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1 Introduction

Over the years there has been slow but steady progress in our understanding of relations
between black holes and two dimensional conformal field theories. Several universal proper-
ties of black holes have been found to be related to universal properties of 2d CFTs. String
theory has provided significant insights in this quest. Arguably, one of the most spec-
tacular successes of string theory is the Sen-Strominger-Vafa counting of the microscopic
configurations, and thereby providing a statistical mechanical explanation of the entropy
of certain supersymmetric and near-supersymmetric black holes [1, 2]. Since then, many
different types of black holes have been studied and the agreement between the Bekenstein-
Hawking entropy and the statistical mechanical entropy has been shown to hold in a variety
of cases.



These achievements, very impressive as they are, need to be contrasted with the chal-
lenge of microscopically understanding general non-extremal black holes. The methods
advocated in [1, 2] cannot be directly applied to such general settings. More recently,
considerable progress has been made in addressing general extremal black holes. These
developments go under the name of the Kerr/CFT correspondence [3]; see [4] for a concise
review and see [5] for a more comprehensive review.! Once again, these developments rely
on certain specific structure of extremal black holes, and cannot be directly generalized
to non-extremal settings. In the case of the Kerr/CFT, existence of the decoupled near-
horizon geometry is crucial. In settings far away from extremality one cannot decouple the
near-horizon region from the asymptotic region. As a result, it remains unclear how the
considerations of Kerr/CFT are useful for describing general non-extremal settings.

It comes as a surprise that even for black holes far away from extremality certain
tantalizing clues have been found for the presence of a conformal symmetry. It was observed
in [6] that in certain low-energy near-horizon regimes the dynamics of a probe scalar field
enjoys a local hidden non-geometric SL(2, R) x SL(2, R) symmetry. The precise meaning
of this symmetry is a topic of future research, but the picture put forward in [6] shows
remarkable coherence. These hidden symmetries only appear in a region close enough to
the horizon. It has been suggested [7—10] that one can consistently deform the geometry
of an asymptotically flat black hole so that these hidden symmetries appear manifestly
in the deformed geometries. These geometries are dubbed “subtracted geometries.” The
subtracted geometries are not asymptotically flat. They are supported by additional matter
fields. In this work we explore these geometries and their relation to the original black holes.

The main aim of this paper is to establish that subtracted geometries can be ob-
tained from the original black hole by applying solution generating transformations. For
concreteness we consider the case of four-charge rotating non-extremal four-dimensional
asymptotically flat black holes of N=2 STU supergravity. Moreover we restrict ourselves
to the black hole carrying three magnetic and one electric charge. This is just a choice; we
expect our considerations to straightforwardly apply to other combinations of in total four
electric and magnetic charges.

The motivation for looking at the 4d solution carrying three magnetic charges (and one
electric charge) is manifold. Not only we can perform a study of its subtracted geometry,
but also we can use it to perform various other studies; most notably in relation to a string
theory realization of the Kerr/CFT correspondence and black rings. It was shown in [11]
that the spinning magnetic one-brane of five-dimensional minimal supergravity admits
a near-horizon limit that smoothly interpolates between a self-dual supersymmetric null
orbifold of AdSs x S? and the near-horizon limit of the extremal Kerr black hole times a
circle. It is of interest to generalize this observation to a multicharge configuration. We
present such a generalization in appendix D.

As for the construction of the rotating four-charge black hole carrying three magnetic
and one electric charge, there are several ways in which one can approach this problem.
The first, and perhaps also the most direct, approach that comes to mind is to use boosts

'In these reviews further references on these and related developments can also be found.



and string dualities. One quickly realizes that to add three independent magnetic charges
the number of boosts and dualities steps required is in fact quite large (approximately 20).
To perform all these steps coherently is a computational challenge.?

