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CH-8093 Zürich, Switzerland
bHarish-Chandra Research Institute,

Chhatnag Road, Jhusi, Allahabad, 211019 India

E-mail: gaberdiel@itp.phys.ethz.ch, gopakumr@hri.res.in

Abstract: The non-linear W∞[µ] symmetry algebra underlies the duality between the

WN minimal model CFTs and the hs[µ] higher spin theory on AdS3. It is shown how the

structure of this symmetry algebra at the quantum level, i.e. for finite central charge, can

be determined completely. The resulting algebra exhibits an exact equivalence (a ‘triality’)

between three (generically) distinct values of the parameter µ. This explains, among other

things, the agreement of symmetries between the WN minimal models and the bulk higher

spin theory. We also study the consequences of this triality for some of the simplest W∞[µ]

representations, thereby clarifying the analytic continuation between the ‘light states’ of

the minimal models and conical defect solutions in the bulk. These considerations also lead

us to propose that one of the two scalar fields in the bulk actually has a non-perturbative

origin.

Keywords: Field Theories in Lower Dimensions, AdS-CFT Correspondence, Conformal

and W Symmetry, 1/N Expansion

ArXiv ePrint: 1205.2472

c© SISSA 2012 doi:10.1007/JHEP07(2012)127

mailto:gaberdiel@itp.phys.ethz.ch
mailto:gopakumr@hri.res.in
http://arxiv.org/abs/1205.2472
http://dx.doi.org/10.1007/JHEP07(2012)127


J
H
E
P
0
7
(
2
0
1
2
)
1
2
7

Contents

1 Introduction and summary 1

2 The structure of the W∞[µ]-algebra 4

2.1 Explicit form of the algebra 6

2.2 Triality in W∞[µ] 7

2.3 Truncation to finite N 8

3 Minimal representations of W∞[µ] 9

3.1 Determining the c-dependence of the structure constants 9

3.2 Structure of solutions 10

3.3 The minimal model parametrisation 11

4 Analytic continuation 12

4.1 The (f, f) states 12

4.2 Light states and conical surpluses 13

4.3 Analytic continuation of the minimal states 15

5 Refining the minimal model holography conjecture 16

6 Conclusions 17

A Explicit commutation relations 18

B Representation theory of W∞[µ] 20

B.1 Relations at level one 20

B.2 Relations at level two 21

B.3 The final equation 22

C The fusion of (f; f) at finite N and c 22

1 Introduction and summary

Symmetry plays a very powerful role in the AdS/CFT correspondence. The presence of

large symmetries in both the bulk and the boundary can, in some instances, effectively

constrain the dynamics so that the equivalence between the two descriptions is largely a

consequence of the matching of the symmetries. Such examples, in turn, can help in de-

ciphering the holographic dictionary better. The developments which have uncovered the

planar integrability of N = 4 Super Yang-Mills theory and the related integrability of the
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string sigma model on AdS5×S5 go in this direction. Interestingly, these enlarged symme-

tries are usually not very manifest and their matching on both sides is a nontrivial fact.

The presence of supersymmetry is usually a necessary prerequisite for these larger sym-

metries, and most of the well studied examples of AdS/CFT exploit the power of supersym-

metry. It has gradually been realised that higher spin symmetries can play an analogous

role in effectively constraining the dynamics in non-supersymmetric contexts. These sym-

metries might essentially govern the vicinity of the tensionless limit of string theory on AdS,

or equivalently the weak coupling limit of gauge theories. Even when the symmetries are

(mildly) broken they can provide constraints on the form of the correlation functions [1, 2].

While for CFTs in d > 2 higher spin symmetries can only be realised exactly in free bo-

son/fermion theories,1 in d = 2 this conclusion may be evaded (as in the Coleman-Mandula

theorem). Indeed, there is a large class of interacting two dimensional CFTs which have

(holomorphic) conserved currents of arbitrarily high spin. These symmetries usually define

so-called W-algebras. They are generically nonlinear in the sense that the generators do

not form a conventional Lie algebra, but that the commutators of two generators can only

be expressed in terms of quadratic (or even higher order) products of the generators.

An important step was taken in [3, 4], where it was realised that the asymptotic sym-

metry algebras of higher spin theories on AdS3 are such W-algebras. The particular cases

studied in [3, 4] actually belong to a one-parameter family of higher spin theories whose

symmetry algebras could be identified with W∞[µ] [5] (see also [6]). These generalisations

of the Brown-Henneaux result opened the possibility of a 2d CFT with W-symmetry be-

ing dual to some higher spin theory on AdS3. A concrete proposal was then made in [7],

relating the so-called WN,k family of unitary CFTs (in a certain large N , k ’t Hooft limit)

to a specific higher spin theory (coupled to additional scalar fields) on AdS3. This duality

has been further investigated in [8–15].

However, the symmetries on the bulk and boundary theories are not obviously the

same, though they are both W-algebras. At any fixed N , the minimal model CFTs have

WN symmetry, which corresponds to W∞[µ] with µ = N ; at these values the algebra

truncates consistently to one with currents of a maximum spin s = N . On the other hand,

the bulk theory is based on the hs[λ] higher spin theory with λ identified with the ’t Hooft

coupling λ = N
N+k

, and its asymptotic symmetry algebra is W∞[µ] with µ = λ [5]. At first

sight this appears to be rather different from the symmetries of a theory with µ = N .

The crucial point, however, is that the Brown-Henneaux like analysis of [3–5] is ‘clas-

sical’, i.e. it determines the Poisson brackets of the W-generators, and is only valid at

large c = 3ℓ
2GN

; in order to emphasize this aspect, we shall sometimes denote this classical

W∞[µ] algebra by Wcl
∞[µ]. When the central charge is finite and Poisson brackets are re-

placed by commutators, the non-linear nature of W∞[µ] leads to additional terms arising

from the normal ordering of products and the requirement to satisfy the Jacobi identities.

As a consequence, the quantum W∞[µ] algebra, Wqu
∞ [µ], is a significant deformation of the

classical algebra.

1This conclusion relies on a number of general assumptions, one of which is that the number of degrees

of freedom, N , is finite.
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Therefore, while the classical algebras Wcl
∞[µ] for µ = N and µ = λ are certainly not

isomorphic, this does not preclude that there exists a non-trivial equivalence of the corre-

sponding quantum W-algebras. In fact, heuristic considerations [8] based on generalised

level-rank dualities for coset CFTs [16, 17] suggest such a relation; this will be reviewed

at the beginning of section 2 below. In this paper, we put this equivalence on a firmer

footing by giving compelling evidence for a general triad of isomorphic Wqu
∞ [µ] algebras

for (three generically) different values of µ. As we will see, this triality implies the desired

equivalence in the case when one of the values of µ is µ = N .

More specifically, as we shall explain in section 2.1, we can determine the structure of

the quantum Wqu
∞ [µ] algebra completely, using two constraints. Starting from the classical

algebra Wcl
∞[µ], the requirement that the Jacobi identities are satisfied fixes the correct

form of the normal ordered products, as well as the finite shifts in the coefficients of the

non-linear terms. This determines the algebra up to the form of some structure constants

that are only known from Wcl
∞[µ] to leading order in 1

c
. The complete c-dependence of these

structure constants can then be determined by requiring that the representation theory of

Wqu
∞ [µ] matches that of WN for µ = N . In general, the resulting quantum algebra does

does not actually contain hs[µ] as a subalgebra; instead hs[µ] is only a subalgebra in the

c → ∞ limit.

As it turns out, the quantum algebra Wqu
∞ [µ] is more invariantly parametrised in

terms of two numbers: these are c, the central charge, and γ, the structure constant which

captures the leading nontrivial higher spin coupling (of the spin four current in the OPE of

two spin three currents). All other structure constants appear to be fixed in terms of these

two parameters. Furthermore, µ is determined by a cubic equation which depends only on

(c, γ), and therefore there are three values of µ which correspond to isomorphic algebras.

This effectively proves the quantum equivalence of these three Wqu
∞ [µ] algebras.

