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1 Introduction

In a fully thermalized medium, the momenta of bosons and fermions are distributed ac-

cording to the Bose and Fermi distributions, respectively, parametrized by a single tem-

perature, T , and chemical potentials associated with conserved global charges. In contrast,

the most important cosmological relics, such as Light Element Abundances, Dark Mat-

ter, or Baryon Asymmetry, rely on deviations from thermal equilibrium. In a canonical

Dark Matter scenario, for instance, the overall abundance of the Dark Matter particles is

determined through a “freeze-out” period, which takes place when their annihilation rate

becomes too slow to track the total number density determined by the Fermi distribution,

which decreases exponentially when πT ≪ M , where M denotes the particle mass. Since

the number densities of particles and antiparticles remain equal, this deviation cannot in

relativistic field theory be represented through a chemical potential, and we speak of chem-

ical non-equilibrium. (Typically, elastic scatterings with the plasma particles still continue

after this period, so that kinetic equilibrium is maintained down to lower temperatures, cf.

e.g. ref. [1].) A freeze-out process leading to chemical non-equilibrium is also responsible

for the ∼ 20% primordial helium abundance observed in the Universe today, cf. e.g. ref. [2].

Analogous processes are assumed to play a role in heavy ion collisions. In particular, for

πT ≪M , the kinetic equilibration rate of heavy quarks scales as Γkin ∼ α2
s ln(αs)T

2/M [3]–

[6], whereas the chemical equilibration rate scales as Γchem ∼ α2
sT

3

2 exp(−M/T )/M
1

2 [8, 9].

Experimental data from RHIC and LHC suggest that charm quarks do have time to kinet-

ically equilibrate, thereby participating in hydrodynamic flow (cf. e.g. refs. [10, 11]), and
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theoretical efforts to understand this up to the non-perturbative level are under way [12]–

[14]. Building on earlier studies of strange quarks [15] it is believed, in contrast, that chem-

ical equilibration does not take place; the number density of charm quarks and antiquarks

is essentially assumed to remain as determined by an initial hard process [16], implying

that there are more heavy quarks present than would be due for chemical equilibrium (cf.

e.g. ref. [17]).

The purpose of this study is to suggest a definition of a chemical equilibration rate of

heavy quarks near equilibrium, similarly to what was achieved for their kinetic equilibration

rate earlier on [18, 19]. A definition should be possible in the heavy-quark limit M ≫ πT ,

in which the rate itself is much slower than typical “fast” plasma rates, Γfast ∼ αn
sT , n ≥ 1.

(If no scale separation is present between M and πT , then pair creations and annihilations

take place as fast as elastic processes, and the massive degrees of freedom are to a good

approximation in full thermal equilibrium with the strongly interacting heat bath.)

The plan of this paper is the following. After some general considerations in section 2,

we recall the derivation of the chemical equilibration rate to leading order in αs, making use

of the Boltzmann equation, in section 3. This is followed by a reminder that loop corrections

are likely to be substantial at any realistic temperature, in section 4. A non-perturbative

formulation is put forward in section 5. Subsequently we argue, in section 6, that in the

weak-coupling limit the expression of section 5 reduces to the result of section 3. A brief

discussion of implications as well as prospects for non-perturbative studies concludes this

writeup in section 7.

2 General considerations

Assume that the system possess an approximately conserved particle number. Let us denote

the corresponding number density1 by n(t). In thermal equilibrium the value of n fluctuates

around its equilibrium value. To treat the non-equilibrium problem we follow the general

method described in ref. [7]. Let δn(t) ≡ n(t)−neq at some time t be large compared to the

mean fluctuation. It will then evolve towards its equilibrium value. Let us assume that the

characteristic time scale τ for this evolution is much larger than the other relaxation times

of the system. We only want to resolve time scales of order τ . Then the non-equilibrium

state is completely characterized by the instantaneous value of δn. Therefore the time

derivative of δn can only depend on the value of δn and on thermodynamic quantities of

the system such as temperature and chemical potentials. When δn is sufficiently small,

one can expand δṅ in powers of δn and keep only the linear term,

δṅ(t) = −Γchemδn(t) . (2.1)

The coefficient Γchem only depends on thermodynamic quantities.

1It is important to consider the number density rather than the differential phase space distribution,

because otherwise it would be difficult to distinguish between processes changing the kinetic and the chemical

decomposition of the system.
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Let us now be specific and choose n to be the sum of quark and antiquark number

densities,

n ≡ nQ + nQ . (2.2)

We consider the heavy quark baryon number density nQ − nQ
to vanish (i.e. the baryon

chemical potential to be zero). We are interested in the limit that πT ≪ M . For heavy

particles, {δṅ(t)}loss ∼ e−2M/T , because a heavy quark-antiquark pair gets annihilated,

and δn(t) ∼ neq ∼ e−M/T . Therefore Γ itself scales as ∼ e−M/T , implying that this

rate is much slower than most other processes in the system. In particular, this rate is

slower than the kinetic equilibration rate. Therefore the heavy quarks can be considered

to be in kinetic equilibrium, which means that they move very slowly. These almost static

quarks experience rare number changing reactions, and a non-perturbative description of

the resulting dynamics, incorporating both the non-equilibrium evolution of eq. (2.1) as

well as equilibrium fluctuations, is presented in eqs. (5.11)–(5.20) below.

3 Boltzmann equation

If the system is weakly coupled, one can usually compute the coefficient Γchem in eq. (2.1),

at least to leading order, from the Boltzmann equation. If we take into account 2 → 2

scattering processes and consider the limit πT ≪M , it takes the form (cf. e.g. ref. [20])

ṅ = −c
(

n2 − n2eq
)

≡ ṅloss + ṅgain , (3.1)

where ṅloss ≡ −c n2. In equilibrium, with n(t) ≡ neq, gain and loss terms must cancel each

other, and the number density is constant. Now linearize (3.1) as described in section 2,

which gives δṅ = −2c nδn. Thus we can obtain Γchem from the loss term in eq. (3.1) via

Γchem = −2 ṅloss
neq

. (3.2)

An analogous discussion, implemented by introducing separate “chemical potentials” for

the quarks and antiquarks, can be found in ref. [15].