There are other somewhat less computationally intensive possibilities. For example,
a second possibility is to perform an electro-magnetic duality in four-dimensional N=2
STU supergravity and convert the two-electric two-magnetic rotating solution as presented
in [13] to three-magnetic and one-electric one. Finally, a third possibility is to use the
powerful machinery of three-dimensional hidden symmetries of the STU model to generate
this solution. It is the third path that was used to construct the solution carrying two
electric and two magnetic charges [13]. In our opinion the second and the third routes are
of almost equal computational complexity. Since the approach of three-dimensional hidden
symmetries also allows us to relate to its subtracted geometry rather directly, we follow
the third route in this paper.

For the ease of readability of the paper almost all technicalities related to the con-
struction of the solution are presented in appendices. Appendix A presents the set-ups we
work with in considerable detail. Here we also present an implementation of the SO(4,4)
nonlinear sigma model. The group SO(4,4) is relevant because it is the group of hidden
symmetries of the N=2 STU supergravity when the theory is dimensionally reduced on a
Killing vector. The rest of the paper is organized as follows. We first construct the spin-
ning M5-M5-M5 solution in section 2. We present it as a configuration in five-dimensional
U(1)? supergravity. Then we show how to add the fourth charge. In section 3 we obtain its
subtracted geometry by applying a series of solution generating transformations. Three-
dimensional sigma model fields for the M5-M5-Mb5 solution are presented in appendix B.
Three dimensional fields for the subtracted geometry are presented in appendix C. We
conclude in section 4.

2 Four-charge black hole

Although four charge black holes of ungauged four dimensional supergravity theories are
well studied in the literature [9, 13-15], to the best of our knowledge expressions for all
fields when the black hole carries three independent magnetic charges have not been ex-
plicitly presented anywhere. We fill this gap in this section. For many purposes, e.g.,
in relation to black rings, or in relation to (0,4) MSW/D1-D5-KKM CFT [16], such a
presentation is useful.

2.1 M5-M5-M5

We consider the M-theory frame and describe the configuration as a solution of five-
dimensional U(1)? supergravity. Upon reducing over the string direction we obtain a
rotating 4d black hole carrying three independent magnetic charges. For various reasons
we prefer to present the 5d lift of the 4d solution.

2A construction along these lines of the spinning magnetic one-brane in five-dimensional U(l)3 super-
gravity with three independent M5 charges was attempted in [12]. However, the author did not completely
succeed in achieving this goal. The expressions presented in [12] do not solve the supergravity equations.



The theory. We follow the conventions in which the U(1)? supergravity Lagrangian takes
the a manifestly triality-invariant form

L5 =Rsx51— fGU x5 dh! A dh? — fGU x5 Fiyy A Fiy + CUKF[Q] NE AAR (2.1)

The symbol C7jx is pairwise symmetric in its indices with Ci23 = 1 and is zero otherwise.
The metric Gry on the scalar moduli space is diagonal with entries Gj; = (hl )_2, where
these scalars satisfy the constraint h'h2h3 = 1. This constraint must be solved before
computing variations of the action to obtain EOMs for various fields.

We construct the M5-M5-M5 solution using the familiar coset model solution generat-
ing techniques. We reduce the theory (2.1) on commuting Killing vectors to three dimen-
sions. We do this reduction first over a spacelike Killing vector and then over a timelike
Killing vector. The theory reduces to 3d gravity coupled to SO(4,4)/(SO(2,2)xS0(2,2))
non-linear sigma model. Acting with an appropriate group elements of SO(4,4) on the Kerr
string we get the non-extremal spinning magnetic one-brane of U(1)? supergravity. Details
on the set-up and the explicit form of the group element can be found in appendix A. For
five-dimensional minimal supergravity such constructions have been extensively discussed
in our previous work [11, 17-21].