In section 3 we then go on to study some of the simplest representations of Wqu
∞ [µ]

which we call minimal representations. These are the representations which have the

fewest number of low-lying states. It turns out that there are three of them for fixed

values of (c, γ). We verify that the quantum numbers (dimensions, low spin charges) of

these three representations are indeed consistent with the above triality.2 For the case

of the WN,k minimal models, the two physical representations correspond to the basic

coset primaries labelled as (0; f) and (f; 0) (and their complex conjugates). The fusion of

these two representations produces other non-minimal representations such as (f; f) — the

lightest of the light states (in the large N ’t Hooft limit).

Therefore, in section 4 we revisit these light states and their relation to semi-classical

solutions (conical defects) [12] of the bulk SL(N) higher spin theory. Since our analysis

of the minimal representations and their fusion holds for all values of c, we can study

the representation theory at fixed N (which then determines γ = γ(N, c)), and hence

understand the behaviour of the various representations as a function of c. In particular,

we consider the analytic continuation of the (f; f) state from c = cN,k ≤ (N − 1) (the

value for the minimal models), to the semi-classical regime c → ∞. In the latter regime,

2Interestingly, one of the three is not a representation of hs[µ], even in the large c limit.
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its quantum numbers match (to leading order in c) those of the conical defect solution

of the bulk theory. We can similarly look at all the other light states (Λ; Λ) of the CFT

and continue the representations (at fixed N) to large c. The expressions for charges

and dimensions are smooth functions of c, and their leading behavior matches with those

calculated for the conical defects [12]. This shores up the identification of the latter with

the light states in a precise analytic continuation in c of representations of Wqu
∞ [µ].

If we consider the similar analytic continuation in c (again at fixed N) of the two

minimal representations (0; f) and (f; 0), we find that the dimension of the former is pro-

portional to c (for large c) while that of the latter is of order one. Thus the two states

are on a different footing, and it appears to be more natural to consider the former as

non-perturbative (or solitonic), whereas the latter can be viewed as a perturbative excita-

tion. Therefore, in section 5 we are led to refine the conjecture of [7], and propose that

the bulk theory should be considered to be the hs[λ] theory with only one complex scalar

(with m2 = −1+ λ2), and quantized in the standard way (the + quantization). The other

primary corresponding to (0; f) is to be viewed as an excited state of the lightest conical

defect. We believe this alternative picture explains some of the puzzling aspects of the

light states and their relation to the perturbative excitations. We summarise the current

status of the duality and interesting avenues for further work in section 6.

2 The structure of the W∞[µ]-algebra

Let us begin by motivating why there should be non-trivial identifications among the

quantum W∞[µ] algebras. Recall that by construction, WN agrees with W∞[µ] for integer

µ = N . Indeed W∞[µ] is the Drinfeld-Sokolov reduction of hs[µ], and hs[µ] reduces3 to

su(N) for µ = N , whose Drinfeld-Sokolov reduction is WN ; thus we have the relation

W∞[µ]|µ=N
∼= WN . (2.1)

However, there is also a second, somewhat more subtle, relation between W∞[µ] and WN .

It was conjectured in [16, 17] that the coset models

WN,k ≡ su(N)k ⊕ su(N)1
su(N)k+1

∼= su(M)l ⊕ su(M)1
su(M)l+1

≡ WM,l (2.2)

are related to one another by some sort of level-rank duality, where the relation between

the parameters is

k =
N

M
−N , l =

M

N
−M . (2.3)

Here M and N are taken to be positive integers, whereas k and l are fractional (real)

numbers, and the central charges of both sides are equal to

cN,k ≡ (N − 1)
[

1− N(N + 1)

(N + k)(N + k + 1)

]

= (M − 1)
[

1− M(M + 1)

(M + l)(M + l + 1)

]

≡ cM,l .

(2.4)

3Strictly speaking, the relation is that hs[N ] contains a large ideal, and that the quotient of hs[N ] by

this ideal is equivalent to su(N). We will come back to this in section 3.3.

– 4 –



J
H
E
P
0
7
(
2
0
1
2
)
1
2
7

However, it seems reasonable to assume that this level-rank duality will also hold if instead

of integer N , M , we consider the situation where N and k are integers. Then we can

solve (2.3) for M to obtain

M ≡ λ =
N

N + k
, (2.5)

while l is determined by the condition that both sides have the same central charge. Next

we observe that we have also quite generically that

su(M)l ⊕ su(M)1
su(M)l+1

∼= Drinfeld-Sokolov reduction of su(M) at level l̂ , (2.6)

where again l̂ is determined so as to have the same central charge as the left-hand-side.

For non-integer M we can think of

su(λ) ∼= hs[λ] , (2.7)

and the Drinfeld-Sokolov reduction of hs[λ] equals W∞[λ]. Combining these statements

then leads to the claim that we have an isomorphism of algebras

WN,k ≡ su(N)k ⊕ su(N)1
su(N)k+1

∼= W∞[λ] with λ =
N

N + k
. (2.8)

Here the central charge of W∞[λ] is taken to agree with that of WN,k, i.e. with cN,k defined

in (2.4). This relation should be true not just in the ’t Hooft limit, but also for finite N

and k (and hence finite central charge).

Actually, there is a second variant of this relation. The WN algebra at level k is

identical to the WN algebra at level

k̂ = −2N − k − 1 (2.9)

since the central charges of the two algebras agree, i.e. cN,k = c
N,k̂

. Incidentally, this

identification has a natural interpretation from the Drinfeld-Sokolov (DS) point of view.

Recall that the cosets WN,k in (2.2) are equivalent to the DS reduction of su(N) at level

kDS, where the two levels are related as (see e.g. [18] for a review of these matters)

1

k +N
=

1

kDS +N
− 1 . (2.10)

From the DS point of view, replacing k 7→ k̂ as in (2.9) is equivalent to replacing kDS by

k̂DS with

k̂DS +N =
1

kDS +N
. (2.11)

In terms of the underlying free field description, this corresponds to exchanging (see e.g. [18]

or [8, Section 6.2.2]) the roles of α±, i.e. to define (α̂+, α̂−) = (−α−,−α+). This is an

obvious symmetry of the DS reduction under which the representations are related as

Λ+ ↔ Λ∗
−, see also the discussion in section 4.3.

– 5 –



J
H
E
P
0
7
(
2
0
1
2
)
1
2
7

Thus we can repeat the above analysis with k̂ in place of k, to conclude that WN,k is

also equivalent to W∞[µ] with µ = − N
N+k+1 . Altogether this suggests that we have the

‘triality’

W∞[N ] ∼= W∞[ N
N+k

] ∼= W∞[− N
N+k+1 ] at c = cN,k. (2.12)

In the following we want to give highly non-trivial evidence for this claim. (Actually, as

we shall see, a somewhat stronger statement appears to be true in that we need not even

assume that N is integer.) In order to discuss these issues, however, we first need to

understand the explicit structure of W∞[µ] in more detail.

2.1 Explicit form of the algebra

We can derive the commutation relations of the quantum W∞[µ] algebra by starting with

the classical W∞[µ] algebra that can be defined as the asymptotic symmetry algebra of

Chern-Simons theory based on hs[µ]. The finite c corrections to the non-linear terms can

then be determined recursively by solving the Jacobi identities. Using the results of [5]

(see also [19]) we have worked this out explicitly for the first few terms, and the resulting

commutation relations are given in appendix A. To the order to which we have studied

this problem, these considerations fix the entire structure of the commutators completely,

except for the full c-dependence of the structure constant C4
33. Schematically, this is the

structure constant appearing in the OPE

W ·W ∼ C4
33U + · · · , (2.13)

where W,U are the spin three and spin four currents respectively. It follows from the

analysis of appendix A (see eq. (A.25)) that

C4
33 = 8

√

1
5

µ2−9
µ2−4

+O
(

1
c

)

. (2.14)

In order to determine the full c dependence of this structure constant, we can study the

representation theory of the resulting algebra, and demand that it is compatible, for µ = N ,

with the known results for WN ; this is sketched below in section 3.1. Actually, effectively

the same analysis was already done in [20, 21] (and later in [22]), leading to

(C4
33)

2 ≡ γ2 =
64(c+ 2)(µ− 3)

(

c(µ+ 3) + 2(4µ+ 3)(µ− 1)
)

(5c+ 22)(µ− 2)
(

c(µ+ 2) + (3µ+ 2)(µ− 1)
) . (2.15)

Note that there is a sign ambiguity in the definition of C4
33 since the normalisation conven-

tion of [23] is defined by fixing the OPE of the spin s field W (s) with itself

W (s) ·W (s) ∼ c

s
· 1+ · · · , (2.16)

and hence only determines the normalisation of each field up to a sign. The same comment

also applies to the other structure constants (see below).

