22) and apply the results of Lemma 2. There are many

known splits of the tetra-quadric in the CICY dataset9 which we could use in our analysis.

However, only one such split X̂ is known to be compatible with the chosen symmetry action

Γ of equation (2.23). This is the well-known self-mirror manifold [62], whose determinantal

variety relative to the tetra-quadric can be written as

X =


P1 2

P1 2

P1 2

P1 2


4,68

−124

⇒ P(2,2,2,2) → f1
(2,0,2,0)f

3
(0,2,0,2) − f

2
(2,0,2,0)f

4
(0,2,0,2) = 0 (3.50)

⇒ X̂ =


P1 1 1

P1 2 0

P1 0 2

P1 2 0

P1 0 2



19,19

0

.

The manifold X̂ has Hodge numbers h1,1 = h2,1 = 19 and a compatible symmetry Γ̂

generated by

γ̂1 : (ya, xi,a)→ (−ya, (−1)a+i+1xi,a) (3.51)

γ̂2 : (ya, xi,a)→ ((−1)a+1eπi/2ya, xσ(i),a+i+1) where σ = (12)(34)

where we label the homogeneous coordinates on the new P1 factor as y0 and y1. In addition,

the action of γ̂1 inverts the sign of the defining polynomials of X̂ and the action of γ̂2 swaps

the defining polynomials and inverts the sign of the first. The Hodge numbers “downstairs”

(after quotienting by γ̂ are h1,1 = h2,1 = 4.

We need to find the determinantal locus, M(Idet
X̂

), in the complex structure moduli

space of the original quotient of the tetra-quadric X, where the Calabi-Yau three-fold

takes on the determinental form indicated in equation (3.50). One begins by writing down

9For example, there are 6 P1-splits of the tetra-quadric, 10 P2-splits and so on.
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a general defining polynomial for X, with coefficients cα, and equating it to a general

defining polynomial of determinental form (3.10), respecting symmetry Γ̂, with coefficients

dA. Comparing coefficients of monomials in the homogeneous coordinates on both sides,

one obtains equations giving the generators of an ideal R ⊂ C [dA, cα]. We then perform

a Gröbner basis elimination procedure on the dA variables, similar to those carried out in

section 2, to form an ideal R = R ∩ C [cα]. The generators of this ideal describe the locus

in complex structure moduli space where X takes on the determinental form. In the case

at hand, we find

− c2
6c7 + 2c3c6c10 − c1c

2
10 − c2

3c11 + c1c7c11 = 0 (3.52)

c2 = c4 = c5 = c9 = 0 , c8 = c10

Using the results of Lemma’s 1 and 2, we now intersect the loci of (3.44) to obtain a

new “jumping” locus on X̂. Explicitly, intersecting the locus (3.49) with the locus where

the manifold X takes a determinental form, equation (3.52), gives

c1 = c2 = c4 = c5 = c9 = 0 , c8 = c10 = c7 − c10 + c11 , c3 = c6 . (3.53)

We see, therefore, that the algorithm outlined in section 3.4 was successful! Beginning

with a 5-dimensional locus in the complex structure moduli space of X which led to point-

like singularities in the Calabi-Yau three-fold, we have obtained a new two-dimensional

locus, Mjumping

X̂
(I) in (3.53), which leads to a completely smooth three-fold X̂ in (3.50).

In summary, we have found a new bundle

0→ OX̂(0,−2,−2, 1, 1)→ V̂ → OX̂(0, 2, 2,−1,−1)→ 0 (3.54)

on X̂ which fixes that manifold’s complex structure to the locus in (3.53). This is a

resolution of a (singular) stabilized locus (3.49) associated to the bundle V defined in (2.24)

on X. For this locus at least, we have successfully resolved the singularities arising in the

complex structure stabilization process.

Bearing in mind the list of possible obstructions in section 3.4.1, it is important to

verify that the new bundle, (3.54), on X̂ satisfies all the consistency conditions for a

good Heterotic compactification. Since we have already discussed the compatible discrete

symmetries on X, X̂, the only remaining conditions to check (as mentioned in section 3.4.1)

are anomaly cancellation and slope-stability of V̂ . Using the fact that dXrst = dX̂rst for those

Kähler forms “carried through” the conifold transition, as well as the identities in (3.45),

for anomaly cancellation it only remains to check

c2(V̂ )1̂ ≤ c2(TX̂)1̂ (3.55)

For the one new direction (associated to the new P1 factor in (3.50)) on X̂/Γ̂. For this ex-

ample, this inequality is readily verified. Finally, it is straightforward to show (see [60, 61])

that V̂ is stable if and only if

µ(L̂) = dX̂
1̂1̂r
c1(L̂)r(t1̂)2 + dX̂rstc1(L̂)rtstt < 0 (3.56)
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for some values of the Kähler moduli (t1̂, tr) in the Kähler cone of X̂. Once again, this

inequality is satisfied for (X̂, V̂ ) defined above. Thus, the resolved geometry provides a

fully consistent background for a heterotic compactification.