The solution. Let s; = sinhaj and ¢; = coshay with I = 1,2,3, then the spinning
magnetic one-brane with three-independent Mb5-charges is given as

ds3 = f(dz + AD? + [ (= (dt + w3)? + e 2V ds3(B)), (22)
where A
ds?(B) = AQ dr? + Agdf? + Asin® 0dg?, (2.3)

is the three-dimensional base metric obtained by reducing the Kerr string on 0, first and
then over 0, and

A =7% —2mr + d?, Ay = A —a*sin?0 (2.4)
Ay?
f? = 46 Q03) /3, 'l = N (2.5)
2 in 0
w3 = 610263wd¢, (2.6)

Ay

are the metric functions appearing in the line element. The rest of the metric functions
take the form

3
€ = (r? + a*cos? 0)* 4 2mr(r® + a® cos® 0) <Z s%)

I=1

3
+4m?r? (s1s3 + s553 + s1s3) + 4m?*(2mr — a® cos® 0) (H ) ; (2.7)

Q1 = 2(a®cos® 0 + (r + 2ms3)(r + 2ms3)), (2.8)



and cyclic permutations. Furthermore we have

am(r — 2m)

AY = ¢O(dt + w3) + 2515953 A, sin? 0dg, (2.9)
with o 9 o
= 4010203818283am;059 (2.10)
The Maxwell potentials A’’s of the five-dimensional theory take the form
Al = \T(dz + AY) + ¢ (dt + ws) —|—2m8101AA2 cos 0d¢ (2.11)
with
X' = 40182836%(?59, (2.12)
¢! = —2s1c9c3(r? + a’cos? O + 2rms%))w (2.13)

é— )
and obvious cyclic permutations. Finally, the three scalars in the U(1)3 theory take the form
Al = (910:03)30; . (2.14)

The solution is sufficiently complicated, and it is non-trivial to check that all supergravity
equations are solved. We have checked that they are solved.?

Setting any two of the three charges to zero, while keeping the angular momentum
non-zero, the resulting solution can be compared to reference [22]. In this special case
the solution also admits a lift to vacuum gravity in six dimensions. By setting the three
charges equal the solution can be compared with [17]. Certain physical properties of the
solution and its near horizon geometry in the extremal limit are studied in appendix D.

2.2 Adding the fourth charge

By boosting the string configuration (2.2) in (¢, z), and then dimensional reducing over the
z direction we obtain a four-charge four-dimensional black hole. The 4d black hole carries
three-magnetic charges and one-electric charge. From the hidden symmetries point of view
this procedure is equivalent to performing

M?)fcharge — M4fcharge - gi : M3fcharge * 94, (215)

with
91 = exp [~a0(Eq + Fio)] (2.16)

Here M3_charge denotes the SO(4,4) coset matrix for the above three-charge configuration.*
The explicit expressions for the resulting fields are fairly complicated. For the case of two-
electric and two-magnetic charges these expressions are presented in full detail in [13].
Fortunately, we will not need the explicit expressions in what follows.

30ur € conventions are Erapzt = ++/—det g, with = cos 6.

4The notation ¢* denotes a generalized transposition. The transposition is defined on the generators of
the s0(4,4) Lie algebra by f(z) = —7(z) V2 € s0(4,4), where 7 is the involution of the Lie algebra that
defines the coset. More details can be found in appendix A.



3 Subtracted geometry from Harrison transformations

To obtain the subtracted geometry of the above described four-charge black hole we act
on it with a series of solution generating transformations. These transformations perform
the required Harrison boosts that give the subtracted geometry. The precise sequence
of transformations is somewhat involved. We perform them in a certain specific order
explained below to maintain the complexity of intermediate expressions under control.

This investigation was systematically initiated in [7, 10]. In [10] it was suggested that
the subtracted geometry of the four-charge black hole can be obtained by certain Harrison
boosts. The subtracted geometry of the Schwarzschild and Kerr solutions were obtained
in Einstein-Maxwell-Dilaton theories by applying certain infinite Harrison boosts. The
key technical observation we take from that work is their equation (33), i.e., that the
Harrison boosts used are of the lower triangular form. From the point of view of the
SO(4,4) Lie algebra this suggests that the specific Harrison transformation that leads to
the subtracted geometry of the four-charge black hole belongs to ‘lowering’ generators,
more precisely to generators corresponding to negative root vectors. This is indeed the
case, as we explain next.