Now we compute Γchem using eq. (3.2) with tree-level matrix elements. The relevant

loss processes are shown in figure 1. Inserting the number of degrees of freedom of the

initial state, 2Nc, the decay rate according to eq. (3.2) can be written as

Γchem =
2

2Nc

∫

k
fF(Ek)

∫ 2
∏

a=1

d3ka

(2π)32Eka

2
∏

i=1

d3pi

(2π)32ǫpi
(2π)4δ(4)(P1 + P2 −K1 −K2)

× fF(Ek1)fF(Ek2)

{

1

2

∑ |M1|2
[

1 + fB(ǫp1)
] [

1 + fB(ǫp2)
]

+Nf
∑ |M2|2

[

1− fF(ǫp1)
] [

1− fF(ǫp2)
]

}

. (3.3)

Here
∫

k
≡
∫

d3k
(2π)3

; ka are momenta in the initial state and pi those in the final state;

Eka ≡
√

k2a +M2 is the energy of a massive particle and ǫpi ≡ |pi| is that of a massless
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M1 = + + ,

M2 = .

Figure 1. Scatterings through which an overabundance of heavy quarks can disappear, assuming

that there is an exponentially small thermal distribution of antiquarks present (or vica versa). A

double line indicates heavy quarks, a single line light quarks, and a wiggly line gluons.

one; and fF, fB are the Fermi and Bose distributions, respectively. The sums are taken

over the quantum numbers of all on-shell degrees of freedom, i.e. 2Nc for quarks and

antiquarks, and 2dA for gluons, with dA ≡ N2
c − 1. By Nf we denote the number of light

quark flavours, and later on CF ≡ dA/(2Nc) will also appear. The factor 1
2 in front of the

gluonic amplitude accounts for the two final state particles being identical [15].

Taking the amplitudeM2 of figure 1 as an example, a text-book calculation yields (cf.

e.g. refs. [21, 22])

∑ |M2|2 =
4g4CFNc

s2

[

(M2 − t)2 + (M2 − u)2 + 2M2s
]

, (3.4)

where s, t, u are the standard kinematic invariants: s ≡ (P1 + P2)2 = (K1 + K2)
2; t ≡

(P1 −K1)
2 = (P2 −K2)

2; and u ≡ (P1 −K2)
2 = (P2 −K1)

2.

The result simplifies further in the heavy-quark limit. Because of Boltzmann suppres-

sion of fF(Eka) at M ≫ πT , we can consider the decaying heavy quark and antiquark to

be almost at rest with respect to the thermal medium:

K1 ≈
(

M +
k21
2M

,k1

)

, K2 ≈
(

M +
k22
2M

,k2

)

, (3.5)

with ka ∼
√
πTM ≪M . In contrast p1 and p2 are large because they have to carry away

the energy liberated in the pair annihilation. So k1 + k2 can be approximated as zero in

the phase space constraints, and the Fermi distributions fF(ǫpi) can be omitted:

Γ
(qq̄)
chem ≈

e−M/T

4NcM2

∫

d3k2

(2π)3
e−

k22
2MT

× 1

(2π)2

∫

d3p1

2ǫp1

∫

d3p2

2ǫp2
δ(3)(p1 + p2)δ(ǫp1 + ǫp2 − 2M)Nf

∑ |M2|2 . (3.6)

Here we cancelled a factorized integral against the one in the denominator. Noting also

that

s ≈ 4M2 , t ≈ −M2 , u ≈ −M2 , (3.7)
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δM2 = + + + . . . .

Figure 2. Examples of 1-loop corrections to the scattering amplitudeM2 of figure 1.

we get
∑ |M2|2 ≈ 4g4CFNc. The remaining integrals are trivially carried out, and

we obtain

Γ
(qq̄)
chem ≈

g4CFNf

8πM2

(

TM

2π

)
3

2

e−M/T . (3.8)

A similar computation can be carried out with gluons, represented by the amplitude

M1 of figure 1. Again the result is well-known (cf. e.g. refs. [21, 22]), and reads

∑ |M1|2 = 4g4CFNc

{

4Nc
(M2 − t)(M2 − u)

s2
+ (2CF −Nc)

2M2(s− 4M2)

(M2 − t)(M2 − u)

+2CF

[

(M2 − t)(M2 − u)− 2M2(M2 + t)

(M2 − t)2 + (t↔ u)

]

−2Nc

[

(M2 − t)(M2 − u) +M2(u− t)
s(M2 − t) + (t↔ u)

]}

. (3.9)

In the heavy-quark limit, eq. (3.7), this simplifies to
∑ |M1|2 ≈ 4g4CFNc(4CF −Nc). The

phase space integration goes through as before, and recalling the 1
2 in eq. (3.3), eq. (3.8)

gets completed into

Γchem ≈
g4CF

8πM2

(

Nf + 2CF −
Nc

2

)(

TM

2π

)
3

2

e−M/T . (3.10)

Numerically 2CF − Nc/2 = 7
6 for Nc = 3; for Nf = 0 this agrees with eq. (10) of ref. [9].

(We note, however, that for three light flavours, i.e. Nf = 3, fermionic final states are

significantly more important than purely gluonic ones.)

4 Towards loop corrections

The result of eq. (3.10) could well suffer from large radiative corrections. A few repre-

sentative examples of next-to-leading order (NLO) amplitudes are shown in figure 2. In

particular, the first amplitude, iterated by further rungs connecting the heavy quark and

antiquark to each other, is responsible for binding the particles to a quarkonium-like res-

onance. In the context of Dark Matter co-annihilation, such a threshold enhancement is

assumed to play a potentially important role, cf. e.g. refs. [23, 24]. However, this is not

the only class of processes in our case: as illustrated in figure 2, all participating parti-

cles carry a colour charge, so that there may also be final-state interactions, as well as

“non-factorizable” terms connecting the initial and final states.

For future reference, we remark that there is one Euclidean observable in which rungs

between the heavy particles can also appear but which is nevertheless very well understood.
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This is the heavy quark-number susceptibility, formally defined as

χf ≡
∫

x

〈

(ψ̄γ0ψ)(τ,x)(ψ̄γ0ψ)(0,0)
〉

T
, 0 ≤ τ ≤ β , β ≡ 1

T
. (4.1)

Because of charge conservation the argument τ can be chosen at will. With vanishing

chemical potentials, the susceptibility measures the mean number of heavy particles created

by thermal fluctuations, and is therefore closely related to the distribution function fF(Ek2)

on which the heavy quarks scatter in eq. (3.3).