In summary then, for this example we began with 10 complex structure moduli on

X/Γ defined by (2.22) and (2.23). By choosing the generically non-holomorphic bundle

V in (2.24), 5 complex structure moduli were fixed, but leading the resulting Calabi-

Yau three-fold to be singular at points. By replacing these singular points with P1’s, it

is possible to arrive at the smooth three-fold X̂ in (3.50), which in the presence of the

associated bundle V̂ in (3.54), leaves only 2 complex structure moduli remaining. Thus,

finally we have removed 8 complex structure moduli from the initial problem, though at

the cost of introducing one additional Kähler modulus in the resolution process. Thus, we

have a net moduli reduction of 7.

Finally, we note that it would be natural to continue in this same vein and explore the

resolution of the other 24 singular loci in table 1. The same split X̂ of X resolves several

of the loci in the table. However, these all end up stabilizing all but two of the complex

structure, exactly the same number as the case described in detail above. This split of

the tetra-quadric does not resolve many of the singular loci, even some of those with only

point-like singularities in X. The three-folds with complex structure restricted to these loci

remain singular when taken through the transition. It would be interesting to look for other

possible resolving geometries as some of these unresolved loci look promising from the point

of view of stabilizing all of the complex structure. For example, the seventh entry in table 1

has only one complex structure left unstabilized and has point-like singularities in X. We

would therefore only need to fix one extra complex structure degree of freedom in resolving

this case to a smooth three-fold. Unfortunately, for the order 8 symmetry, (2.23), chosen in

this example, X̂ in (3.50) is the only split of the tetra-quadric known to preserve this sym-

metry. Thus, we are unable to perform the same analysis for the remaining loci in table 1.10

4 Conclusions and further work

Over the past two years it has become clear that the gauge fields in heterotic theories can

play an important role for moduli stabilization, particularly for the Kähler and complex

structure moduli which arise in Calabi-Yau compactifications of the theory. The stabiliza-

tion of complex structure moduli is related to a complicated web of sub-loci in complex

structure moduli space which arises in the presence of gauge fields on the Calabi-Yau

manifold. On these “jumping loci”, the bundle moduli space is larger than at generic

points in complex structure moduli space. Hence, at such loci, a non-generic choice of

bundle obstructs moving off this locus and thereby fixes a certain number of complex

structure moduli.

In this paper, we have focused on two important aspects related to this sub-structure

of the moduli space. Firstly, we have presented a computational method to determine

10It would be satisfying to perform these same stabilizing/splitting analysis “upstairs” without first

quotienting by discrete symmetries, but unfortunately, the Groebner basis calculations involved are too

slow to finish with existing algorithms/computer speeds.
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the complete web of the jumping loci and have applied this method to a specific example.

It turns out that, even for the relatively simple example on the tetra-quadric Calabi-Yau

manifold with a rank two vector bundle, the resulting structure is very rich and results in

25 different branches with diverse dimensions. Other examples which can be analyzed with

our method show a similarly rich structure and we expect this to be a common feature

of complex structure moduli spaces in the presence of gauge bundles. Another, initially

unexpected property is that the Calabi-Yau manifold becomes singular on many, although

not all of these loci. Of course, the supergravity approximation breaks down in the presence

of such singularities and any discussion of moduli stabilization based on such singular loci

would be unreliable.

In a second step, we have shown how to deal with this difficulty. It turns out that in

many cases of interest, the singularities can be resolved by means of a conifold transition

while preserving both the methodology and the results of the original computation. In

particular, we have applied this method to one of the branches found for our tetra-quadric

example. We were able to blow up the point-like singularities which arise on this branch

and determine the corresponding locus on the resolved manifold. More generally, we have

established a universal rule by which the original jumping locus and its counterpart on the

split manifold are related by an intersection with the determinental variety. This means

that the dimension of the jumping locus always either remains unchanged or decreases

under a split, a fact which is of direct relevance for moduli stabilization.

For the purpose of moduli stabilization, point-like jumping loci are of primary interest

since all complex structure moduli can be fixed in this case. Unfortunately, we have

not found an explicit example of such a zero-dimensional locus while keeping the Calabi-

Yau manifold non-singular, although our tetra-quadric example leads to several singular

examples. We are not aware of any in-principle obstruction to the existence of non-singular,

point-like loci and expect that they will be found by studying a larger number of examples.

Currently, such a larger scale study is limited by the available computer power.

We should emphasize that, in this paper, we have not attempted to study the dynamics

of a conifold transition in the presence of gauge bundles. As is, our method should be

interpreted as a way of transferring results for jumping loci from one manifold to another

one, related by a conifold transition. However, some of our results may well be useful to

clarify the fate of heterotic gauge fields under conifold transitions. We hope to return to

this point in a future publication.
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A Topological identities in splitting transitions

At many points in this text we consider splitting transitions of the following form (see (3.8)).

X = [A | c C] −→ X̂ =

[
Pn 1 1 . . . 1 0

A c1 c2 . . . cn+1 C

]
, c =

n+1∑
i=1

ci . (A.1)

In this short appendix we collect and prove certain identities relating the intersection

numbers and second Chern classes of X and X̂.

