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1 Introduction

The AdS/CFT correspondence [1–3] is a great achievement in string theory. It has opened

new avenues for studying the strongly-coupled many body phenomena by relating certain

interacting quantum field theories to classical gravity systems. Recently stimulated by this

correspondence, a remarkable connection between the condensed matter and the gravita-

tional physics has been discovered, for reviews see [4–6]. It was first suggested in [7, 8] that

near the horizon of a charged black hole there is in operation a geometrical mechanism

parameterized by a charged scalar field of breaking a local U(1) gauge symmetry. This

spontaneous U(1) symmetry breaking by bulk black holes can be used to construct gravi-

tational duals of the transition from normal state to superconducting state in the boundary

theory. The gravity models with the property of holographic superconductor have attracted

considerable interest for their potential applications to the condensed matter physics.

It is of interest to consider a quantum field theory which contains fermions charged

under a global U(1) symmetry. Fermionic sectors possess a number of generic features which

might lead to interesting phenomena related to condensed matter physics. However, many

of them have not been discussed in the available holographic studies. When a finite U(1)

charged density in the fermionic sector is introduced in the holographic system, it is natural

to ask whether the system possesses a Fermi surface and what is the low energy excitations.

There have been some progresses in studying the fermionic sector, where a number of

generic couplings for the fermions have been realized [9–24]. Recently, introducing the

coupling between the fermion and gauge field through a dipole interaction in the bulk, it

was remarkably found that as the strength of the interaction is varied, spectral density is

transferred and beyond a critical interaction strength a gap opens up [25]. The existence of

Fermi surfaces as the varying of the dipole coupling was also disclosed [26]. The extended

investigation on the dipole coupling also can be seen in [27–29].
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Most studies on the gravitational constructions of the holographic superconductors

are based on the Einstein gravity background. It would be interesting to see how the

modification of the bulk gravity background may influence the property in the condensation

on the boundary. Considering that the string theory contains higher curvature corrections

in the gravity arising from stringy effects, it is intriguing to examine the higher curvature

correction effect on the holographic superconductor. From the AdS/CFT correspondence,

the higher curvature corrections on the gravity side will lead corrections in the boundary

field theory. In studying the spontaneous U(1) symmetry breaking with charged scalar field

coupling to the gauge field, it was found that the higher curvature correction can make

the condensation harder to form and influence the properties in conductivity and other

properties of condensations [30–36]. The higher curvature influence in the holographic

fermion system when fermion is minimally coupled to the gauge field was also examined

in [37]. The main motivation of the present paper is to further study the effect of the

higher curvature correction in the bulk gravity on the holographic fermion system when

there is dipole coupling between the fermion and gauge fields. We are going to investigate

how the spacetime dimension and the higher curvature correction in gravity modifies the

properties of Fermi gap, Fermi momentum etc. in the Fermi system when there is dipole

interaction between fermion and gauge fields.

The organization of this paper is as follows. In section 2, we set up the formalism

describing the equation of motion in the fermionic system in the bulk d-dimensional Gauss-

Bonnet charged AdS black hole. In section 3, we investigate the influences on the Fermi

gaps, Fermi surfaces due to the spacetime dimension and the Gauss-Bonnet factor when

there is dipole coupling between fermion and gauge fields. Finally in section 4, we give the

conclusions and discussions.

2 Equations of motion in the bulk

We consider the non-minimal coupling between a spin-1/2 fermions and the gauge field in

the form of the dipole interaction described by the bulk action

SD = i

∫

ddx
√−gζ

(

ΓaDa −m− ip /F
)

ζ, (2.1)

where m is the mass of the fermion field, p is the strength of the dipole coupling. In the

action, Γa = (eµ)
aΓµ, /F = 1

4Γ
µν(eµ)

a(eν)
bFab and Da = ∂a + 1

4(ωµν)aΓ
µν − iqAa, with

Γµν = 1
2 [Γ

µ,Γν ] and the spin connection (ωµν)a = (eµ)
b∇a(eν)b, where (eµ)

a forms a set of

orthogonal normal vector bases [38].

