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1 Introduction

Gauge/gravity duality has led to many useful insights into strongly coupled field theo-

ries. Recently, fluid/gravity duality has been widely studied, providing useful information

about conformal fluid dynamics, the effectively long wavelength description of conformal

field theory. Many crucial quantities characterizing conformal fluids can be obtained as

real-time Green’s functions in dual gravitational theories [1, 3].

The most celebrated example from holographic fluid dynamics is the ratio of shear

viscosity η to entropy density s, η
s
= 1

4π [4–7]. The ratio seems to be universal for theories

with weakly coupled gravity duals.1 However, in recent studies of anisotropic conformal

fluids [11, 13], the universality of the ratio turns out to be violated [14, 17]. These studies

have considered an exact solution of the bulk Einstein-SU(2)-Yang-Mills action2 for an

AdS black brane in 5 dimensions with nonzero chemical potential. Corresponding to the

chemical potential, the temporal component of the gauge potential is proportional to σ3 of

the SU(2) gauge group. The boundary metric enjoys SO(3) global symmetry (symmetry

under spatial rotations). At high temperature (equivalently small chemical potential µ),

the system stays in the isometric phase. However at a certain chemical potential µ = µc, the

SO(3) symmetry is spontaneously broken to SO(2) because one of the spatial components

of the Yang-Mills field develops a non-trivial zero mode (as a solution of the linearized

1This universality can be violated when string effects or quantum effects are to be taken into account in

dual gravity [8–10].
2See [2, 20–22] for pioneering works on connection between Einstein-SU(2)-Yang-Mills and p-wave holo-

graphic superfluids.
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Yang-Mills field equations) and it is normalizable solution. It turns out that in the region

of µ > µc, this mode condenses and there is a new anisotropic superfluid phase.

As long as we are looking at a solution with SO(3) symmetry, the universality of

the ratio of entropy density and shear viscosity holds. This is because the shear viscosity

depends on gravitational perturbations in tensor modes of SO(3) in the dual gravity. Each

tensor mode satisfies a massless scalar field equation decoupled from the others, which

ensures universality. The anisotropic symmetry-broken phase provides an anisotropic shear

viscosity to entropy density ratio. The reason is that once SO(3) symmetry is broken to

SO(2), the gravitational wave modes in the broken-symmetry directions are no longer SO(2)

tensor modes. They are not decoupled from other fields and in fact interact with Yang-Mills

fields. Therefore, in this case the gravitational modes do not display universal behavior.

Near the critical point(µ = µc), the phase transition is expected to depend on α2 ≡
κ2

5

g2
[14], where κ5 is 5-dimensional gravity constant and g is Yang-Mills coupling. If α is

less than a certain critical value αcrit, the phase transition becomes second order. Near

the second order phase transition, the ratio displays a scaling behavior with some critical

exponent β,

1− 4π
η

s
∼
(

1− T

Tc

)β

, (1.1)

where the value β = 1.00 ± 0.03 has been calculated numerically, taking into account the

back reaction to the background metric. For α > αcrit, the phase transition is first order.

Unfortunately, the large-α region has not been explored very well numerically, due to tech-

nical difficulties. Another interesting remark from [14] is that the critical exponent, β does

not seem to depend on α.

To examine such properties rigorously an analytic approach is needed. Our starting

point for such an approach is a zero-mode solution at zero gravitational coupling, which

is known exactly at the critical point [12]. In this note, we perturbatively analyze the

properties of the anisotropic fluid near the critical point. We obtain the back reaction to

the space time metric and also solve linearized equations of the gravitational perturbations

and Yang-Mills fields from the back-reacted metric, using a double expansion of inverse

Yang-Mills coupling α2 and εD̃1. ε is a dimensionless small parameter and D̃1 is an SO(3)

symmetry-breaking scale appearing in the anisotropic part of the Yang-Mills field. Similar

perturbative expansions for different holographic models have been discussed by various

authors [15, 16, 18, 19]. However unlike those works, we consider both an anisotropy and

the gravitational back reaction from the Yang-Mills fields.