A.1 Intersection numbers

As in the text, let Jr, r = 1, . . .m = h1,1(X) be a basis of harmonic {1, 1} forms on X,

descending from the Kähler forms Jr of the ambient space complex projective factors. In

addition let JR and JR be their counterparts for X̂, were R = (1̂, r) runs over m+1 values,

the first of which, denoted by 1̂, referring to the Kähler form of Pn and the remaining

values, r, to the projective factors in A, as before.

The intersection numbers of X can be written as follows.

dXrst =

∫
X
Jr ∧ Js ∧ Jt =

∫
A

(Jr ∧ Js ∧ Jt) ∧ µX (A.2)

Here,

µX = crJr ∧ µC , (A.3)

where

µC = ∧Ka=2(CraJr) . (A.4)

A similar expression holds for X̂,

dX̂RST =

∫
X
JR ∧ JS ∧ JT =

∫
A

(JR ∧ JS ∧ JT ) ∧ µX̂ , (A.5)

where

µx̂ = ∧n+1
Λ=1(J1̂ + crΛJr) ∧ µC . (A.6)

Consider the intersection numbers dX̂
1̂rs

on the split manifold. Using expressions (A.2)

and (A.3), together with the integration properties of the J ’s over the respective projective

spaces, we find that,

dX̂
1̂rs

=

∫
A
µC ∧

∑
Λ<Σ

(ctΛJt ∧ cuΣJu) ∧ Jr ∧ Js . (A.7)

Defining

d̃uvrs =

∫
A
µC ∧ Ju ∧ Jv ∧ Jr ∧ Js , (A.8)

we then have that,

dX̂
1̂rs

=
∑
Λ<Σ

cuΛc
v
Σd̃uvrs . (A.9)

This is a result that will be of use in what follows.
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The intersection numbers dX̂rst enjoy a simpler relationship to the analgous quantities

on X. Starting with equations (A.2) and (A.3) we find that we can rewrite the intersection

numbers on X, using equation (A.8), as follows.

dXrst =

∫
A
cuJu ∧ µC ∧ Jr ∧ Js ∧ Jt = d̃urstc

u (A.10)

However, using equations (A.5) and (A.6), together with (A.8) we find that,

dX̂rst =

∫
A×Pn

µC ∧ (∧n+1
Λ=1(J1̂ + cuΛJu)) ∧ Jr ∧ Js ∧ Jt (A.11)

=

∫
A
µC ∧ (

∑
Λ

cuΛJu) ∧ Jr ∧ Js ∧ Jt (A.12)

= cu
∫
A
µC ∧ Ju ∧ Jr ∧ Js ∧ Jt (A.13)

= d̃urstc
u (A.14)

Comparing equations (A.10) and (A.14) we find the simple relation.

dX̂rst = dXrst (A.15)

A.2 Second Chern classes

The second Chern class of a complete intersection manifold, M , with configuration matrix

[A′|M′] is given by the following expression.

c2(TM) = c2(TM)IJJI ∧ JJ =

[
1

2
(−δIJ(nI + 1) +

∑
A

M′IAM′JA )

]
JI ∧ JJ (A.16)

Here I, J run over the projective space factors in the ambient space A′ and A runs over

the defining polynomials.

Applying this to the specific case of the split configuration matrix of X̂ in (A.1), we

find the following expression.

c2(TX̂)RS =
1

2

−δRS(nR + 1) +
K−1∑
a=1

(
0

C

)R
a

(
0

C

)S
a

+
n+1∑
Λ=1

(
1

c

)R
Λ

(
1

c

)S
Λ

 (A.17)
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Concentrating on some specific components we then find the following expressions.

c2(TX̂)1̂r =
1

2

n+1∑
Λ=1

crΛ =
1

2
cr (A.18)

c2(TX̂)rs =
1

2

[
−δrs(nr + 1) +

K−1∑
a=1

CraCsa +
n+1∑
Λ=1

crΛc
s
Λ

]
(A.19)

=
1

2

[
−δrs(nr + 1) +

K−1∑
a=1

CraCsa + crcs

]
−
∑
Λ<Σ

c
(r
Λ c

s)
Σ (A.20)

= c2(TX)rs −
∑
Λ<Σ

c
(r
Λ c

s)
Σ (A.21)

c2(TX̂)1̂1̂ =
1

2

[
−(n+ 1) +

n+1∑
Λ

1

]
= 0 (A.22)

Thus far these expression do not seem to give any particularly simple relations between

the second Chern classes of X and X̂. We can obtain such a simple relation, however, by

considering the contraction of the above quantities with the triple intersection numbers.

c2(TX̂)r := dX̂rST c2(TX̂)ST = dX̂rstc2(TX̂)st + 2dX̂
rs1̂
c2(TX̂)s1̂ (A.23)

= dXrst(c2(TX)st −
∑
Λ<Σ

crΛc
s
Σ) + 2

∑
Λ<Σ

cuαc
v
Σd̃uvrs

1

2
cs (A.24)

= c2(TX)r (A.25)

In the above we have used the expressions in equations (A.18), (A.21) and (A.22), together

with the expressions involving intersection numbers given in equations (A.15) and (A.9),

and finally the definition given in (A.8).