We recall that in the free limit the susceptibility evaluates to

χf = 4Nc

∫

d3k

(2π)3
fF(Ek)

[

1− fF(Ek)
]

. (4.2)

For massless quarks the integral can be carried out in a closed form, yielding χ
f
= NcT

3/3,

to which loop corrections are known up to a high order [25], generically decreasing the

susceptibility from the free value. To us more relevant is the non-relativistic limit,

χf ≈ 4Nc

∫

d3k

(2π)3
e−Ek/T ≈ 4Nc

(

MT

2π

)
3

2

e−M/T . (4.3)

Here the temperature dependence is precisely the same as that in eq. (3.8). Lattice data

indicate that the susceptibility grows rapidly with the temperature and, in the charm case,

overcomes the exponential suppression already at temperatures of a few hundred MeV [26]–

[28], in line with the general expectation [29]. We will keep these observations in mind when

estimating the numerical importance of the exponential suppression in section 7.

5 Non-perturbative formulation

Motivated by the remarks in section 4, the goal now is to suggest a non-perturbative

definition of the heavy quark chemical equilibration rate. This could allow for a system-

atic computation of higher order corrections, or in principle be subjected e.g. to a lattice

investigation.

In relativistic theories there is no obvious definition for a particle number operator.

Here we are interested in heavy quarks and antiquarks with very small velocities. In this

case the energy of quarks and antiquarks is roughly given by the sum of their rest energies

or, in other words, by their number density times the heavy quark mass M . Therefore the

energy density of heavy quarks and antiquarks is a good measure for their number density.

We propose to define the relaxation time of the number density n = nQ + n
Q
through the

real time correlation function of the heavy quark Hamilton operator.

We start by introducing an operator describing heavy quark energy loss, both through

elastic and through inelastic processes (section 5.1); define then a “transport coefficient”

related to this operator, capturing the desired rate (section 5.2); and finally simplify one

of the correlators appearing by considering the heavy-quark limit (section 5.3).

– 6 –
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5.1 Operator for heavy quark energy loss

A form of the fermionic energy-momentum tensor which is symmetric, gauge-invariant, and

leads to a correct finite trace anomaly, reads [30, 31]

Tµν
f ≡ i

4
ψ̄
(

γµ
←→
D ν + γν

←→
D µ
)

ψ − ηµν Lf . (5.1)

Here ηµν ≡ diag(+−−−) and

ψ̄γµ
←→
D νψ ≡ ψ̄γµ

−→
Dνψ − ψ̄γµ←−Dν†ψ , (5.2)

with
−→
Dνψ ≡ (∂ν−igAν)ψ, ψ̄

←−
Dν† ≡ ψ̄(←−∂ ν+igAν), and g denoting the bare gauge coupling.

The Lagrangian can be written with a similar notation as

Lf = ψ̄

(

i

2

←→
/D −M

)

ψ . (5.3)

The heavy quark Hamilton operator is now defined by taking a spatial integral over

T 00
f , with the fields promoted to operators:

Ĥ ≡
∫

x

T̂ 00
f =

∫

x

ˆ̄ψ

(

− i
2
γj
←→
D j +M

)

ψ̂ . (5.4)

Summation over repeated spatial indices is understood. Obviously, Ĥ could be written in

other forms by use of the Dirac equation, but for us it appears to be beneficial to employ a

version with spatial derivatives only, because then partial integrations are formally allowed.

In order to derive the operator for energy loss, let us also write down the Dirac equation

in an explicit form, by placing time derivatives on the left-hand side:

∂tψ̂ =
[

−i(Mγ0 − gA0)− γ0γj
−→
Dj

]

ψ̂ , (5.5)

∂t
ˆ̄ψ = ˆ̄ψ

[

i(Mγ0 − gA0)−
←−
D †

j γ
jγ0
]

. (5.6)

In all of what follows, equations of motion are used for fermions only; derivatives acting

on gauge fields are left “as is”, formally assuming that gauge fields form a differentiable

off-shell background over which a path integral is to be carried out at a later stage.

The task now is to construct ∂tĤ. The derivative can act on any of the three possible

locations in eq. (5.4):

∂tĤ =

∫

x

{

(

∂t
ˆ̄ψ
)(

−iγj−→Dj +M
)

ψ̂ + ˆ̄ψ
(

−gγj∂0Aj

)

ψ̂ + ˆ̄ψ
(

iγj
←−
D †

j +M
)(

∂tψ̂
)

}

. (5.7)

Inserting eqs. (5.5), (5.6) and carrying out one partial integration, numerous cancellations

take place, and we are finally left with

∂tĤ = −g
∫

x

ˆ̄ψγj
(

∂0Aj − ∂jA0 − igA0Aj + igAjA0

)

ψ̂ = −g
∫

x

ˆ̄ψ γjF0jψ̂ . (5.8)

So, in the presence of interactions (g 6= 0), the energy carried by heavy quarks is not

conserved.

– 7 –
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It appears that eq. (5.8) has a classical interpretation. If a charged particle feels a

Lorentz force,
dp

dt
= q
(

E+ v ×B
)

, (5.9)

then its energy changes as

dE

dt
= ∇pE ·

dp

dt
= v · dp

dt
= qv ·E . (5.10)

Recalling that ˆ̄ψγjψ̂ are the spatial components of a current this is seen to agree in form

with eq. (5.8). However, being a Fock space operator, ∂tĤ of eq. (5.8) describes also

number-changing reactions; in particular, if the initial state has more quarks and antiquarks

than would be due for chemical equilibrium, a net pair annihilation should take place,

and in the large-time limit the corresponding matrix elements dominate the statistical

average of ∂tĤ.

5.2 Defining a transport coefficient

To describe the depletion of an overabundance of heavy quarks through a single coefficient,

we follow a general method which has also been used for determining their kinetic equili-

bration rate [18, 19]. The goal is to relate the non-equilibrium rate of interest, eq. (2.1),

to an equilibrium correlator, eq. (5.14) (see ref. [7] for a general argument concerning such

relations). In order to achieve this goal, the logic is to use an “effective” classical picture to

describe the long time physics of chemical equilibration. The parameters of this description

are subsequently matched to reproduce quantum-mechanical correlators. As we will see,

the consistency of the description will be tested at the matching stage.