We will concentrate on the d dimensional charged black hole in Gauss-Bonnet gravity

for the bulk configuration, which has the metric [39, 40]

ds2 = −gttdt
2 + grrdr

2 + gxx

d−2
∑

i=1

(dxi)2

= −f(r)dt2 +
dr2

f(r)
+

r2

L2
eff

d−2
∑

i=1

(dxi)2 (2.2)
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with

L2
eff =

2α

1−
√

1− 4α
L2

→











L2 , for α → 0

L2

2 , for α → L2

4

(2.3)

describing the effective radius of the AdS space in the Gauss-Bonnet gravity. The gauge

connection is written as Aa = At(r)(dt)a, where

At = µ

(

1− rd−3
+

rd−3

)

. (2.4)

The metric coefficient reads1

f(r) =
r2

2α



1−

√

√

√

√1− 4α

(

1− rd−1
+

rd−1

)

+
2(d− 3)αµ2rd−3

+

(d− 2)rd−1

(

1− rd−3
+

rd−3

)



 . (2.5)

r+ is the event horizon radius which is characterized by f(r+) = 0 and µ can be identified

with the chemical potential of the dual field theory. The causality gives strong constraint

on the Gauss-Bonnet coupling [41–49] to be in the range − 7
36 ≤ α ≤ 9

100 . It is easy to

check that in the limit α → 0, (2.5) goes back to the form for the Reissner-Nordström AdS

black hole. The Hawking temperature of the charged Gauss-Bonnet AdS black hole reads

T =
f ′(r+)

4π
=

(d− 1)r+
4π

(

1− (d− 3)2µ2

2(d− 1)(d− 2)r2+

)

, (2.6)

which can be viewed as the temperature of the conformal field theory on the AdS boundary.

Note that we will set r+ = 1 in the following investigation.

Now we can write down the Dirac equation of the fermions in the bulk spacetime. To

go to the momentum space, we transform ζ = (−ggrr)−
1
4Fe−iωt+ikix

i
and set ki = kδ1i

without loss of generality. Then the Dirac equation has the form
(√

grrΓr∂r −m− ip

2

√

grrgttΓrt∂rAt

)

F − i(ω + qAt)
√

gttΓtF + ik
√
gxxΓxF = 0, (2.7)

It is obvious that (2.7) only depends on three Gamma matrices Γr,Γt,Γx. So it is convenient

to express F into F = (F1, F2)
T and choose the following basis for our gamma matrices [50]:

Γr =

(

−σ31 0

0 −σ31

)

, Γt =

(

iσ11 0

0 iσ11

)

, Γx =

(

−σ21 0

0 σ21

)

, . . . (2.8)

The Dirac equation can be rewritten into

√
grr∂r

(

F1

F2

)

+mσ3 ⊗
(

F1

F2

)

=
√

gtt(ω + qAt)iσ
2 ⊗

(

F1

F2

)

∓ k
√
gxxσ1 ⊗

(

F1

F2

)

−p
√

gttgrr∂rAtσ
1 ⊗

(

F1

F2

)

. (2.9)

1We set the gravitational constant κ2
d = 1/2 , the AdS radius L = 1 and the effective dimensionless

gauge field coupling parameter gF = 2.
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Furthermore, we will set FI = (AI ,BI)
T (I = 1, 2) to decouple the equation of motion.