3.1 Charging, Harrison boosts, and scaling

The most important transformation on the four-charge black hole to obtain its subtracted
geometry is of the form

M4—charge — M/ = gjﬁt[ : M4—charge *9H, (31)
with the Harrison transformation gz
gy — exp[(Fp1 + sz -+ Fps)] (32)

Note that despite the fact that the four-charge black hole carries three independent M5
charges, the Harrison boosts in (3.2) are by the same ‘amount’ in the p', p? and p? ‘direc-
tions.” In all these three directions the boosts are infinite, in the sense that the lowering
generators F1, F,
Furthermore, note that we do not apply a Harrison boost in the gg ‘direction.” This is

> and F)3 are exponentiated with unit coefficients, in line with [10].

reminiscent of the near-extreme multi-charge black holes in the so-called dilute gas approx-
imation [23, 24].

However, it so happens that performing the transformation (3.2) on the four-charge
black hole resulting from (2.15)—(2.16) is quite intricate to implement. To bypass this
purely technical complexity we make the following crucial observation: the generator that
adds the fourth charge, namely, (£, + F,,) commutes with all three generators of the
Harisson boosts we want to perform Fji, F and Fps. As a result the transformation

M/ = gii*—[ ' M4fcharge 9o (33)

= gg‘r{ ' 93 : MS—charge 94 - 9gH

is the same as doing
M/ = gi : gg‘r{ : M3—Charge “9gH " 94, (35)



where we have commuted g4 past gy. Physically there is absolutely no difference be-
tween (3.4) and (3.5), but computationally performing (3.5) is significantly simpler (at least
in the way we have organized our computer implementation of the SO(4,4) coset model).

This is not the end of the story. One also needs to perform a further scaling trans-
formation to get the subtracted geometry in precisely the form given in [10]. This last
transformation is as follows

Meubtracted = gfiq M- gg, gs = exp|—coHo + c1 Hy + coHy + c3H3], (3.6)

where cg, c1, co,c3 are given below. Having done all these solution generating transfor-
mations we need to change variables along the line as suggested in [10] and choose the
parameters ¢y, 1, ¢, c3 in (3.6) in a specific way. The choice

1
ap = —5n (12 - 112) d4], (3.7)
II
oy = sinh ™! () , (3.8)
V2 — 112
1
co = —In (112 —I12) — 7 0 (didads), (3.9)
1. [dods 1. [dids 1. [didy
= _In|—== =—ln|—= = —ln|——= 1
c1 4n[d1]’ C2 4H[d2]7 C3 411[613}» (3.10)

leads to the subtracted geometry of the four-charge black hole® as presented in [10]. The
three parameters di, da, d3 introduced by the redefinitions (3.7)—(3.10) are redundant from
the point of view of the final spacetime configuration. This happens in the following way.
These constants do appear in the sigma model fields, but as ‘axionic shifts’ of the dual
potentials C~1, o, C~3 defined via equation (A.23). These constants also appear in the sigma
model field o but in a very special way so that dws defined via equation (A.24) does not
depend on them. The final three dimensional sigma model fields are all given in appendix C.
When the spacetime configuration is constructed by dualizing these fields, parameters
di,ds, and ds completely disappear. We find these cancellations truly remarkable. As a
consequence of these cancellations we find the geometry precisely as presented in [10]. We
discuss this geometry further in the next section. It is a solution of the N=2 D=4 S=T=U
supergravity. Perhaps a more general notion of subtracted geometry is possible that is not
contained in the S=T=U truncation. Such a geometry would perhaps be a more natural
candidate for a CF'T dual that describes black holes with all different electric and magnetic
charges. This issue needs further investigation.

We summarize. To obtain subtracted geometry of the four-charge black hole as pre-
sented in [10] we perform the following transformation on the 3-charge black hole

Msubtracted = 9?9 . gi : gg-[ . M3fcharge gl g4+ 9s- (311)

®The explicit product expressions [9, 10] I, = H?:o coshar, Il = H?:o sinh ay, are not needed in our
computations, because the final geometry is parameterized solely in terms of II. and II;. See also footnote
3 of [10].



For convenience and completeness all the resulting three-dimensional fields are listed in
appendix C. In the the next section we present the final geometry in the four-dimensional
language and compare it with the analysis of Cvetic and Gibbons.