In our double expansion, the nontrivial leading order turns out to be O(α2ε2). We

also get the shear viscosity and entropy density ratio up to this order. Nonuniversality

of the ratio of shear viscosity to entropy density shows up in the directions of broken

symmetry while the ratio in the unbroken direction displays the expected universality. In

our perturbative analysis we do not see the first order phase transition because α is small

in the perturbative regime. Near the critical point, our solution also presents the scaling

behavior as eq. (1.1) and it turns out that the critical exponent β = 1 up to the leading

order correction, which is consistent with the numerical result in [14]. In general, our

perturbative results agree with and complement the numerical results in [14].
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2 Holographic setup and large coupling expansion

We consider the Einstein-SU(2) Yang-Mills system in asymptotically AdS5 spacetime. The

action is

S =

∫

d5x
√
−G

(

1

κ25

(

R+
12

L2

)

− 1

4g2
F a
MNF

aMN

)

, (2.1)

where M , N . . . are 5-dimensional space-time indices, a. . . are SU(2) indices and g is the

Yang-Mills coupling. We conventionally choose L = 1. The Yang-Mills field strength F a
MN

is given by

F a
MN = ∂MA

a
N − ∂NA

a
M − ǫabcAb

MA
c
N , (2.2)

where ǫabc is anti-symmetric tensor with ǫ123 = 1. The equations of motion from the action

are obtained as

WMN ≡ RMN + 4GMN − κ25

(

TMN − 1

3
TP
P GMN

)

= 0, (2.3)

Y aN ≡ ∇MF
aMN − ǫabcAb

MF
cMN = 0, (2.4)

where TMN is energy-momentum tensor, of which form is

TMN =
1

g2

(

F a
MPF

Pa
N − 1

4
FPQaF

PQaGMN

)

. (2.5)

Our ansatz for the metric and Yang-Mills field are given by

A = φ(r)τ3dt+ ω(r)τ1dx, (2.6)

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2f−4(r)dx2 + r2f2(r)

(

dy2 + dz2
)

,

where τa = sa

2 and sa are Pauli-matrices. The Yang-Mills field equations of motion in

terms of the above ansatz are

r2Y 1
y

f4(r)N(r)
= ω′′(r) +

(

1

r
+
σ′(r)

σ(r)
+
N ′(r)

N(r)
+ 4

f ′(r)

f(r)

)

ω′(r) +
φ2(r)ω(r)

N2(r)σ2(r)
= 0, (2.7)

σ2(r)Y 3
t = φ′′(r) +

(

3

r
− σ′(r)

σ(r)

)

φ′(r)− f4(r)ω2(r)

r2N(r)
φ(r) = 0,

and the Einstein equations are

2Wtt

N2(r)σ2(r)
= 2

σ′′(r)

σ(r)
+

6

r

σ′(r)

σ(r)
+
N ′′(r)

N(r)
+

3

r

N ′(r)

N(r)
− 8

N(r)
+ 3

σ′(r)

σ(r)

N ′(r)

N(r)
(2.8)

−2κ25
3g2

(

f4(r)ω′2(r)

r2
+

2φ′2(r)

N(r)σ2(r)
+

2f4(r)φ2(r)ω2(r)

r2σ2(r)N2(r)

)

= 0

W̄ ≡ 2r

σ2(r)N(r)
Wtt + 2r2N(r)Wrr (2.9)

= −12r
f ′2(r)

f2(r)
+ 6

σ′(r)

σ(r)
− 2κ25f

4(r)

g2r

(

ω′2(r) +
φ2(r)ω2(r)

N2(r)σ2(r)

)

= 0,

W̃ ≡ 2Wyy + f6(r)Wxx (2.10)

– 3 –
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= 2− 4r2

N(r)
+ r

N ′(r)

N(r)
+ r

σ′(r)

σ(r)
+

r2κ25φ
′2(r)

3g2σ2(r)N(r)
= 0,

f4(r)Wxx

2r2N(r)
=
f ′′(r)

f(r)
+

(

σ′(r)

σ(r)
+
3

r
+
N ′(r)

N(r)

)

f ′(r)

f(r)
− 1

r2
+

2

N(r)
− N ′(r)

2rN(r)
− σ′(r)

2rσ(r)
(2.11)

−κ
2
5

g2

(

ω′2(r)f4(r)

3r2
− φ2(r)ω2(r)f4(r)

3r2σ2(r)N2(r)
+

φ′2(r)

6N(r)σ2(r)

)

− f ′2(r)

f2(r)
= 0

Wyy = Wzz. (2.12)

A known exact solution of the equations of motion is the AdS charged-black-brane solution

given by

φ(r) = µ̃

(

1− r2h
r2

)

, ω(r) = 0, (2.13)

σ(r) = f(r) = 1 and N(r) = N0(r) ≡ r2 − m

r2
+

2µ̃2α2r4h
3r4

,

where µ̃ is chemical potential, rh is the black brane horizon and m ≡ r4h +
2µ2α2r2

h

3 . In

the infinite Yang-Mills coupling limit as g → ∞, the last term in N(r) vanishes and the

solution becomes uncharged.