Under such decomposition, the Dirac equation (2.9) can be divided into

(
√
grr∂r±m)

(

A1

B1

)

= ±(ω + qAt)
√

gtt

(

B1

A1

)

− (k
√
gxx + p

√

gttgrr∂rAt)

(

B1

A1

)

, (2.10)

(
√
grr∂r±m)

(

A2

B2

)

= ±(ω + qAt)
√

gtt

(

B2

A2

)

+ (k
√
gxx − p

√

gttgrr∂rAt)

(

B2

A2

)

. (2.11)

It is convenient to introduce ξI ≡ AI

BI
(I = 1, 2) and reduce the Dirac equations (2.10)

and (2.11) into the non-linear flow equation

(
√

f(r)∂r + 2m)ξI =

[

v− + (−1)Ik
Leff

r

]

+

[

v+ − (−1)Ik
Leff

r

]

ξ2I (2.12)

where v± = 1√
f(r)

[

ω + qµ
(

1− 1
rd−3

)]

± (d− 3)pµ 1
rd−2 .

We will numerically solve the Dirac equation by imposing the boundary condition.

Near the AdS boundary, from (2.9) we see that the reduced Dirac field behaves as

FI
r→∞≈ aIr

−mLeff

(

1

0

)

+ bIr
mLeff

(

0

1

)

, I = 1, 2 . (2.13)

As discussed in [12, 14], if aI

(

1
0

)

and bI

(

0
1

)

are related by aI

(

1
0

)

= SbI
(

0
1

)

, then the

boundary Green’s functions G(ω, k) is given by G = −iSγ0. The Green’s functions can be

expressed in the form

G(ω, k) =

(

G11(ω, k)1 0

0 G22(ω, k)1

)

= lim
r→∞

r2mLeff

(

ξ11 0

0 ξ21

)

. (2.14)

Solving the flow equation (2.12) with the boundary condition at the horizon

ξI
r→1
= i, (2.15)

we can get the Green function GII(ω, k).

When the background becomes extremal, the metric coefficient behaves as f(r) ∼
(d−1)(d−2)(r−1)2 near the horizon. This makes taking the limit ω → 0 near the horizon

subtle, in which the geometry approaches AdS2 × R
d−2

ds2 =
1

(d− 1)(d− 2)ς2
(−dτ2 + dς2) +

1

L2
eff

d−2
∑

i=1

(dxi)2 (2.16)

for T = 0 with ς = ωL2

(d−1)(d−2)(r−r+) and τ = ωt. In this region we can expand the Dirac

field F in terms of ς in powers of ω as

(

F1(ς)

F2(ς)

)

=

(

F
(0)
1 (ς)

F
(0)
2 (ς)

)

+ ω

(

F
(1)
1 (ς)

F
(1)
2 (ς)

)

+ ω2

(

F
(2)
1 (ς)

F
(2)
2 (ς)

)

+ · · · . (2.17)
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By substituting (2.17) into (2.9), we have the leading order term

∂ς

(

F
(0)
1 (ς)

F
(0)
2 (ς)

)

=
1

√

(d− 1)(d− 2)ς
mσ3

(

F
(0)
1 (ς)

F
(0)
2 (ς)

)

− i

(

1 +
(d− 3)qµ

(d− 1)(d− 2)ς

)

σ2

(

F
(0)
1 (ς)

F
(0)
2 (ς)

)

+
1

√

(d− 1)(d− 2)ς
[(d− 3)pµ− (−1)IkLeff ]σ

1

(

F
(0)
1 (ς)

F
(0)
2 (ς)

)

. (2.18)

It is the equation of motion for spinor fields with masses [14]

[m, m̃I = (d− 3)pµ− (−1)IkLeff ] (2.19)

in AdS2 background, where m̃I(I = 1, 2) are time-reversal violating mass terms. According

to the analysis in [14], F
(0)
I (ς) is dual to the spinor operators OI in the IR CFT1 with the

conformal dimensions δI = νI(k) +
1
2 where

νI(k) =

√

m2 + m̃2
I

(d− 1)(d− 2)
−
[

(d− 3)qµ

(d− 1)(d− 2)

]2

=

√
2q

√

(d− 1)(d− 2)

√

m2 + m̃2
I

2q2
− 1 (I = 1, 2). (2.20)

To obtain the second equality, we have used µ =

√
2(d−1)(d−2)

d−3 for zero temperature. It is

obvious that the two coupling parameters p and α imprint the scaling in the IR. By match-

ing the inner AdS2 and outer AdS4 solutions in the matching region where we consider

