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1 Introduction and summary

The primary example of AdS/CFT correspondence is the one between four-dimensional

N = 4 super Yang-Mills and AdS5 × S5 string theory [1]. The spectrum of string states

on AdS5 × S5 can be computed by the mirror Thermodynamic Bethe Ansatz (TBA) equa-

tions [2–4] based on string hypothesis in the mirror model [5, 6]; or equivalently the ex-

tended Y-system on psu(2, 2|4)-hook [7–9]. It is believed that these methods give the exact

answer, because they capture all finite-size corrections [10, 11].

The numerical study of the mirror TBA has made progress [12–15]. However, it suffers

from the problem of critical coupling constants [16]. The analyticity of the unknown

variables called Y-functions changes around certain values of ’t Hooft coupling constant,

and the explicit form of the TBA equations changes there discontinuously. As a result,

it is difficult to solve the equation with high precision around the critical values, and to

judge if the exact energy does not show unusual behavior like inflection points around the

critical points.

The author has recently applied the method of hybrid nonlinear integral equations

(hybrid NLIE) [17] to the mirror TBA for AdS5 × S5 [18]. This method replaces the

horizontal part of the mirror TBA equations by A1 NLIE.1 The hybrid NLIE consists of a

smaller set of unknown variables than the mirror TBA, and we expect that it suffers less

often from the problem of critical coupling constants. We exemplify our expectation in a

way similar to [16].

For this purpose the mirror TBA for the twisted AdS5×S5 offers a desired playground,

because all Y-functions have intricate analytic properties, depending on the twist angle

α and ’t Hooft coupling constant g =
√
λ

2π .
2 The orbifold Konishi state is the simplest

nontrivial example that exhibits critical behavior in the mirror TBA for YM |w. For this

state, we find that the hybrid NLIE also exhibits critical behavior; its source terms change

discontinuously across certain values of coupling constant.

Orbifold Konishi is a two-particle state in the sl(2) sector of AdS5 × S5/ZS , where the

ZS acts on su(2)2 ⊂ [su(2|2)2∩ su(4)]. This is also a special state in the twisted AdS5×S5,

β- or γ-deformed AdS5 × S5 models. The orbifold and γ-deformed models are another

important examples of AdS/CFT correspondence, realized in gauge theory [24–30] and in

string theory [31–35]. Finite-size corrections of deformed theories have been studied in

gauge theory [36–38], in string theory [39], by Lüscher formula [40–47], and by the mirror

TBA or Y-system [48–52]. However, it is not clear if the corresponding sigma model on

twisted AdS5 × S5 possesses integrability (see [53] for review), though integrable twists

exist mathematically.

Next, we notice that such discontinuous change of the NLIE for the orbifold Konishi

state can be explained by the contour deformation trick. There is a conjecture that the

1This equation is called Klümper-Batchelor-Pearce or Destri-de Vega equation in the literature [19–23].

We call it A1 NLIE, since it can be derived from A1 TQ-relations and analyticity conditions as shown

in [18].
2In fact, the mirror TBA for YM|w in the untwisted model do not have critical coupling constants

asymptotically. We checked this claim for several four particle states for g . 1.
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TBA for excited states follows from the TBA for the ground state by analytic continuation

of coupling constant [54, 55]. It is expected that such analytic continuation introduces extra

singularities of the integrand on the complex rapidity plane, and deforms the integration

contour accordingly. Then, the excited states TBA should be expressed equivalently either

as the ground-state TBA integrated over the deformed contour, or as the TBA integrated

over the real line with additional source terms. This idea is called contour deformation

trick. The contour deformation trick predicts how to correct the TBA when numerical

iteration ceases to converge due to the change of analyticity, and is a guideline to study

various states in the mirror TBA [16] including boundstates [56]. The A1 NLIE with source

terms has been studied in various examples [57–65], and the contour deformation trick was

used in [66, 67].

With successful examples of the contour deformation in mind, we ask what the most

general possible source terms are, and if they are obtained by the contour deformation

trick. In principle, A1 NLIE can be derived even when the Q-functions are meromorphic,

rather than analytic, in the upper or lower half plane. Then the isolated singularities of

Q-functions provide extra source terms to A1 NLIE. It is a nontrivial question whether

such source terms can be explained by the contour deformation trick, particularly with the

same contour as in the orbifold Konishi state. Indeed, mismatch is found between the two

results. To reconcile this problem, we construct a deformed contour which is consistent for

general states including orbifold Konishi. The consistent deformed contour picks up only

the preferred singularities of the integrand and runs both the lower and upper half planes.

The details will be discussed in section 3.

The contour deformation trick illustrates the difference between hybrid NLIE and FiN-

LIE [68]. In the latter the integrals run over the gap discontinuity of dynamical variables,

which is not something to be deformed. In contrast, hybrid NLIE is written in terms

of gauge-invariant (but frame-dependent) variables,3 allowing us to handle the equations

similar to that of the mirror TBA.

This paper is organized as follows. In section 2, we study the orbifold Konishi state

from the mirror TBA and hybrid NLIE, and clarify the critical behavior in the asymptotic

limit. In section 3, we discuss the source terms of A1 NLIE in view of contour deformation

trick. Section 4 is for conclusion. In appendices, we introduce our notation, review the

NLIE variables, compute the asymptotic transfer matrix in the form of Wronskian, and

derive the results in section 3.

2 TBA and NLIE for twisted AdS5 × S5

We study the critical behavior of hybrid NLIE for the orbifold Konishi state as a specific

example. We briefly review the mirror TBA in twisted AdS5×S5 and their critical behavior.

2.1 Orbifold Konishi state

The orbifold Konishi state can be defined in two equivalent ways.

3See the discussion at the end of appendix C for the frame dependence.
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The first is to consider the sl(2) Konishi descendant on the orbifold AdS5 × S5/ZS ,

where the ZS action is chosen as follows (see [49]). We decompose the transverse 8+8 fields

of AdS5 × S5 into (2|2)⊗ (2|2) representation of su(2|2)L × su(2|2)R , as

(
ΦI , DµZ ,Ψ ,Ψ

)
↔

(
Ybḃ , Yββ̇ , Ybβ̇ , Yβḃ

)
≡ (yb yḃ , ηβ ηβ̇ , yb ηβ̇ , ηβ yḃ), (2.1)

where b, ḃ = 1, 2 refer to the S5 part, and β, β̇ = 3, 4 refer to the AdS5 part of su(2|2)2.

The boundary conditions of yb are twisted by ZS as

(
y1(σ = 2π)

y2(σ = 2π)

)
=

(
e+iαL 0

0 e−iαL

)(
y1(σ = 0)

y2(σ = 0)

)
, αL =

2πnL

S
(nL ∈ Z). (2.2)

Similarly, the boundary conditions of yḃ are twisted by αR = 2πnR

S . The orbifold ac-

tion (2.2) affects only the auxiliary part of the asymptotic Bethe Ansatz equations. Thus,

if we set the total momentum to zero as in the ordinary Konishi state, the asymptotic Bethe

roots remain unchanged before and after orbifolding. This is called orbifold Konishi state.

The second is to introduce integrable twisted boundary conditions to the transfer

matrix of AdS5 × S5. To preserve the integrability, the twist operator must commute with

the S-matrix. When the twist operator belongs to [su(2|2)2 ∩ su(4)] and the twist angle is

equal to a multiple of 2π/S, Konishi state of the twisted AdS5 × S5 is equivalent to the

orbifold Konishi state.

The second point of view is useful to construct the twisted transfer matrix, as defined by

TL
Q,1 = strQ [g0 S01 S02 . . . S0N ] , g0 = diag

(
e+iαL , e−iαL , 1, 1

)
, (2.3)

and similarly for TR
Q,1. The S0i is the S-matrix between the mirror particle and the i-th

particle in string theory. We can diagonalize (2.3) by algebraic Bethe Ansatz [69]. In

practice, it is easier to twist the generating function for the eigenvalues of transfer matri-

ces [48, 49, 70]. This construction will be discussed in appendix C, where we also rewrite

the transfer matrices in the form of Wronskian. In what follows we set αL = αR ≡ α

for simplicity.

The mirror TBA for the twisted model is obtained as follows. The twist angle α

in string theory corresponds to the insertion of defect operator in mirror theory [46]. In

particular, the same mirror string hypothesis is used in both twisted and untwisted models.

In the case of orbifold, the defect operator can be identified as an extra chemical potential,

and it changes the v → ±∞ asymptotics of Y-functions [50]. The mirror TBA equations for

twisted AdS5 × S5 are solved by the twisted transfer matrices in the asymptotic limit [49].

2.2 TBA and NLIE in horizontal strips

We compare mirror TBA and hybrid NLIE in the horizontal part of the psu(2, 2|4)-hook

for the twisted AdS5 × S5. We will consider only the states which are invariant under the

interchange (a, s) → (a,−s) of the psu(2, 2|4)-hook.

– 4 –



J
H
E
P
0
7
(
2
0
1
2
)
1
5
2

The simplified TBA equation for Y1|w and YM |w (M ≥ 2) can be written as

log Y1|w = −V1|w + log(1 + Y2|w) ⋆ sK + log
1− 1

Y−

1− 1
Y+

⋆̂ sK , (2.4)

log YM |w = −VM |w + log(1 + YM+1|w) ⋆ sK + log(1 + YM−1|w) ⋆ sK , (2.5)

where VM |w is the source term, which depends on the state and the values of (α, g) under

consideration. In the hybrid NLIE, the 1 + YM+1|w on the right hand side is replaced by

1 + Y2|w = (1 + a
ν [+γ]
3 ) (1 + a

ν [−γ]
3 ), 1 + YM+1|w = (1 + a

ν [+γ]
M+2 ) (1 + a

ν [−γ]
M+2 ).