As discussed in section 2, large deviations from an equilibrium value tend to decrease,

with a rate that we want to determine (cf. eq. (2.1)); however, small deviations can also

be generated by the occasional inverse reactions.2 This is formally the same physics as in

Brownian motion, described by a Langevin equation,

δṅ(t) = −Γchem δn(t) + ξ(t) , (5.11)

〈〈 ξ(t) ξ(t′) 〉〉 = Ωchem δ(t− t′) , 〈〈ξ(t)〉〉 = 0 , (5.12)

where δn is the non-equilibrium excess; ξ is a stochastic noise, whose autocorrelation

function is parametrized by Ωchem; and 〈〈. . .〉〉 denotes an average over the noise. The

noise is uncorrelated because the time scale considered is much larger than any others in

the system.3

2In a heavy ion collision there may not be enough time for inverse reactions to take place in practice;

but that does not change the theoretical role that they play in relating the non-equilibrium problem to a

corresponding equilibrium one. In other words, within the linear response regime the value of the coefficient

Γchem is independent of initial conditions and of for how long we observe the dynamics.
3At very short time scales, the noise is no longer white but has a structure. By definition, the struc-

ture can be resolved by inspecting the spectral function corresponding to the “force-force” correlator. As

demonstrated in section 6, the spectral function has support down to small frequencies, with an overall

magnitude Ωchem ∼ e−2M/T . Noise becomes coloured at a frequency scale ωUV above which the shape

of the spectral function changes from its small-frequency asymptotics. This is related to the physics of

colour-electric fields, so we may expect ωUV
>
∼
α2
sT . This is much larger than the frequency scales that we

are concerned with, and plays no role in the following.

– 8 –
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Now, eq. (5.11) can be solved explicitly, given an initial value δn(t0):

δn(t) = δn(t0) e
−Γchem(t−t0) +

∫ t

t0

dt′ eΓchem(t′−t)ξ(t′) . (5.13)

Making use of this solution and taking an average over the noise, we can determine the

2-point correlation function of unequal time fluctuations of δn:

∆cl(t, t
′) ≡ lim

t0→−∞
〈〈 δn(t) δn(t′) 〉〉

= lim
t0→−∞

∫ t

t0

dt1 e
Γchem(t1−t)

∫ t′

t0

dt2 e
Γchem(t2−t′)〈〈 ξ(t1) ξ(t2) 〉〉

= Ωchem lim
t0→−∞

∫ t

t0

dt1 e
Γchem(t1−t)

∫ t′

t0

dt2 e
Γchem(t2−t′)δ(t1 − t2)

=
Ω

chem

2Γchem

e−Γchem|t−t′| . (5.14)

The limit t0 → −∞ here guarantees that any initial transients have died out; therefore, ∆cl

is an equilibrium correlation function. Subsequently, making use of ∂t∂t′ |t−t′| = −2δ(t−t′),
we obtain

∂t∂t′∆cl(t, t
′) = −Ω

chem
Γ

chem

2
e−Γchem|t−t′| +Ωchem δ(t− t′) . (5.15)

Fourier transforming eqs. (5.14) and (5.15) leads to

∆̃cl(ω) ≡
∫ ∞

−∞
dt eiω(t−t′)∆cl(t, t

′) =
Ω

chem

ω2 + Γ2
chem

, (5.16)

ω2∆̃cl(ω) =

∫ ∞

−∞
dt eiω(t−t′)∂t∂t′∆cl(t, t

′) =
ω2Ω

chem

ω2 + Γ2
chem

. (5.17)

It is also useful to note that, setting the time arguments equal, we can define a “suscepti-

bility” as

〈(δn)2〉cl ≡ lim
t0→−∞

〈〈 δn(t) δn(t) 〉〉 = Ω
chem

2Γchem

, (5.18)

where we made use of eq. (5.14).

Combining eqs. (5.16)–(5.18), various strategies can be envisaged for determining the

quantity that we are interested in, namely the non-equilibrium rate Γchem. A particularly

fruitful approach is to take eqs. (5.17), (5.18) as starting points, obtaining

Ωchem = lim
Γchem ≪ω≪ωUV

ω2∆̃cl(ω) , (5.19)

Γchem =
Ω

chem

2〈(δn)2〉cl
. (5.20)

Here ωUV is a frequency scale at which some microscopic physics which is not described

by the effective classical picture sets in, typically ωUV ∼ α2
sT , and it has been assumed

(cf. section 2) that Γchem is parametrically small compared with ωUV. In our case this is

so because Γchem is exponentially suppressed as ∼ e−M/T . With this input, all real-time

information is in the numerator of the equilibrium correlator ω2∆̃cl(ω).
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After these preparatory steps, we can promote the determination of Γchem to the quan-

tum level. It just remains to note that since in the classical limit observables commute, a

suitable quantum version of the equilibrium correlator is

∆qm(t, t
′) ≡

〈1

2

{

δn̂(t), δn̂(t′)
}

〉

. (5.21)

So, eqs. (5.19), (5.20) can be rephrased as

Ωchem = lim
Γchem ≪ω≪ωUV

ω2

∫ ∞

−∞
dt eiω(t−t′)

〈

1

2

{

δn̂(t), δn̂(t′)
}

〉

, (5.22)

or

Ωchem = lim
Γchem ≪ω≪ωUV

∫ ∞

−∞
dt eiω(t−t′)

〈

1

2

{dn̂(t)

dt
,
dn̂(t′)

dt′

}

〉

, (5.23)

together with

Γchem =
Ω

chem

2〈(δn̂)2〉 . (5.24)

The denominator of eq. (5.24) is nothing but the variance, 〈(δn̂)2〉 = 〈n̂2〉 − 〈n̂〉2. The

consistency of the matching is tested at least to some extent by whether the variance is

UV-finite (for most composite operators this is not the case).