3.2 Resulting geometry

The resulting geometry in the four-dimensional language is most conveniently expressed as

ds3 = —e2V(dt +w3)? + e 2V ds3(B), (3.12)
where A
ds3(B) = szﬁ + Aodf? + Asin® 0de?, (3.13)

is the three-dimensional base metric obtained by reducing the Kerr black hole over d¢, and
A =1 2mr 4 d?, Ay = A —a?sin?4. (3.14)
Rewriting the four-dimensional metric in the form as in [9, 10] we get

1 dr? A
2 _ 2, —2U 2 2002
The square of the factor e 2V A, is called the subtracted conformal factor in [9, 10]. From
appendix C we read the value of e 72V A, to be

e 2UAy = 2my/ A, (3.16)

with
Ay = 2mr(T12 — T12) 4 4m2112 — a? cos? O(T1, — T1,)*. (3.17)

Our 4m2A, precisely corresponds to the subtracted conformal factor used in [9, 10]. One
form w3 takes the form

2ma(r(Il, — ) + 2mll) sin? 6
w3 =

de. (3.18)

r2 + a2 cos? 0 — 2mr
For the four-dimensional axion and dilaton fields we find

p— pr— ‘1
X =x"=x 5 : (3.19)
and _
VA
Y1 =Y2 =y = (3.20)

2m
which again precisely match with the expressions reported in [10], once we make a trans-
lation of conventions. Finally, the four dimensional vector fields take the form

_ 4am? sian)(Hc - Hs)d¢ N a’ cos? O(I1,. — II,)? + 4m?II 11, . (3.21)

AO
As (Hg - Hg)As

(1]




and

R,
M= A= A (3.22)
2 2 o 2 i 2 B 5
A[ll} = 2m C0892m(2mﬂs + T(HC AHS)) a (Hc Hs) d¢
S H(Zmﬂs~+ r(lle — 1) dt. (3.23)

Ag

As far as the expressions for the vector fields can be compared with the corresponding
expressions in [10], they perfectly match. Since our vector field /1[11] is magnetically sourced,
whereas in [10] the corresponding vector is electrically sourced a direct comparison is not
possible. We have explicitly checked that our subtracted solution solves all supergravity
equations. Furthermore, since the dilatons are all obtained to be equal and so are the
axions and the three vectors fl[ll] = A[zl] = /1‘?1], the resulting solution is in fact a solution

of the N=2 S=T=U supergravity. This fact has been previously noted as well [9, 10].

4 Conclusions

The key result of this paper is to show that the multicharge subtracted geometry can be
obtained via a series of solution generating transformations on the original black hole field
configuration. There are number of ways in which our study can be extended. In this work
we have concentrated on a four-charge four-dimensional black hole carrying three magnetic
charges and one electric charge. It is fairly clear from our work how to implement the
same procedure for the black hole carrying two electric and two magnetic charges. It can
be a useful exercise to fill in all details. In this regard understanding the precise meaning
of equations (3.7)—(3.10) is an important future direction. In the same line of thought, it
is interesting to explore a similar series of transformations for the non-extremal rotating
three-charge five-dimensional asymptotically flat black holes.

As explained in the previous work of Cvetic and Larsen [8, 9] and Cvetic and Gib-
bons [10], expressions for the entropy and thermodynamic properties of the black hole are
preserved by the transformations leading to subtracted geometries. It is hoped that the
dual CF'T description of the black hole is also somehow preserved. With these motivations
it is of interest to further study these geometries and in particular to explore the existence
of asymptotic Virasoro algebras in the subtracted geometries. It will then be of interest to
know how the asymptotic Virasoro symmetries get transformed under the inverse solution
generating transformations. Such a line of investigation can teach us some general and im-
portant lessons about non-extremal rotating black holes in string theory and their relation
to two-dimensional conformal field theories. We hope to report on some of these issues in
our future work.
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A The set-up

In this section we present the set-ups we work with. We also present certain details on the
implementation of the SO(4,4) coset model.