B Bundle-valued cohomology on CICYs

The main results of this paper rely heavily on computations of vector bundle-valued coho-

mology on Complete Intersection Calabi-Yau three-folds. As a result, it is worth reviewing

here a few general results and a collection of useful tools for explicit computations of line

bundle-valued cohomology. More complete treatments of these tools and techniques are

available in [58, 63].

For ease of computation, the examples in this paper have all been built from line

bundles, L on X which are “favorable” in the sense defined in section 2. That is, they

descend from line bundles on an ambient product of projective spaces. As a result, we will

focus on a series of techniques to compute line bundle cohomology on X using information,

structure and maps from the ambient space A. It is important to note however, that

complex-structure fixing vector bundles of the form (2.8)11 do not descend from the ambient

space. That is, for the extension bundles 0→ L → V → L∨ → 0, while L,L∨ are favorable,

11More generally, those bundles holomorphic only on higher co-dimensional loci in the complex structure

moduli space of X.
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a non-trivial extension such as V can be defined only on X (and only for specific values

of the complex structure). With these distinctions in mind, we turn now to techniques for

determining bundle cohomology for favorable bundles descending from A.

B.1 The Koszul resolution

The standard method of computing the cohomology of a vector bundle V = V|X coming

from the restriction of V from an ambient space A to the variety X is the so-called Koszul

Resolution of V |X . In general, if X is a smooth hypersurface of co-dimension K, which is

the zero locus of a holomorphic section s of the bundle N , then the following long exact

sequence exists [64, 65]:

0→ V ⊗ ∧KN∨ → V ⊗ ∧K−1N∨ → . . .→ V ⊗N∨ → V → V|X → 0 . (B.1)

where the fiber-wise morphisms appearing in the sequence arise from appropriate sections,

H0(A,∧jN ). If the cohomology of the bundles ∧jN∨⊗V are known on the ambient space,

we can use the Koszul sequence to determine the cohomology of V |X . Here, N∨ is the dual

to the normal bundle. We recall that for a CICY, the normal bundle to the space is given

by the configuration matrix (2.5):

N =

K⊕
j=1

O(q1
j , . . . , q

m
j ) . (B.2)

In the above, we have generalized the standard notation that OPn(k) denotes the line-

bundle over Pn whose sections are degree k polynomials in the coordinates of Pn; that is,

O(qj1, . . . , q
j
m) is the line-bundle over Pn1 × . . . × Pnm whose sections are polynomials of

degree qj1, . . . , q
j
m in the respective Pni-factors. Being a direct sum, the rank of N is K.

We can break the sequence (B.1) into a series of short exact sequences by introducing

appropriate cokernels, Ki, as

0→ V ⊗ ∧KN∨ → V ⊗ ∧K−1N∨ → K1 → 0 (B.3)

0→ K1 → V ⊗ ∧K−2N∨ → K2 → 0 (B.4)

. . . (B.5)

0→ KK−1 → V → V|X → 0 (B.6)

and each of these short exact sequences will give rise to a long exact sequence in cohomology:

0 → H0(A,V ⊗ ∧KN∨)→ H0(A,V ⊗ ∧K−1N∨)→ H0(A,K1) (B.7)

0 → H0(A,K1)→ H0(A,V ⊗ ∧K−2N∨)→ H0(A,K2)→ . . . (B.8)

. . . (B.9)

0 → H0(A,KK−1)→ H0(A,V)→ H0(X,V|X)→ . . . (B.10)

To findH∗(X,V|X) we must determine the various cohomology groups in (B.7). It is easy to

see that for higher co-dimensional spaces or tensor powers of bundles, this decomposition of

sequences is a laborious process. Fortunately, the analysis of these arrays of exact sequences
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is dramatically simplified by the use of spectral sequences. Spectral sequences [64, 65] are

completely equivalent to the collection of exact sequences described above, but can be

useful for such lengthy cohomology computations.

B.2 The spectral sequence

To obtain the necessary cohomology of V|X from (B.1), we define a tableaux

Ej,k1 (V ) := Hj(A,V ⊗ ∧kN∨), k = 0, . . . ,K; j = 0, . . . ,dim(A) =

m∑
i=1

ni . (B.11)

This forms the first term of a so-called Koszul spectral sequence [64–66]. The spectral

sequence is a complex defined by differential maps di : Ej,ki → Ej−i+1,k−i
i for j = 1, 2, . . .

ad infinitum where di◦di = 0. The subsequent terms in the spectral sequence are defined by

Ej,ki+1(V ) =
ker(di : Ej,ki (V)→ Ej−i+1,k−i

i (V))

Im(di : Ej+i−1,k+i
i (V)→ Ej,ki (V))

(B.12)

Since the number of terms in the Koszul sequence (B.1) is finite, there exists a limit to

the spectral sequence. That is, the sequence of tableaux converge after a finite number of

steps to Ej,k∞ (V). The actual cohomology of the bundle V = V|X is constructed from this

limit tableaux:

hq(X,V ) =

K∑
m=0

rankEq+m,m∞ (V) . (B.13)

where hq(X,V ) = dim(Hq(X,V )).