In [20–22] a few of the other low-lying structure constants of W∞[µ] were also derived;

in the conventions of [23] and using our notation they are explicitly equal to (see eqs.

– 6 –
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(2.1.25a/b) of [22] as well as [24])

C4
33C

4
44 =

48
(

c2(µ2 − 19) + 3c(6µ3 − 25µ2 + 15) + 2(µ− 1)(6µ2 − 41µ− 41)
)

(µ− 2)(5c+ 22)
(

c(µ+ 2) + (3µ+ 2)(µ− 1)
) (2.17)

(C5
34)

2 =
25(5c+ 22)(µ− 4)

(

c(µ+ 4) + 3(5µ+ 4)(µ− 1)
)

(7c+ 114)(µ− 2)
(

c(µ+ 2) + (3µ+ 2)(µ− 1)
) (2.18)

C5
45 =

15

8(µ− 3)(c+ 2)(114 + 7c)
(

c(µ+ 3) + 2(4µ+ 3)(µ− 1)
) C4

33

×
[

c3(3µ2 − 97) + c2(94µ3 − 467µ2 − 483) + c(856µ3 − 5192µ2 + 4120)

+216µ3 − 6972µ2 + 6756
]

. (2.19)

These expressions look very complicated, but as we will see momentarily, they actually

exhibit a very nice structure.

2.2 Triality in W∞[µ]

Our first observation is that, for fixed c, there are three values of µ (which we label as

µ1,2,3) for which the structure constant γ in (2.15) is actually the same. Indeed, for given

c and γ, it follows directly from (2.15) that the three values are the roots of the cubic

equation

(

3γ̃2 − 8
)

µ3 +
(

γ̃2(c− 7) + (26− c)
)

µ2 −
(

4γ̃2(c− 1)− 9(c− 2)
)

= 0 , (2.20)

where we have defined γ̃2 = γ2 (5c+22)
64(c+2) . Note that the cubic equation does not have a linear

term in µ; thus the three solutions satisfy

µ1µ2 + µ2µ3 + µ3µ1 = 0 , (2.21)

which is equivalent to
∑3

i=1
1
µi

= 0 provided that all µj 6= 0.

The analysis from the beginning of this section suggests that actually the full W∞[µ]

algebra should exhibit this triality symmetry, i.e. that all structure constants are the same

for µ1,2,3. At least for the known structure constants in eqs. (2.17)–(2.19) this is true; one

way to see this, is to observe that they can all be expressed in terms of γ and c as

C4
44 =

9(c+ 3)

4(c+ 2)
γ − 96(c+ 10)

(5c+ 22)
γ−1 (2.22)

(C5
34)

2 =
75(c+ 7)(5c+ 22)

16(c+ 2)(7c+ 114)
γ2 − 25 (2.23)

C5
45 =

15 (17c+ 126)(c+ 7)

8 (7c+ 114)(c+ 2)
γ − 240

(c+ 10)

(5c+ 22)
γ−1 . (2.24)

Incidentally, the structure of these identities suggests that these higher OPE coefficients

are completely determined from C4
33 by the Jacobi identities, and this appears indeed to

be true [25]. Since the three values of µ1,2,3 lead to the same value of γ (at a given c),

– 7 –
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these structure constants are then also equal for the three values of µ. This is a very

strong indication that the quantum W∞[µ] algebras are actually equivalent for these three

(generically distinct) values of µ, i.e. that

W∞[µ1] ∼= W∞[µ2] ∼= W∞[µ3] at fixed c (2.25)

where µ1,2,3 are the roots of the cubic equation (2.20), evaluated for a given γ.

Note that these algebras look very different from the point of view of hs[µ] or even at

the classical level. In fact, at very large c, eq. (2.20) reduces to a linear equation in µ2, and

hence reduces to the familiar equivalence between the classical W∞[µ] algebras for ±µ —

this property is directly inherited from hs[µ]. The statement in (2.25) is a very nontrivial

generalisation to the quantum level (finite c), where the equivalence is a triality between

the three values µ1,2,3. There are three special cases where the cubic equation eq. (2.20)

degenerates: for µ = 0 we have γ̃2 = 9(c−2)
4(c−1) , and the constant term in (2.20) vanishes.

Then µ = 0 is a double zero, and the other solution simply becomes

W∞[µ = 0] ∼= W∞[µ = c+ 1] . (2.26)

For µ = 1, on the other hand, we have γ̃2 = 8
3 , and the cubic power vanishes; then we have

the equivalences

W∞[µ = 1] ∼= W∞[µ = −1] ∼= W∞[µ = ∞] . (2.27)

The fact that for µ = 1 the symmetry µ 7→ −µ survives at the quantum level is a direct

consequence of the fact that, for this value of µ, W∞[µ] is a linear W-algebra whose

structure constants are simply the (analytic continuation) of the hs[µ] structure constants.

Finally, the coefficient in front of the µ2 term in (2.20) vanishes for γ̃2 = (c−26)
(c−7) , when

the equation becomes µ3 = (c+ 1). Thus the three cubic roots of (c+ 1) define equivalent

W∞[µ] algebras.

2.3 Truncation to finite N

In order to clarify the analytic continuation of [12] in section 4 we will be interested in the

case where the algebra W∞[µ] truncates to WN . In that case, the coset level-rank duality

from the beginning of this section suggests that we have the equivalences (2.12). We now

want to show that they are a special case of (2.25).

In order to see this we take one of the roots of (2.20) to be µ1 = N . Then this

determines γ = γ(µ = N, c), and hence the other two roots µ2,3. It follows from (2.20) that

they satisfy the quadratic equation

µ2(N2 − 1)− µ(N − 1− c)−N(N − 1− c) = 0 , (2.28)

whose solutions are

µ2,3(N, c) =
1

2(N2 − 1)

[

(N − 1− c)±
√

(N − 1− c)(4N3 − 3N − c− 1)
]

. (2.29)

For the particular value c = cN,k defined in (2.4), we then find

µ2(N, cN,k) =
N

N + k
and µ3(N, cN,k) = − N

N + k + 1
, (2.30)

– 8 –
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thus reproducing precisely (2.12). In particular, this therefore gives strong evidence for the

equivalence of the WN minimal model at level k, with the W∞[µ] theory at µ = λ ≡ N
N+k

.

This symmetry is crucial for the duality to the bulk Vasiliev theory proposed in [7].

Moreover, we see that there is another value of µ, namely µ3 = − N
N+k+1 , which is also

equivalent to the other two descriptions. In the large N ’t Hooft limit, µ2 = −µ3 and this

is just the statement about the classical equivalence of the hs[±µ] theories.

3 Minimal representations of W∞[µ]

In this section, we will study a special class of representations of W∞[µ] and see how the

results are consistent with the above equivalences. These considerations will also play an

important role for the analysis of the analytic continuation in section 4.

3.1 Determining the c-dependence of the structure constants

Let us consider the representation of W∞[µ] that has the fewest number of low-lying states.

Leaving aside the vacuum representation, this ‘minimal’ representation has then the char-

acter

χ =
qh

(1− q)

∞
∏

s=2

∞
∏

n=s

1

(1− qn)
= qh

(

1 + q + 2q2 + · · ·
)

. (3.1)

Note that if the conformal dimension of the ground state is non-zero, then the L−1 descen-

dant is necessarily non-trivial, and hence the representation contains at least one state at

level one; for the ‘minimal’ representation this is the only non-trivial state at level one,

i.e. all other states are proportional to it (modulo null states). Similarly, in the minimal

representation there are only two descendants at level two, which we may take to be the

L2
−1 and L−2 descendants of the ground state; all other descendants at level two are again

equal to linear combinations of them (modulo null states).

