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1 Introduction

It is well known that the embedding of S1 into S3 makes many nontrivial topological

objects such as so-called knots. This structure is one of the most important ingredients to

understand low dimensional topology. As a physical representation of knot theory, there is

a celebrated work by Witten [1] that proves that the expectation values of knotted Wilson

loops weighted by pure Chern-Simons action turn out to be knot invariants. In particular,

when we take the gauge group as SU(2) and the representation of Wilson loop as the

fundamental representation, the invariants become the famous Jones polynomials.

On the other hand, in these days, so called localization techniques were developed by

Pestun [2] in four-dimension, Kapustin, Willett, Yaakov [3] in three-dimension. Using these

techniques, we can calculate exact results of supersymmetric field theories. It is mentioned

in [3] that N = 2 supersymmetric Chern-Simons theory reduces to pure Chern-Simons

theory by integrating out gaugino and auxiliary fields. Therefore, it is expected that the

expectation value of a supersymmetric Wilson loop becomes knot invariant.

However there is one problem. All calculable observables using localization technique

are 1/2 BPS ones. As discussed in [3], this condition determines the topological structure

of Wilson loops completely as trivial knots (unknotted ones). So one may wonder whether

it is possible to modify this localization technique to output nontrivial knots as 1/2 BPS

Wilson loops?

In this paper, we find that one of modification can be accomplished by using Hama,

Hosomichi and Lee’s localization on ellipsoid-like squashed three spheres [4]. In their theory,
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there are two squashing parameters l and l̃. We find that if and only if the ratio l/l̃ is a

rational number, there exist nontrivially knotted closed 1/2 BPS Wilson loops. And we

find that these knotted loops construct nontrivial so-called Seifert fibrations, one of the

generalizations of the famous Hopf fibration. Our result matches with known results [5, 6],

and of course matches with Jones polynomials gained by Witten.

The construction of this paper is the followings. In section 2, we review Hama, Ho-

somichi, Lee’s theory. In section 3, we discuss the 1/2 BPS condition. And in section 4, we

comment on some technical details of level shift and the extra phase factors in the results

of section 3.

2 Hama, Hosomichi and Lee’s theory

We briefly review the result of Hama, Hosomich and Lee [4].

2.1 Preliminaries

Let us consider the following ellipsoid metric on S3

ds2 = f(θ)2dθ2 + l2 cos2 θdφ2 + l̃2 sin2 θdχ2, f(θ) =

√
l2 sin2 θ + l̃2 cos2 θ. (2.1)

This metric can be regarded as

ds2 = l2(dx2
0 + dx2

1) + l̃2(dx2
2 + dx2

3), (2.2)

where

x0 = cos θ cosφ, x1 = cos θ sinφ, x2 = sin θ cosχ, x3 = sin θ sinχ. (2.3)

In order to construct supersymmetric theory, we need a Killing spinor. We must redefine

covariant derivatives to maintain the existence of Killing spinors. Hama, Hosomichi, Lee

used usual Killing spinors on round S3

ε =
1√
2

(
−e

i
2

(χ−φ+θ)

e
i
2

(χ−φ−θ)

)
, ε =

1√
2

(
e
i
2

(−χ+φ+θ)

e
i
2

(−χ+φ−θ)

)
. (2.4)

Then we get

Dµε =
i

2f
γµε, Dµε =

i

2f
γµε (2.5)

where

D = d+
1

4
ωabγab − iqV, V = Vµdx

µ = −1

2

(
1− l

f

)
dφ+

1

2

(
1− l̃

f

)
dχ. (2.6)

They assigned R-charge q as +1 to ε and −1 to ε, and to vector multiplets as follows. (See

table 1)
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Field Aµ σ λ λ D

spin 1 0 1/2 1/2 0

q 0 0 +1 -1 0

Table 1. Assignments of R-charge q.