In practice, the tableaux Ep,qr converges fairly rapidly because many of its entries

will turn out to be zero and the associated maps di, vanish; hence the spectral sequence

converges after only a few steps. However, in general all computations which involve long

exact cohomology sequences (B.7) or associated spectral sequences (B.12) rely upon the

ability to discern the action of maps between cohomology groups on the ambient space

A. In fortunate cases, the tableau are sufficiently sparse that is possible to determine the

required dimensions of cohomology groups without knowing any maps explicitly. But in

general the obstacle cannot be avoided. Fortunately, the task of computing the rank and

kernels of the spectral maps can be accomplished straightforwardly for favorable bundles

on CICYs using the coset representation of Flag spaces and the tensor algebra associated

with representations of Lie groups [58].

B.3 Cohomology of line bundles on CICYs

Up to this point, our comments on bundle cohomology has been general. However, we focus

now on the particular case of most interest to us in this work: Line Bundle Cohomology

on CICYs. The first important tool in our arsenal is a computational variation on the

Bott-Borel-Weil theorem [58, 67].
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B.3.1 Flag spaces and the Bott-Borel-Weil theorem

It can be shown that every simply connected compact homogeneous complex space is

homeomorphic to a torus-bundle over a product of certain coset spaces G/H, where G is

a compact simple Lie group and H is a regular semi-simple subgroup. Such spaces are

known as C-spaces or ‘generalized flag varieties’ [58]. In fact, the simplest example of this

is Pn = ( U(n+1)
U(1)×U(n)). Viewing Pn in this way will prove useful to us since it can be shown

that homogeneous holomorphic vector bundles over such flag varieties, F = (G(C)/H), are

labeled by representations of H (for our applications, H = U(1)×U(n)). This will provide

us with a powerful new tool to investigate bundle cohomology on CICYs.

Recalling that a representation can be written as a direct sum of irreducible ones, we

can focus on irreducible homogeneous holomorphic vector bundles. Further, we know that

such representations are uniquely labeled by their highest weight, so we have a convenient

notation for such bundles. For this purpose, we will use the well-known Young tableaux

(see e.g. [68]). We will be dealing strictly with unitary groups and will adopt the following

conventions. To denote a bundle, we write (a1, . . . , an), where ar ≤ ar+1 is the number of

boxes in the rth row of the tableau. For ar > 0 (< 0) the boxes are arrayed to the right

(left) of the ’spine’. Therefore, in the standard tensorial notation, (−1, 0, . . . 0) denotes

a covariant vector vµ while (0, . . . , 0, 1) labels the contravariant vector vµ. All other rep-

resentations can be obtained from these by multiplication and then decomposition into a

direct sum of irreducible components through symmetrizing, anti-symmetrizing and taking

traces with the invariant tensor (δµν ). A tensor product of representations of factor U(nf )’s

can be written as the Young tableau,

(a1, . . . an1 |b1, . . . , bn2 | . . . |d1, . . . , dnF ) (B.14)

or for a more condensed notation, we can stack the partitions vertically on top of each other.

For the case of line bundles, we recall that we may view Pn as the space of all lines

L ≈ C1 through the origin of Cn+1. Each line is defined as the zero set of some linear

polynomial l(x) over Cn+1. Now, from the definition of the hyperplane bundle O(1) on

Pn as the line bundle whose (global holomorphic) sections are linear polynomials we may

formulate a line bundle in the language of flag spaces above. Viewing Pn as a quotient of

unitary groups and a bundle over it as a representation of U(1) × U(n), a little thought

reveals that we may denote O(1) as (−1|0, . . . 0) (and similarly, its dual bundle O(−1) is

written (1|0, . . . 0)).

With this notation in hand, let F = U(N)
U(n1)×...×U(nF ) (with N =

∑
f nf ) be a flag space

as above and V be a holomorphic homogeneous vector bundle over it. Then

Theorem B.1. Bott-Borel-Weil

(1) Homogeneous vector bundles V over F are in 1-1 correspondence with the U(n1) ×
. . .×U(nF ) representations.

(2) The cohomology H i(A, V ) is non-zero for at most one value of i, in which case it

provides an irreducible representation of U(N), H i(F, V ) ≈ (c1, . . . , cN )CN .

– 36 –



J
H
E
P
0
7
(
2
0
1
3
)
0
1
7

(3) The bundle, (a1, . . . , an1 | . . . |b1, . . . , bnF ), determines the cohomology group

(c1, . . . , cN ), according to the following algorithm:

1. Add the sequence 1 . . . , N to the entries in (a1, . . . , an1 | . . . |b1, . . . , bnF ).

2. If any two entries in the result of step 1 are equal, all cohomology vanishes; otherwise

proceed.

3. swap the minimum number (= i) of neighboring entries required to produce a strictly

increasing sequence.