The pair of parameters {aνs , a
ν
s} (s ≥ 3) are determined by A1 NLIE,

log aνs = −Jν
s + log(1 + aνs) ⋆ Kf − log(1 + aνs ) ⋆ K

[+2−2γ]
f + log(1 + Ys−2|w) ⋆ s

[−γ]
K , (2.6)

log aνs = −J
ν
s + log(1 + aνs ) ⋆ Kf − log(1 + aνs) ⋆ K

[−2+2γ]
f + log(1 + Ys−2|w) ⋆ s

[+γ]
K , (2.7)

where ν = I or II refers to the two sets of Q-functions [18], and γ (0 < γ < 1) is a

regularization parameter, as reviewed in appendix B. We leave s ∈ Z≥3 unspecified, though

one can substitute s = 3 at any time. The case of ν = I is simpler than ν = II, because

the source terms {J I
3 , J

I
3} vanishes in the Konishi state of the untwisted AdS5 × S5 model,

at least asymptotically. Below we consider the case aIs , a
I
s only, and omit ν = I. In

short, the YM |w functions of the mirror TBA are replaced by three dynamical variables,

(a3 , a3 , Y1|w).
4

Numerically, the equations (2.6), (2.7) can be checked modulo multiple of πi for the

following reason. Since (1 + as , 1 + as) are complex, their logarithm may choose either of

log(−1) = ±πi, which changes the numerical value of the convolution by (2πi) ⋆ Kf = πi.

Critical lines and analyticity. The source terms in TBA or NLIE change discontinu-

ously as we vary the parameters (α, g). We divide the (α, g) plane into subregions according

to different form of the source terms. The boundary of subregions is called critical lines.

We denote the critical lines by α = α
(i)
cr (g) or g = g

(i)
cr (α).

The critical lines are different for different integral equations of TBA or NLIE. So the

phase space of a given state in the twisted AdS5 × S5 is divided into infinitely many tiny

regions as

g(I)cr (α) =
{ ⋃

(a,s)∈T−hook

g(i)cr (α)[Ya,s]
}

for TBA, (2.8)

g(I)cr (α) =
{ ⋃

(a,|s|≤2)∈T−hook

g(i)cr (α)[Ya,s]
}
∪
{
g(j)cr (α)[a3 , a3]

}
for hybrid NLIE. (2.9)

The critical lines, or discontinuous changes of source terms, come from the change of

the analyticity of unknown variables in a given integral equation. This statement holds

4If we consider both left and right horizontal strips of the psu(2, 2|4)-hook, Y
(L)

M|w , Y
(R)

M|w are replaced by

six dynamical variables, (a
(L)
3 , a

(L)
3 , Y

(L)

1|w , a
(R)
3 , a

(R)
3 , Y

(R)

1|w ).

– 5 –



J
H
E
P
0
7
(
2
0
1
2
)
1
5
2

true for both simplified TBA and NLIE. The TBA for the orbifold Konishi has already

been studied in detail [50], so we will make this statement more precise for the NLIE.

It should be noted that the critical lines of hybrid NLIE depend on the regularization

parameter γ. Also, the critical lines of the mirror TBA change if we pull back the deformed

contour to the line R+ iδ with δ 6= 0 instead of the real line.5 Besides its simplicity, there

is no particular meaning of setting γ or δ to zero. From the continuity of the equations

this implies that physical quantities such as the exact energy should not be singular at

g = g
(l)
cr (α) .6

2.3 Source terms of A1 NLIE

We determine the source terms in A1 NLIE (Js , Js), by taking examples of the twisted

ground state and orbifold Konishi state.

Source term of twisted ground state. The ground state of the twisted AdS5 × S5

satisfies the simplified mirror TBA with VM |w = 0 [50]. It also satisfies the hybrid NLIE

with the chemical potential

Js = +iα, Js = −iα. (2.10)

This result follows immediately from the asymptotic solution discussed in appendix C.

Even for excited states, each term in the A1 NLIE approaches its ground state value in

the limit v → ±∞, just like TBA. Furthermore, the orbifold Konishi state satisfies the

same equation at small α 6= 0 and small g. For general (α, g) we should add logarithms of

S-matrix to the source term.

Main strip of hybrid NLIE. Before studying source terms at general (α, g), let us

discuss the main strip of the mirror TBA or the hybrid NLIE. The main strip is defined

by the region of complex plane in which the respective equation remains valid without

modification. It is helpful to identify the main strip in advance, because the critical lines

are often related to the movement of extra zeroes going in or out of this strip.

The main strip of the simplified TBA for YM |w (2.4), (2.5) is A−1,1 defined in (A.2).

This is because we encounter the singularity of sK along the boundary of A−1,1 . Analytic

continuation of the simplified TBA beyond A−1,1 requires us to add an extra term ∼

log(1 + Y ±) for some Y .

The main strip for the hybrid NLIE is smaller than that of the simplified TBA. Consider

the holomorphic part of A1 NLIE (2.6), which contains the kernels Kf ,K
[+2−2γ]
f , s

[−γ]
K .

Since these kernels are singular at Kf (±2i/g) and sK(±i/g), the main strip of (2.6) is

Im v ∈

(
−
1− γ

g
,+

2γ

g

)
(0 ≤ γ ≤ 1). (2.11)

The main strip of the anti-holomorphic part of A1 NLIE (2.7) is the complex conjugate of

the above result.

5It is not practical to solve the mirror TBA using the Y-functions not sitting on the real axis, because

the reality of Y-functions is abandoned.
6The author thanks a referee of JHEP for pointing this out.
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Source terms of orbifold Konishi. We describe the source terms of hybrid NLIE for

(as , as) describing the asymptotic orbifold Konishi state at general (α, g). One can check

all these results explicitly by using the formulae in appendix C.

The holomorphic part of A1 NLIE (2.6) consists of the dynamical variables

(as , as, Ys−2|w), and the variables as , as are related to bs , bs by (B.5). As reviewed in

appendix B, these variables can be expressed by gauge-covariant ones by

bs =
Q[s+1]

Q
[1−s]

T1,s−1

L[s+1]
, 1 + bs =

Q[s−1]

Q
[1−s]

T+
1,s

L[s+1]
,

1 + bs =
Q

[1−s]

Q[s−1]

T−
1,s

L
[−s−1]

, 1 + Ys−2|w =
T−
1,s−1 T

+
1,s−1

T2,s−1 T0,s−1
. (2.12)

Consider the asymptotic orbifold Konishi state and fix the gauge as given in ap-

pendix C.2. For this state, neither Q- nor L-functions have singularities around the real

axis, and all critical behaviors come from the extra zeroes of T-functions, T1,s−1 and T1,s ,

inside the main strip (2.11).7 Since the location of extra zeroes is determined by the values

of (α, g), the critical lines αcr(g) are defined by

T1,s−1

(
−
i

g

)
= 0 or T1,s

(
−
i(1− γ)

g

)
= 0 at α = αcr(g). (2.13)

The solution to the equations T1,Q(−
i
g ) = 0 also defines the critical lines of the mirror TBA

for the twisted AdS5 × S5, and their asymptotic solutions have been studied in [50]. The

first equation of (2.13) has s − 1 solutions and the second has s solutions for 0 < α < π

and at fixed g with 0 < g . 1.8 We denote them by αs−1,i(g), αs,i(g, γ) with the ordering

0 < αs−1,1(g) <
π

s− 1
< αs−1,2(g) <

2π

s− 1
< · · · <

(s− 2)π

s− 1
< αs−1,s−1(g) < π,

0 < αs,1(g, γ) <
π

s
< αs,2(g, γ) <

2π

s
< · · · <

(s− 1)π

s
< αs,s(g, γ) < π. (2.14)

It is instructive to keep track of the zeroes of T1,Q in detail, as they behave in an

interesting way when α is around nπ
Q for n ∈ Z, 1 ≤ n ≤ Q − 1. If α is slightly less than

nπ
Q , T1,Q has no zeroes around the real axis. Let α grow larger. When α reaches nπ

Q , then

T1,Q acquires a pair of real zeroes at ±∞. The pair of zeroes run toward the origin along

the real axis as α increases, and collide at the origin. After the collision, they run along

the imaginary axis in the opposite directions towards ±i∞. They cross ± i
g at α = α

(i)
cr .

There are exceptions at α = 0, π. In the limit α → 0, a pair of zeroes of T1,Q run to ±∞

along the real axis. Nothing happens around α = π. As for α ∈ (π, 2π) the movement of

zeroes is symmetric with respect to the flip α → π − α.

Let us define the interval

Is−1(g) ≡
s−1⋃

n=1

(
(n− 1)π

s− 1
, αs−1,n(g)

)
, Is(g, γ) ≡

s⋃

n=1

(
(n− 1)π

s
, αs,n(g, γ)

)
. (2.15)

7Here we choose the gauge as in.
8The equation T1,Q

(

− i
g

)

= 0 has more asymptotic solutions for g & 1, which are called Type II and

Type III critical behaviors in [50].
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Whenever α crosses the boundary of the interval Is−1(g)∪ Is(g, γ), the source terms of hy-

brid NLIE (Js , Js) change discontinuously.
9 The (Js , Js) at fixed (α, g) are given explicitly

as follows. Start from the source terms for the grounds state (2.10). If α ∈ Is−1(g), add

(jB , B) to (Js , Js); and then if α ∈ Is(g, γ), add (jC , C) to (Js , Js), where jB , B , jC , C
are defined by

jB(v) =
∑

j

logSf

(
v − bj +

i(1−γ)

g

)
, B(v) =−

∑

j

logSf

(
v − bj −

i(1−γ)

g

)
, (2.16)

jC(v) =
∑

j

logS

(
v − cj +

i(1−γ)

g

)
, C(v) =−

∑

j

logS

(
v − cj −

i(1−γ)

g

)
, (2.17)

where bj , cj are defined as the zeroes of dynamical variables:

1 + as

(
bj −

i(1− γ)

g

)
= 1 + as

(
bj +

i(1− γ)

g

)
= 0, bj ∈ A−1+γ,1−γ , (2.18)

1 + Ys−2|w

(
cj −

i

g

)
= 0, cj ∈ A−1,1 . (2.19)

All solutions of (2.18), (2.19) must be summed in (2.16), (2.17). The integral equation for

these roots can be obtained by analytic continuation of (2.4)–(2.7) as in [16], noting that

Ys−2|w(bj) ∝ T1,s(bj) = 0. One can derive the critical lines of (2.13) from these results,

by recalling that (1 + as), (1 + as) are related to T1,s , and 1 + Ys−2|w is related to T1,s−1 .

It will turn out in section 3.2.2 that each term of (2.16), (2.17) can be explained by the

contour deformation trick of the NLIE (2.6), where the deformed contour runs through the

lower half plane. Figure 1 shows the horizontal part of the critical lines in the mirror TBA

and hybrid NLIE from the asymptotic analysis.