ς → 0 and ω/ς → 0 [14], we can express the coefficients aI and bI in (2.13) as

aI =
[

a
(0)
I + ωa

(1)
I + · · ·

]

+
[

ã
(0)
I + ωã

(1)
I + · · ·

]

GI(k, ω),

bI =
[

b
(0)
I + ωb

(1)
I + · · ·

]

+
[

b̃
(0)
I + ωb̃

(1)
I + · · ·

]

GI(k, ω), (2.21)

where a
(n)
I , ã

(n)
I , b

(n)
I and b̃

(n)
I can be determined numerically and Gα(k, ω) is the retarded

Green functions of the dual operators OI with the form [14]

GI(k, ω) =







e−iπνI(k)
Γ(−2νI(k))Γ

(

1+νI(k)−i
(d−3)qµ

(d−1)(d−2)

)

[

(m+im̃I )√
(d−1)(d−2)

−i
(d−3)qµ

(d−1)(d−2)
−νI(k)

]

Γ(2νI(k))Γ
(

1−νI(k)−i
(d−3)qµ

(d−1)(d−2)

)

[

(m+im̃I )√
(d−1)(d−2)

−i
(d−3)qµ

(d−1)(d−2)
+νI(k)

]







ω2νI(k)

(2.22)

We see that the Gauss-Bonnet coupling and dipole coupling modify the dual Green function

via m̃I . It is noticed that (2.21) is only valid when 2νI(k) is not an integer. In the case

when it is an integer, terms like ωnlog(ω) should be added [14].

Instead of (2.15), the boundary condition of ξI for ω = 0 is found in the form

ξI
r→1
=

m√
(d−1)(d−2)

− νI(k)

(d−3)qµ
(d−1)(d−2) +

m̃I√
(d−1)(d−2)

. (2.23)

Thus, when ω = 0, one should employ the boundary condition (2.23) instead of (2.15) to

numerically solve the flow equation (2.12).

– 5 –



J
H
E
P
0
7
(
2
0
1
2
)
1
2
5

3 Influences on the fermion system due to the dipole coupling, the space-

time dimension and the Gauss-Bonnet factor

We numerically integrate the flow equation (2.12) and read off the asymptotic values to

compute the matrix of the retarded Green functions. We will calculate the fermion spec-

tral function A(ω, k) ≡ Tr[ImG(ω, k)] and also the density of states A(ω) by doing the

integration of A(ω, k) over k. Furthermore we will investigate the dipole coupling effect in

the limit of ω = 0 and the existence of the Fermi surfaces.

3.1 Dipole coupling effect in different dimensional Einstein background

In this subsection, we will explore the dipole coupling effect in different dimensional back-

ground spacetimes. We will neglect the curvature correction in the bulk by setting α = 0

for the moment.

First for the minimal dipole coupling with p = 0, we can discuss the Fermi momentum

kF , the dispersion relation and disclose the effect of spacetime dimension in the Fermi

system. In the left plot of figure 1, we have reproduced the 3D plot of Im[G22(ω, k)] for

p = 0 disclosed in [37]. The sharp quasi-particle-like peak at ω = 0 represents a Fermi

surface. Furthermore, in figure 2, it shows Im[G22(ω, k)] for different spacetime dimension

d, where we find kF for the sharp quasi-particle-like peak gets smaller in higher dimensional

spacetime. This property holds as well when the dipole coupling is non-minimal. Improving

the accuracy, we determine the Fermi momentums as 2.2769,2 1.8873, 1.7160 and 1.6106

for d = 4, 5, 6 and 7 respectively. Once kF is determined, as discovered in [12], the spectral

function Im[G22(ω, k)] has a dispersion relation

ω̃(k̃) ∝ k̃z, with z =















1

2νI(kF )
νI(kF ) <

1

2

1 νI(kF ) >
1

2

. (3.1)

where k̃ = k− kF and ω̃(k̃) is the location of the maximum of the quasi-particle-like peak.