Thus the minimal representation must contain many (sic!) null-vectors, and as a con-

sequence its structure is completely determined. In particular, it follows from the analysis

of appendix B that the conformal dimension of the ground state must satisfy the cubic

equation

7(5c+ 22)(16h2 + 2ch+ c− 10h)(2ch− 3c− 2h)N4 (3.2)

+150(18h2c+ c2 − 12ch+ c2h+ 36h2 + 2c− 28h)(hc− 2h− 2c)N2
3 = 0 .

We can then turn the logic around, and use this identity to determine the full c-dependence

of the structure constants N3 and N4.
4 To this end we recall that W∞[µ = N ] truncates to

WN , and that the WN,k theories have the minimal representations (f; 0) and (0; f) (or their

conjugates), where f denotes the fundamental representation of su(N). The corresponding

conformal dimensions equal

h(f; 0) =
N − 1

2N

(

1 +
N + 1

N + k

)

, h(0; f) =
N − 1

2N

(

1− N + 1

N + k + 1

)

. (3.3)

4Actually, as is clear from the structure of the W∞[µ] algebra, there is an overall normalisation freedom

(which is described by q2 in (A.20) and (A.21) and which corresponds to rescaling the primary field of spin

s by qs−2), and only N4/N
2
3 has any independent meaning.
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Either of these values must therefore be a solution of (3.2) for finite N and k; expressing

k in terms of c and N = µ, the first value of h in (3.3) implies that we have

N4

N2
3

=
75 (c+ 2) (µ− 3)

(

c(µ+ 3) + 2(4µ+ 3)(µ− 1)
)

14 (5c+ 22) (µ− 2)
(

c(µ+ 2) + (3µ+ 2)(µ− 1)
) . (3.4)

It is then a non-trivial consistency check that, with this expression for the structure con-

stants, also the second value of (3.3) solves (3.2). In order to relate this to the conventions

of [23], we choose N3 = 2
5 so that the OPE of two W -fields is as in (A.22), and rescale U

as in (A.24); then (3.4) implies that

(C4
33)

2 =
16 · 56
75

N4

N2
3

=
64(c+ 2)(µ− 3)

(

c(µ+ 3) + 2(4µ+ 3)(µ− 1)
)

(5c+ 22)(µ− 2)
(

c(µ+ 2) + (3µ+ 2)(µ− 1)
) , (3.5)

thus leading to (2.15).

3.2 Structure of solutions

Plugging in the explicit expressions for N4

N2
3

, the cubic equation in (3.2) factorises into a

linear equation

2h (1− µ+ c)− (1 + µ)c = 0 =⇒ h = h(1)(µ, c) ≡ (1 + µ)c

2(1 + c− µ)
, (3.6)

as well as the quadratic equation

4h2µ2 + 2h(1 + c+ µ− 2µ2)− c(1− µ) = 0 (3.7)

with solutions

h = h
(2)
± (µ, c) ≡ 1

4µ2

[

−(1 + c+ µ− 2µ2)±
√

(c+ 1− µ) (c+ 1 + 3µ− 4µ3)
]

. (3.8)

Note that the cubic equation (3.2), once we substitute (3.4), is actually triality invariant.

As a consequence the roots in (3.7) and (3.8) are permuted among each other under a

triality transformation.

For c → ∞ (and µ fixed), the three solutions behave as

h(1) ≃ 1

2
(1 + µ) , h

(2)
+ ≃ 1

2
(1− µ) , h

(2)
− ≈ − c

2µ2
+

µ3 + µ2 − µ− 1

2µ2
. (3.9)

For µ = λ ≡ N
N+k

, the first two are the familiar solutions for the scalar fields in the duality

of [7], while the last solution does not correspond to a representation of hs[λ]. The reason

for this is that, as discussed in detail in [5], hs[λ] is only a subalgebra of W∞[λ] for c → ∞,

but the third representation in (3.9) decouples in this limit.

We will see in the next subsection that for µ = N and c taking one of the values cN,k of

the WN,k minimal models, h
(2)
± correspond to the physical representations (f; 0) and (0; f),

respectively. Note the different behavior of the dimensions of the two representations at

large central charge, suggesting that the two scalar excitations appear on a very different

footing. We will return to this important distinction in section 5.
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3.3 The minimal model parametrisation

For the following it will sometimes be useful to parametrise the W∞[µ] algebra in terms

of N and k, rather than c and µ, where the relation between the two parameters is that

µ = N , and c = cN,k, with cN,k defined in (2.4). Obviously, this is a useful parametrisation

if we are interested in the truncation of W∞[µ] to finite N (as will be the case in section 4).

However, we may also take the more general point of view that N and k are not necessarily

integers, and then this is just a useful parametrisation (covering all W∞[µ] algebras at all

values of the central charge).

We should note, however, that this parametrisation exhibits a six-fold ambiguity. The

reason for this is that, for a given c and N , the equation c = cN,k has two solutions for

k; if k = k′ is one solution, then the second solution is k = −(2N + k′ + 1). Together

with (2.30), the six equivalent pairs are therefore

(N, k) (N,−2N − 1− k)
(

N

N + k
,
1−N

N + k

) (

N

N + k
,−2N + k + 1

N + k

)

(

− N

N + k + 1
,− k

N + k + 1

) (

− N

N + k + 1
,

N − 1

N + k + 1

)

.

(3.10)

In this parametrisation the eigenvalues of the minimal representations are

h(f; 0) =
N − 1

2N

(

1 +
N + 1

N + k

)

= h
(2)
+ (µ = N, c = cN,k) (3.11)

h(0; f) =
N − 1

2N

(

1− N + 1

N + k + 1

)

= h
(2)
− (µ = N, c = cN,k) , (3.12)

while the third solution, eq. (3.6), equals

h(1)(µ = N, c = cN,k) = −k
(2N + k + 1)

2N
. (3.13)

This last representation does not appear to be (and in fact is not) a representation of WN

(at level k). It may therefore seem that we have a contradiction with (2.12).

In order to understand why this is not the case, we need to be more precise about the

nature of the truncation, say in (2.1). This identity is only true after quotienting W∞[µ]

by the non-trivial ideal that appears for µ = N ; this just mirrors the fact that hs[µ = N ]

is not identically equal to su(N) either since hs[µ] is infinite dimensional, whereas su(N) is

finite-dimensional. Rather, for µ = N the algebra hs[µ] develops an (infinite-dimensional)

ideal, and if we divide hs[µ] by this ideal, the resulting Lie algebra is isomorphic to su(N).

Similarly, for (2.1), (2.8) or (2.12), the two algebras are only isomorphic if we quotient

W∞[µ] by the relevant ideal (that appears for these special values of µ). But then it is not

guaranteed that the representations of W∞[µ] are compatible with this quotienting.

For example, if we set µ = 3, then W∞[3] should truncate to W3. This requires that

we set all higher spin fields with spin greater than 3 (such as U and X) to zero. But then

only those ‘minimal’ representations of W∞[µ] define (minimal) representations of W3 for
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which u = x = 0, see (B.14) and (B.15). In particular, the numerator of u in (B.14)

leads to a quadratic relation for h, that is satisfied for h = h
(2)
± , but not for h = h(1).

[Similarly, (B.15) then also follows since N4 = 0 for µ = 3, see eq. (3.4).] This explains

why (3.13) is not a representation of WN at N = 3, and we expect that a similar argument

will apply for any integer N . Similarly, if we set

µ =
3

3 + k
with c = c3,k = 2− 24

(3 + k)(4 + k)
, (3.14)

corresponding to W3 at level k, then h(1) and h
(2)
+ describe the actual representations of

W3 at that central charge, whereas h
(2)
− does not, as can be seen by the same reasoning.

Note that also for these values of µ and c, N4 in (3.4) vanishes.

4 Analytic continuation

Let us now apply the insights of the previous sections to shed some more light on the

analytic continuation proposed in [12]. Recall that this analytic continuation related a

class of states in the WN,k minimal models (the ‘light states’) to certain classical solutions

in the (euclidean) higher spin theory based on the gauge group SL(N,C). In the process

N was kept fixed and finite, while k, which is a positive integer in the minimal models,

was taken to the value k = −(N +1). The expressions for the dimensions as well as spin 3

and spin 4 charges of all these states in the minimal model were formally found to match

(in a fairly non-trivial way) with those of the bulk solutions for any value of N .