The formulae introduced can be applied on a non-perturbative level by re-expressing

them through the imaginary-time formalism. This means that we first define a Euclidean

correlator, Ω(τ); Fourier-transform it, Ω̃(ωn) =
∫ β
0 dτ e

iωnτΩ(τ), where ωn = 2πnT , n ∈ Z
(this requires the presence of an UV regulator, or the subtraction of short-distance diver-

gences); and obtain the spectral function from its imaginary part, ρ
Ω
(ω) = Im Ω̃(ωn →

−i[ω + i0+]). The symmetric combination needed in eq. (5.23) is given by Ωchem =

lim Γchem ≪ω≪ωUV
2Tρ

Ω
(ω)/ω.

The argumentation above can directly be transported to the case at hand, with n̂

replaced by Ĥ from eq. (5.4). Denoting by Ej the Euclidean electric field, which contains

an additional i from a Wick rotation, the imaginary-time correlator referred to above reads

(we divide by volume in order to define intensive quantities)

Ω(τ) ≡ 1

V

〈

∂tĤ(τ) ∂tĤ(0)
〉

qc

= −g2
∫

x

〈

[

ψ̄γjEjψ
]

(τ,x)
[

ψ̄γkEkψ
]

(0,0)
〉

qc
, (5.25)

where gEk ≡ i[Dτ , Dk], and 〈. . .〉qc refers to connected quark contractions (the reason for

this choice is discussed in figure 3). Hats have been left out in the second row because this

correlator can be evaluated with regular path integral techniques. Similarly, the correlator

related to energy fluctuations becomes

∆(τ) ≡ 1

V

〈

Ĥ(τ) Ĥ(0)
〉

c

=

∫

x

〈

[

ψ̄

(

− i
2
γj
←→
D j +M

)

ψ

]

(τ,x)

[

ψ̄

(

− i
2
γk
←→
D k +M

)

ψ

]

(0,0)
〉

c
, (5.26)
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where 〈. . .〉c refers to the connected part, i.e. 〈Ĥ(τ)Ĥ(0)〉c ≡ 〈Ĥ(τ)Ĥ(0)〉 − 〈Ĥ(0)〉2. We

can interpret ∆(τ) as the susceptibility needed in eq. (5.24) to the extent that it is τ -

independent and therefore finite at τ → 0 (cf. eq. (4.1)); this turns out to be the case in

the limit πT ≪M , where it corresponds to a quasi-conserved quantity: ∆(τ) ≈ 1
V 〈(δĤ)2〉

(cf. eq. (5.31)).

5.3 Heavy quark limit

The correlators in eqs. (5.25), (5.26) can be understood physically, and also written in

somewhat simpler forms, if two-component spinors corresponding to non-relativistic degrees

of freedom are employed. We choose a representation for the Dirac matrices with

γ0 ≡
(

1 0

0 −1

)

, γk ≡
(

0 σk
−σk 0

)

, k = 1, 2, 3 , (5.27)

where σk are the Pauli matrices. The Dirac spinors are written as

ψ ≡
(

θ

χ

)

, ψ̄ ≡ (θ† , −χ†) . (5.28)

Clearly θ corresponds to P+ψ and χ to P−ψ, with the projection operators defined as

P± ≡ 1
2

(

1± γ0
)

. With this notation the operator entering eq. (5.25) can be expressed as

∂tH = −ig
∫

x

[

θ†σ ·Eχ+ χ†σ ·E θ
]

. (5.29)

Note that this operator is different from that relevant for heavy quark kinetic equilibration:

electric fields appear in both cases but here they come together with θ†χ, χ†θ, whereas in

ref. [19] the combinations θ†θ, χ†χ appeared. Eq. (5.26) can also be expressed in the new

notation, with the Hamiltonian becoming

H =

∫

x

[

M
(

θ†θ − χ†χ
)

− i

2

(

θ†σ · ←→Dχ+ χ†σ · ←→D θ

)]

. (5.30)

For a proper physical interpretation, it is useful to change the ordering of χ∗
α, χβ . It

then becomes clear that χ∗ represents an antiparticle to θ; a most direct way to see this

is from the number density operator: ψ̄γ0ψ = ψ̄(P+ − P−)ψ = θ†θ + χ†χ = θ†θ − χ∗†χ∗.

What this implies is that operators of the types θ†χ, χ†θ, appearing in eq. (5.29), create

or annihilate quark-antiquark pairs; and that the leading term of the Hamilton operator

in eq. (5.30) counts particles plus antiparticles, assigning each energies given by their

rest mass.

After these remarks we can simplify the correlator ∆(τ) of eq. (5.26). In the heavy-

quark limit the leading term comes from M(θ†θ−χ†χ) in eq. (5.30). But since in the same

limit the cross term gives no contribution, the (disconnect part of) the 2-point correlator

is the same as that for ψ̄γ0ψ = θ†θ + χ†χ. So,

∆(τ) ≈ M2χf = M2

∫

x

〈

(ψ̄γ0ψ)(τ,x)(ψ̄γ0ψ)(0,0)
〉

T
, (5.31)
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where χ
f
is from eq. (4.1). As required, eq. (5.31) is independent of τ . Unfortunately, for

Ω(τ) of eq. (5.25), it is not clear to us whether any similar simplification is possible; the

reasons for this are discussed at the beginning of section 6.

To summarize, from the Euclidean correlator, Ω(τ) in eq. (5.25), we can in principle

construct the Matsubara representation, Ω̃(ωn) ≡
∫ β
0 dτ e

iωnτΩ(τ), if an ultraviolet regula-

tor or subtraction is present. After analytic continuation, ρ
Ω
(ω) = ImΩ(ωn → −i[ω+i0+]),

the decay rate of eq. (5.24) follows from

Γchem ≡
limω→0+

2TρΩ(ω)
ω

2χ
f
M2

= lim
ω→0+

{

Tρ
Ω
(ω)

ωχ
f
M2

}

. (5.32)

We remark that since eq. (5.25) involves composite operators for non-conserved quan-

tities, the issue of renormalization is non-trivial. Unfortunately a satisfactory discussion

goes beyond the scope of the present work.

6 Perturbative evaluation

So far we have made no approximation based on the weak-coupling expansion. At high T ,

however, the renormalized gauge coupling can be assumed small; we would like to make

use of this limit in order to compare the general formulae with those in section 3.