A.1 A chain of dimensional reductions

Various relations through dimensional reduction, truncations, and oxidations are presented.
All results of this section are already well known in the literature. For this reason we shall
be brief. The main purpose of this section is to set the notation and conventions for the
main text of the paper.

Truncation of IIB theory on T#. A well known consistent truncation of the IIB theory
on a four-torus is as follows
2 2 52 o RR

dle,string - dsﬁ + 6ﬁd847 (I)IO = ﬁ; C[Q} = 0[2], (Al)
where ds? denotes the metric on the four-torus and C'[%]R is the Ramond-Ramond two-
form of the IIB theory. The rest of the IIB fields are set to zero. The two-form Cpy
is the descendant from the IIB Ramond-Ramond C’[%]R to six-dimensions. The resulting
six-dimensional theory contains a graviton, an antisymmetric tensor and a dilaton. The
bosonic part of the Lagrangian is [25]

1 1
;CGB:R6*61—§*6dq)/\dq)—56\/5(1)*6F[3]/\F[3], (AQ)

with the three-form field strength Fjz = dCy. Upon further dimensional reduction on
a two-torus the six-dimensional theory (A.2) reduces to the N=2 STU model in four-
dimensions. We present certain details of this construction in the following.

Five-dimensional U(1)3 supergravity. M-theory on six-torus admits a truncation
to five-dimensional U(1)? supergravity. For relevant details see e.g. [26]. It can also be
obtained by circle reduction of the Lagrangian (A.2). We follow this route here. Using the
standard Kaluza-Klein ansatz for the six-dimensional fields [27]

dsg = e_\/g‘ll(dZ(} + A[ll})2 + e%\pdsg (A.3)
Flgy = Fg®¥ + dA%) A (dz + Ay) (A.4)

with
FY =dciy? — da? n AL, (A.5)

,10,



we obtain the following five-dimensional Lagrangian

1 1
£5:R5*51—5*5d<b/\d<p—§*5d‘lj/\d\1j—§ 2\/; *5F[2]/\F[2]

1 _./2
L \/Equm/i@ x FOD /\F(

W4+/20
3 3] f x5 Fiy A Fy, (A.6)

(5d) .

where F! | = dA[l] and I = 1,2. Now, in five-dimensions the two-form 0[2} is dual to a

2
one- form[ which we denote as Af’l] After this dualization we end up with three one-forms
in five-dimensions. We use the notation A[ 1 where now the index I runs as I = 1,2, 3.
We see the triality structure of the U(1)? supergravity emerging. The Chern-Simons term
of the U(1)? supergravity is also obtained through this dualization.

To see this, recall that in the process of dualisation, Bianchi identities exchange role

0D

with the equations of motion. The Bianchi identity for i3]

(5d) 2 1 _

The easiest way to do the dualization is to introduce A‘F” as a Lagrange multiplier for the
Bianchi identity (A.7). Adding the appropriate Lagrange multiplier term to (A.6) we get

£h = L5+ Aby A (dFGY + F3 A F). (A.8)

As the next step, we treat the field strength F[(;]d) as a fundamental fields. Varying L%
with respect to F[g?d) we find

oV3uHVEe x5 Fo =0, (A.9)

Substituting this back into the Lagrangian (A.8), we get
5= R5*51—%*5d<1>/\d<1>—%*5d\11/\d\11
_562\@& x5 Figg A Figy = le\gwm) x5 Foy A Fiy
; Viv-vae Fi N Fiy + A% N Fy A Fy. (A.10)

Lagrangian (A.10) is equivalent to five-dimensional U(1)? supergravity with the pa-
rameterization of the real special manifold as

Al :e@q’, h2=e‘¢%@‘£‘1’, B = o VErH/Ee (A.11)

Clearly h'h?h3 = 1. A manifestly triality-invariant form now be written as (we drop the
prime on Lf from now on)

1 1
L5 =Rsx5 1= Gry*s dh’ A dh’ — 5G1r*s F o A Figy + CUKF[Q} A Fiy AAL (A12)

— 11 —



The symbol C}jk is pairwise symmetric in its indices with Ci23 = 1 and is zero otherwise.
The metric Gr; on the scalar moduli space is diagonal with entries Gj; = (h!)~2.