One remark is needed to evaluate the integrals in TBA and NLIE correctly in a nu-

merical way. Consider the convolutions log(1 + as) ⋆ Kf − log(1 + as) ⋆ K
[+2−2γ]
f in (2.6).

If (1 + as) crosses the branch cut of logarithm running the negative real axis, then the

integrand changes discontinuously. Suppose there exists vd ∈ R such that

Im [1 + as(vd)] = 0 with Re [1 + as(vd)] < 0. (2.20)

Then we need to integrate log(−1) = ±πi over (vd,∞) or (−∞, vd), which provides extra

source terms. As for asymptotic Konishi state, whenever (1+ as) crosses the branch cut of

logarithm, then (1 + as) crosses the branch cut at the same point. Thus we get

∆Js = − log

[
Sf (v − vd)Sf

(
v − vd +

2i (1− γ)

g

)]
− 2πi, (2.21)

∆Js = + log

[
Sf (v − vd)Sf

(
v − vd −

2i (1− γ)

g

)]
+ 2πi. (2.22)

The discontinuity of logarithm can in principle happen for the integral with log(1+Ys−2|w).

9Recall that s = 3 is the minimum choice of hybrid NLIE. In contrast, the phase space (α, g) of the

mirror TBA for orbifold Konishi state is classified partially by ∪∞
s=1Is(g), which consists of infinitely many

segments of the width ∼ π
s
for each s.
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Figure 1. Asymptotic phase space of the mirror TBA (Left) and hybrid NLIE (Right) in the

horizontal part. We set s = 3 and γ = 0 in hybrid NLIE. The lines correspond to α = nπ
Q

and the

solutions of T1,Q

(
− i

g

)
= 0 for Q = 2, 3, 4 . . . (TBA) and Q = 2, 3 (NLIE). The phase space of the

mirror TBA (Left) should be infinitesimally subdivided if Q is not truncated at Q = 6.

3 Contour deformation trick for TBA and NLIE

In the last section we studied the ground and orbifold Konishi states in the twisted AdS5×

S5, in which the hybrid NLIE acquires source terms. In this section, we turn our attention

to the structure of the source term for general states. It is known that the origin of the

source term in the simplified TBA for general states can be explained by both integration

of Y-system and contour deformation trick. This is no longer trivially so in hybrid NLIE,

as we shall see below.

3.1 General source terms in the simplified TBA

Take the simplified TBA for Y1|w as an example, and the following discussion applies to

other simplified TBA equations as long as the Y-system exists at that node. We will derive

the source terms by integration of Y-system and contour deformation trick.

The explanation by integration of Y-system goes as follows.10 Consider the logarithmic

derivative of Y-system for Y1|w

dl
[
Y −
1|w Y +

1|w

]
= dl

[
(
1 + Y2|w

)
(
1− 1

Y−

1− 1
Y+

)]
, dlf(v) ≡

∂

∂v
log f(v). (3.1)

Suppose Y1|w(v) has a set of single zeroes rj inside the strip A−1,1 . If we take the convo-

lution of (3.1) with sK , the left hand side becomes

∫

R

dt
∂

∂t
log
[
Y1|w(t

−)Y1|w(t
+)
]
sK(v − t) = dlY1|w(v) + 2πi

∑

j

sK

(
v − rj −

i

g

)
. (3.2)

10This explanation is also called TBA lemma in the literature.
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Here all solutions of Y1|w(rj) = 0, rj ∈ A−1,1 must be summed. If we integrate both sides

with respect to v, we obtain the simplified TBA equation (2.4) with11

V1|w = c1|w −
∑

j

logS

(
v − rj −

i

g

)
, (3.3)

where c1|w is an integration constant fixed by the behavior v → ±∞, where all Y-functions

approach the ground state value.

The explanation by contour deformation trick goes as follows. We start from the

simplified TBA equation (2.4) for the ground state, V1|w = c1|w . To obtain the TBA

equation for excited states, we regard the contour of integration in the right hand side

of (2.4) as running somewhere far below in the complex plane. When we pull the deformed

contour back to the real axis, we obtain additional terms by picking up the residues as

log Y1|w = log(1 + Y2|w) ⋆C2|w
sK + log

1− 1
Y−

1− 1
Y+

⋆̂ CysK ,

= −V1|w + log(1 + Y2|w) ⋆ sK + log
1− 1

Y−

1− 1
Y+

⋆̂ sK , (3.4)

where C2|w , Cy are the deformed contour for respective convolutions.

Let {ρn} be a set of roots Y1|w(ρn) = 0, where ρn ∈ An−1,n for n ≥ 1 and ρn ∈ An,n+1

for n ≤ −1.12 From the Y-system (3.1) it follows that

1 + Y2|w(ρ
±
n ) = 0 or 1−

1

Y−(ρ
±
n )

= 0 or 1−
1

Y+(ρ
±
n )

= ∞, n ∈ Z 6=0 . (3.5)

When we straighten the deformed contours of (2.4) running through the lower half plane,

the source term V1|w becomes

V1|w = c1|w + logS
(
v − ρ−1

)
+ logS

(
v − ρ−−1

)
. (3.6)

where the contributions from ρ−n (n ≥ 2) vanish owing to S−S+ = 1. This result agrees

perfectly with (3.3).

3.2 General source terms in A1 NLIE

3.2.1 Fourier transform method

The A1 NLIE was derived from the assumptions that Q[s−2], L[+s] are analytic in the up-

per half plane, and Q
[2−s]

, L
[−s]

are analytic in the lower half plane [18]. This derivation

11Note that log

1− 1

Y
[−0]
−

1− 1

Y
[+0]
+

⋆ sK = log
1− 1

Y
−

1− 1
Y+

⋆̂ sK owing to Y−(v − i0) = Y+(v + i0) for v ∈ (−∞,−2) ∪

(+2,+∞).
12There can be multiple roots as well as poles inside the same strip of the complex plane. It is straight-

forward to generalize the whole argument for such cases.
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can be generalized to the case where dynamical variables have zeroes or poles in the com-

plex plane:13

T1,s(ts,n) = T1,s(ts,−n) = Q(qn) = Q(qn) = L(ℓn) = L(ℓn) = 0,

{ts,n , qn , ℓn} ∈ An−1,n ,
{
ts,−n , qn , ℓn

}
∈ A−n,−n+1 , (n ≥ 1). (3.7)

In general, these functions can have multiple zeroes or poles in the complex plane. The

generalization for such case is straightforward; if they have poles, the logarithmic derivative

have the residue with the opposite sign. For simplicity we do not discuss poles.

The whole derivation is explained in appendix D.1. Eventually we obtain the derivative

of the source terms Js appearing in the hybrid NLIE (2.6) as

J ′
s = J ′

s

∣∣∣
T
+ J ′

s

∣∣∣
L
+ J ′

s

∣∣∣
L
+ J ′

s

∣∣∣
Q
+ J ′

s

∣∣∣
Q
, (3.8)

where

J ′
s

2πi

∣∣∣
T
= −Kf (v − t−s,1)−Kf (v − t−s,−1)− sK(v − t−s−1,1)− sK(v − t−s−1,−1), (3.9)

J ′
s

2πi

∣∣∣
L
= −

∞∑

n=1

{
Kf (v − ℓ

[s−1]
s+n+1) + sK(v − ℓ

[s−2]
s+n )

}
,

J ′
s

2πi

∣∣∣
L
= −

∞∑

n=1

{
Kf (v − ℓ

[−s−1]
s+n+1) + sK(v − ℓ

[−s]
s+n)

}
− δ(v − ℓ

[−s−1]
s+1 ), (3.10)

J ′
s

2πi

∣∣∣
Q
=

∞∑

n=1

K1(v − q
[s−2]
s+n−1),

J ′
s

2πi

∣∣∣
Q
=

∞∑

n=1

K1(v − q
[−s]
s+n−1)− δ(v − q

[−s−1]
s+1 ). (3.11)

We can neglect the δ-functions, as they just add a constant after integration.

3.2.2 Contour deformation trick with Konishi’s contour

We start from the A1 NLIE for the ground state with constant source terms (Js , Js) =

(js , s). Then we apply the contour deformation trick to obtain extra source terms, using

the same deformed contour as that of the orbifold Konishi state, depicted in figure 2. For

the NLIE of as, it runs slightly above the line Im v = (1 − s + γ)/g, and run down along

the imaginary axis. Note that the integrands have branch cut discontinuity along the line

Im v = (1− s+ γ)/g. We take the limit γ ≪ 1 in what follows.

13The Fourier transform of logarithmic derivative diverges if these functions have zeroes on the boundary

of Am,n, namely on the line g Im v ∈ Z. We should regularize this by shifting the zeroes slightly upward

or downward.
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Figure 2. The deformed contour used in the NLIE for bs for the orbifold Konishi state. (Left)

the contour in z-torus, where the vertical and horizontal axes are normalized by the period of the

rapidity torus with moduli k = −4g2/Q2, with Q = s − 1 for (1 + bs), (1 + bs) and Q = s − 2

for (1 + Ys−2|w). The real line in z-torus corresponds to the real axis of the mirror v-plane, and

the line Im z = −1 corresponds to the real axis of the string v-plane. We assumed that there are

no singularities like Bethe roots along the string real axis. (Right) the contour in v-plane, where

the orange region corresponds to the region surrounded by the deformed contour and the mirror

real axis.

Again we throw the details of computation in appendix D.2. After straightening the

contour we obtain the following result:

JCDT
s = js − log

[
Sf (v − t−s,1)Sf (v − t−s,−1)

]
− log

[
S(v − t−s−1,1)S(v − t−s−1,−1)

]

− log




2s∏

j=s+2

Sf (v − ℓ
[s−1]
j )

/ 2s−2∏

j=s+1

S(v − ℓ
[+s]
j )


+ log



s+1∏

j=3

Sf (v − ℓ
[−s−1]
j ) ·

s∏

j=3

S(v − ℓ
[−s]
j )




− log
s−1∏

j=1

S1(v − q
[−s]
j ) + log

2s−2∏

j=s

S1(v − q
[s−2]
j ). (3.12)

3.2.3 Comparison

Let us compare the Fourier transform of the derivative of the source terms (D.19) (Fourier

source terms), with the source terms predicted by the contour deformation trick (3.12)

(CDT source terms). We can make a similar argument for the NLIE of bs. Since this

is complex conjugate to bs, we just have to impose the complex-conjugate constraints

in addition.