2.1 Large coupling expansion and its leading order corrections

In this section, we develop corrections to the metric and Yang-Mills field perturbatively in

a double expansion in εD̃1 and α2 ≡ κ2

5

g2
. ε is a dimensionless small parameter and D̃1 is

the SO(3) rotational symmetry-breaking order parameter. We choose the horizon of the

black brane to be conventionally located at r = 1 by scaling r → rhr and {t, x, y, z} →
1
rh
{t, x, y, z} and defining a new chemical potential µ ≡ µ̃

rh
. The equations of motion enjoy

a certain scaling symmetry [11, 13]. By means of these rescalings, we can choose the

asymptotic values of σ(r = ∞) = 1 and f(r = ∞) = 1 at the large r boundary where

the spacetime becomes asymptotically AdS5. The value of the chemical potential in the

dual boundary field theory is taken to be µ = 4 at the phase transition point. To obtain

corrections, we expand any fields a(r) appearing in the ansatz (2.6) as

a(r) = a0(r) + εa1(r) + ε2a2(r) . . . (2.14)

Each term in the expression can in turn be expanded as

ai(r) = ai,0(r) + α2ai,2 + α4ai,4(r) . . . (2.15)

The zeroth-order solution in ε is given in eq. (2.13), where only N0 contains a subleading

correction of order α2 in the sense of the above expansion. N0,2 = 32
3

(

1
r4

− 1
r2

)

and the

higher-order terms in α2 vanish, N0,i = 0 for i = 4, 6 . . .. The detailed computations of the

nontrivial leading order corrections to metric and Yang-Mills field are given in appendix A.

Here, we briefly list the leading-order back-reaction corrections to the metric, which are

given by

σ(r) = 1− ε2α2 2D̃2
1

9(1 + r2)3
, f(r) = 1− ε2α2 D̃

2
1(1− 2r2)

18(1 + r2)4
(2.16)
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and N(r) = r2 − 1

r2
+

32α2

3

(

1

r4
− 1

r2

)

− ε2α2 4D̃
2
1

9r2

(

1 + 2r2

r2(1 + r2)3
− 3r2

2(1 + r2)2

+
281

560

(

1− 1

r2

))

.

Any subleading corrections to the Yang-Mills field in α2 would not contribute to the lead-

ing back-reaction corrections to the metric (Our aim is to get metric corrections up to

O(α2ε2)). Therefore, we obtain the Yang-Mills field solutions up to φi,0 and ωi,0 only.

These are given by

ω(r) = ε
D̃1r

2

(r2 + 1)2
+O(ε2), (2.17)

φ(r) = 4

(

1− 1

r2

)

+
ε2D̃2

1

4

(

(1 + 2r2)

3r2(1 + r2)3
− 1

8
+

281

1680

(

1− 1

r2

))

+O(ε3). (2.18)

The black brane temperature is modified by the leading corrections to

T =
1

π

(

1− 16

3
α2 +

17

1260
D̃2

1ε
2α2

)

, (2.19)

where Tc ≡ 1
π

(

1− 16
3 α

2
)

is the critical temperature at the phase transition from the

isotropic phase to the anisotropic phase. The black brane entropy is

S =
2π

κ25
V3, (2.20)

where V3 is spatial coordinate volume of the boundary space-time, V3 =
∫

dxdydz, in this

rescaled coordinate.

3 Anisotropy of shear viscosities

In this section, we calculate the ratio of shear viscosity to entropy density via the Kubo

formula, by considering fluctuations hMN and δAa
M around the background metric and the

background Yang-Mills field, respectively. We choose the gauge hMr = δAa
r = 0. In the

anisotropic phase, the bulk gravity system enjoys residual SO(2) and Z2 symmetries. The

modes may be decomposed according to their SO(2) representations as

• Tensor modes in SO(2): hyz; hyy − hzz,

• Vector modes in SO(2): hyt,δA
3
y; hxy,δA

1
y,δA

2
y; hzt, δA

3
z; hxz,δA

1
z,δA

2
z,

• Scalar Modes in SO(2): htt,hyy + hzz,hxx,hxt,δA
a
t , δA

a
x,

where each decoupled mode is categorized by semicolons. hyz is totally decoupled from any

other modes and satisfies a massless scalar field equation showing universality. However

hxy interacts with δA1
y and δA2

y, leading to nonuniversal behavior. In the following, we will

obtain solutions for hyz and hxy and show this explicitly. Other modes can be calculated

by the similar methods.

– 5 –
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3.1 Universality of
ηyz
s

In this subsection, we calculate the ratio of shear viscosity to entropy density for the

shear mode hyz, using the double expansion that we introduced in the previous section.