The supersymmetry transformations are

δεAµ = +
i

2
λγµε, δεAµ = − i

2
εγµλ, (2.7)

δεσ = −1

2
λε, δεσ = +

1

2
ελ, (2.8)

δελ =
1

2
γµνεFµν −Dε+ iγµεDµσ +

2i

3
σγµDµε, δελ = 0, (2.9)

δελ = 0, δελ =
1

2
γµνεFµν +Dε− iγµεDµσ −

2i

3
σγµDµε, (2.10)

δεD = − i
2
Dµλγµε+

i

2
[λε, σ]− i

6
λγµDµε, δεD = − i

2
εγµDµλ+

i

2
[ελ, σ]− i

6
Dµεγµλ.

(2.11)

Under these transformations, the supersymmetric Chern-Simons action

SSCS(A, σ, λ, λ,D) =

∫
d3x
√
g Tr

[
1
√
g
εµνλ(Aµ∂νAλ −

2i

3
AµAνAλ)− λλ+ 2Dσ

]
(2.12)

is invariant. And the supersymmetric Yang-Mills action is δε exact

SYM (A, σ, λ, λ,D) =

∫
d3x
√
g Tr

(
1

4
FµνF

µν +
1

2
DµσDµσ +

1

2
(D +

σ

f
)2

+
i

2
λγµDµλ+

i

2
λ[σ, λ]− 1

4f
λλ

)
=

∫
d3x
√
g δεδε Tr

(
1

2
λλ− 2Dσ

)
. (2.13)

Locus that gives the bosonic part of SYM as zero is characterized by

Fµν = 0, Dµσ = 0,

(
D +

σ

f

)
= 0 (2.14)

which is equivalent to

Aµ = 0, σ = σ0(constant), D = −σ0

f
(2.15)

up to gauge transformation.

2.2 Localization formula

Let us define the supersymmetric Wilson loop as the usual one

WS(R,C;A, σ) = TrRP exp

(∮
C
dτ(iAµẋ

µ + σ|ẋ|)
)
. (2.16)
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The main statement of localization theorem is following. The function

WS(t) =

∫
DA Dλ Dλ DD Dσ ei

k
4π
SSCS(A,σ,λ,λ,D)−tSYM (A,σ,λ,λ,D)WS(R,C;A, σ) (2.17)

does not depend on t if and only if

δεWS(R,C;A, σ) = 0 (2.18)

is satisfied.

Therefore, if we satisfy this 1/2 BPS condition,

lim
t→+0

WS(t) = lim
t→+∞

WS(t) (2.19)

is valid. Let us define this value as W .

Naively the left hand side of (2.19) looks to be level k Chern-Simons theory, however

when we consider the gauge group as U(N) or SU(N), it turns to be level k − N Chern-

Simons theory. We will get back to this issue in section 4. On the right hand side of (2.19),

field configuration localize at the locus that makes the bosonic part of SYM zero. Then,

after performing the usual localization procedure, we get

W = lim
t→+∞

WS(t) =

∫
Cartan

dσ0 e
i k
4π
SSCS(0,σ0,0,0,−σ0f )

WS(R,C; 0, σ0)×Z(HHL)
1-loop (σ0)

=

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)TrR(eσ0
∮
C dτ |ẋ|)×Z(HHL)

1-loop (σ0), (2.20)

where

Z(HHL)
1-loop (σ0) =

∏
α>0

sinh(lα(σ0)) sinh(l̃α(σ0)) (2.21)

as discussed in [4]. Here, α means root and α > 0 means positive roots. In general, we can

insert not one but many 1/2 BPS Wilson loops into path integral. Assume there are many

1/2 BPS contours denoted as Ci (i = 1, 2, . . . , n), then we get

∫
DA Dλ Dλ DD Dσ ei

k
4π
SSCS(A,σ,λ,λ,D)−tSYM (A,σ,λ,λ,D)

n∏
i=1

WS(Ri, Ci;A, σ)

=

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)
n∏
i=1

TrRi(e
σ0

∮
Ci
dτ |ẋ|

)×Z(HHL)
1-loop (σ0), (2.22)

where Ri is a representation assigned with the loop Ci. Let us define this value as W12...n.