It turns out that there are mismatches in two results. Let us have a closer look for

each of the T, L, Q-functions.
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Fourier Q[s−2] , L[+s] are meromorphic in the upper half plane.

CDT Q ,L[+2] are meromorphic in the upper half plane.

Table 1. Analyticity conditions used in the Fourier transformation method and the contour defor-

mation trick. The complex conjugate conditions for Q,L are also used. We make no assumptions

about Q ,L[+2] in the lower half plane, Q ,L
[−2]

in the upper half plane.

T-functions. The Fourier source terms (3.9) agree with the first line of the CDT source

terms (3.12).

L-functions. The Fourier source terms (3.10) partially agree with the second line of the

CDT source terms (3.12).

The terms with {ℓm} agree with each other if ℓm≥2s−1 lie along the imaginary axis in

the lower half plane, so that all of them are picked up by the deformed contour.

The terms with {ℓm} do not agree, because they have the opposite signs. Moreover,

the roots {ℓm} in (3.10) lie in the upper half plane, while those in (3.12) lie in the lower

half plane.

Q-functions. Just like the case of L-functions, The Fourier source terms (3.11) partially

agree with the third line of the CDT source terms (3.12).

If the deformed contour pick up all {qm}, then the terms with {qm} perfectly agree

with each other.

The terms with {qm} disagree. The roots {q
[−s]
s+n−1} (n ≥ 2) in (3.11) lie in the upper

half plane, while those in (3.12) lie in the lower half plane. The corresponding source terms

have the opposite signs. One exception is q
[−s]
s in the Fourier source term (3.11). It lies in

the lower half plane, but this term is not present in the CDT source term (3.12).

The mismatch between two source terms can be explained by different analyticity

conditions used in two methods, as summarized in table 1. In particular, the extra zeroes

of Q(v) at v ∈ A0,s−1 and those of L(v) at v ∈ A2,s modify only the CDT source terms.

Strictly speaking, the T, L, Q-functions may have singularities which can be simultane-

ously removed by gauge transformation. We forbid such gauge artifacts, and assume that

the roots {ts,n , ℓn , qn , ℓn , qn} are independent.14 In other words, the contour deformation

trick with Konishi’s contour works fine as long as one can choose a gauge such that all

zeroes and poles can be associated to the T-functions rather than the L- and Q-functions.

3.3 Consistent deformed contour

In the last subsection we have learned that, for states other than the orbifold Konishi, the

contour deformation trick with Konishi’s contour may not yield the correct source terms

of A1 NLIE, as given by the Fourier transform method. To remedy this problem, we will

look for new deformed contours of A1 NLIE.

14The case of boundstates is exceptional, and further analysis is needed to clarify if the contour defor-

mation trick works as in [56].
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For the sake of simplicity let us choose the gauge QI = Q
I
= 1. In other words, we

will study the analyticity of gauge-invariant quantities,

T1,s =
T1,s

QI [+s]Q
I [−s]

, L[+s] =
L[+s]

QI[+s]QI [s−2]
, L

[−s]
=

L
[−s]

Q
I[−s]

Q
I [2−s]

, (3.13)

which enables us to rewrite

1 + bIs =
T +
1,s

L[s+1]
, 1 + b

I
s =

T −
1,s

L
[−s−1]

, 1 + Y1,s−1 =
T −
1,s−1 T

+
1,s−1

L[+s] L
[−s]

. (3.14)

The zeroes of T ,L,L can be rephrased in terms of analyticity of bs , bs , Y1,s−1 as,

T1,s = 0 ↔ 1 + b−s = 1 + b
+
s = 0,

T1,s−1 = 0 ↔ 1 + Y −
1,s−1 = 1 + Y +

1,s−1 = 0,

L[+s] = 0 ↔ 1 + b−s = 1 + Y1,s−1 = ∞,

L
[−s]

= 0 ↔ 1 + b
+
s = 1 + Y1,s−1 = ∞. (3.15)

As in section 3.2, we consider only the zeroes of T ,L,L and use the notation (D.1). For

completeness we also introduce L(ℓ−n) = L(ℓ−n) = 0 with ℓ−n ∈ A−n,−n+1 , ℓ−n ∈ An−1,n

for n ≥ 1.

As a warm-up, let us apply the contour deformation trick to A1 NLIE using the contour

which encloses all zeroes of T ,L,L in the mirror sheet of complex v-plane. Just like the

contour deformation trick in TBA, we do not pick up the singularities of the kernels.15 Let

∗↓ and ∗↑ be the deformed contours which encloses all zeroes in the lower and upper half

plane when pulled backed to the real axis, and ∗l ≡ ∗↓ + ∗↑. We then obtain

log(1 + bs) ⋆l Kf − log(1 + bs) ⋆l K
[+2]
f + log(1 + Y1,s−1) ⋆l sK

= −Jl
s + log(1 + bs) ⋆ Kf − log(1 + bs) ⋆ K

[+2]
f + log(1 + Y1,s−1) ⋆ sK , (3.16)

with

−Jl
s = + 2 log

[
Sf (v − t−s,1)Sf (v − t−s,−1)S(v − t−s−1,1)S(v − t−s−1,−1)

]

+ log

[ ∞∏

n=1

Sf (v − ℓ
[s−1]
s+1+n)Sf (v − ℓ

[−s−1]
s+1+n)S(v − ℓ

[s−2]
s+n )S(v − ℓ

[−s]
s+n)

]

− log




s+1∏

k=−∞,k 6=0

Sf (v − ℓ
[−s−1]
k )Sf (v − ℓ

[s−1]
k ) ·

s∏

k=−∞,k 6=0

S(v − ℓ
[−s]
k )

S(v − ℓ
[+s]
k )


 . (3.17)

The derivation is discussed in appendix D.2.2.

Let us compare the results with the Fourier source terms. The first line of (3.17)

involving the zeroes of T-functions is twice as large as (3.9), and we should apply the

principal value prescription to halve this contribution. The second line agrees with (3.10),

15The reason for this prescription is not understood.
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which implies that the third line should be absent. It is easy to trace the origin of the

third line. For example, S(v− ℓ
[−s]
k ) and Sf (v− ℓ

[−s−1]
k ) come from the zeroes of L[+s] and

L[+s+1] in the lower half plane computed in (D.25) and (D.27), respectively.

Based on this observation, we can specify a deformed contour which is consistent with

the Fourier source terms.16 It turns out that, if we want to apply the contour deformation

trick to the consistent deformed contour, we need to study the singularity of integrands

first, and classify if they come from T-function or L-functions, following (3.15).

Let us give one example of the consistent contour by modifying the contours ∗↓ , ∗↑
to ∗d , ∗u. For both ∗d and ∗u, we make the principal value prescription to the zeroes (or

poles) of T-functions. As for ∗d, we neglect the zeroes of L[+s] or L[s+1] in the lower half

plane, and as for ∗u we neglect the zeroes of L
[−s]

or L
[−s−1]

in the upper half plane. We

join the two contours as shown in figure 3, and denote the corresponding convolution by

∗s = ∗d + ∗u. We then obtain

log(1 + bs) ⋆s Kf − log(1 + bs) ⋆s K
[+2]
f + log(1 + Y1,s−1) ⋆s sK

= −Jcons
s + log(1 + bs) ⋆ Kf − log(1 + bs) ⋆ K

[+2]
f + log(1 + Y1,s−1) ⋆ sK , (3.18)

with

−Jcons
s = log

S(v − t−s−1,1)

S(v − t+s−1,−1)
+ log

[ ∞∏

n=1

S(v − ℓ
[−s]
s+n)

S(v − ℓ
[+s]
s+n)

]
(3.19)

+ log
[
Sf (v − t−s,1)Sf (v − t−s,−1)

]
+ log

[ ∞∏

n=1

Sf (v − ℓ
[−s−1]
s+1+n)Sf (v − ℓ

[s−1]
s+1+n)

]
.

The derivation is explained again in appendix D.2.2. This result agrees with (3.9), (3.10).

Regarding the anti-holomorphic part of A1 NLIE (2.7), we can construct a consistent

deformed contour by taking the complex conjugation.

The source term (3.19) depends on the zeroes (or poles) of T1,s−1 , T1,s in the

strip A−1,1 and the zeroes (or poles) of L,L in the upper or lower half planes,

{ℓs+1 , ℓs+2 , . . . }, {ℓs+1 , ℓs+2 , . . . }. The latter is related to the poles (or zeroes) of dy-

namical variables 1 + b−s , 1 + b
+
s , 1 + Y1,s−1 via (3.15). To impose the exact quantization

condition on the extra roots lying outside the main strip, we need to analytically continue

the NLIE, as mentioned in section 2.3. This is a noticeable feature of NLIE compared to

the mirror TBA.

4 Conclusion

In this paper we generalized the hybrid NLIE of [18] and applied it to a wider class of states.

First, we studied the ground and the orbifold Konishi states of twisted AdS5 × S5. In

the mirror TBA, the orbifold Konishi states have infinitely many asymptotic critical lines

from YM |w nodes. In the hybrid NLIE, the number of critical lines is indeed reduced to

16The consistent deformed contour is not necessarily unique, so there is no contradiction with our previous

claim on the orbifold Konishi state at weak coupling.
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Figure 3. The deformed contour for bs , bs in v-plane, adjusted to be consistent with the Fourier

source term. The symbols ◦,×,△ represent the zeroes or poles of T,L, L, respectively. The orange

region corresponds to the region surrounded by the deformed contour and the mirror real axis.

a finite number.17 The quantization condition for the extra zeroes is written in terms of

NLIE variables (as , as , Y1,s−1).

Second, we derived the source terms of hybrid NLIE for general states in two ways,

Fourier transform method and contour deformation trick. We constructed the deformed

contour which is consistent with the Fourier transform method.

It is interesting to generalize the gauge-invariant NLIE to An cases. The SU(N)

principal chiral models contain boundstate spectrum for N ≥ 3, and its NLIE has been

studied in [72]. We should be able to reproduce their results by A2 NLIE and contour

deformation trick.