We consider fluctuations of the Yang-Mills field and metric fields around the background

metric (2.16) and obtain perturbative corrections up to O(ε2α2). We only consider time

dependent fluctuations with frequency ν and use small frequency expansion up to first

subleading order in ν. Even in the presence of a nonzero symmetry breaking parameter

D̃1, the rotational symmetry in y− z plane is not broken and the ratio
ηyz
s

is universal. In

the following, as a warm up, we will explicitly calculate this ratio to be 1
4π up to leading-

order corrections in α2ε2. To show this, we begin with the linearized equation of motion

of hyz(r) ≡ r2f2(r)Φ(r, t),

0 = Φ′′
ν(r) +

(

1

r
+

4r

N(r)
− α2rφ′2(r)

3σ2(r)N(r)

)

Φ′
ν(r) +

ν2Φν(r)

N2(r)σ2(r)
, (3.1)

where the prime denotes the radial derivative. For the field Φ(r), we have used the Fourier

transform from real time to frequency, as

Φ(r, t) =

∫ ∞

−∞

e−iνtΦν(r)dν (3.2)

The near horizon behavior of Φν(r) should be a purely ingoing solution

Φν(r) ∼
(

1− 1

r

)−i ν
4
(1+ 16

3
α2− 17

1260
ε2α2D̃2

1)+O(εkαl)

, (3.3)

where k and l are integers with k > 2 or l > 2. With this boundary condition, the solution

Φν(r) is obtained as

Φν(r) =

(

N(r)

r2

)−i ν
4
(1+ 16

3
α2− 17

1260
ε2α2D̃2

1)+O(εkαl)

F (ε, α2), (3.4)

where

F (ε, α2) =

∞
∑

i,j=0

Φi,2j(r)ε
iα2j . (3.5)

Each Φi,2j and its near-AdS boundary expansion are given in appendix B. Here, we briefly

discuss the near boundary expansion of the solution to get
ηyz
s
. Defining the boundary

value Φ̃ ≡ Φν(∞), Φν(r) can be expanded as

Φν(r → ∞) = Φ̃ +
iν

4r4
Φ̃ +O(riνjεkαl) (3.6)

in the large r limit (see eq. (B.6) in appendix B), where i < −4, j > 1,k > 2 or l > 2.

Using the prescription to get retarded green’s function in [14], we get

GR
yz,yz(ν,

~k = 0) =
−iν
2κ25

+O(ν2) (3.7)

– 6 –
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The shear viscosity in y − z direction is given by

ηyz ≡ lim
ν→0

1

2νi
[GR⋆

yz,yz −GR
yz,yz] =

1

2κ25
, (3.8)

where star indicates complex conjugate. Using the entropy of the black brane (2.20), the

ratio of shear viscosity to entropy density is obtained as

ηyz
s

=
1

4π
. (3.9)

This value turns out to be universal up to O(ε2α2).

3.2 Nonuniversality of
ηxy
s

We start with a set of equations with hxy ≡ r2f2(r)Ψ(r, t), δA1
y and δA2

y. The superscripts

on δA fields note SU(2) indices and subscripts do space-time indices. We also solve these

equations in the frequency space by Fourier transform as in the previous subsection. The

equations in the frequency space are given by

0 = Ψ′′(r) +

(

1

r
+

4r

N(r)
+

6f ′(r)

f(r)
− rα2φ′2(r)

3N(r)σ2(r)

)

Ψ′(r) +
ν2Ψ(r)

N2(r)σ2(r)
(3.10)

+
2α2

r2f2(r)

(

ω′(r)δA1′
y (r)−

ω(r)φ2(r)δA1
y(r)

N2(r)σ2(r)
+
iνω(r)φ(r)δA2

y(r)

N2(r)σ2(r)

)

,

0 = δA1′′
y (r) +

(

1

r
− 2f ′(r)

f(r)
+
N ′(r)

N(r)
+
σ′(r)

σ(r)

)

δA1′
y (r) +

(

ν2 + φ2(r)

N2(r)σ2(r)

)

δA1
y(r) (3.11)

−f6(r)ω′(r)Ψ′(r)−
2iνφ(r)δA2

y(r)

N2(r)σ2(r)
,

0 = δA2′′
y (r) +

(

1

r
− 2f ′(r)

f(r)
+
N ′(r)

N(r)
+
σ′(r)

σ(r)

)

δA2′
y (r) +

(

ν2 + φ2(r)

N2(r)σ2(r)

)

δA2
y (3.12)

−f
4(r)ω2(r)

r2N(r)
δA2

y +
iνφ(r)

N2(r)σ2(r)
(−f6(r)ω(r)Ψ(r) + 2δA1

y(r)).