It is not immediately obvious whether the formal procedure of taking k from positive

integer values to the negative value k = −(N + 1) makes any sense, and indeed, in the

analysis of [12], it was not entirely clear what precisely was being kept fixed in the process.

With our improved understanding of the structure of the quantum W∞[µ] algebras we can

now give a clear interpretation of these results. As we shall explain below, the correct

way to describe this analytic continuation is to consider the family of WN theories at fixed

finite N , and vary c from the minimal model value c ≤ (N − 1) to the semiclassical case

where c → ∞. Since we now understand how to describe the algebras W∞[µ] for arbitrary

µ and c, this analytic continuation is well-defined, and it induces a corresponding analytic

continuation on all representations.

In the following we shall first study this in detail for the lightest of the light states,

the representation labelled by (f, f). This then suggests a natural generalisation for all the

light states; this will be described in section 4.2. Incidentally, our analysis also implies that

the two minimal representations (that play an important role in the duality of [7]) behave

rather differently as we take c → ∞. This suggests that one of them should probably not

be interpreted as a ‘perturbative’ state of the higher spin gravity theory; we will come back

to this issue in section 5.

4.1 The (f, f) states

Recall that the primaries of the minimal models are labelled by two integrable represen-

tations (Λ+; Λ−) of su(N)k and su(N)k+1, respectively. The set of light states that were

– 12 –
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considered in [12] are of the form Λ+ = Λ− = Λ, and their conformal dimension equals

h(Λ,Λ) =
c2(Λ)

(N + k)(N + k + 1)
. (4.1)

Here c2(Λ) is the quadratic Casimir of the representation Λ. If we were to consider the

’t Hooft limit where (N, k) → ∞, the states where Λ has a finite number of Young tableau

boxes have conformal dimension h ∝ 1
N
, and hence were dubbed ‘light states’. In the

following we want to follow these states as we change the conformal dimension from the

minimal model value c = cN,k to the quasiclassical regime where c is large. Let us first

explain this in detail for the lightest of the light states, the one corresponding to Λ = f.

In order to do so we note that we can think of (f; f) as the fusion of (0; f) ⊗ (f; 0).

We can thus repeat the fusion analysis of [8], but now done for W∞[µ = N ] at finite c,

using the explicit form of the commutation relations of appendix A; some details of this

calculation are given in appendix C. Provided that c is finite, the resulting fusion product

is irreducible,5 and the conformal dimension of the resulting highest weight state equals

exactly

h(f; f) = h(f; 0) + h(0; f)− N − 1

N
. (4.2)

Given the identifications (3.11) and (3.12), we know how to analytically continue both

(f; 0) and (0; f); for c → ∞, it then follows that their conformal dimensions behave as (see

eq. (3.9))

h(f; 0) ∼ −(N − 1)

2
, h(0; f) ∼ − c

2N2
+

N3 +N2 −N − 1

2N2
, as c → ∞. (4.3)

Thus it follows that the analytic continuation of the (f; f) representation has conformal

dimension

h(f; f) ∼ − c

2N2
+

N − 1

2N2
as c → ∞. (4.4)

This then reproduces precisely the observation of [12].

4.2 Light states and conical surpluses

One can actually generalise the above discussion to all light states. To this end one observes

that the conformal dimension, as well as the eigenvalues of the spin 3 zero mode of the

state (Λ; Λ), can be written as

h = α2
0 c2(Λ)

w = α3
0 c3(Λ + ρ) , (4.5)

where ρ denotes the Weyl vector of the algebra su(N), cs are the various Casimir operators

— for the precise definitions see eqs. (4.12) and (5.10) of [12] — and α0 is defined by

α2
0 =

1

(N + k)(N + k + 1)
. (4.6)

5This is different to what happened in [8] where the c → ∞ limit was considered. There the fusion

product turned out to be indecomposable.
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Note that the entire k dependence of the expressions in (4.5) is contained in the prefactor

α0. We should mention in passing that in [12] a similar statement was also made (to

leading order in 1
c
) for the spin 4 zero mode. This (as well as corresponding statements

for the higher spin charges) can be deduced from the Drinfeld-Sokolov description, using

the simple formula for the eigenvalue in the non-primary basis, see for example eq. (6.50)

of [18]. However, the field redefinition that is required for going from this non-primary

basis to the corresponding primary basis is only known to leading order in 1
c
[26], and is

likely to receive non-trivial quantum corrections (coming from the normal ordering) for

higher spins. Thus the simple statement corresponding to (4.5) will, for spins greater than

three, only hold in a suitable non-primary basis.

Returning to (4.5), it is now natural to believe that the analytic continuation simply

consists of writing these expressions in terms of N and c, rather than N and k. Since

c = cN,k = (N − 1)
[

1− N(N + 1)

(N + k)(N + k + 1)

]

= (N − 1)
(

1−N(N + 1)α2
0

)

, (4.7)

this amounts to writing

α2
0 =

(N − 1− c)

N(N2 − 1)
. (4.8)

The analytic continuation is then straightforward: we keepN fixed, and vary c continuously

from c = cN,k to the semiclassical regime c → ∞. Note that for the case of Λ = f this

then reproduces indeed (4.4) since c2(f) =
N2−1
2N . Similarly, it follows from the analysis of

appendix C that the same holds for w(f; f), see eq. (C.17).

Since the entire c dependence of the eigenvalues (4.5) is carried by their dependence on

α0, and since α2
0 ∼ c for large c, all the eigenvalues in (4.5) become proportional to some

positive power of c. Thus these states can be interpreted in terms of ‘classical solutions’ in

this limit.

More concretely, the c dependence of α0 (at fixedN) contains only a linear and constant

term

α2
0(c) = − c

N(N2 − 1)
+

1

N(N + 1)
. (4.9)

In the semiclassical limit we can drop the second (constant term), and with the resulting

value of α2
0, the spectrum and charges were matched with that of the conical defect solutions

in the bulk higher spin theory. This match is only true to leading order in the central

charge;6 of course, that is the best one could hope for from the classical solutions which

are not sensitive to 1
c
corrections. In fact, our analysis gives a prediction that the energies

of the conical defects only get an O(1) positive correction

δh(Λ,Λ) =
c2(Λ)

N(N + 1)
, (4.10)

without any further 1
c
corrections. However, the higher spin charges given in (4.5) do

generically have higher order corrections. But perhaps all these corrections are best viewed

as a quantum renormalisation of the central charge c → c−(N−1) (or equivalently Newton’s

constant GN ) in the bulk theory.

6We thank Joris Raeymakers for sharing closely related observations.
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4.3 Analytic continuation of the minimal states

Actually, the above considerations also apply directly to the ‘minimal’ representations;

indeed, this is already implicit in what was done above in section 4.1. As we explained

there, the conformal dimension of the two minimal representations that exist at finite

integer N behave as (4.3). Note that the semiclassical interpretation of these two states

(at fixed N) is quite different: the conformal dimension of the state (f; 0) remains finite,

while that of (0; f) is proportional to c. We are therefore led to the point of view that the

only true perturbative states are those corresponding to (f; 0) and (f̄; 0), making up one

complex scalar. What was earlier interpreted as another perturbative scalar, namely, that

corresponding to (0; f) and its conjugate (0; f̄), is perhaps more naturally thought of as a

solitonic state that just happens to have a finite dimension in the ’t Hooft limit. This is

also in line with the observations made at the end of section 3.2. We shall come back to

the implications of this for the duality proposed in [7] in section 5.