While this paper is in preparation, hybrid NLIE of AdS5 × S5 made out of A1 and A3

NLIE coupled to the quasi-local formulation of the mirror TBA [73] has appeared in [74].

We expect that the contour deformation trick will also work to obtain this new NLIE for

excited states.
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A Notation

We follow the notation of [16, 18],

xs(v) =
v

2

(
1 +

√
1−

4

v2

)
, x(v) =

1

2

(
v − i

√
4− v2

)
.

R(±)(v) =
K∏

j=1

x(v)− x±s,j√
x±s,j

, B(±)(v) =
K∏

j=1

1
x(v) − x±s,j√

x±s,j
, (A.1)

together with f [±m] = f
(
v ± im

g

)
and f(v)± = f(v)[±1]. The complex rapidity plane are

divided into the strips,

Am,n =

{
v ∈ C

∣∣∣ Im v ∈

(
m

g
,
n

g

)}
. (A.2)

We use the following kernels and S-matrices:

sK(v) =
1

2πi

d

dv
logS(v) S(v) = − tanh

[π
4
(vg − i)

]
,

KQ(v) =
1

2πi

d

du
logSQ(v) SQ(v) =

v − iQ
g

u+ iQ
g

, (A.3)

Kf (v) =
1

2πi

∂

∂v
logSf (v), Sf (v) =

Γ
(

g
4i

(
v + 2i

g

))
Γ
(
− gv

4i

)

Γ
( gv
4i

)
Γ
(
− g

4i

(
v − 2i

g

)) . (A.4)

One can check the properties S+S− = 1 and S−
f S

+
f = S1 .

The convolutions are defined by18

F ⋆ K(v) =

∫ ∞

−∞
dt F (t)K(v − t), F ⋆̂K(v) =

∫ 2

−2
dt F (t)K(v − t). (A.5)

The logarithmic derivative and its Fourier transform are defined by

dlX(v) ≡
∂

∂v
logX(v), d̂lX(k) ≡

∫ +∞

−∞
dv eikv

∂

∂v
logX(v). (A.6)

We also use Dk = ek/g and ŝK = 1/(Dk + D−1
k ). It is useful to keep in mind that the

operator Dk shifts the location of zeroes,

Dn
k e

ikq = e
ik
(

q− in
g

)

= eik q[−n]
, D−n

k eikq = eik q[+n]
. (A.7)

Another useful formulae are19

FT−1

[
θ(+k)D+n

k

Dk −D−1
k

Dk +D−1
k

eikq

]
= −Kf (v − q[−n])− sk(v − q[1−n]),

FT−1

[
θ(−k)D−n

k

Dk −D−1
k

Dk +D−1
k

eikq

]
= +Kf (v − q[+n]) + sk(v − q[n−1]). (A.8)

18This definition is adapted for Fourier transform and different from the usual convolution in the mirror

TBA, e.g. F ⋆K(v) =
∫∞

−∞
dt F (t)K(t− v). Since the kernels sK(v) is invariant under v → −v, we can still

use (A.5) to write down the simplified TBA for YM|w .
19The symbol FT−1 means the inverse Fourier transform,

∫ +∞

−∞
dk
2π

e−ikv.
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The q-number is defined by

[s]q =
qs − q−s

q − q−1
, q = eiα . (A.9)

B Review of NLIE variables

We briefly review the definition of dynamical variables (as , as , Y1,s−1) appearing in A1

NLIE in terms of gauge-covariant variables, the T-, Q- and L-functions [18]. It is con-

venient to use the gauge-covariant variables when we explain how the source terms of

A1 NLIE appear or disappear in accordance with the analyticity of dynamical variables

(as , as , Y1,s−1).

B.1 A1 TQ-relations

It is known that the A1 T-system can be linearized by the A1 TQ-relations [75],

Q[s−2] T1,s −Q[+s] T−
1,s−1 = Q

[−s]
L[+s] , Q

[2−s]
T1,s −Q

[−s]
T+
1,s−1 = Q[+s] L

[−s]
, (B.1)

T0,s T2,s = L[+s+1] L
[−s−1]

.

As a system of linear difference equations for Q,Q, these equations have two linearly

independent solutions. We distinguish them by (Q,Q) and (P, P ) if necessary. We also

notice that the equations (B.1) are covariant under the gauge transformation of T-system,

as discussed in appendix B.2. In particular, the gauge symmetry becomes manifest if we

rewrite (B.1) using

(Q[+s], P [+s], Q
[−s]

, P
[−s]

, L[+s], L
[−s]

) = (QI
1,s, Q

II
1,s, Q

I
1,s, Q

II
1,s, L1,s, L1,s), (B.2)

as

Qν−
1,s−1 T1,s −Qν

1,s T
−
1,s−1 = Q

ν−
1,s−1 L1,s , Q

ν+
1,s−1 T1,s −Q

ν
1,s T

+
1,s−1 = Qν+

1,s−1 L1,s , (B.3)

T0,s T2,s = L+
1,s L

−
1,s .

The A1 NLIE is written by the gauge-invariant combination of variables in (B.3) and

of the T-system, namely

1+bνs =
Qν [s−1]

Q
ν [1−s]

T+
1,s

L[s+1]
, 1+b

ν
s =

Q
ν [1−s]

Qν [s−1]

T−
1,s

L
[−s−1]

, 1+Y1,s = 1+Ys−1|w =
T−
1,s T

+
1,s

T2,s T0,s
. (B.4)

For regularization purposes, we define aνs , a
ν
s and relate them to bνs , b

ν
s as

aνs (v) = bνs

(
v −

iγ

g

)
, aνs (v) = b

ν
s

(
v +

iγ

g

)
, (0 < γ < 1). (B.5)
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B.2 Symmetry in A1 TQ-relations

The first line of (B.3) is invariant under the holomorphic gauge transformation,

T1,s → g
[+s]
1 g

[−s]
2 T1,s , Qν

1,s → g
[+s]
1 Qν

1,s , Q
ν
1,s → g

[−s]
2 Q

ν
1,s , (B.6)

provided that the L-functions transform as

L+
1,s → g

[s+1]
1 g

[s−1]
1 L+

1,s , L
−
1,s → g

[−s+1]
2 g

[−s−1]
2 L

−
1,s . (B.7)

The TQ-relations are also invariant under the anti-holomorphic transformation,

T1,s → g
[+s]
1 g

[−s]
2 T1,s , Qν

1,s → g
[−s]
2 Qν

1,s , Q
ν
1,s → g

[+s]
1 Q

ν
1,s , (B.8)

although it spoils the translational invariance of Q-functions (B.2). The combination of

two transformations (B.6), (B.8) generates a symmetry group larger than the usual gauge

transformation of T-system.

The Y -functions and the variables (bνs , b
ν
s) are invariant under both transformations:

1 + bνs =
Qν

1,s−1

Q
ν
1,s−1

T+
1,s

L+
1,s

, 1 + b
ν
s =

Q
ν
1,s−1

Qν
1,s−1

T−
1,s

L−
1,s

. (B.9)

However (bνs , b
ν
s ) are not invariant under the frame rotation [68],

(
Q′

P ′

)
= G

(
Q

P

)
,

(
Q

′

P
′

)
= G

(
Q

P

)
, G+ = G−, G ∈ SL(2,C). (B.10)

This transformation do not change Wronskians T, L, L, but it acts on the index ν of (bνs , b
ν
s )

in a non-linear way. As a result, the A1 NLIEs before and after the transformation are

related in a complicated way.

To write down NLIE we have to specify the frame, i.e. a particular direction of ν. Due

to the nonlinear transformation law of (bνs , b
ν
s ) under the frame rotation, it seems to make

little sense to consider the A1 NLIE for general ν, or general choice of frame.

B.3 General solution of A1 TQ-relations

We look for the most general solution of A1 TQ-relations for given Q-functions, and show

that such solution is given by the Wronskian of Q-functions up to a periodic function.

Let us first introduce the differential form as [68, 76]

Q(v) =
II∑

ν=I

Qν(v) eν , Q(v) =
II∑

ν=I

Q
ν
(v) eν , eI ∧ eII = 1, (B.11)

and rewrite the A1 TQ-relations as

Q[s−2] T1,s −Q[+s] T−
1,s−1 = Q

[−s]
L1,s , Q

[2−s]
T1,s −Q

[−s]
T+
1,s−1 = Q[+s] L1,s . (B.12)
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If we apply Q[+s]∧ and ∧Q
[−s]

to both equations, we obtain

Q[+s] ∧Q[s−2] T1,s = Q[+s] ∧Q
[−s]

L1,s , Q
[2−s]

∧Q
[−s]

T1,s = Q[+s] ∧Q
[−s]

L1,s , (B.13)

Q[s−2] ∧Q
[−s]

T1,s = Q[+s] ∧Q
[−s]

T−
1,s−1 , Q[+s] ∧Q

[2−s]
T1,s = Q[+s] ∧Q

[−s]
T+
1,s−1 .

(B.14)

The equations (B.13) are solved by the Ansatz

T1,s = A1,sQ
[+s]∧Q

[−s]
, L1,s = A1,sQ

[+s]∧Q[s−2], L1,s = A1,sQ
[2−s]

∧Q
[−s]

, (B.15)

and the equations (B.14) by

A1,s = A−
1,s−1 = A+

1,s−1 . (B.16)

Thus A1,s are periodic functions. This freedom should not be confused with gauge arbi-

trariness of (B.7), because we have already chosen a particular gauge in writing (Q ,Q).

These A’s cancel out in the combination (B.4), so without loss of generality we may set

them to unity. Then, the general solution (B.15) becomes the Wronskian as

T1,s = Q[+s] ∧Q
[−s]

= det

(
Q[+s] Q

[−s]

P [+s] P
[−s]

)
, (B.17)

L1,s = Q[+s]∧Q[s−2] = det

(
Q[+s] Q[s−2]

P [+s] P [s−2]

)
, L1,s = Q

[2−s]
∧Q

[−s]
= det

(
Q

[−s+2]
Q

[−s]

P
[−s+2]

P
[−s]

)
.

C Twisted asymptotic data

Below we summarize the data to solve the mirror TBA and hybrid NLIE for twisted

AdS5 × S5 in the asymptotic limit. In particular, we need the twisted transfer matrices

written in the form of Wronskian to solve the hybrid NLIE asymptotically. All T-, L-,

Q-functions in this appendix are asymptotic expressions, though we use the same notation

as in appendix B.