We expand each field with the same fashion as eq. (3.4):

Ψ(r) =

(

N(r)

r2

)−i ν
4
(1+ 16

3
α2− 17

1260
ε2α2D̃2

1)+O(εkαl)

G(ε, α2), (3.13)

δA1
y(r) =

(

N(r)

r2

)−i ν
4
(1+ 16

3
α2− 17

1260
ε2α2D̃2

1)+O(εkαl)

H(ε, α2),

δA2
y(r) =

(

N(r)

r2

)−i ν
4
(1+ 16

3
α2− 17

1260
ε2α2D̃2

1)+O(εkαl)

I(ε, α2),

where the functions G(ε, α2), H(ε, α2) and I(ε, α2) are expanded as

G(ε, α2) =
∞
∑

i,j=0

Ψi,2j(r)ε
iα2j , (3.14)

– 7 –
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H(ε, α2) =

∞
∑

i,j=0

δA1
i,2j(r)ε

iα2j ,

and I(ε, α2) =

∞
∑

i,j=0

δA2
i,2j(r)ε

iα2j .

The solutions of the equations are listed in appendix C. Corrections to the Yang-Mills

fields which are subleadings in α2 do not contribute to the leading order corrections of the

shear viscosity, so we get δA1
i,0(r) and δA2

i,0(r) only (see eq. (3.10)). We also use small

frequency expansion as in the last subsection, and obtain the solutions up to O(ν). We

specify purely ingoing boundary conditions for the fields, the form of which are the same

as eq. (3.3). Here, we discuss the near boundary expansion of Ψ(r), obtaining the retarded

correlator of hxy and the shear viscosity to entropy density ratio,
ηxy
s
.

The near-AdS boundary expansions of Ψ(r), δA1
y and δA2

y are given by

δA1
y(r = ∞) = − iεν

192

(

6Ã
(0)
1,0 − 22Ā

(0)
1,0 − D̃1ψ

(0)
0,0

)

+O(εν2), (3.15)

δA2
y(r = ∞) =

iεν

192

(

22Ã
(0)
1,0 − 6Ā

(0)
1,0 − 11D̃1ψ

(0)
0,0

)

+O(εν2),

and

Ψ(r) = (ψ
(0)
0,0 + εψ

(0)
1,0 + ε2ψ

(0)
2,0) + α2(ψ

(0)
0,2 + εψ

(0)
1,2 + ε2ψ

(0)
2,2) (3.16)

+ν(ψ
(1)
0,0 + εψ

(1)
1,0 + ε2ψ

(1)
2,0) + να2(ψ

(1)
0,2 + εψ

(1)
1,2 + ε2ψ

(1)
2,2)

+
ν

r4

(

i

4
(ψ

(0)
0,0 + εψ

(0)
1,0 + ε2ψ

(0)
2,0) +

iα2

4
(ψ

(0)
0,2 + εψ

(0)
1,2 + ε2ψ

(0)
2,2)

+
iα2ε2D̃1

192
(5Ã

(0)
1,0 − 11Ā

(0)
1,0) +O(ν2ε3α3)

)

.

The SO(3) symmetry is broken spontaneously, so the Yang-Mills field should not provide

any source terms to the dual field theory system. Therefore, A1
y(r) and A2

y(r) should

become normalizable modes of the solutions, then we have

6Ã
(0)
1,0 − 22Ā

(0)
1,0 − D̃1ψ

(0)
0,0 = 0, and 22Ã

(0)
1,0 − 6Ā

(0)
1,0 − 11D̃1ψ

(0)
0,0 = 0. (3.17)

The solutions of these equations are

Ã
(0)
1,0 =

59

112
D̃1ψ

(0)
0,0, and Ā

(0)
1,0 =

11

112
D̃1ψ

(0)
0,0. (3.18)

Using eq. (3.18) and defining Ψ(∞) ≡ Ψ as a boundary value of Ψ(r), the near boundary

expansion of Ψ(r) is given by

Ψ(r → ∞) = Ψ +
iν

4r4
Ψ+ ε2α2ν

29iD̃2
1Ψ

3584r4
. (3.19)

The prescription of the retarded green’s function in [14] provides

GR
xy,xy(ν,

~k = 0) =
−iν
2κ25

(

1 +
29

896
ε2α2D̃2

1

)

+O(ν2) (3.20)
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and the shear viscosity is calculated as

ηxy ≡ lim
ν→0

1

2νi
[GR⋆

xy,xy −GR
xy,xy] =

1

2κ25

(

1 +
29

896
ε2α2D̃2

1

)

. (3.21)

Using entropy of the black brane (2.20), the ratio of shear viscosity and entropy density

obtained as
ηxy
s

=
1

4π

(

1 +
29

896
ε2α2D̃2

1

)

. (3.22)

Therefore, the shear viscosity and entropy ratio in x− y direction is not universal, and we

have shown this up to non-trivial leading order correction in α and ε. Using the temperature

of the black brane, eq. (3.22) can be written as

1− 4π
ηxy
s

=
1305πTc

544

(

1− T

Tc

)β

, (3.23)

where β = 1. It is also shown that the critical exponent β = 1 up to corrections of order

ε2α2, near the phase transition point T = Tc.