It is now important to be more precise about the nature of the heavy-quark limit.

Even though we made use of the “non-relativistic” spinors θ and χ in section 5.3 in order

to obtain a physical interpretation for the operators appearing, the function Ω(τ) cannot

actually be evaluated with non-relativistic kinematics. A trivial reason is that with non-

relativistic dispersion relations, a heavy quark and antiquark can annihilate into a single

gluon; this non-sensical reaction would spoil the physics. In addition, in the t and u-channel

processes of figure 1 the heavy quarks are deeply virtual, cf. eq. (3.7). That said, some

parts of the analysis can still be simplified, but a priori the quark propagators need to be

fully relativistic.

The relevant graphs are shown in figure 3. It is easy to see that the leading-order graph,

(a), does not contribute: after analytic continuation and taking the cut we are faced with

the decay of a heavy quark and a heavy antiquark into a gluon, which is forbidden by

relativistic kinematics. At NLO, in contrast, there are non-vanishing contributions; let us

show this explicitly by evaluating the fermionic graph in figure 4.

To get started, we note that in its original form the amplitude squared of eq. (3.4) reads

Nf
∑ |M2|2 = g4NfTr [T

aT b]Tr [T aT b]

× Tr [γµ /P1 γν /P2 ]Tr [γµ( /K1 +M)γν( /K2 −M)]

(P1 + P2)4
, (6.1)

where T a are the Hermitean generators of SU(Nc), normalized as Tr [T aT b] = δab

2 ; whereas
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(a)

(b) (c) (d) (e) (f) (x)

(g) (h) (i) (j) (k) (y)

Figure 3. The graphs contributing to the correlator Ω(τ) defined in eq. (5.25), up to O(g4) (time

runs vertically). The double lines denote heavy quarks; the small dots the composite operators; and

the grey blob the 1-loop gauge field self-energy. Graphs (a)-(k) look similar to those relevant for

computing the correlator yielding the heavy quark kinetic equilibration rate [32], but the kinematic

regime is different. The additional graphs (x) and (y) amount to a renormalization of the gluonic

part of the energy-momentum tensor by virtual heavy quarks, and have been excluded from the

definition in eq. (5.25) by restricting to connected quark contractions.

(ωn,0) (ωn,0)
.

Figure 4. The part of diagram (k) of figure 3 sensitive to light quarks, after a Fourier transformation

to Euclidean frequency ωn and a rotation by 90 degrees. The diagonal line indicates a cut.

the imaginary time diagram of figure 4 can be written as

Ω̃(qq̄)(ωn) = −g4NfTr [T
aT b] Tr [T aT b]

×∑
∫

{P1P2K1K2}

δ̄(ωn + P1 + P2 −K1 −K2) εµ;α(P1 + P2)εν;β(P1 + P2)

P 2
1P

2
2 (K

2
1 +M2)(K2

2 +M2)

× Tr [γα(i /P1 )γβ(i /P2 )]Tr [γµ(i /K1 +M)γν(i /K2 −M)]

(P1 + P2)4
. (6.2)

Here four-momenta and Dirac-matrices are Euclidean; ωn within the δ̄ is a short-hand

for (ωn,0); δ̄ is normalized so that Σ
∫

P δ̄(P ) = 1; sum-integrals are standard, with Σ
∫

{. . .}

denoting fermionic Matsubara frequencies; and

εµ;α(P ) ≡ P0 δµα − Pµ δ0α (6.3)

originates from the electric fields. A close kinship between eqs. (6.1), (6.2) is immediately

observed, but to see that they really lead to the same physics requires a careful analysis.

We note, first of all, that the index µ appearing in eq. (6.3) can only be spatial.

Therefore, in the heavy-quark part

Tr [γµ(i /K1 +M)γν(i /K2 −M)] = 4
[

δµν(K1 ·K2 −M2)−K1µK2ν −K1νK2µ

]

, (6.4)
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we can drop the terms −K1µK2ν −K1νK2µ and the spatial part of K1 ·K2, because the

heavy quarks will be non-relativistic, cf. eq. (3.5). The part containing final-state momenta,

δiµδiνεµ;α(P1 + P2)εν;β(P1 + P2)Tr [γα(i /P1 )γβ(i /P2 )]

= 4 εi;α(P1 + P2)εi;β(P1 + P2)
[

δαβP1 · P2 − P1αP2β − P1βP2α

]

, (6.5)

can in turn be re-expressed as (Pi ≡ (pni,pi))

εi;α εi;β δαβ = 3(P1 + P2)
2 − 2(p1 + p2)

2 , (6.6)

εi;α εi;β P1αP2β = (P1 + P2)
2pn1pn2 − P 2

1 (pn1 + pn2)pn2 − P 2
2 (pn1 + pn2)pn1 . (6.7)

The latter two terms of eq. (6.7) do not contribute due to the antisymmetry in one of the

summation variables (for instance, in the middle term, after first carrying out T
∑

pn1
the

expression is antisymmetric in pn2), so we get

Ω̃(qq̄)(ωn) ≈ −8g4CFNcNf
∑

∫

{P1P2K1K2}

δ̄(ωn + P1 + P2 −K1 −K2)
kn1kn2 −M2

(K2
1 +M2)(K2

2 +M2)

× 1

P 2
1

{

3

2P 2
2

− 3

(P1 + P2)2
+

2(p1 + p2)
2

(P1 + P2)4
− (p1 + p2)

2

P 2
2 (P1 + P2)2

− 2pn1pn2
P 2
2 (P1 + P2)2

}

.

(6.8)

To carry out the Matsubara sums, we write

δ(ωn + pn1 + pn2 − kn1 − kn2) =
∫ β

0
dτ ei(ωn+pn1+pn2−kn1−kn2)τ . (6.9)

Then,

T 2
∑

{kn1kn2}

(kn1kn2 −M2)e−i(kn1+kn2)τ

(k2n1 + E2
k1
)(k2n2 + E2

k2
)
≈ −1

2

e(β−τ)(Ek1
+Ek2

) + eτ(Ek1
+Ek2

)

(eβEk1 + 1)(eβEk2 + 1)
, (6.10)

where we again approximated Eka ≈ M in the spin part (but not in the exponential

functions), whereby the “crossed terms” cancelled in the sum. As far as the second row

of eq. (6.8) is concerned, we note that in the 2nd and 3rd terms a shift pn2 → pn2 − pn1
factorizes the pn1-dependence from the τ -dependence. These terms lead to a vanishing

contribution to the transport coefficient defined in eq. (5.32); the reason is that since neither

ǫp1 nor ǫp2 appears in the time dependence, we are left with the phase space constraints

δ(Ek1 +Eqk1 − q) or δ(Ek1 +Eqk1 + q), where Eqk1 ≡
√

(q− k1)2 +M2 and q ≡ p1 + p2.