C.1 Generalities

The twisted transfer matrices of su(2|2) symmetry can be constructed by the generating

functional called quantum characteristic function [48, 70]. In particular, the quantum

characteristic function D0 generates T1,s through

D0 = (1− U0T1U0) (1− U0T2U0)
−1 (1− U0T3U0)

−1 (1− U0T4U0) ,

≡
∞∑

s=0

(−1)s U s
0 T1,s(x

[±s]
0 )U s

0 , (C.1)

where U0 is the shift operator acting on the mirror rapidity,

U sf(v)U−s ≡ f
(
v +

is

g

)
= f [+s] . (C.2)
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The Tn are the components of the fundamental transfer matrix, T1,1 = T1 − T2 − T3 + T4 ,

and they can be written as [77],20

Tn = S0 T̃n , S0 ≡
KII∏

j=1

yj − x−0
yj − x+0

√
x+0
x−0

·
KI∏

i=1

x+0 − x+i
x+0 − x−i

√
x−i
x+i

, (C.3)

with

T̃1 =
KII∏

j=1

νj − v − i
g

νj − v + i
g

KI∏

i=1

1− 1
x−
0 x+

i

1− 1
x−
0 x−

i

√
x+i
x−i

, T̃2 = e+iα
KII∏

j=1

νj − v − i
g

νj − v + i
g

KIII∏

k=1

wk − v + 2i
g

wk − v
,

T̃3 = e−iα
KIII∏

k=1

wk − v − 2i
g

wk − v
, T̃4 =

KI∏

i=1

x+0 − x−i
x+0 − x+i

√
x+i
x−i

, (C.4)

where we used x0 = x(v), xi = xs(ui), νj = yj + 1/yj , and introduced the twist by21

T2 → eiα T2 T3 → e−iα T3 . (C.5)

By expanding (C.1), we obtain

T1,s =
s∏

m=1

(
−S

[−s−1+2m]
0

)
·
[
ρ̃s+1 − T̃

[−s+1]
1 ρ̃+s − ρ̃−s T̃

[+s−1]
4 + T̃

[−s+1]
1 ρ̃s−1 T̃

[+s−1]
4

]
, (C.6)

ρ̃s =
s−1∏

m=1

T̃
[−s+2m]
2 +

s−2∑

k=1

(
k∏

m=1

T̃
[−s+2m]
2

s−1∏

n=k+1

T̃
[−s+2n]
3

)
+

s−1∏

n=1

T̃
[−s+2n]
3 (s ≥ 2). (C.7)

together with ρ̃1 = 1, ρ̃0 = 0. Note that

s∏

m=1

(
−S

[−s−1+2m]
0

)
=

KII∏

j=1

yj − x
[−s]
0

yj − x
[+s]
0

√√√√x
[+s]
0

x
[−s]
0

·
s∏

m=1


−

R
[−s+2m]
(+)

R
[−s+2m]
(−)


 . (C.8)

The transfer matrices T1,s (C.6) can be expressed as the Wronskian of Q-functions in

the following way. Let us rewrite ρ̃s≥1 as

ρ̃s =
U

[s−1]
3

U
[1−s]
2

s−1∑

k=0

̺[−s+1+2k] , ̺ ≡
U2

U3
, T̃2 ≡

U+
2

U−
2

, T̃3 ≡
U+
3

U−
3

, (C.9)

and “differencize” the summation

M+
ρ −M−

ρ = ̺ ⇒ M [+s]
ρ −M [−s]

ρ =
s−1∑

k=0

̺[−s+1+2k] , ρ̃s =
U

[s−1]
3

U
[1−s]
2

(
M [s]

ρ −M [−s]
ρ

)
. (C.10)

After a little algebra, (C.6) becomes

T1,s =
s∏

m=1

(
−S

[−s−1+2m]
0

)
·
U

[s−2]
3

U
[2−s]
2

T1,s , T1,s = det

(
Q[+s] Q

[−s]

P[+s] P
[−s]

)
, (C.11)

20We introduce S0 since the transfer matrix is defined modulo overall scalar factor.
21We rearranged the index n = 1, 2, 3, 4 from the one used in section 2.1.
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where

Q[+s] = T̃
[s−1]
4 − T̃

[s−1]
3 =




KI∏

i=1

x
[+s]
0 − x−i

x
[+s]
0 − x+i

√
x+i
x−i

− e−iα
KIII∏

k=1

wk − v − i(s+1)
g

wk − v − i(s−1)
g


 ,

Q
[−s]

= T̃
[1−s]
1 − T̃

[1−s]
2 =

KII∏

j=1

νj − v + i(s−2)
g

νj − v + is
g

×




KI∏

i=1

1− 1

x
[−s]
0 x+

i

1− 1

x
[−s]
0 x−

i

√
x+i
x−i

− e+iα
KIII∏

k=1

wk − v + i(s+1)
g

wk − v + i(s−1)
g


 ,

P[+s] = +̺[+s] T̃
[s−1]
4 − Q[+s]M [+s+1]

ρ ,

P
[−s]

= −̺[−s] T̃
[1−s]
1 − Q

[−s]
M [−s−1]

ρ . (C.12)

It follows that

L[+s] ≡ det

(
Q[+s] Q[s−2]

P[+s] P[s−2]

)
=

̺[+s]T̃
[s−1]
3

T̃
[s−1]
2

(
T̃
[s−3]
4 Q[+s] − T̃

[s−1]
2 Q[s−2]

)
,

L
[−s]

≡ det

(
Q

[−s+2]
Q

[−s]

P
[−s+2]

P
[−s]

)
=

̺[−s]T̃
[1−s]
2

T̃
[1−s]
3

(
T̃
[3−s]
1 Q

[−s]
− T̃

[1−s]
3 Q

[2−s]
)
. (C.13)

A few remarks are in order. First, since our twist (C.5) affects T1,s only through ρs ,

the results (C.12) should formally agree with [78] modulo gauge transformation. Second,

if one wants to solve a couple of difference equations (C.9) explicitly for specific states,

it is important to choose a good gauge for T-functions. Third, for the purpose of getting

the asymptotic solution of the hybrid NLIE, we do not have to compute the second set of

Q-functions (P,P). Once we know T1,s ,Q,Q, we obtain L, L by the A1 TQ-relations, and

they provide sufficient data to construct the gauge-invariant variables (bs , bs). Fourth, as

will be discussed in (B.6), there exists a gauge transformation of T-system which brings

the first (or second) set of Q-functions to unity.

C.2 Transfer matrix for orbifold Konishi

Consider the orbifold Konishi state. Since KII = KIII = 0, it satisfies

ρ̃s =
s∑

k=1

eiα(s+1−2k) =
eiαs − e−iαs

eiα − e−iα
= [s]q , (C.14)

where [s]q is the q-number (A.9). The difference equations (C.9), (C.10) have the solution22

U2 =
1

U3
= eαgv/2, Mρ =

eαgv − 1

2i sinα
, (α 6= πZ). (C.15)

22Linear difference equations can be solved by e.g. Fourier transform.
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We added a constant to Mρ to keep the limit α → 0 non-singular. The asymptotic Q-

functions for the orbifold Konishi state are given by

Q[+s] =
R

[+s]
(−)

R
[+s]
(+)

− e−iα Q
[−s]

=
B
[−s]
(+)

B
[−s]
(−)

− e+iα , (C.16)

P[+s] = eα(gv+is)
R

[+s]
(−)

R
[+s]
(+)

− Q[+s]M [+s+1]
ρ , P

[−s]
= −eα(gv−is)

B
[−s]
(+)

B
[−s]
(−)

− Q
[−s]

M [−s−1]
ρ ,

and the corresponding T1,s defined in (C.11) is

T1,s = eαgv


[s+ 1]q − [s]q

R
[+s]
(−)

R
[+s]
(+)

− [s]q
B
[−s]
(+)

B
[−s]
(−)

+ [s− 1]q
R

[+s]
(−)

R
[+s]
(+)

B
[−s]
(+)

B
[−s]
(−)


 . (C.17)

We define the L-functions as the solution of the A1 TQ-relations (B.1), which yields

L[+s] = e
αg

(

v+
i(s−2)

g

)


1 +

R
[+s]
(−)

R
[+s]
(+)

R
[s−2]
(−)

R
[s−2]
(+)

− 2 cosα
R

[s−2]
(−)

R
[s−2]
(+)


 ,

L
[−s]

= e
αg

(

v− i(s−2)
g

)


1 +

B
[−s]
(+)

B
[−s]
(−)

B
[2−s]
(+)

B
[2−s]
(−)

− 2 cosα
B
[2−s]
(+)

B
[2−s]
(−)


 . (C.18)

It also follows that

T0,s T2,s = T+
1,s T

−
1,s − T1,s−1 T1,s+1 = L[+s+1] L

[−s−1]
= L+

1,s L
−
1,s. (C.19)

Here is a caution for numerical computation. The Wronskian formulae can be numeri-

cally unstable at large |v| due to the cancellation of two vectors (Q,P ) ∼ (Q,P ). To avoid

this problem we should use the analytic expression like (C.17) instead of the Wronskian

form (C.11). This remark also applies to the L-functions (C.18).

D Derivations

We derive our claims in sections 3.2 and 3.3.

D.1 Derivation of A1 NLIE with source terms

Below we generalize the derivation of A1 NLIE [18] assuming that T, L, Q-functions have

zeroes in the complex plane as (D.1), which we repeat here:

T1,s(ts,n) = T1,s(ts,−n) = Q(qn) = Q(qn) = L(ℓn) = L(ℓn) = 0,

{ts,n , qn , ℓn} ∈ An−1,n ,
{
ts,−n , qn , ℓn

}
∈ A−n,−n+1 , (n ≥ 1). (D.1)
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The A1 TQ-relations (B.3) suggest to study the following two variables:

1 + bs =
Q[s−1] T+

1,s

Q
[1−s]

L[s+1]
, bs =

Q[s+1] T1,s−1

Q
[1−s]

L[s+1]
,

1 + bs =
Q

[1−s]
T−
1,s

Q[s−1] L
[−s−1]

, bs =
Q

[−s−1]
T1,s−1

Q[s−1] L
[−s−1]

. (D.2)

Our goal is to deduce the equation of the form log bs = log(1+bs)⋆Kf+. . . by taking Fourier

transform of the logarithmic derivative of these equations. See appendix A for notation.