For completeness, let us also write the six-dimensional field strength Flg in terms of
the five-dimensional fields introduced above. We obtain

F[g] = —(h3)72 *5 dA:[SI] + dA[Ql] A (dzg + A[ll}) (A13)

Together with (A.3), equation (A.13) allows us to uplift any solution of five-dimensional
U(1)? supergravity to the IIB theory. Examining the RR 3-form (A.13) reveals that the
electric charge that couples to the two-form F| [?5] arises from D5-branes wrapped on T°:
(26, 27, 28, 29, 210). Similarly, the electric charge that couples to the two-form F[%} arises
from D1-branes wrapped along the zg-circle. The appearance of A[ll] in the metric reveals
that electric charge that couples to F[lz] arises from momentum (P) around the zg-circle.
The interpretation of magnetic couplings is readily obtained. The M-theory interpretation
of these couplings is reviewed at several places. See e.g. [26].

Four-dimensional STU model. Further dimensional reduction of the five-dimensional
U(1)? supergravity to four dimensions gives the so-called STU model. The STU model is
a particular N=2 supergravity in four dimensions coupled to three vector multiplets.

To fix our notation we quickly review here the N=2 supergravity action. Four-
dimensional N=2 supergravity coupled to n, vector-multiplets is governed by a prepotential
function F depending on (n, + 1) complex scalars XA (A =0,1,..., n,). The bosonic de-
grees of freedom are the metric g,,,, the complex scalars X A and a set of (ny+1) one-forms
Af\l]. The bosonic part of the action is given as [28]

- 1. .
£4:R*41—2g1j*4 dXI/\dXJ—i—gF[%/\GA[Q], (A.14)

where F[AQ] = d/lﬁ]. The ranges of the indices are I, J =1,...,n,, and ¢g;7 = 0;07K is the
Kéhler metric with the Kahler potential K = —log [—i(X*Fy — FAX™)] . The two-forms

G g are defined as
Gap) = ReN)asFy) + (ImN)as 4 Fy (A.15)

where the complex symmetric matrix Nay, is constructed from the prepotential F'(X) as

(ImF - X)A(ImF - X)y

Ny = F, 2i
o8 T2 G

(A.16)

with Fo = OpF and Fjy = OpOxF. For the system we are interested in n, = 3 and the
prepotential is

X1x2xs3
-

Let us now make contact of this Lagrangian with the circle reduction of the five-

F(X) = (A.17)

dimensional U(1)? supergravity. We parametrize our five-dimensional space-time as

ds3 = f*(dz + A})? + ' dsd, (A.18)
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and the vectors as

Al = X' (dz + A)) + Ay (A.19)

Together the graviphoton A?ﬂ and the vectors fl[ll] form a symplectic vector flﬁ] with
A =0,1,2,3 in four dimensions.
Upon circle reduction of the above 5d theory we obtain (with F[ZQ\} = dﬁﬁ])

_ 1 I w0 0
E4—R*41—§G[J*4dh A dh —ﬁ*gldf/\df—?*gle]/\F[m
1 . . . .

1 - - 1 . - 1 . .
+§CIJKXIF[‘£] A Fé(] + §CIJKXIXJF[%] A Fé{] + ECIJKXIXJXKF[%] A F[%] :

The scalars x! and h! combine to form the complex scalars 2/ = X7/X? in the STU
theory according to z/ = —x! + ifh!. Using the gauge fixing condition X° = 1 and the
replacement X! — 2! the action (A.14) for the prepotential (A.17) can be shown to be
exactly equivalent to the action (A.20). In order to perform the above computation we
found appendix A of reference [29] useful.