And as usual, let us define the partition function as

Z =

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)Z(HHL)
1-loop (σ0). (2.23)
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Figure 1. T 2.

o 20

Figure 2. S3 as R3 ∪ {∞}.

3 1/2 BPS Wilson loop and Seifert fibrations

3.1 1/2 BPS condition

In order to evaluate (2.20) or (2.22), we have to know
∮
C dτ |ẋ| that is determined by 1/2

BPS condition (2.18). It reduces to following condition

δεWS(R,C;A, σ) ∝ 1

2
ε(γµẋ

µ + |ẋ|)λ = 0. (3.1)

Therefore, we must solve following ODE

ε(γµẋ
µ + |ẋ|) = 0. (3.2)

Substituting the explicit form of ε (2.4) and taking |ẋ| = 1, this condition is equivalent to

ẋµ
∂

∂xµ
=


1
l
∂
∂φ −

1
l̃
∂
∂χ (θ 6= 0, π2 )

1
l
∂
∂φ (θ = 0)

−1
l̃
∂
∂χ (θ = π

2 )

. (3.3)

Let us investigate each situation in detail.

3.2 The shape of each loop and Jones polynomials

First of all, we regard S3 as one point compactified R3. Through this picture, we can

visualize coordinates φ, χ, θ. φ and χ represent 2-dimensional torus T 2 (figure 1).

θ can be regarded as the size of this torus. During 0 < θ < π/2, this torus changes its

size as described in figure 2. When θ = 0, χ shrinks to one point and torus reduces to a

circle (red one in figure 2). If we grow up this torus bigger and bigger, the size tends to

infinity, and when we reach θ = π/2, φ vanishes into far away. Then torus reduces to a

line (blue one in figure 2). However we should regard it not a line but a circle because of

the one point compactification.

1/2 BPS Wilson loop on θ 6= 0, π/2. In this case, according to (3.3), we get 1/2 BPS

Wilson loop as

φ = − l
l̃
χ+ φ0, θ = θ0 6= 0,

π

2
(3.4)
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Figure 3. Green line corresponds to (3.4).

where φ0, θ0 are integration constants. As shown in figure 3, this curve becomes closed

loop if and only if l/l̃ is a rational number.1

We can get the length of this loop as∮
dτ |ẋ| =

∮
dτ = 2πll̃. (3.5)

Therefore, in this case we get

W =

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)TrR(e2πll̃σ0)×Z(HHL)
1-loop (σ0). (3.6)

As a consistency check, we calculate this integration. For simplicity, we take gauge group

as U(2) and R = 2. The result is

W

Z
= q−(l+1)(l̃+1)/2 −1

q1/2 − q−1/2
(ql+l̃ + 1− ql+1 − q l̃+1), (3.7)

where

q = e
2πi
k . (3.8)

This polynomial is well known (l, l̃)-torus knot Jones polynomial up to extra phase factor

e−ll̃
2πi
k . As pointed out in [7], we must use normalized Jones polynomial so that the

polynomial of trivial knot becomes q−q−1

q1/2−q−1/2 . After this renormalization procedure, by

using the well-known formula of torus-knot [8], we get (l, l̃)-torus knot Jones polynomial

Jl,l̃(q) = qll̃q−(l+1)(l̃+1)/2 −1

q1/2 − q−1/2
(ql+l̃ + 1− ql+1 − q l̃+1). (3.9)

1/2 BPS Wilson loop on θ = 0. In this case (figure 4), (3.3) says the length is∮
dτ |ẋ| =

∮
dτ = 2πl. (3.10)

Therefore (2.20) turns to be

W =

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)TrR(e2πlσ0)×Z(HHL)
1-loop (σ0). (3.11)

In the case of U(2) gauge theory and R = 2, we get

W

Z
= e−

l
l̃
2πi
k

q − q−1

q1/2 − q−1/2
. (3.12)

1If not, the integral curve cannot get back to the initial point, and wraps the torus densely.
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Figure 4. 1/2 BPS Wilson loop on θ = 0.

x

o

Figure 5. 1/2 BPS Wilson loop on θ = π/2.