Note that νI(kF ) has the form in (2.20) for k = kF . When α = 0 and p = 0, we have

m̃I = −(−1)Ik. Therefore,

ν1(k) = ν2(k) = ν(k) =

√
2q

√

(d− 1)(d− 2)

√

m2 + k2

2q2
− 1 (3.2)

in our model. After determining the Fermi momentum from numerical calculation, we

can analytically compute the scaling exponent z of the dispersion relation through (3.1)

and (3.2). The results are summarized in table 1. We see that the scaling exponent z of

the dispersion relation decreases with the decrease of the spacetime dimension.

Considering the AdS/CFT dictionary where the conformal dimension of the dual

fermion operator is ∆ = d−1
2 ± mL in the d-dimensional AdS spacetime, we can easily

2The fermion momentum is different from the value 0.92 in [11] because gF is set differently. With the

same value of parameter as in [11] we can reproduce 0.92.
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Figure 1. Im[G22(ω, k)] for p = 0 (left plane) and p = 3 (right plane) with d = 5.
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k

ImHG22L
d=7

d=6

d=5

d=4

Figure 2. The plot of Im[G22(ω, k)] for different d dimensional AdS black hole at p = 0. Here we

set ω = −10−8.

d 4 5 6 7

kF 2.2769 1.8873 1.7160 1.6106

z 1 1.38591 2.30064 3.55325

Table 1. The Fermi momentum and scaling exponent of the dispersion relation with different

dimensions of background at p = 0.
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1.0

Ω

A
HΩ
L

Α=0

p=3

p=2

p=1.2

Figure 3. Left: A(ω, k) as a function of ω for some values of k at p = 3. Right: A(ω) as function

of ω for p = 1.2, 2 and 3. The onset of the gap for α = 0 is at p = 2.

accept the dimensional influence disclosed above. The dimensional effect on the scaling

exponent z of the dispersion relation lies in two factors. The obvious one is the exponent

νI(k), which depends on the dimension d as shown in (25). The other is the Fermi momen-

tum kF , which is determined by the UV physics and we need to work it out numerically. In

general, for RN-AdS background, it depends on the charge q and dimension ∆ (for m = 0,

equivalently the spacetime dimension d). Although we can not give a general analytical

expression for kF , there is an allowed range for kF [14]

d− 3
√

(d− 1)(d− 2)
≤ kF

µq
≤ 1, (3.3)

where the lower limit is obviously related to the spacetime dimension d. Thus the dimen-

sional influence is quite intrinsic.

Now, we turn on the dipole coupling. Look at the right plots in figure 1, for p = 3,

instead of a sharp quasi-particle-like peak at ω = 0, we see that a gap opens near ω = 0.

The gap in the spectral density exists for all k as shown in the left plot of figure 3. To

further determine the onset of the gap, we calculate A(ω) which is shown in the right

part of figure 3.3 We find that the gap opens at p = 2 in our 5-dimensional background.

Our critical value of p for the onset of gap is different from that discussed in [25] for the

4-dimensional background. In figure 4, we show the influence on the critical p by spacetime

dimensions. It is clear that with the increase of the spacetime dimension, the smaller dipole

coupling can make the gap appear. The analytical map between the spacetime dimension

d and the critical value of p is lacking, however from the expression of v± in the flow

equation (2.12) we see that d and p are closely related by the product (d− 3)p. The dipole

interaction strength p makes the gap open and plays the role of the interaction strength

in terms of the Hubbard model [25]. The spacetime dimension d can influence the product

3A(ω) is the total spectral weight. In numerical calculations, similar to [25–27], what we do is to

compute A(ω, k) for various ω over a sufficiently wide range of k, and took the appropriate area under that

curve. Then we repeat it for other values of ω. We defined the gap to correspond to the point where the

spectral weight drops below some small number, which is approximately 10−9
− 10−8 in this paper. For

comparison with the results in [25], we have repeated some numerical results, where the small number is

also approximately 10−9
− 10−8.