For the final remark, we note that non-universalities of the shear viscosities are only

valid for normal fluids. As followed by the discussion in [23], the dissipation parts of the

boundary energy momentum tensor may be given by

Tαβ
diss = −ηαβγδ∂γuδ − η̃αβγδ∂γvδ, (3.24)

where η and η̃ are viscosity tensors for normal fluids and superfluids and uα and vα are their

velocities respectively. The velocity of superfluids will be formally given by vα = ∂αϕ, where

ϕ is an order parameter in the superfluid phase. In our case, however, the anisotropic order

parameter, ω(r) does not depend on the boundary coordinate at all and for our computa-

tions of the shear viscosities, there are no fluctuations around it, i.e. δA1
x = 0. Therefore,

any boundary derivatives on the superfluid order parameter will vanish and which does not

contribute to the shear viscosities.
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A Leading order solutions

In this section, we solve eq. (2.3) and eq. (2.4) to get leading order back reaction to

the metric by symmetry breaking order parameter in Yang-Mills field, D̃1. Using metric

and Yang-Mills fields ansatz (2.6) and their expansions (2.14) and (2.15), we obtain the

equations order by order in ε and α. Since the aim is to get leading back reaction to the

metric, we get Yang-Mills field solutions up to the zeroth order in α and the first order

in ε for ω(r) but the second order in ε for φ(r), both of which provide first leading order

corrections to the metric correctly. The first order Yang-Mills equations in ε are given by

0 = φ′′1(r) +
3

r
φ′1(r)−

8

r3
σ′1(r), (A.1)

0 = ω′′
1(r) +

(

1

r
+

2(r4 + 1) + r3N ′
0(r)

r(r4 − 1) + r3N0(r)

)

ω′
1(r) +

16ω1(r)

(r2 + 1 + r2N0(r)
r2−1

)2
, (A.2)

and the first order Einstein equations in ε are

0 = σ′1(r), (A.3)

0 = 2N1(r) + rN ′
1(r) +

64α2

3r4

(

r3

4
φ′1(r)− 2σ1(r)

)

, (A.4)

0 = 2rN1(r) + r2N ′
1(r) + 2(1− 5r4)f ′1(r) + 2r(1− r4)f ′′1 (r) (A.5)

− 16α2

3r3(1 + r2)

(

−2r2(2N1(r) + rN ′
1(r))− 8r(1 + r2 − 2r4)f ′1(r)− r3(1 + r2)φ′1(r)

)

.

We expand every field appearing in above equations using eq. (2.15). With this ex-

pansion, the solutions of metric are trivial, which are given by

σ1,0(r) = σ̃1,0, σ1,2(r) = 0, (A.6)

f1,0(r) = f̃1,0, f1,2(r) = 0,

N1,0(r) =
Ñ1,0

r2
, N1,2(r) =

8

3
C̃1

(

1

r4
− Ñ1,2

r2

)

.

where we set σ̃1,0 = f̃1,0 = 0 for the boundary values σ(∞) = f(∞) = 1. Ñ1,0 = 0 and

Ñ1,2 = 1 for the space-time has its horizon at r = 1. The Yang-Mills fields equations (A.2)

up to O(α2) are given by

0 = ω′′
1,0(r) +

1 + 3r4

r(r4 − 1)
ω′
1,0(r) +

16ω1,0(r)

(r2 + 1)2
, (A.7)

0 = ω′′
1,2(r) +

1 + 3r4

r(r4 − 1)
ω′
1,2(r) +

16ω1,2(r)

(r2 + 1)2
+

128D̃1(1 + 9r2 − 2r4)

3r2(1 + r2)5
.

The Yang-Mills field solutions are solved as

ω1,0(r) =
D̃1r

2

(r2 + 1)2
, (A.8)

φ1,0(r) =
C̃1

2

(

1− 1

r2

)

, (A.9)
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ω1,2(r) =
D̃2r

2

(r2 + 1)2
+

128D̃1r
2

3(r2 + 1)2

∫ r

∞

dy
(y2 + 1)3

(y2 − 1)y3

(

−136

384
+

1

2
ln

(

2y2

y2 + 1

)

(A.10)

+
7 + 53y2 + 43y4 + 27y6 + 6y8

12(1 + y2)5

)

.