4. Subtract the sequence 1, . . . N from the result of 3, to obtain (c1, c2, . . . , cN ).

Using this algorithm, it is straightforward to reproduce the Bott-formula [58, 64, 65] for

cohomology of line bundles on single projective spaces by simply counting the dimensions

of the the associated Young tableau (c1, c2, . . . , cN ) of the unitary representations. The

result is

hq(Pn,OPn(k)) =


(
k+n
n

)
q = 0 k > −1

1 q = n k = −n− 1( −k−1
−k−n−1

)
q = n k < −n− 1

0 otherwise

. (B.15)

where the binomial coefficients arise from the dimensions of Young tableau (see [68]

for a review of the hook-length formulas).

The computation of line bundle cohomology described by the Bott-Borel-Weil theorem

is easily generalized to products of projective space using the Künneth formula [64, 65]

which gives the cohomology of bundles over a direct product of spaces. For products of

projective spaces it states that:

Hn(Pn1 × . . .× Pnm ,O(q1, . . . , qm)) =
⊕

k1+...+km=n

Hk1(Pn1 ,O(qi))× . . .×Hkm(Pnm ,O(qm)) ,

(B.16)

With this in hand, we can compute the cohomology of line bundles over the ambient

space. For example, in the notation of flag varieties, the line bundle l = O(k1,−k2) on

Pn1 × Pn2 (with k2 ≥ n2 + 1) can be denoted by a product of irreps of (U(1) × U(n1)) ×
(U(1)×U(n2)):

l ∼
(
−k1|0, . . . , 0
k2|0, . . . , 0

)
(B.17)

where there are n1 zeroes in the first row and n2 zeroes in the second. Using Bott-Borel-

Weil and the Kunneth formula then, the cohomology of this line bundle on the ambient

space would be described by

Hn2(A, l) ∼
(
−k1, 0, . . . , 0

1, . . . , 1, (k2 − n2)

)
(B.18)

where (−k1, 0, . . . , 0) denotes the Young tableau of a irreducible representation of U(n1+1),

(1, . . . , 1, (k2 − n2)) is the Young tableau of a U(n2 + 1) irrep and the Kunneth product of
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the restricted cohomology groups is denoted by the vertical stacking of tableau. We recall

that the dimension of a Young tableau may be easily computed from the hook-length

formula (see [68], for example). For instance, the dimension of (−k1, 0, . . . , 0) is just the

degrees of freedom in a totally symmetric tensor in (n1 + 1) variables, namely
(
k1+n1

n1

)
. In

counting the degrees of freedom in the tableau (1, . . . , 1, (k2 − n2)), it is useful to recall

that the totally anti-symmetric tensor, ε[a,...,b] is a singlet under U(n). Thus we can strip

a Levi-Civita tensor from the tableau (1, . . . , 1, (k2 − n2)) = (1, . . . , 1) ⊗ (0, . . . , 0, (k2 −
n2 − 1)) and just consider the dimension of (0, . . . , 0, k2 − n2 − 1) which is yet another

symmetrized tensor whose degrees of freedom may be counted as before. Therefore, the

total cohomology/tableau
( −k1,0,...,0

1,...,1,(k2−n2)

)
has dimension

(
k1+n1

n1

)
×
(
k2−1
n2

)
.

In summary, by using the Bott-Borel-Weil theorem we are able to represent the coho-

mology groups of line bundles over the ambient space, A, as irreducible representations of

unitary groups (and readily compute their dimensions). Returning to the task of comput-

ing the line bundle cohomology on the Calabi-Yau 3-fold, X, we note that this technique

will dramatically simplify the spectral sequence calculations of the previous section by

providing a simple representation for the ambient space cohomology groups involved. We

will reduce the abstract task of determining the properties of maps between line bundle

cohomology groups to the more straightforward one of studying maps between irreps of

unitary groups.

B.3.2 Applying Bott-Borel-Weil

Since the previous section was somewhat abstract, here we will illustrate and apply the

results of the Bott-Borel-Weil theorem in a simple way and summarize the main tools that

we need for this paper. From the previous section, it is clear that cohomology groups on an

ambient space of the form A = Pn1×. . .Pnm , can be represent by irreps of unitary groups —

i.e. fully symmetrized tensors. More specifically, let us summarize the necessary ingredients.

First, for a single projective space Pn consider the cohomology of the line bundle O(k)

with k > 0. From the Bott theorem and the algorithm described in Theorem B.1, the only

non-vanishing cohomology group is H0(Pn,O(k)) and the elements of this group can be

represented by a fully symmetrized tensor with k-indices. We will choose the convention

that for k > 0 those indices are “down” type:

H0(Pn,O(k))↔ f(a1...ak) (B.19)