– 8 –
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1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

d

pcri

Figure 4. The critical pcri for the onset of gap versus d for α = 0.
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Α=0
Α=-0.19

2 3 4 5 6
0

1

2

3

4

p

D

Figure 5. The width of gap as a function of p and α for d = 5.

(d− 3)p in the flow equation so that can compensate the effect of p. This explains why for

higher dimension, even smaller critical p can make the gap open.

In figure 5, we plot the width of the gap versus p for the chosen spacetime dimension.

It is obvious that when we neglect the curvature correction in the bulk spacetime, further

increase of the dipole coupling p can lead the gap to become wider. This property keeps

in different dimensional configuration.

3.2 Dipole coupling effect in Gauss-Bonnet gravity

Now let’s turn to discuss the influence of the higher curvature correction on the Fermi gap

in the holographic fermion system.4 For the nonzero Gauss-Bonnet factor, for example,

α = −0.19 and 0.09, we show the 3D plots for p = 3 in figure 6 where we obtain the

gap. The gap in the spectral density exists for all k as shown in figure 7. In addition, we

observe that the critical p for the onset of gap decreases when the Gauss-Bonnet factor

becomes bigger by computing the density of state. The explicit relation between pcri and

α is shown in FIG. 8. It is clear that larger α can promote the effect of p. We list the

typical values, e.g. pcri = 1.96 when α = 0.09, pcri = 2 when α = 0 and pcri = 2.09 when

4In this subsection, we focus on 5 dimensional gravity background.

– 9 –



J
H
E
P
0
7
(
2
0
1
2
)
1
2
5

Figure 6. ImG22(ω, k) for p = 3. The plots from up to bottom are for α = −0.19 and 0.09. For

p = 3, the gap exists for both chosen α.
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Figure 7. A(ω, k) as function of ω with sample values of k for α = −0.19 and α = 0.09.

α = −0.19. These can also be seen in the inset of figure 5. Furthermore, figure 5 explicitly

shows that for the fixed dipole coupling strength, the gap becomes wider with the increase

of the Gauss-Bonnet factor.

Hereafter we report our numerical result in the limit when ω = 0. We will pay more at-

tention on the influence in the holographic fermion system by the Gauss-Bonnet factor. The

results are shown in figure 9. In the figure, the symmetry of Im[G11(0,−k)] = Im[G22(0, k)]

is clear both for p = 0 and p = 0.4. Our numerical results show that both Im[G11(0, k)] and

Im[G22(0, k)] keep nonzero in a range of k. This range of k for nonzero Im[G11(0, k)] and
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Figure 9. Im[G11(0, k)](dashed) and Im[G22(0, k)] (solid) for p = 0 and p = 0.4.

Im[G22(0, k)] at fixed p becomes bigger when the curvature correction α becomes stronger.

In the momentum regime for nonzero Im[GII(0, k)], Im[GII(ω, k)] become log-oscillatory

when ω → 0 [11]. The left plot of figure 9 shows the log-oscillatory regimes coincide at

p = 0 for all chosen α. While this degeneracy shrinks when we increase the strength of the

dipole coupling and breaks down for big enough p in the right plot of figure 9.

To understand the above numerical result on the log-oscillatory regimes more clearly,

we can analyze the νI(k) analytically. There is a range of momenta k ∈ II in which the

conformal dimension of the dual CFT operator OI is imaginary. For p = 0, the momenta

ranges for O1 and O2 are coincident [11, 14]. For p 6= 0, the momenta ranges for the two

operators will separate and the degeneracy will break when p becomes large enough [26].

In our model, the high curvature correction α modifies the conformal dimension in (2.20).