The second order equation of Yang-Mills field in ε is

0 = φ′′2,0(r) +
3

r
φ′2,0(r)−

8

r3
σ′2,0(r)−

4r2D̃2
1

(r2 + 1)5
, (A.11)

and Einstein equations are obtained as

0 = 2N2(r) + rN ′
2(r) + 2σ′2(r)

(

r2 − 1

r2
− 32α2

3r2
+

32α2

3r4

)

(A.12)

+
64α2

3r4

(

r6

64
φ′21 (r) +

r3

4
φ′2(r)

)

,

0 = 6σ′2(r)−
8α2D̃2

1

3

r

(r2 + 1)4
, (A.13)

0 = r(−1 + r4)f ′′2 (r) + (−1 + 5r4)f ′2(r)−
4α2D̃2

1

3

r(r2 − 1)(1− 6r2 + r4)

(1 + r2)5
, (A.14)

where the second order equation of ω(r) is not given, because which provides subleading

corrections to the metric backreaction.

The Yang-Mills field solution of φ(r) in O(ε2) are given by

φ2,0(r) = φ̃2,0 + C̃2

(

1− 1

r2

)

+
(1 + 2r2)D̃2

1

12r2(1 + r2)3
(A.15)

and the metric corrections are

σ2,0 = σ̃2,0, (A.16)

σ2,2 =
2D̃2

1

9

(

σ̃2,2 −
1

(1 + r2)3

)

, (A.17)

N2,0(r) =
Ñ2,0

r2
, (A.18)

N2,2(r) = − 16

3r2

(

Ñ2,2 −
C̃2
1

32r2
− C̃2

r2
+
D̃2

1

12

(

1 + 2r2

r2(1 + r2)3
− 3r2

2(1 + r2)2

)

)

, (A.19)

f2,0(r) = f̃2,0, (A.20)

f2,2(r) = f̃2,2 −
(1− 2r2)D̃2

1

18(1 + r2)4
, (A.21)

where φ̃2,0 = − D̃2

1

32 for the regularity of the Yang-Mills field at the horizon and Ñ2,0, f̃2,0,

σ̃2,2 and f̃2,2 are O(1) constants which are set to be vanished for f(∞) = σ(∞) = 1. Ñ2,2 =
C̃2

1

32 +C̃2 for the space-time has its horizon at r = 1. C̃1 and C̃2 are coefficients of zero modes

of Yang-Mills field equations. Without loss of generality, we can set C̃1 = 0. However, C̃2 =
281
6720D̃

2
1 requesting ω3,0(r) to be normalizable mode and regular at the black brane horizon.

Then, we have metric backreaction only with D̃1 as a SU(2) symmetry breaking scale.
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B Leading order correction of hyz

In this section, we briefly describe the solutions of eq. (3.1) using the form of expansion (3.4)

and (3.5). Each term in expansion (3.5) is given by

Φ0,0(r) = φ
(0)
0,0 + νφ

(1)
0,0 +O(ν2), (B.1)

Φ0,2(r) = φ
(0)
0,2 + ν

(

φ
(1)
0,2 + 8iφ

(0)
0,0

(

ln

(

1 +
1

r2

)

− 1

r2

))

+O(ν2), (B.2)

Φ1,0(r) = φ
(0)
1,0 + νφ

(1)
1,0 +O(ν2), Φ2,0(r) = φ

(0)
2,0 + νφ

(1)
2,0 +O(ν2), (B.3)

Φ1,2(r) = φ
(0)
1,2 + ν

(

φ
(1)
1,2 + 8iφ

(0)
1,0

(

ln

(

1 +
1

r2

)

− 1

r2

))

+O(ν2), (B.4)

and

Φ2,2(r) = φ
(0)
2,2 + νφ

(1)
2,2 −

iν

840

(

φ
(0)
0,0D̃

2
1

(

− 105

2(1 + r2)
+

175

2(1 + r2)2
− 70

3(1 + r2)3
(B.5)

− 35

(1 + r2)4
− 279

2r2

)

+
6720φ

(0)
2,0

r2
+ 192

(

D̃2
1φ

(0)
0,0 − 35φ

(0)
2,0

)

ln(1 +
1

r2
)

)

.

We also obtain the near AdS boundary expansion of Φ(r) as

Φν(r → ∞) = Φ
(0)
0,0 + εΦ

(0)
1,0 + ε2Φ

(0)
2,0 + α2

(

Φ
(0)
0,2 + εΦ

(0)
1,2 + ε2Φ

(0)
2,2

)

(B.6)

+ν
(

Φ
(1)
0,0 + εΦ

(1)
1,0 + ε2Φ

(1)
2,0 + α2

(

Φ
(1)
0,2 + εΦ

(1)
1,2 + ε2Φ

(1)
2,2

))

+
iν

4r4

(

Φ
(0)
0,0 + εΦ

(0)
1,0 + ε2Φ

(0)
2,0 + α2

(

Φ
(0)
0,2 + εΦ

(0)
1,2 + ε2Φ

(0)
2,2

))

+O(riνjεkαl),

where i < −4, j > 1, k > 2 or l > 2.