As might be expected since H0(Pn,O(k)) is the group of global sections of O(k), this

cohomology group is also space of polynomial functions over A of degree k. Moreover,

this is compatible with the tensor description above since we can simply view the tensor

f(a1,...,ak) as the coefficients of a general polynomial p ∈ H0(Pn,O(k)). That is,

p = f(a1...ak)x
a1xa2 . . . xak (B.20)

where xa, a = 1, . . . (n + 1) runs over the homogeneous coordinate on Pn. Likewise

from (B.15), for O(−k), the only non-vanishing cohomology is Hn(Pn,O(−k)) and it can
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be represented by the product of the unique fully antisymmetric tensor in n + 1 indices

and a fully symmetrized tensor with k − (n+ 1) indices, both of “up” type:

Hn(Pn,O(−k))↔ ε[a1...an]g(b1...b(k−(n+1))) (B.21)

Stripping off the antisymmetric tensor ε, we can represent the tensor g(b1...b(k−(n+1))) in a

similar way in terms of a “polynomial” space. This time, though involving either “inverse”

polynomials or “derivatives”. For example, q ∈ Hn(Pn,O(−k)) could be represented

q = g(b1...b(k−(n+1)))
1

xb1
. . .

1

x(k−(n+1))
(B.22)

Or equivalently

q = g(b1...b(k−(n+1)))∂xb1 . . . ∂x(k−(n+1)) (B.23)

In either case, the every cup product in cohomology (i.e Yoneda pairing) can be repre-

sented by polynomial operations. For instance, in terms of the Bott-Borel-Weil tensor

representations, the following product

H0(Pn,O(k)) ∧Hn(Pn,O(−(k + n+ 1)))⇒ Hn(Pn,O(−(n+ 1))) ' C (B.24)

would be described in terms of tensor contraction (suppressing irrelevant epsilon tensors

on both sides of the expression) as

f(a1...ak)g
(a1...ak) → C (B.25)

This same contraction can be accomplished in a polynomial representation by describing

Hn(Pn,O(−(k + n + 1))) via “inverse” polynomials, where the multiplication rule takes

the form

xa
(

1

xb

)
= δab (B.26)

Thus, the map in (B.24) is schematically (poly. of deg(k))
(

1
poly. of deg(k)

)
⇒ C:

fa1...akg
b1...bk

(
xa1...ak

1

xb1
. . .

1

xbk

)
⇒ C (B.27)

Similarly, Hn(Pn,O(−(k + n + 1))) can be represented by derivatives with the obvious

“multiplication rule”

∂xa(x
b) = δba (B.28)

and (B.25) can be calculated via

fa1...akg
b1...bk∂xb1 . . . ∂xbk (xa1...ak)⇒ C (B.29)

So long as care is taken with relative constant prefactors, either of the two descrip-

tions in (B.22) and (B.23) can be used to represent cohomology groups of the form

Hn(Pn,O(−k)).
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The generalization to products of projective spaces is immediate: for a cohomology

group of the form H0(A,O(k1, . . . km)) with ki > 0 for i = 1, . . .m for example, we have

a tensor

f(a1,...,ak1 )(b1...bk2 )...(c1...ckm ) (B.30)

where each index type ranges over the appropriate range for the given Pni factor. Further-

more, “mixed” tensors, with both “up” and “down”-type indices, now arise. For example

in A = P2 × P3, we could represent H2(A,O(−4, 2)) via tensors as

ε[abc]fd(αβ) (B.31)

where a = 0, 1, 2 labels the homogeneous coordinates, xa, of P2 and α = 0, 1, 2, 3 counts

the homogeneous coordinates, yα, of P3.

The polynomial formalism described above applies immediately to the “multi-degree”

polynomials of a product of projective spaces. As final example, consider the following

map in ambient space cohomology

φ : H2(A,O(−4, 2))→ H2(A,O(−3, 3)) (B.32)

Suitable polynomial representatives take the form (again, stripping ε[abc] from both the

source and target of the map):

H2(A,O(−4, 2)) : fd(αβ)

1

xd
yαyβ (B.33)

H2(A,O(−3, 3)) : g(ρσδ)y
ρyσyδ (B.34)

φ ∈ H0(A,O(1, 1)) : φaαx
ayα (B.35)

As demonstrated in the main body of the text, such polynomial representatives make

it possible to explicitly compute the ranks of all the maps in cohomology considered in

this work.

C Proof of Lemma 1

In this section, Lemma 1 is proved for a general Pn split of the form (3.8). To begin, let

us restate the result here:

Lemma. Suppose that X and X̂ are two Calabi-Yau three-folds realized as complete in-

tersections in products of projective spaces, related by a “splitting transition” of the type

described in (3.8). Let L = O(a, . . . , b) be a “favorable” line bundle on X — that is, a line

bundle corresponding to a divisor D ⊂ X such that D = D|X is the restriction of a divi-

sor, D, in a Pni factor of the ambient space. Then the calculation (and dimension) of the

cohomology of L̂ = O(0 . . . , 0, a, . . . , b) is identical to that of L on the “Derminantal locus”

(defined by (3.8) and (3.10)) shared in the complex structure moduli space of X and X̂.