When νI(k) is imaginary for d = 5, we have

k ∈ II =

[

(−1)I2pµ− qµ√
3

Leff
,
(−1)I2pµ+ qµ√

3

Leff

]

. (3.4)

When k ∈ II , we have the imaginary boundary condition (2.23), so that Im[GII(0, k)] is

nonzero when k ∈ II . Considering that Leff decreases monotonously as α increases, II
will become wider as we increase α when we fix the dipole coupling p. This supports

the numerical finding above. Furthermore, when p = 0, from (3.4) it is easy to obtain

I1 = I2 = I and both Im[G11(ω, k)] for a fixed α and Im[G22(ω, k)] are log-oscillatory.
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Figure 10. Regions of oscillation for various α. The orange region is where Im[G22(ω, k)] oscillates

while the blue region is where Im[G11(ω, k)] oscillates.

When we turn on p, I1 and I2 will be separated, so both Im[GII(ω, k)] are oscillatory only

when k ∈ I1 ∩ I2. When p is increased to pc =
1

2
√
3
which is independent of the value of

α, I1 ∩ I2 = {0}. Increasing p higher than pc, we have I1 ∩ I2 = ∅, which can support the

numerical behavior for p = 0.4 in figure 9. The separations of the regimes I1 and I2 versus

p for virous α are presented in figure 10.

Now we turn to discuss the case that νI(k) is real, in which the boundary condi-

tions (2.23) at ω = 0 are real. Considering that the flow equations (2.12) are also real,

we conclude that Im[GII(0, k)] = 0 and Re[GII(0, k)] =
a
(0)
I

b
(0)
I

from (2.21) and (2.22). So the

Fermi momentum kF can be defined as the poles of GII(0, k) with b
(0)
I = 0 while a

(0)
I do

not vanish. Taking (2.13) and (2.21) into account and recalling FI = (AI ,BI)
T , we can

deduce directly B2 = b
(0)
2 rmL+ · · · at ω = 0 in the boundary r → ∞. To determine kF , we

need to find the solution to B2 with normalization near the boundary at ω = 0. Setting

ω = 0, m = 0 and decoupling the two equation in (2.11), we obtain the equations of B2
√

f(r)

v−|ω=0 + kLeff
r

∂r

(

√

f(r)∂rB2

−v+|ω=0 + kLeff
r

)

= B2. (3.5)

Near the horizon, the regular behavior of the field is B2(r → 1) ∼ f(r)
ν2(k)

2 . Near the

boundary, we need B2(r → ∞) = 0 to find the fermi momentum kF . By solving the

equation (3.5), in figure 11, we show the values of kF as a function of p. The lines show

the values of kF versus p and the orange bands describe the log-oscillatory regions I2 for

the chosen α. From each subplot, we see for the fixed α, kF increases and approaches the

boundary of the log-oscillatory regime as we increase p. To disclose the influence of the

high curvature correction on the Fermi momentum kF , we collect the lines of figure 11 into

figure 12. We see that for negative p, kF decreases with the increase of α. When p = 0, this

dependence of kF on α was found in [37]. But this property changes when p approaches the

big enough positive value which still allows the Fermi surface. This may attribute to the

steeper boundary of the log-oscillatory regime when α gets bigger as shown by the dashed

lines in figure 12.

Besides, in order to explicitly see how α promote the effect of p, it is interesting to

further investigate the nature of fermion system. We determine the dispersion relationship
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Figure 11. kF versus p and the log-oscillatory regime I2.
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Figure 12. kF versus p.

p = −1 p = −0.1 p = 0 p = 0.1 p = 0.14 p = 0.18 p > 0.18

kF = 1.43819 kF = 1.84381 kF = 1.92064 kF = 2.02279 kF = 2.06934 kF = 2.15759

α = −0.19 z = 1 z = 1 z = 1.14424 z = 1.86524 z = 2.77217 z = 5.80808 NFS

FL FL NFL NFL NFL NFL

kF = 1.26098 kF = 1.78209 kF = 1.88730 kF = 2.03944 kF = 2.13300

α = 0 z = 1 z = 1 z = 1.38591 z = 2.73495 z = 5.64398 NFS NFS

FL FL NFL NFL NFL

kF = 0.99100 kF = 1.74514 kF = 1.87852 kF = 2.07713

α = 0.09 z = 1 z = 1.07353 z = 1.59722 z = 3.94973 NFS NFS NFS

FL NFL NFL NFL

Table 2. the Fermi momentum kF and the critical exponent z of dispersion relationship for

negative, zero and small positive p for various α. NFS means the system doesn’t present Fermi

surface. FL and NFL denote the excitation near the Fermi surface is Fermi liquid type with z = 1

and non-Fermi liquid type with z 6= 1, respectively.