As a warm-up, consider the T-system at (1, s− 1),

d̂l
[
T+
1,s−1T

−
1,s−1

]
= d̂l

[
(1 + Y1,s−1)L

[+s] L
[−s]
]
. (D.3)

When T1,s−1(v) has zeroes inside the strip A−1,1 , we find the relations:23

d̂lT+
1,s−1 =

∫

R+ i
g

dv′ e
ik
(

v′− i
g

)

∂v′ log T1,s−1(v
′)=Dk

{
d̂lT1,s−1 − 2πi eikts−1,1

}
, Dk ≡ e+k/g,

d̂lT−
1,s−1 =

∫

R− i
g

dv′ e
ik
(

v′+ i
g

)

∂v′ log T1,s−1(v
′) = D−1

k

{
d̂lT1,s−1 + 2πi eikts−1,−1

}
. (D.4)

The equation (D.3) becomes

d̂lT1,s−1 = d̂l
[
(1 + Y1,s−1)L

[+s] L
[−s]
]
ŝK + 2πi

[
Dk e

ikts−1,1 −D−1
k eikts−1,−1

]
ŝK . (D.5)

where ŝK ≡ 1/(Dk +D−1
k ).

The relations (D.4) can be generalized to the Q- and L-functions (see figure 4):

d̂lQ[r+n] = Dn
k d̂lQ

[r] − 2πiDr+n
k

n∑

j=1

eikqr+j ,

d̂lQ[r−n] = D−n
k d̂lQ[r] + 2πiDr−n

k

n∑

j=1

eikqr−n+j ,

d̂lQ
[−r−n]

= D−n
k d̂lQ[−r] + 2πiD−r−n

k

n∑

j=1

eikqr+j ,

d̂lQ
[−r+n]

= Dn
k d̂lQ

[−r] − 2πiD−r+n
k

n∑

j=1

eikqr−n+j , (D.6)

with r, n ∈ Z≥1 . By taking the limit n → ∞, we find24

d̂lQ[+s] = +2πiDs
k

∞∑

n=1

eikqs+n for Re k > 0,
(
if lim

n→∞
D−n

k d̂lQ[r+n] → 0
)

d̂lQ
[−s]

= −2πiD−s
k

∞∑

n=1

eikqs+n for Re k < 0,
(
if lim

n→∞
Dn

k d̂lQ
[−r−n]

→ 0
)
. (D.7)

23T1,s−1 should not have branch cuts on the real axis, which is asymptotically true for twisted AdS5×S5.
24We can derive (D.7) also by assuming that Q or Q are meromorphic in the upper or lower half plane.
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Figure 4. Zeroes of Q[+s](v) and Q
[+s]

(v). Notice that when Q(v) has a zero at v = qs+1 ∈ As,s+1

as in (D.1), the shifted function Q[+s](v) has a zero at v = q
[−s]
s+1 ∈ A0,1 .

Important lemma. In order to derive the NLIE of gauge-invariant variables, it is im-

portant to look for a combination of 1 + bs , 1 + bs which do not depend on T1,s . The

answer is

Xs ≡
1 + b−s
1 + b

+
s

=
Q[s−2]Q[+s]L

[−s]

Q
[−s]

Q
[2−s]

L[+s]
. (D.8)

We then assume that

Q[s−2] and L[+s] are meromorphic in the upper half plane,

Q
[2−s]

and L
[−s]

are meromorphic in the lower half plane. (D.9)

These assumptions are realistic, becauseQ(v), L(v+2i
g ) do not have branch cuts for Im v > 0

and s ≥ 3 in our setup. By applying d̂l on both sides of (D.8), we obtain

d̂lXs = 2πi Res
UHP

d̂l
Q[s−2]Q[+s]

L[+s]
+ d̂l

L
[−s]

Q
[−s]

Q
[2−s]

, (Re k > 0),

d̂lXs = d̂l
Q[s−2]Q[+s]

L[+s]
+ 2πi Res

LHP
d̂l

L
[−s]

Q
[−s]

Q
[2−s]

, (Re k < 0). (D.10)

where ResUHP and ResLHP collect the residues in the upper and lower half planes, respec-

tively. By using (D.10) and d̂lf = θ(+k) d̂lf + θ(−k) d̂lf , we obtain

d̂l
Q[s−2]Q[s]

L[+s]
= +θ(−k) d̂lXs + 2πiRes d̂lXs ,

d̂l
Q

[2−s]
Q

[−s]

L[−s]
= −θ(+k) d̂lXs + 2πiRes d̂lXs , (D.11)

Res d̂lXs ≡ θ(+k) Res
UHP

d̂l
Q[s−2]Q[+s]

L[+s]
+ θ(−k) Res

LHP
d̂l

Q
[−s]

Q
[2−s]

L
[−s]

, (D.12)
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The last term can be computed explicitly with the help of (D.7) as

Res d̂lXs = θ(+k)

{
Ds

k

∞∑

n=1

eikqs+n +Ds−2
k

∞∑

n=1

eikqs−2+n −Ds
k

∞∑

n=1

eikℓs+n

}
(D.13)

+ θ(−k)

{
−D−s

k

∞∑

n=1

eikqs+n −D−s+2
k

∞∑

n=1

eikqs−2+n +D−s
k

∞∑

n=1

eikℓs+n

}
.

NLIE for bs. In order to derive the A1 NLIE with source terms, consider d̂lbs in (D.2),

d̂lbs = d̂lQ[s+1] + d̂lT1,s−1 − d̂lQ
[1−s]

− d̂lL[s+1] , (D.14)

= D2
k

{
d̂lQ[s−1] − d̂lL[s] ŝK

}
−
{
d̂lQ

[1−s]
− d̂lL

[−s]
ŝK

}
+ d̂l(1 + Y1,s−1) ŝK

− 2πiDs+1
k

[
eikqs+1 + eikqs − eikℓs+1

]
+ 2πi

[
Dk e

ikts−1,1 −D−1
k eikts−1,−1

]
ŝK .

To rewrite the quantities in the curly brackets, we use Xs in (D.8). With the help of the

formulae (D.11) and

d̂l
[
Q[s−2]Q[+s]

]
=
(
Dk +D−1

k

)
d̂lQ[s−1] + 2πi

[
Ds−2

k eikqs−1 −Ds
k e

ikqs
]
,

d̂l
[
Q

[2−s]
Q

[−s]
]
=
(
Dk +D−1

k

)
d̂lQ

[1−s]
− 2πi

[
D2−s

k eikqs−1 −D−s
k eikqs

]
, (D.15)

we obtain

d̂lbs =
{
D2

k θ(−k) + θ(k)
}
ŝK d̂lXs + d̂l(1 + Y1,s−1) ŝK + 2πi (D2

k − 1) ŝK Res d̂lXs

+ 2πi
[
−Ds

k e
ikqs−1 −Ds

k e
ikqs −D2−s

k eikqs−1 +D−s
k eikqs

]
ŝK

− 2πiDs+1
k

[
eikqs+1 − eikℓs+1

]
+ 2πi

[
Dk e

ikts−1,1 −D−1
k eikts−1,−1

]
ŝK . (D.16)

Since we want an equation of the form d̂lbs = d̂l(1 + bs)K̂f + . . . , we rewrite d̂lXs as

d̂lXs = D−1
k d̂l(1 + bs)−Dk d̂l(1 + bs) + 2πiRes d̂l

1 + b−s
1 + b

+
s

, (D.17)

Res d̂l
1 + b−s
1 + b

+
s

= eikts,1 + eikq
[−s+2]
s−1 − eikq

[+s]
s − eikℓ

[−s]
s+1 + eikts,−1+ eikq

[s−2]
s−1 − eikq

[−s]
s − eikℓ

[+s]
s+1 ,

The last line is the collection of the residues of d̂l(1+bs) inside A−1,0 and d̂l(1+bs) inside

A0,1 with appropriate shift.

In summary, Fourier transform of the derivative of A1 NLIE with the source term is

d̂lbs = −FT (J ′
s) + d̂l(1 + bs)K̂f − d̂l(1 + bs)K̂

[+2]
f + d̂l(1 + Y1,s−1) ŝK , (D.18)

where K̂f =
{
Dk θ(−k) +D−1

k θ(k)
}
ŝK is the Fourier transform of the kernel Kf , and

−
FT (J ′

s)

2πi
=Dk K̂f Res d̂l

1 + b−s
1 + b

+
s

+ (D2
k − 1) ŝK Res d̂lXs

+
[
−Ds

k e
ikqs−1 −Ds

k e
ikqs −D2−s

k eikqs−1 +D−s
k eikqs

]
ŝK

−Ds+1
k

[
eikqs+1 − eikℓs+1

]
+
[
Dk e

ikts−1,1 −D−1
k eikts−1,−1

]
ŝK . (D.19)
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Here Res d̂lXs is given in (D.13), and it consists of infinitely many terms. To obtain (2.6),

we have to apply the inverse Fourier transform and integrate with respect to v.25 The

inverse Fourier transform of (D.19) is remarkably simple and given by (3.8). The integration

constants can be fixed by consideration of the limit v → ±∞.

Case of orbifold Konishi state. Let us check if the above results are consistent with

the source terms of A1 NLIE for orbifold Konishi state discussed in section 2.3. As for the

asymptotic orbifold Konishi state, Q[s−2], L[+s] are analytic in the upper half plane and

Q
[2−s]

, L
[−s]

are analytic in the lower half plane. We have to take care of the extra zeroes

of T-functions only.

Since the A1 NLIE is written in terms of (as , as) = (b
[−γ]
s , b

[+γ]
s ) we have to modify

slightly the derivation. In (D.14) we applied d̂l to the definition of bs . If we use as = b
[−γ]
s ,

we obtain

d̂las = d̂lb[−γ]
s = D−γ

k

[
d̂lbs + 2πi eikts−1,−γ

]
(D.20)

Actually we may neglect the residue term. After the inverse Fourier transform, it becomes

a δ-function, whose integration is just a constant. There is another reason why we do not

have to take care of the extra zeroes of T1,s−1 : the rapidity of Ys−1|w in (2.6), (2.7) is not

shifted at all.