While this lemma holds for arbitrary cohomology of L on X, for the sake of explicitness,

we will provide the proof here for H1(X,L), the cohomology group defining non-trivial

Extensions of line bundles used throughout this work.
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To begin, consider the Koszul sequence associated to the line bundle L on X

0→ LA ⊗ ∧KN∨ → LA ⊗ ∧K−1N∨ → K1 → 0 (C.1)

0→ K1 → LA ⊗ ∧K−2N∨ → K2 → 0 (C.2)

. . . (C.3)

0→ KK−1 → LA → L → 0 (C.4)

Without loss of generality, we will assume here that H1(A,LA) = 0 (recall that

H i(A,LA) 6= 0 for at most one value of i). Then in general, the long exact sequences

in cohomology associated to (C.1) give H1(X,L) as

H1(X,L) = ker(φ), φ : H2(A,KK−1)→ H2(A,LA) (C.5)

where H2(A,KK−1) could have contributions from each of

Hj+1(A,∧jN∨ ⊗ LA) (C.6)

for j = 1, . . .K. Again, for succinctness, we will for the moment assume that only one of

these cohomology groups is non-zero (note that in the case in which multiple cohomology

groups are non-vanishing, the map arguments below can simply be repeated for each map

individually). Then,

H1(X,L) = ker(φ), φ : H2(A,KK−1)→ H2(A,LA) (C.7)

H2(A,KK−1) ' Hj′+1(A,∧j′N∨ ⊗ LA) (C.8)

for some j′. Using the techniques of the previous section we can represent this

polynomial/inverse-polynomial multiplication where the map in question, φ, is a global

section of H0(A,∧j′N∨).

Now, consider a general “splitting” of X,

X = [A|c C] −→ X̂ =

[
Pn 1 1 . . . 1 0

A c1 c2 . . . cn+1 C

]
(C.9)

which defines a new manifold X̂. We will study the cohomology of L̂ = O(0, . . . , 0, a, . . . , b)

on that space.

As in appendix A, and equation (A.17), we note that the normal bundle of X̂ takes

the schematic form

NX̂ '
⊕
Nsplit ⊕NC '

(
1

c

)
⊕

(
0

C

)
(C.10)

where the first term consists of K − 1 line bundles and the second term is the n + 1 line

bundles arising from the splitting of a column of the configuration matrix of X.

Now, for the line bundle L̂ as defined above, we must consider how the computation

of H1(X̂, L̂) compares to that of X above. First, by the definition of L̂ and the Bott-

Formula, (B.15), we note the following isomorphism

H2(Â, L̂Â) ' H2(A,LA) (C.11)
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Likewise, if we look in detail at Hj′+1(A,∧j′N∨ ⊗ L), we will see that the structure of

the non-vanishing cohomology groups is determined by the form of the normal bundle

in (C.10). Any contributions to non-trivial cohomology from NC will carry through into

Hj′+1(Â,∧j′N∨
X̂
⊗ L̂Â) (by the zero entries in the new Pn direction, the Kunneth For-

mula, (B.16) and (B.15)). Thus, the only new non-trivial contributions to the cohomology

of L̂ must arise from powers of ∧kNX̂ involving Nsplit.

For these, we note that regardless of the degree of the c entries, since each component

of Nsplit in the new Pn directions is a “1”, when we consider (∧kN∨split ⊗ L̂Â) the Bott-

Formula, (B.15), for the Pn direction guarantees that, in fact, only one cohomology group

can possibly be non-trivial, namely Hj′+1+n(Â,∧j′+nN∨split ⊗ L̂Â). Thus, for L̂ on X̂ the

cohomology map of interest (i.e. the equivalent of (C.7)) takes the form

φ̂ : H2(Â, K̂K′−1)→ H2(Â, L̂Â) (C.12)

H2(Â, K̂K′−1) ' Hj′+1+n(Â,∧j′+nN∨split ⊗ L̂Â) (C.13)

Now finally, we can compare Hj′+1+n(Â,∧j′+nN∨split ⊗ L̂Â) and Hj′+1(A,∧j′N∨ ⊗ LA).

Again, using the zero-entries in the new Pn direction as well as the Bott and Kunneth

Formulae, we find

Hj′+1+n(Â,∧j′+nN∨split ⊗ L̂Â) = Hn(Pn,O(−n− 1))×Hj′+1(A,∧j′N∨ ⊗ LA) (C.14)

Thus, using the tensor/polynomial descriptions of cohomology from the previous section,

we see that the only difference between the source and target in (C.7) and (C.12) is a

factor of

Hn(Pn,O(−n− 1)) ' ε(a1...an+1) (C.15)

in the left hand side (i.e. source) of (C.12).

Meanwhile the maps in question are φ ∈ H0(A,∧j′NX) and φ̂ ∈ H0(Â,∧j′+nNsplit).
It is straightforward to verify that

ε(a1...an+1)φ̂1
a1 . . . φ̂

n+1
an+1

' φsplit (C.16)

That is, the contraction on the left hand side defining map in cohomology for X̂ is exactly

the cohomology map, φ of X, tuned in complex structure moduli space to the “Determi-

nantal Variety” form of (3.10). This establishes the above Lemma for the chosen map.

Additional maps in cohomology follow in an entirely analogous manner and multiple split-

tings follow immediately by induction.
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