Incidentally, eq. (4.2) also leads to a somewhat different point of view. Since in the

large c limit h(f; 0) = h(f̄; 0) < 0, it is more natural to rewrite (4.2) as

h(0; f) = h(f; f)− h(f̄; 0) +
N − 1

N
. (4.11)

This suggests that (0; f) should be interpreted as some kind of bound state of (f; f) with

a perturbative excitation (f̄; 0). Actually, a similar statement holds for all representations

of the form (0; Λ−). To see this, recall that the conformal dimension of the representation

(Λ+; Λ−) equals

h(Λ+; Λ−) =
1

2
(Λ,Λ + 2α0ρ) , where Λ = α+Λ+ + α−Λ− , (4.12)

the inner product (·, ·) is the usual inner product on the weight space, and

α+ =
1√

kDS +N
, α− = −

√

kDS +N , α0 = α+ + α− . (4.13)

Note that, using the relation to the coset labels of eq. (2.10), α2
0 agrees then precisely

with (4.6). Since α+ · α− = −1, it now follows that

h(Λ+; Λ−) = h(Λ+; 0) + h(0; Λ−)− (Λ+,Λ−) . (4.14)

In particular, we can apply this to the case Λ+ = Λ− and conclude that

h(0; Λ−) = h(Λ−; Λ−)− h(Λ∗
−; 0) + (Λ−,Λ−) . (4.15)

The last term is positive and purely group-theoretic, i.e. it does not depend on k (or c),

but only on N (as well as Λ−). We can thus think of (0; Λ−) as a bound state of (Λ−; Λ−)

with the perturbative excitation (Λ∗
−; 0). Note that, again, h(Λ; 0) becomes negative in the

semiclassical limit, since we have

h(Λ; 0) = α2
+ c2(Λ)− (Λ, ρ) , (4.16)

where

α2
+ =

k +N + 1

k +N
→ 0 as k → −N − 1. (4.17)
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5 Refining the minimal model holography conjecture

One of the striking consequences of the analysis of the quantum W∞[µ] algebra is the very

different nature of the two minimal representations which correspond to (f; 0) and (0; f),

respectively. This difference was not at all obvious in the ’t Hooft limit where they have

dimensions 1
2(1 ± λ), and appear to be on a similar footing. However, we now see that

this is, in a sense, an artifact of the ’t Hooft limit: for any finite N (i.e. µ = N) the two

states have conformal dimensions with a very different dependence on c; in particular, in

the semi-classical limit they behave as

h(f; 0) ∼ (1−N)

2
, h(0; f) ∼ − c

2N2
, as c → ∞ , (5.1)

see eq. (4.3). Since h(0; f) ∝ c, this now suggests that (0; f) is more naturally thought of as

a non-perturbative state or soliton, rather than a perturbative state. We should mention

that both h(f; 0) and h(0; f) turn negative in this limit (i.e. for c → ∞ at fixed N), thus

signalling that the theory becomes non-unitary. However, for the purpose of identifying the

semiclassical interpretation of the various states, this should be immaterial. (Obviously,

this problem is absent in the actual ’t Hooft limit since it is a sequence of unitary minimal

models; it corresponds to taking both N and c to infinity in a ’t Hooft like manner.)

It is therefore natural to propose that the state (0; f) (and its conjugate) should not

be thought of as corresponding to a perturbative scalar mode in the bulk. Instead, there

is only one (complex) perturbative scalar dual to (f; 0) (and its conjugate). We should

then think of the state (0; f) as being on the same footing as the light states such as (f; f).

Indeed, as we saw in the previous section, in the large c (finite N) limit it makes a lot of

sense to view (0; f) as a bound state of (f; f) with the perturbative state (f̄; 0). Since (f; f),

was already identified with a semiclassical solution (a conical surplus), we then also have

a candidate bulk interpretation for the state (0; f) as an excitation of this semi-classical

solution.

This reinterpretation also makes sense of the observations in [10, 14], where it was

argued that the double trace operator corresponding to the two particle state of (0; f) and

(f; 0) (whose conformal dimension equals h = 1 in the ’t Hooft limit) is a descendant of the

light state (f; f). This would be very strange if one were to interpret both (0; f) and (f; 0)

as perturbative states while viewing (f; f) as non-perturbative. The interpretation we are

proposing here, on the other hand, makes this quite natural since we now consider (f; f) as

the basic non-perturbative object, which has (0; f) as an excited state.

Finally, this also fits in with the fact that the most natural (unambiguous) bulk higher

spin hs[λ] theory is the one with a single complex scalar. This was one of the motivations

for the proposal of [9] that this higher spin theory describes, say, the (Λ; 0)7 sector of the

minimal models. In a similar vein, at λ = 0 it is the theory with a single complex scalar

that is dual to the singlet sector of a free theory [27].

The final picture is therefore one in which the bulk theory has a perturbative sector

consisting of one complex scalar (dual to (f; 0) and its conjugate) together with a tower

7In their analysis it was ambiguous whether to consider the (Λ; 0) or (0; Λ) subsector of the minimal

models, whereas we see here a basic distinction between the two.
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of higher spin fields. The scalar is quantised in the standard way. At finite N the tower

of higher spins is truncated nonperturbatively to a maximal spin N . This truncation is a

consequence of the equivalence of the Wqu
∞ [µ] algebra to WN when µ = N

N+k
and c = cN,k.

This is a bit like a stringy exclusion principle (for a similar truncation in a higher spin

context see [28]). This sector is closed under the OPE with itself and is a consistent

subsector of the theory at large N . It is however, not modular invariant by itself. For

this to be restored we need the nonpertubative states which correspond to the scalar dual

to (0; f) and the light states (f; f) (or more generally (Λ; Λ)) which are nontrivial classical

configurations in the bulk — the analytic continuations of the conical defects in the SL(N)

theory. While it is unusual to have a large number of light nonperturbative states, the

selection rules of the CFT seem to ensure a good large N behavior of correlators [10, 14].

The upshot seems to be that the perturbative Vasiliev theory is highly incomplete at

the quantum level and requires the various nonperturbative excitations to be taken into

account for a consistent completion. The novel feature is that these nonperturbative states

are not decoupled from the perturbative states by virtue of being highly energetic, but

rather because of the special nature of the interactions — the fusion rules of the CFT.

6 Conclusions

In this paper we have shown how to determine the quantum algebra Wqu
∞ [µ] underlying the

hs[µ] higher spin theory on AdS3 explicitly. In particular, we have managed to find the exact

form of the finite c corrections to the commutation relations of the classical Wcl
∞[µ] algebra.

This quantum deformation is essentially uniquely determined by consistency conditions, in

particular the Jacobi identity [25].

While we have not managed to give a closed form expression for the full quantum

algebra, our results are for example sufficient to determine the structure of the ‘minimal’

representations exactly. They also give very strong evidence for the claim that the resulting

quantum algebra, Wqu
∞ [µ], exhibits an exact ‘triality’ symmetry, relating in particular the

algebra with µ = λ ≡ N
N+k

to the WN,k minimal model algebra (at finite N and k).

Given that Wqu
∞ [µ] is the only consistent quantum deformation of Wcl

∞[µ], this shows that

the symmetries of the WN,k minimal model agree with those of the quantum higher spin

theory based on hs[λ]. Since the relevant symmetry algebras constrain the theories very

significantly, this goes a long way towards proving the duality at finite N and k.

We should stress that the quantum algebra Wqu
∞ [µ] generically does not contain hs[µ]

as a subalgebra, and as a consequence, the representations of Wqu
∞ [µ] cannot necessarily

be described in terms of representations of hs[µ]. (For example, this is the case for the

third ‘minimal’ representation, see the comments at the end of section 3.2.) The higher

spin algebra hs[µ] only emerges as a subalgebra for c → ∞. This is somewhat reminiscent

of the result of Maldacena and Zhiboedov [1, 2] who showed that, in higher dimensions,

the higher spin symmetry is necessarily broken by 1/N corrections (unless the theory is

free).8 In our case, however, while hs[µ] generically is no longer a symmetry of the quantum

8Note that for µ = 1, which corresponds to a free theory, hs[µ = 1] ⊂ W
qu
∞

[µ = 1] is an actual subalgebra,

and hence hs[µ = 1] remains a genuine symmetry at finite c.
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theory, it is replaced by the even larger Wqu
∞ [µ] algebra that remains a true symmetry in

the quantum theory.