An important modification occurs at the equation (D.17), which changes as

d̂lXs ≡ D−1+γ
k d̂l(1 + as)−D1−γ

k d̂l(1 + as) + 2πiRes d̂l
1 + a

[−1+γ]
s

1 + a
[+1−γ]
s

, (D.21)

Now the last term is the collection of the residues of d̂l(1 + as) inside A−1+γ,0 and d̂l(1 +

as) inside A0,1−γ with appropriate shift. Since both (1 + a
[−1+γ]
s ) and (1 + a

[+1−γ]
s ) are

proportional to T1,s , this means that the extra zeroes of T1,s inside the strip A−1+γ,1−γ

contribute to the source term (D.19). The rest of the derivation goes without any change.

One can see that this conclusion is consistent with the critical behavior observed

in (2.18), (2.19).

D.2 Contour deformation for A1 NLIE

We discuss how to obtain extra source terms in A1 NLIE by applying the contour defor-

mation trick to various deformed contours. When we straighten the deformed contour of

the NLIE in the presence of extra zeroes (D.1), we obtain extra terms by collecting the

residues. To simplify the discussion we remove the regulator γ by taking the limit γ ≪ 1.

The holomorphic part of A1 NLIE for the ground state (Js = js) takes the form

log bs = −Js + log(1 + bs) ⋆ Kf − log(1 + bs) ⋆ K
[+2−0]
f + log(1 + Ys−2|w) ⋆ sK , (D.22)

where the variables in the right hand side are defined by (B.4).

25The formulae (A.8) are useful for this computation.
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D.2.1 Deformed contour of orbifold Konishi state

For general asymptotic states, Q,L[+2] have no branch cuts in the upper half plane, Q,L
[−2]

have no branch cuts in the lower half plane, excluding the real axis. Thus, we can pull the

integration contour of (1 + bs), (1 + bs) up to Im v = ±(s − 1)/g and that of (1 + Ys−2|w)
up to ±(s− 2)/g. Around the imaginary axis we can further deform them toward ±∞.

Let ∗K be the convolution using Konishi’s deformed contour depicted in figure 2. This

contour can pick up all zeroes of T, L, Q-functions inside the strip A−s+1,0 or A−s+2,0 .

Recalling our notation (D.1), we find26

log(1 + bs) ⋆K Kf → + log




Sf (v − t−s,1)
s−2∏

j=1

Sf (v − t−s,−j)

s−1∏

j=1

Sf (v − q
[1−s]
j )

2s−2∏

j=s

Sf (v − q
[s−1]
j )

s+1∏

j=3

Sf (v − ℓ
[−s−1]
j )



,

− log(1 + bs) ⋆K K
[+2]
f → − log




s∏

j=2

Sf (v − t−s,−j)
2s−2∏

j=s

Sf (v − q
[s−3]
j )

s−1∏

j=1

Sf (v − q
[−s−1]
j )

2s∏

j=s+2

Sf (v − ℓ
[s−1]
j )



, (D.23)

log(1 + Y1,s−1) ⋆K sK → + log




s−1∏

j=2

S(v − t+s−1,−j) · S(v − t−s−1,1)
s−3∏

j=1

S(v − t−s−1,−j)

s∏

j=3

S(v − ℓ
[−s]
j )

2s−2∏

j=s+1

S(v − ℓ
[+s]
j )



,

We assume that all roots ts,−n(n ≥ 1) lie along the imaginary axis, as they do for

the orbifold Konishi state at weak coupling. Since the deformed contour pick up the

corresponding residues, we can replace the upper bound of the product of S-matrices with

ts,−n , ts−1,−n by ∞.

After straightening the contour and using S+S− = 1 and S−
f S

+
f = S1 , the source term

Js in (D.22) becomes

JCDT
s = js − log

[
Sf (v − t−s,1)Sf (v − t−s,−1)

]
− log

[
S(v − t−s−1,1)S(v − t−s−1,−1)

]
(D.24)

− log




s−1∏

j=1

S1(v − q
[−s]
j )

2s−2∏

j=s

S1(v − q
[s−2]
j )

·

2s∏

j=s+2

Sf (v − ℓ
[s−1]
j )

s+1∏

j=3

Sf (v − ℓ
[−s−1]
j )

·
1

s∏

j=3

S(v − ℓ
[−s]
j )

2s−2∏

j=s+1

S(v − ℓ
[+s]
j )



.

D.2.2 Various deformed contours

Below we will derive the results of section 3.3.

26Use Sf (v
[+2] − t) = Sf (v − t[−2]) to compute the extra terms from log(1 + bs) ⋆ K

[+2]
f .
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The convolutions ∗↓ , ∗↑ are defined as the integration with the deformed contour which

encloses all zeroes in the lower and upper half plane when pulled backed to the real axis.

Using these deformed contours we obtain the source terms

log(1 + Y1,s−1) ⋆↓ sK (D.25)

→ + log


 S(v − t−s−1,1)

S(v − t+s−1,−1)




∞∏

j=1

S(v − t−s−1,−j)S(v − t+s−1,−j)

S(v − ℓ
[+s]
s+j )S(v − ℓ

[−s]
−j )


 1
∏s

k=1 S(v − ℓ
[−s]
k )


 ,

log(1 + Y1,s−1) ⋆↑ sK (D.26)

→ − log


S(v − t+s−1,−1)

S(v − t−s−1,1)




∞∏

j=1

S(v − t+s−1,j)S(v − t−s−1,j)

S(v − ℓ
[−s]
s+j )S(v − ℓ

[+s]
−j )


 1
∏s

k=1 S(v − ℓ
[+s]
k )


 .

Similarly, we get

log(1 + bs) ⋆↓ Kf → + log


Sf (v− t−s,1)




∞∏

j=1

Sf (v − t−s,−j)

Sf (v − ℓ
[−s−1]
−j )


 1
∏s+1

k=1 Sf (v− ℓ
[−s−1]
k )


,

(D.27)

log(1 + bs) ⋆↑ Kf → − log


 1

Sf (v − t−s,1)




∞∏

j=1

Sf (v − t−s,j)

Sf (v − ℓ
[−s−1]
s+1+j )




, (D.28)

− log(1+bs) ⋆↓ K
[+2]
f → − log


 1

Sf (v − t−s,−1)




∞∏

j=1

Sf (v − t−s,−j)

Sf (v − ℓ
[s−1]
s+1+j)




, (D.29)

− log(1+bs) ⋆↑ K
[+2]
f → + log


Sf (v− t−s,−1)




∞∏

j=1

Sf (v − t−s,j)

Sf (v − ℓ
[s−1]
−j )


 1
∏s+1

k=1 Sf (v− ℓ
[s−1]
k )


.

(D.30)

By adding all of them as ∗l = ∗↓+∗↑ and simplifying the result using S+S− = 1, we obtain

log(1 + bs) ⋆l Kf − log(1 + bs) ⋆l K
[+2]
f + log(1 + Y1,s−1) ⋆l sK

→ +2 log
[
Sf (v − t−s,1)Sf (v − t−s,−1)S(v − t−s−1,1)S(v − t−s−1,−1)

]

+ log

[


∞∏

j=1

Sf (v − ℓ
[s−1]
s+1+j)Sf (v − ℓ

[−s−1]
s+1+j )S(v − ℓ

[−s]
s+j )S(v − ℓ

[s−2]
s+j )


 ×

1
∏∞

j=1 Sf (v − ℓ
[−s−1]
−j )Sf (v − ℓ

[s−1]
−j )S(v − ℓ

[s−2]
−j )S(v − ℓ

[−s]
−j )

× (D.31)

1
∏s+1

k=1 Sf (v − ℓ
[−s−1]
k )Sf (v − ℓ

[s−1]
k )

1
∏s

k=1 S(v − ℓ
[s−2]
k )S(v − ℓ

[−s]
k )

]
, (D.32)

which is (3.17).

Another set of contours, ∗d and ∗u , are defined as the slight modification of ∗↓ and ∗↑ .
For ∗d , ∗u the contribution from the zeroes of T-functions is halved. The zeroes of L[+s] or
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L[s+1] in the lower half plane are neglected in ∗d , and the zeroes of L
[−s]

or L
[−s−1]

in the

upper half plane are neglected in ∗u . The contour deformation tricks for (D.25)–(D.30)

are now modified as

log(1 + Y1,s−1) ⋆d sK → +
1

2
log

S(v − t−s−1,1)

S(v − t+s−1,−1)
− log




∞∏

j=1

S(v − ℓ
[+s]
s+j )


 , (D.33)

log(1 + Y1,s−1) ⋆u sK → +
1

2
log

S(v − t−s−1,1)

S(v − t+s−1,−1)
+ log




∞∏

j=1

S(v − ℓ
[−s]
s+j )


 . (D.34)

log(1 + bs) ⋆d Kf → +
1

2
log


Sf (v − t−s,1)

∞∏

j=1

Sf (v − t−s,−j)


 , (D.35)

log(1 + bs) ⋆u Kf → +
1

2
log

Sf (v − t−s,1)∏∞
j=1 Sf (v − t−s,j)

+ log




∞∏

j=1

Sf (v − ℓ
[−s−1]
s+1+j )


 , (D.36)

− log(1 + bs) ⋆d K
[+2]
f → +

1

2
log

Sf (v − t−s,−1)∏∞
j=1 Sf (v − t−s,−j)

+ log




∞∏

j=1

Sf (v − ℓ
[s−1]
s+1+j)


 , (D.37)

− log(1 + bs) ⋆u K
[+2]
f → +

1

2
log


Sf (v − t−s,−1)

∞∏

j=1

Sf (v − t−s,j)


 , (D.38)

By adding all of them and using ∗s = ∗d + ∗u , we obtain

log(1 + bs) ⋆s Kf − log(1 + bs) ⋆s K
[+2]
f + log(1 + Y1,s−1) ⋆s sK

→ + log
S(v − t−s−1,1)

S(v − t+s−1,−1)
+ log




∞∏

j=1

S(v − ℓ
[−s]
s+j )

S(v − ℓ
[+s]
s+j )




+ log
[
Sf (v − t−s,1)Sf (v − t−s,−1)

]
+ log




∞∏

j=1

Sf (v − ℓ
[−s−1]
s+1+j )Sf (v − ℓ

[s−1]
s+1+j)


 , (D.39)

which is (3.19).
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