1/2 BPS Wilson loop on θ = π/2. In this case (figure 5), (3.3) says the length is∮
dτ |ẋ| =

∮
dτ = 2πl̃. (3.13)

Therefore (2.20) turns to be

W =

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)TrR(e2πl̃σ0)×Z(HHL)
1-loop (σ0). (3.14)

In the case of U(2) gauge theory and R = 2, we get

W

Z
= e−

l̃
l
2πi
k

q − q−1

q1/2 − q−1/2
. (3.15)

(3.12) and (3.15) are trivial knot Jones polynomials up to extra phase factors e−
l
l̃
2πi
k , e−

l̃
l
2πi
k

respectively.

3.3 Hopf link (on north pole and south pole) and Seifert fibration

As discussed above, we can also evaluate correlation function of many 1/2 BPS Wilson

loops. As the simplest example, we put two Wilson loops on the north pole (θ = π/2) and

the south pole (θ = 0). These loops Cθ=π/2 and Cθ=0 form so-called Hopf link (figure 6).

The result is

Wθ=π/2,θ=0 =

∫
Cartan

dσ0 e
−ikπll̃Tr(σ2

0)TrRθ=π/2(e2πl̃σ0)TrRθ=0
(e2πlσ0)×Z(HHL)

1-loop (σ0).

(3.16)

We can get the simplest result by taking Rθ=π/2 = Rθ=0 = 2. Then, this reduces to the

form
Wθ=π/2,θ=0

Z
= e−(2+ l̃

l
+ l
l̃
) 2πi
k (q3 + q2 + q + 1). (3.17)

In this case, we have extra phase factor as e−(2+ l̃
l
+ l
l̃
) 2πi
k .

– 7 –
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Figure 6. Left handed Hopf link. Figure 7. Seifert fibration.

Figure 8. Leading contributions.

When we gather all of 1/2 BPS Wilson loops, they wrap whole of the S3. In addition,

this wrapping means that we can separate S3 into each U(1) equivalent classes. And

because of S3 = SU(2) and S3/U(1) = SU(2)/U(1) = S2 we get nontrivial fibration

structure U(1)→ S3 → S2. This fibration is called Seifert fibration (figure 7).

4 Comments on anomalies

4.1 Parity anomaly

One may naively expect that the corresponding result on pure Chern-Simons side is level

k, because

WS(0) = (constant)×
∫
DA exp

(
ik

4π

∫
d3x εµνλTr(Aµ∂νAλ −

2i

3
AµAνAλ)

)
. (4.1)

However, if it is true, the definition q = e
2πi
k in our paper conflicts with that of [1]. Here, it

is important to be careful with the order of taking limit. As pointed out in [9, 10], we have

to perform path integral first, then take limit t → +0. In this procedure, we encounter

following effective action that comes from integration with gaugino2∫
Dλ Dλ egaugino term in (i k

4π
SSCS−tSYM ) = eΓ(A,t). (4.2)

Performing usual perturbative expansion, the leading terms come from 1-loop diagrams as

shown in figure 8. This phenomenon is well known in the context of parity anomaly [11, 12].

When we take the gauge group as U(N) or SU(N), the result is level (−N) pure

Chern-Simons theory

Γ(A, t)→ −iN
4π

∫
d3x εµνλTr(Aµ∂νAλ −

2i

3
AµAνAλ), (t→ +0). (4.3)

2We would like to thank Y. Hosotani and T. Onogi who suggested this idea.
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Therefore, we can conclude

lim
t→+0

W (t) = (constant)×
∫
DA exp

(
i(k −N)

4π

∫
d3x εµνλTr

(
Aµ∂νAλ −

2i

3
AµAνAλ

))
.