C Leading order correction of hxy

In this section, we list the solutions of the set of equations (3.10), (3.11) and (3.12). We

listed our solution using the expansion (3.13) and (3.14). As explained in section 3.2, we

get δA1
i,0 and δA2

i,0 only for the Yang-Mills field solution. δA1
0,0 and δA2

0,0 are zero modes

of the solutions. Without loss of any generality, we set δA1
0,0 = δA2

0,0 = 0. The first

subleading corrections of Yang-Mills fields in ε are given by

δA1
1,0(r) =

r2

(1 + r2)2

(

Ã
(0)
1,0 + νÃ

(1)
1,0 −

iν

192r2

(

6Ã
(0)
1,0(1 + r4 + 24r2 ln(r) (C.1)

−8r2 ln(1 + r2)) + 2Ā
(0)
1,0(5− 11r4 − 40r2 ln(r)− 24r2 ln(1 + r2))

− D̃1ψ
(0)
0,0(17 + r4 + 56r2 ln(r)− 24r2 ln(1 + r2))

)

+O(ν2)
)

,

and

δA1
1,0(r) =

r2

(1 + r2)2

(

Ā
(0)
1,0 + νĀ

(1)
1,0 +

iν

192r2

(

2Ã
(0)
1,0(−5 + 11r4 + 40r2 ln(r) (C.2)

– 12 –



J
H
E
P
0
7
(
2
0
1
2
)
1
0
6

+24r2 ln(1 + r2))− 6Ā
(0)
1,0(1 + r4 + 24r2 ln(r)− 8r2 ln(1 + r2))

+ D̃1ψ
(0)
0,0(5− 11r4 − 40r2 ln(r)− 24r2 ln(1 + r2))

)

+O(ν2)
)

.

Ψ(r) solution is also obtained as

Ψ0,0(r) = ψ
(0)
0,0 + νψ

(1)
0,0 +O(ν2), (C.3)

Ψ1,0(r) = ψ
(0)
1,0 + νψ

(1)
1,0 +O(ν2), (C.4)

Ψ2,0(r) = ψ
(0)
2,0 + νψ

(1)
2,0 +O(ν2), (C.5)

Ψ0,2(r) = ψ
(0)
0,2 + νψ

(1)
0,2 + 8iνψ

(0)
0,0

(

ln

(

1 +
1

r2

)

− 1

r2

)

+O(ν2), (C.6)

Ψ1,2(r) = ψ
(0)
1,2 + νψ

(1)
1,2 + 8iνψ

(0)
1,0

(

ln

(

1 +
1

r2

)

− 1

r2

)

+O(ν2), (C.7)

and

Ψ2,2(r) = ψ
(0)
2,2 +

Ã
(0)
1,0D̃1

(1 + r2)4
−

2Ã
(0)
1,0D̃1

3(1 + r2)3
(C.8)

+νψ
(1)
2,2 +

ν

576

(

8iD̃1(−3Ã
(0)
1,0 + 48iÃ

(1)
1,0 + 17Ā

(0)
1,0 + 2D̃1ψ

(0)
0,0)

(1 + r2)3

+
2iD̃1(3Ã

(0)
1,0 − 5Ā

(0)
1,0 + 4D̃1ψ

(0)
0,0)

1 + r2
−

2iD̃1(−9Ã
(0)
1,0 + 19Ā

(0)
1,0 + 37D̃1ψ

(0)
0,0)

(1 + r2)2

+
12D̃1(3iÃ

(0)
1,0 + 48Ã

(1)
1,0 − 3iĀ

(0)
1,0 − iD̃1ψ

(0)
0,0)

(1 + r2)4
+

36i(93D̃2
1ψ

(0)
0,0 − 4480ψ

(0)
2,0)

35r2

−8iD̃1(2r
2 − 1) ln(r)

(1 + r2)4
(−18Ã

(0)
1,0 + 10Ā

(0)
1,0 + 7D̃1ψ

(0)
0,0)

−4i(−3Ã
(0)
1,0D̃1 + 5Ā

(0)
1,0D̃1 −

1814

35
D̃2

1ψ
(0)
0,0 + 2304ψ

(0)
2,0) ln(r)

+
24iD̃1(2r

2 − 1) ln(1 + r2)

(1 + r2)4
(−2Ã

(0)
1,0 − 2Ā

(0)
1,0 + D̃1ψ

(0)
0,0)

+i ln(1 + r2)(−6Ã
(0)
1,0 + 10Ā

(0)
1,0 −

3628

35
D̃2

1ψ
(0)
0,0 + 4608ψ

(0)
2,0)

)

+O(ν2).
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