These constraints cannot get realized and so the factorized terms can be omitted.4

4In the case with the “double pole”, i.e. the 3rd term of eq. (6.8), one can replace (P1 + P2)
2

→

(P1 + P2)
2 +m2

0; consider first a single pole; and take subsequently a derivative with respect to m2
0. The

relevant phase space constraint becomes δ(Ek1
+Eqk1

−ǫq), with ǫq ≡

√

q2 +m2
0. This does not get realized

if m0 < 2M , so the function vanishes exactly in this regime, and thereby the derivative vanishes as well.
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Non-trivial contributions arise from the remaining three terms of eq. (6.8). Defining

Ĩ1(ωn) ≡
∫ β

0
dτ eiωnτ e

(β−τ)(Ek1
+Ek2

) + eτ(Ek1
+Ek2

)

(eβEk1 + 1)(eβEk2 + 1)
T 2
∑

{pn1pn2}

ei(pn1+pn2)τ

P 2
1P

2
2

, (6.11)

Ĩ2(ωn) ≡
∫ β

0
dτ eiωnτ e

(β−τ)(Ek1
+Ek2

) + eτ(Ek1
+Ek2

)

(eβEk1 + 1)(eβEk2 + 1)
T 2
∑

{pn1pn2}

ei(pn1+pn2)τ (p1 + p2)
2

P 2
1P

2
2 (P1 + P2)2

,

(6.12)

Ĩ3(ωn) ≡
∫ β

0
dτ eiωnτ e

(β−τ)(Ek1
+Ek2

) + eτ(Ek1
+Ek2

)

(eβEk1 + 1)(eβEk2 + 1)
T 2
∑

{pn1pn2}

ei(pn1+pn2)τpn1pn2
P 2
1P

2
2 (P1 + P2)2

; (6.13)

analytically continuing ρi(ω) = Im Ĩi(ωn → −i[ω + i0+]); taking the limit ω → 0; and

keeping only the terms that give a non-vanishing contribution, some work leads to

lim
ω→0+

Tρ1(ω)

ω
=
fF(ǫp1)fF(ǫp2)[1− fF(Ek1)][1− fF(Ek2)]

4ǫp1ǫp2
2πδ(ǫp1 + ǫp2 − Ek1 − Ek2) ,

(6.14)

lim
ω→0+

Tρ2(ω)

ω
= lim

ω→0+

Tρ1(ω)

ω
× (p1 + p2)

2

(p1 + p2)2 − (ǫp1 + ǫp2)
2
, (6.15)

lim
ω→0+

Tρ3(ω)

ω
= lim

ω→0+

Tρ1(ω)

ω
× −ǫp1ǫp2

(p1 + p2)2 − (ǫp1 + ǫp2)
2
. (6.16)

In the non-relativistic limit, M ≫ πT , the subsequent spatial integrals can also be

carried out. Indeed detailed balance,

fF(ǫp1)fF(ǫp2)[1− fF(Ek1)][1− fF(Ek2)]δ(ǫp1 + ǫp2 − Ek1 − Ek2)

= fF(Ek1)fF(Ek2)[1− fF(ǫp1)][1− fF(ǫp2)]δ(ǫp1 + ǫp2 − Ek1 − Ek2) , (6.17)

guarantees that the momenta k1, k2 are non-relativistic, like in eq. (3.5). Momentum

conservation requires that p1 + p2 is also non-relativistic, and that fF(ǫpi) are exponentially

small. So, from eqs. (6.8)–(6.17),

lim
ω→0+

Tρ
(qq̄)
Ω (ω)

ω
≈ 4g4CFNcNf

∫

p1p2k1k2

fF(Ek1)fF(Ek2)

4ǫp1ǫp2

× (2π)4δ(4)(P1 + P2 −K1 −K2)

{

3

2
− 2ǫp1ǫp2

(ǫp1 + ǫp2)
2

}

≈ g4CFNcNf

M2

∫

p1p2k1k2

fF(Ek1)fF(Ek2) (2π)
4δ(3)(p1 + p2)δ(2p1 − 2M)

=
g4CFNcNf

2π

∫

k1

fF(Ek1)

∫

k2

fF(Ek2) . (6.18)

Dividing by χ
f
from eq. (4.3), eq. (5.32) finally yields

Γ
(qq̄)
chem ≈

g4CFNf

8πM2

(

MT

2π

)
3

2

e−M/T . (6.19)
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This agrees with eq. (3.8).

As far as the gluonic contributions are concerned, the situation is complicated by the

many diagrams appearing in figure 3; indeed we have checked that all diagram classes,

with two, three and four heavy quark propagators, need to be summed together in order to

obtain gauge-independent results. Nevertheless, without getting lost in excruciating detail,

we can draw on eqs. (6.1), (6.2) to present a short but “suggestive” argument that things

work out as before. For the s-channel process, the vacuum amplitude squared reads

∑ |M1|2ss = g4Tr [T aT b]facdf bcd Pσσ̃
T (P1)Pρρ̃

T (P2)

× Tr [γµ( /K1 +M)γν( /K2 −M)]

(P1 + P2)4

×
[

ησρ(P2 − P1)µ − ηρµ(P1 + 2P2)σ + ηµσ(2P1 + P2)ρ
]

×
[

ησ̃ρ̃(P2 − P1)ν − ηρ̃ν(P1 + 2P2)σ̃ + ηνσ̃(2P1 + P2)ρ̃
]

. (6.20)

Here PT denotes the projector from a sum over the on-shell gluon polarizations, and