In this paper we have determined the quantum corrections to the classical Wcl
∞[µ] alge-

bra using indirect methods, such as the Jacobi identity as well as the representation theory

of the WN minimal models. It would be very interesting to calculate these corrections

directly in the higher spin gravity theory. For example, our analysis makes a specific pre-

diction for the 1/c corrections to the conformal dimension of the perturbative scalar, see

eq. (3.6), and it would be very interesting to rederive this using perturbation theory of the

higher spin theory.

It would also be interesting to study the quantum W∞-algebra in the supersymmetric

case, following [29–32]; this is currently under investigation [25].
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A Explicit commutation relations

Let us denote the modes of the stress tensor, as usual, by Ln, while the modes of the spin

3, 4 and 5 fields are called Wn, Un and Xn, respectively. Using the ansatz of [5, 19] and

requiring the Jacobi identities

[Lm, [Ln,Wl]] + cycl. = [Lm, [Wn,Wl]] + cycl. = [Um, [Wn, Ll]] + cycl. = 0 , (A.1)

we can determine the finite c corrections of the commutation relations. The resulting

structure takes then the form

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm,−n (A.2)

[Lm,Wn] = (2m− n)Wm+n (A.3)

[Lm, Un] = (3m− n)Um+n (A.4)

[Lm, Xn] = (4m− n)Xm+n (A.5)

[Wm,Wn] = 2(m− n)Um+n +
N3

12
(m− n)(2m2 + 2n2 −mn− 8)Lm+n (A.6)

+
8N3

(c+ 22
5 )

(m− n)Λ
(4)
m+n +

N3c

144
m(m2 − 1)(m2 − 4)δm,−n

– 18 –
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[Wm, Un] = (3m− 2n)Xm+n − N4

15N3
(n3 − 5m3 − 3mn2 + 5m2n− 9n+ 17m)Wm+n

+
208N4

25N3(c+
114
7 )

(3m− 2n) Λ
(5)
m+n +

84N4

25N3(c+ 2)
Θ

(6)
m+n . (A.7)

The modes of the composite fields are defined by

Λ(4)
n =

∑

p

: Ln−pLp : +
1
5xnLn (A.8)

Λ(5)
n =

∑

p

: Ln−pWp : +
1
14 ynWn (A.9)

Θ(6)
n =

∑

p

(53p− n) : Ln−pWp : +
1
6 znWn , (A.10)

where

x2l = (l + 1)(1− l) , x2l−1 = (l + 1)(2− l) , (A.11)

y2l = (l + 2)(3− 5l) , y2l−1 = 5(l + 1)(2− l) , (A.12)

z2l = l(l + 2) , z2l−1 = 0 . (A.13)

With this definition we then have the commutation relations

[Lm,Λ(4)
n ] = (3m− n)Λ

(4)
m+n +

(

c
6 + 11

15

)

m(m2 − 1)Lm+n (A.14)

[Lm,Λ(5)
n ] = (4m− n)Λ

(5)
m+n +

(

c
12 + 19

14

)

m(m2 − 1)Wm+n (A.15)

[Lm,Θ(6)
n ] = (5m− n)Θ

(6)
m+n +

(

c
36 + 1

18

)

m(m2 − 1)(5m+ 2n)Wm+n . (A.16)

The corresponding states are all quasiprimary, and are explicitly given as

Λ(4) =
(

L−2L−2 − 3
5L−4

)

Ω (A.17)

Λ(5) =
(

L−2W−3 − 3
7W−5

)

Ω (A.18)

Θ(6) =
(

L−3W−3 − 2
3L−2W−4 +

1
2W−6

)

Ω . (A.19)

The above commutation relations then satisfy the Jacobi identities (A.1); this is true for

any value of N3 and N4. It follows from the classical analysis [5] that, to leading order in

1/c, the structure constants take the form

N3 =
16

5
q2 (µ2 − 4) (A.20)

N4 =
384

35
q4 (µ2 − 4) (µ2 − 9) . (A.21)

Here q is an arbitrary normalisation constant; we can choose it so that N3 = 2
5 , i.e.

q2 = 1
8(µ2−4)

, in which case the OPE of the W -field takes the form

W ·W ∼ c

3
· 1 + 2 · L +

32

(5c+ 22)
· Λ(4) + 4 · U . (A.22)

– 19 –



J
H
E
P
0
7
(
2
0
1
2
)
1
2
7

Then the leading term in the OPE of W with U equals

W · U ∼ 56

25

N4

N2
3

W + · · · = 12

5

µ2 − 9

µ2 − 4
W + · · · . (A.23)

In order to compare this to [20–22, 24], let us define

Û = β−1U with β2 =
56

75

N4

N2
3

=
4

5

µ2 − 9

µ2 − 4
; (A.24)

then the OPEs are of the form

W ·W ∼ c
3 · 1 + 2 · L + 8

√

1
5

µ2−9
µ2−4

· Û + · · · (A.25)

W · Û ∼ + 6
√

1
5

µ2−9
µ2−4

·W + · · · , (A.26)

i.e. in the conventions of [23], the structure constant C4
33 equals (2.14).

B Representation theory of W∞[µ]

In this appendix we want to study the minimal representation of W∞[µ], whose character

is given in eq. (3.1).

B.1 Relations at level one

The minimal representation has only a single state at level one, which we may take to be

the L−1 descendant of the ground state (which we shall denote by φ). Thus we must have

the null relations

N1W =
(

W−1 −
3w

2h
L−1

)

φ (B.1)

N1U =
(

U−1 −
2u

h
L−1

)

φ (B.2)

N1X =
(

X−1 −
5x

2h
L−1

)

φ . (B.3)

Here w, u and x are the eigenvalues of the zero modes on φ, i.e.

W0φ = wφ , U0φ = uφ , X0φ = xφ , (B.4)

and the relative normalisations in N1W , N1U and N1X are determined from the condition

that L1 annihilates these states. Actually, if we denote by V
(s)
n the modes of the primary

spin s field, then the commutation relations with the Virasoro algebra take the form

[Lm, V (s)
n ] =

(

(s− 1)m− n
)

V
(s)
m+n , (B.5)

and hence the corresponding null-vector must be

N1s =
(

V
(s)
−1 − sv(s)

2h
L−1

)

φ , where V
(s)
0 φ = v(s)φ . (B.6)
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Again this guarantees that N1s is annihilated by L1. Note that (B.6) generalises the form

of the null-vectors (B.1)–(B.3) to arbitrary spin s.

These null-vectors must obviously not just be annihilated by L1, but also by the

other positive modes, i.e. by W1, U1, etc., and this will give rise to relations between the

eigenvalues v(s) of the zero modes. For example, from W1N1W = 0 we deduce that

4u− N3

2
h+

16N3

(c+ 22
5 )

(h2 + 1
5h)−

9

2

w2

h
= 0 , (B.7)

while W1N1U = 0 leads to

5x+
4N4

5N3
w − 208N4

5N3(c+
114
7 )

w(h+ 3
7)− 6

wu

h
= 0 . (B.8)

Incidentally, this equation can also be obtained from demanding that U1N1W = 0.

B.2 Relations at level two

At level two we may take the linearly independent states to be L2
−1φ and L−2φ. In par-

ticular, we must therefore be able to express W−2φ in terms of these two states. From the

requirement that the corresponding null-vector must be annihilated by L2
1 and L2 one finds

that it must take the form

N2W =
(

W−2 + aL2
−1 + bL−2

)

φ , (B.9)

with

a = − 3w(2h+ c)

h(16h2 + 2ch+ c− 10h)
, b = − 24w(h− 1)

(16h2 + 2ch+ c− 10h)
. (B.10)

Then we get relations from the requirement that W2N2W = 0, and that W1N2W must be

a linear combination of the null-vectors N1∗. The former condition leads to

8u+ 4N3h+
32N3

(c+ 22
5 )

(h2 + 1
5h) + 12aw + 6bw = 0 , (B.11)

while the latter condition turns out to require

12u

h
+N3 +

24N3

(c+ 22
5 )

(2h+ 2
5) + a

(

9
w

h
+ 6w

)

+
15

2
b
w

h
= 0 . (B.12)

Actually, these relations are linearly dependent, and thus we cannot determine all eigen-

values directly, but we can express both w and u as functions of h; indeed we can eliminate

u by combining (B.7) and (B.11), and then obtain

w(h) = ±h

3

√

−5N3 (16h2 + 2ch+ c− 10h)

(2ch− 3c− 2h)
. (B.13)

Similarly, we can determine u ≡ u(h) as

u = −hN3
c2 − 12ch+ c2h+ 18h2c+ 2c+ 36h2 − 28h

(c+ 22
5 ) (2ch− 3c− 2h)

. (B.14)
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Once we have these relations, we can then determine all eigenvalues v(s) recursively as

a function of h. To this end we consider the relations coming from W1N1s = 0 for s =

4, 5, 6, . . .. For example, for s = 4, this is just (B.8), which we can solve for x as

x = w
(

− 4N4

25N3
+

208N4

25N3(c+
114
7 )

(h+ 3
7) +

6u

5h

)

. (B.15)

Since we already know w and u as a function of h, this therefore leads to an expression for

x ≡ x(h). For the general case, we note that the OPE of the spin 3 field W with V (s) will

only involve simple fields of spin at most s + 1. Thus W1N1s = 0 will lead to a relation

between v(s + 1) and v(t) with t ≤ s. Recursively, we can therefore determine all v(s) in

terms of h.