(4.4)

4.2 Framing anomaly

As commented in [3], we have the framing anomaly as

W12...n

Z
= e

∑n
i,j=1 lk(Ci,Cj)

2πi
k × Jones polynomial of link (C1, C2, . . . , Cn), (4.5)

where lk(Ci, Cj) means linking number between Ci and Cj .
3 As we can see, even if there

is only one knot, we have the phase elk(C,C) 2πi
k . lk(C,C) is called self linking number. This

value is UV divergent, therefore we must regularize it by using point-splitting regulariza-

tion [1]. Here, we evaluated 1/2 BPS Wilson loops. In our calculations, this regularization

scheme is automatically selected in order to maintain the 1/2 BPS condition [3]. In other

words, we calculated lk(C,C) as

lk(one 1/2 BPS loop, another 1/2 BPS loop). (4.6)

We would like to call another 1/2 BPS Wilson loop as splitting loop.

Torus knot case. In our orientation, all of 1/2 BPS Wilson loops are constructed as

left-handed manner. Therefore, all linking numbers are negative. In general, left-handed

(l, l̃)-torus knot has linking number as −ll̃. So, our result must match with

e−ll̃
2πi
k × Jl,l̃(q). (4.7)

According to (3.7) and (3.9), this is satisfied.

Trivial knot case. According to (3.12) and (3.15), we seem to have rational numbers as

these linking numbers as − l
l̃

and − l̃
l . What is the meaning of rational linking number?

1/2 BPS Wilson loop near the trivial knot on θ = 0 is (l, l̃)-torus knot. Linking number

between these two knots is −l because (l, l̃)-torus knot wraps l times around the trivial

knot on θ = 0 in the left handed manner.

As we calculated in section 3, these loops have their length as 2πl and 2πll̃. Here the

ratio of these length is 2πl/2πll̃ = 1/l̃. It means that during a test particle wraps the

trivial knot on θ = 0, another test particle on torus knot cannot travel whole of the loop

but 1/l̃ of it. Then, 1/l̃ part of torus knot wraps −l/l̃ times around centered trivial knot,

i.e.

lk(Cθ=0, Cθ=0) = −l/l̃. (4.8)

As same,

lk(Cθ=π/2, Cθ=π/2) = −l̃/l. (4.9)

This interpretation does not depend on the choice of splitting 1/2 BPS Wilson loop.

3The framing anomaly of three manifold itself is cancelled because of dividing W12,...,n by Z.
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Hopf link case. The phase e−(2+ l̃
l
+ l
l̃
) 2πi
k can be interpreted as

n∑
i,j=1

lk(Ci, Cj)
2πi

k

= (lk(Cθ=π/2, Cθ=π/2) + lk(Cθ=π/2, Cθ=0) + lk(Cθ=0, Cθ=π/2) + lk(Cθ=0, Cθ=0))
2πi

k

=

(
− l̃
l
− 1− 1− l

l̃

)
2πi

k
= −

(
2 +

l̃

l
+
l

l̃

)
2πi

k
. (4.10)

5 Discussion

We checked the consistency between localization techniques and well known exact results

of Chern-Simons theory and found complete equivalence as expected. Another squashing is

discussed in [13] and localization on other three-dimensional manifolds is discussed by [14]

on lens spaces, [6] on general Seifert manifolds by performing topological twist on N = 2

vector multiplet. It might be possible to construct more generic knot matrix model by

using these modified localization techniques.

Our result (2.20) is the well known knot matrix model [5, 6]. However our derivation

is simpler and more comprehensive because we only use supersymmetry.

Originally, the squashing techniques were developed in order to study domain walls in

four-dimensional N = 2 gauge theories [15, 16]. It may be interesting to apply our results

to these studies.
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