via (3.1) where the exponent ν2(k = kF ) can be calculated through (2.20). The typical

results are summarized in table 2. We find that when p is negative enough, the excitation

near the Fermi surface is always Fermi liquid. If we increase p, the excitation will turn

to non-Fermi liquid and large enough p will make the Fermi surface disappear. From the

table, we can see that lager α will make this turning appear at smaller p. This is consistent

with the previous result that large α corresponds small pcri as shown in figure 8.
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4 Conclusions and discussions

We have studied extensively the influences on the holographic fermi system by spacetime di-

mension and the Gauss-Bonnet factor when there is dipole interaction between fermion and

gauge field in the bulk. For the boundary theory dual to the bulk background, we showed

that for the higher dimension of the spacetime, the gap starts to emerge in the fermion den-

sity of states for the weaker dipole interaction and the Fermi momentum becomes smaller.

Including the higher curvature correction by Gauss-Bonnet factor, we observed that bigger

Gauss-Bonnet factor can make the Fermi gap easier to be formed and the gap distance to

be enlarged for the fixed nonzero dipole interaction between the fermion and gauge field.

Furthermore the bigger Gauss-Bonnet factor can accommodate wider momentum range for

the existence of the log-oscillatory, in which Fermi peaks do not occur. The Fermi momen-

tum also changes when there is Gauss-Bonnet correction in the bulk spacetime. When p

is negative, kF decreases with the increase of the Gauss-Bonnet factor, but this property

becomes opposite when p becomes positive enough.

It is important to appreciate the vagaries of holographic studies by reflecting the bulk

spacetime influence on the boundary. The next step is natural to ask how the phenomena

disclosed due to the introduction of a higher curvature correction and dimensional analysis

would complement the physics in superconducting condensate. Another important question

is how much physics the backreaction and the finite temperature will bring to the study.

In the future study we will try to answer these questions.

Acknowledgments

We would like to thank Li-Qing Fang, Xian-Hui Ge, Wei-Jia Li and Hongbao Zhang for

their helpful discussion on the related project. In addition, we would like to thanks Prof.

Leigh for pointing out the key point in doing the numerical computation. X.M Kuang and

B. Wang are supported partially by the NNSF of China and the Shanghai Science and

Technology Commission under the grant 11DZ2260700. J.P. Wu is partly supported by

NSFC(No.10975017) and the Fundamental Research Funds for the central Universities.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231]

[hep-th/9711200] [INSPIRE].

[2] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics,

Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

[5] C.P. Herzog, Lectures on holographic superfluidity and superconductivity,

J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].

– 14 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1088/0264-9381/26/22/224002
http://arxiv.org/abs/0903.3246
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3246
http://dx.doi.org/10.1088/1751-8113/42/34/343001
http://arxiv.org/abs/0904.1975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1975


J
H
E
P
0
7
(
2
0
1
2
)
1
2
5

[6] G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [INSPIRE].

[7] S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav. 22 (2005) 5121

[hep-th/0505189] [INSPIRE].

[8] S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon,

Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].

[9] S.S. Lee, Non-Fermi liquid from a charged black hole: a critical Fermi ball,

Phys. Rev. D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].

[10] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane

paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [INSPIRE].

[11] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography,

Phys. Rev. D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].

[12] N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors,

Fortsch. Phys. 57 (2009) 367 [arXiv:0903.2596] [INSPIRE].
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