Feynman gauge was used for the inner gluon line. On the other hand, the gluonic equivalent

of the process in figure 4 can be written in Feynman gauge as

δΩ̃(gg)(ωn) = −1

2
g4Tr [T aT b] facdf bcd

×∑
∫

P1P2{K1K2}

δ̄(ωn + P1 + P2 −K1 −K2) εµ;α(P1 + P2)εν;β(P1 + P2)

P 2
1P

2
2 (K

2
1 +M2)(K2

2 +M2)

× Tr [γµ(i /K1 +M)γν(i /K2 −M)]

(P1 + P2)4

×
[

δσρ(iP2 − iP1)α − δρα(iP1 + 2iP2)σ + δασ(2iP1 + iP2)ρ
]

×
[

δσρ(iP2 − iP1)β − δρβ(iP1 + 2iP2)σ + δβσ(2iP1 + iP2)ρ
]

. (6.21)

Establishing a precise equivalence between all indices requires adding other gluonic contri-

butions on both sides, but a comparison with eqs. (6.1), (6.2), for which we carried out a

detailed analysis, allows us to anticipate that things work out here as well, including the

important factor 1
2 in front of the gluonic channels in eq. (3.3), clearly visible in eq. (6.21).

7 Discussion

The question of whether or not heavy quarks chemically equilibrate in heavy ion collisions

is sometimes addressed by comparing the observed total yield with that predicted by a

thermal distribution at the final (pionic) freeze-out temperature. In this paper, we have

have asked whether chemical equilibrium could be reached earlier on, at a higher tempera-

ture. Since there are many heavy quarks in the initial state, one simply needs to get rid of

some of them, to arrive at a thermal ensemble. The rate for this is suppressed by e−M/T ,
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which is the density of antiquarks seen by any given heavy quark. If this suppression can

be overcome then, for a while, heavy quarks could be part of the thermal medium, before

re-decoupling again above the final pionic freeze-out, explaining why more heavy quarks

and antiquarks are observed than is due for chemical equilibrium.

Taking the expression from eq. (3.10); factorizing from it the susceptibility of eq. (4.3);

normalizing the susceptibility to its value in the massless limit, to be denoted by χ0 ≡
NcT

3/3; and setting Nc = 3, the result for the chemical equilibration rate reads

Γchem ≃
2πα2

sT
3

9M2

(

7

6
+Nf

)

χ
f

χ0

. (7.1)

Setting furthermore Nf = 3, αs ∼ 0.3, M ∼ 1.5GeV, and estimating χ
f
/χ0 from refs. [27,

28], we obtain Γ−1
chem ∼ 10 fm/c at T ∼ 600MeV, and Γ−1

chem
>∼ 60 fm/c at T ∼ 400MeV. If

true, these time scales indicate that chemical equilibrium is unlikely to be reached in current

heavy ion collision experiments, where the highest temperatures are around T ∼ 400MeV

and the time scale is around 10 fm/c.

The estimate presented in eq. (7.1) is a rough one. In principle, a non-perturbative

value could be obtained from eq. (5.32) through numerical lattice Monte Carlo simulations

and a subsequent analytic continuation. For the latter step, short-distance singularities

need to be subtracted, as has recently been elaborated upon in connection with other

transport coefficients [33, 34]. This task is undoubtedly a hard one: as an analysis of

graph (a) of figure 3 shows, for ω ≫M the spectral function behaves as

ρ
Ω
(ω)

ω≫M
=

g2CFNc

120(4π)3
[

ω6 +O(ω2M4)
]

, (7.2)

implying that the Euclidean correlator diverges as Ω(τ) ∼ 1/τ7 for τ ≪ M−1. To sub-

tract this dominant and any subdominant divergences perturbatively, and still retain a

statistically significant signal containing the thermal physics, would require a very precise

analysis. (Alternatively one could start with the correlator ∆(τ) of eq. (5.26), although

this is dominated by a constant mode, which poses problems for some methods of ana-

lytic continuation.)

Nevertheless, our non-perturbative formulation may have other uses; for instance, it

may be amenable to an order-of-magnitude estimate in the confined phase through chi-

ral effective theories, similarly to what has previously been achieved in the case of the

heavy flavour kinetic equilibration rate [35]–[38]. Possibly it could also be combined with

non-relativistic QCD (NRQCD) where the hard (p ∼M) momentum fields have been inte-

grated out perturbatively. Indeed it is possible to include the effects of QQ annihilation in

NRQCD, through a 4-fermion interaction in the effective Lagrangian, where the effective

coupling has an imaginary part [39]. In this case one cannot consider Ω(τ) of eq. (5.25)

because the chromo-electric field is hard and should have been integrated out; but one

could compute ∆(τ) of eq. (5.26) instead.

We end by remarking that whereas our non-perturbative formulation is only valid near

equilibrium, the Boltzmann description can also be applied beyond it. Since Γchem is pro-

portional to the density of the antiquarks, cf. eqs. (3.1)–(3.3), we may expect a correspond-

ingly faster rate in the real world where the heavy antiquarks appear in overabundance.

– 17 –
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[1] S. Hofmann, D.J. Schwarz and H. Stöcker, Damping scales of neutralino cold dark matter,

Phys. Rev. D 64 (2001) 083507 [astro-ph/0104173] [INSPIRE].

[2] L.S. Brown and R. Sawyer, Finite temperature corrections to weak rates prior to

nucleosynthesis, Phys. Rev. D 63 (2001) 083503 [astro-ph/0006370] [INSPIRE].

[3] B. Svetitsky, Diffusion of charmed quarks in the quark-gluon plasma,

Phys. Rev. D 37 (1988) 2484 [INSPIRE].

[4] E. Braaten and M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma,

Phys. Rev. D 44 (1991) 2625 [INSPIRE].

[5] G.D. Moore and D. Teaney, How much do heavy quarks thermalize in a heavy ion collision?,

Phys. Rev. C 71 (2005) 064904 [hep-ph/0412346] [INSPIRE].

[6] S. Caron-Huot and G.D. Moore, Heavy quark diffusion in QCD and N = 4 SYM at

next-to-leading order, JHEP 02 (2008) 081 [arXiv:0801.2173] [INSPIRE].

[7] L.D. Landau and E.M. Lifshitz, Statistical physics, 3rd Edition, Butterworth-Heinemann,

Oxford, U.K. (1980), see §118.
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