B.3 The final equation

Thus it only remains to find one final equation which will allow us to also determine h. To

find this equation we now evaluate the condition U2N2W = 0, which leads to

10x− 4w
N4

N3
− 416N4

5N3(c+
114
7 )

w (h+ 3
7) + 20au+ 8bu = 0 . (B.16)

Instead of demanding that U2N2W = 0 we may also study the condition that U1N2W is a

linear combination of the null-vectors at level one, i.e. the vectors N1∗ given in (B.1)–(B.3).

This leads to

10x− w
6N4

5N3
− 416N4 (h+ 3

7)

5N3(c+
114
7 )

w + 12au+ 4auh+ 7bu = 0 . (B.17)

Together with (B.8) these three equations are indeed linearly dependent. In order to solve

for h, we now equate (B.15) with (B.17) to obtain

4a
u

w
(3 + h) + 7b

u

w
+

12u

h
− 14N4

5N3
= 0 , (B.18)

where a and b are defined as in (B.10). Using the expressions for u from (B.14) we then

get the cubic equation for h given in eq. (3.2).

C The fusion of (f; f) at finite N and c

The fusion analysis of (f; 0)⊗(0; f) can essentially be done using the steps described in [8], so

we shall be somewhat brief and only stress the main differences. Let us denote the highest

weight states of the relevant representations by φ1 = (f; 0) and φ2 = (0; f). Following the

discussion of appendix B, we then have the null-vectors

(

W−1 − 3w1

2h1
L−1

)

φ1 = 0
(

W−1 − 3w2

2h2
L−1

)

φ2 = 0
(

W−2 + a1L
2
−1 + b1L−2

)

φ1 = 0
(

W−2 + a2L
2
−1 + b2L−2

)

φ2 = 0 ,
(C.1)
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where aj = a(hj , wj) and bj = b(hj , wj), j = 1, 2, are defined by (B.10), and in the

parametrisation of section 3.3, the eigenvalues equal (for N3 =
2
5)

h1 = (N−1)(2N+k+1)
2N(N+k) w1 = −

√
2(N−1)(2N+k+1)

6N(N+k)

√

(N−2)(3N+2k+2)
N(N+2k)

h2 = (N−1)k
2N(N+k+1) w2 =

√
2(N−1)k

6N(N+k+1)

√

(N−2)(N+2k)
N(3N+2k+2) .

(C.2)

Note that in the ’t Hooft limit, N, k → ∞ with λ = N
N+k

, we have the familiar relations

h1 ≃ 1
2(1 + λ) w1 ≃ −

√
2
6 (1 + λ)

√

(2+λ)
(2−λ)

h2 ≃ 1
2(1− λ) w2 ≃

√
2
6 (1− λ)

√

(2−λ)
(2+λ) .

(C.3)

Furthermore, the parameters aj and bj simplify in that limit to

aj ≃ 3wj

hj(2hj+1) = (−1)j
√

2
(4−λ2)

, bj ≃ 0 , (C.4)

since c → ∞ in that limit.

Let us study the highest weight space of the fusion product. Then we have the relations

0 ∼= ∆(W−1) = (W−2 ⊗ 1) + (W−1 ⊗ 1) + (1⊗W−1) (C.5)

= −a1(L
2
−1 ⊗ 1)− b1(L−2 ⊗ 1) + 3w1

2h1
(L−1 ⊗ 1) + 3w2

2h2
(1⊗ L−1)

= −a1(L
2
−1 ⊗ 1) +

(

3w1

2h1
− 3w2

2h2
+ b1

)

(L−1 ⊗ 1)− b1h2 (1⊗ 1) ,

where we have used that on the highest weight space

(1⊗ L−1) ∼= −(L−1 ⊗ 1) (C.6)

(L−2 ⊗ 1) ∼= (1⊗ L−1) + (1⊗ L0) . (C.7)

Thus we obtain the identity

a1(L
2
−1 ⊗ 1) =

(

3w1

2h1
− 3w2

2h2
+ b1

)

(L−1 ⊗ 1)− b1h2 (1⊗ 1) . (C.8)

Incidentally, in the ’t Hooft limit, this reduces to the identity (L2
−1 ⊗ 1) ∼= −2(L−1 ⊗ 1),

see eq. (5.17) of [8], since bj → 0 in that limit, see (C.4).

A second identity can be obtained from

0 ∼= −∆(W−2) = −(W−2 ⊗ 1)− (1⊗W−2) (C.9)

= a1(L
2
−1 ⊗ 1) + b1(L−2 ⊗ 1) + a2(1⊗ L2

−1) + b2(1⊗ L−2)

= (a1 + a2)(L
2
−1 ⊗ 1)− (b1 + b2)(L−1 ⊗ 1) + (b1h2 + b2h1) (1⊗ 1) ,

where we have used (C.6), (C.7) as well as

(1⊗ L−2) ∼= −(L−1 ⊗ 1) + (L0 ⊗ 1) . (C.10)

Thus we obtain a second identity, namely

(a1 + a2)(L
2
−1 ⊗ 1) = (b1 + b2)(L−1 ⊗ 1)− (b1h2 + b2h1) (1⊗ 1) . (C.11)
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Note that this identity becomes trivial in the ’t Hooft limit (since bj → 0 and a1 → −a2,

see (C.4)), but for finite c, we can deduce from (C.8) and (C.11) the relation

[

(

3w1

2h1
− 3w2

2h2

)

(a1 + a2) +
(

b1a2 − b2a1
)

]

(L−1 ⊗ 1) ∼=
(

a2b1h2 − a1b2h1
)

(1⊗ 1) , (C.12)

which simplifies to

(L−1 ⊗ 1) ∼= −N−1
N

(1⊗ 1) . (C.13)

Thus for finite c, the highest weight space is one-dimensional, and the L0 eigenvalue of

(f, f) becomes indeed just (4.2).

One can also determine the W0 eigenvalue of the ground state of the fusion product;

using

∆(W0) = (W−2 ⊗ 1) + 2(W−1 ⊗ 1) + (W0 ⊗ 1) + (1⊗W0) (C.14)

one finds that

w(f; f) = w1 + w2 − N−1
N

(

3w1

2h1
+ 3w2

2h2

)

= −
√

2(N−2)
N

(N2−1)(N+2)
6N

1
(N+k)(N+k+1)

√

1
(N+2k)(3N+2k+2) .

(C.15)

In order to bring this into the form of (4.5), we have to rescale w, i.e. we have to work

with

N̂3 =
2

5
((N + 2)c+ (3N + 2)(N − 1)) =

2

5

(N2 − 1) (N + 2k)(3N + 2k + 2)

(N + k)(N + k + 1)
(C.16)

instead. Then the corresponding ŵ eigenvalue equals

ŵ(f; f) = −
√

2(N − 2)(N2 − 1)

N

(N2 − 1)(N + 2)

6N

(

1

(N + k)(N + k + 1)

)
3
2

, (C.17)

and is hence of the form (4.5).
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