A.2 SO(4,4)/(SO(2,2) x SO(2,2)) coset model in 3d

In this section we discuss how to obtain the SO(4,4)/(SO(2,2) x SO(2,2)) coset model in
three-dimensions by performing further dimensional reduction over time direction of the
STU action (A.20). We parametrize our four-dimensional space-time as

ds? = —e®V (dt + w3)? + e 2V ds2, (A.21)
and the four-dimensional vectors as
Afyy = ¢Mdt + ws) + A3, (A.22)

where w3 and A% are one-forms in three-dimensions.
Following [30, 31] we dualize the three dimensional vectors as

—dCp = Y (ImN) zx *3 (dAs™ + (Fdws) + (ReN)pxdC* (A.23)
where f A are pseudo-scalars. Similarly we define the pseudo-scalar ¢ dual to w3 as
—do = 2e* x5 dws — *dCa + CMdCa. (A.24)

The full set of three-dimensional scalar fields are now ¢ = {U, 2!, 2! ,CA,EA,U}. The
resulting three-dimensional Lagrangian takes the form

1
L3=Rx31— §Gaba¢aa@b, (A.25)
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where the target space Lorentzian manifold parametrized by scalars ¢ is of signature (8, 8).
It is an analytic continuation of the c-map of Ferrara and Sabharwal [32]. The metric in

our conventions is®

+e—2U[(ImN)AEdCAd<E—{—((ImN)—l)AZ (d5A+(ReN)AEdCE> (dC~2+(ReN)EEd§E)]

This symmetric space can be parametrized in the Iwasawa gauge by the coset element [31]

V — e*UHo . H e*%(logyI)HI . efmIEI . e—CAEqA—EAEpA X e*%ﬂ'on (A27)
1=1,2,3
where we use the notation 2! = z! + 4y’ (so, y! = fh!, 2! = —x!). The Iwasawa

parameterization only covers an open subset of the full manifold. This is because the target
space is not precisely the c-map but an analytic continuation of it. The metric (A.26) is
obtained from the Maurer-Cartan one-form 6 = dV - V™1,

Gapdpde® = Tr(P, P,), P, = %(9 +0' 0Ty, o =diag(—1,—1,1,1,—-1,—1,1,1),
(A.28)
where 7 is the quadratic form preserved by SO(2,2)xSO(2,2). The matrix M is defined
as M = (V)V, with 6f = /6Ty~ for all € so(4,4). For convenience we explicitly list
the matrix representation of SO(4,4) in appendix A.3.

A.3 Matrix representation of so(4,4) Lie algebra

An explicit realization of the generators of so(4,4) is as follows. Calling F;; the 8 x 8
matrix with 1 in the i-th row and j-th column and 0 elsewhere, the s0(4,4) generators in
the fundamental representation are given by

Hy = E33 + Eyq — E77 — Egg Hy = E33 — Eyq — E77 + Egs
Hy = E11 + B2 — Es5 — Eg H3 = E11 — B2 — Es5 + Ege (A.29)
Eo = Eq7 — E3s Ey = Eg7 — E34
FEs = Eo5 — Eig E3 = Eg; — Fqo (A.30)
Fo = FE7y — Es3 Fy = Ers — Eys
Fy = Exo — Eg1 F3 = E55 — Eoq (A.31)
E4y = E4y1 — Esg E4 = E57 — E31
Eq, = By — Fas Ey, = Ey2 — Ees (A.32)
F,, = E1y — Egs Fy, = Er5 — Ens
Fy, = Egq — Eg2 Fys = Eoy — Egg (A.33)

6Our conventions are identical to that of [31]. There is a minor typo of a factor of 1/2 in equation
(4.4) of [31].
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Epo = E17 — E35 By = E18 - E45

Ep2 = Fg7 — E39 E 3 = Ey7 — Fsg (A.34)

Fyo = E7 — Es3 Fo =FEg — Esy

Fo = Er6 — Ea3 F,s = Ero — Fgs. (A.35)
This basis of representation is identical to the one given in [31]. For more details we refer

the reader to this reference. Other implementations of the SO(4,4) coset model can be
found in [13, 33, 34].

A.4 Group element for the M5-M5-M5 black hole
On the Kerr matrix Mger we act with the group element
g=exp [a1(Ey + F,1)] - exp [aa(Ey2 + Fj2)| - exp [a3(Eps + )], (A.36)

as
Mxkerr — M37charge = gﬁ - MKerr - g- (A37)

Reading off the new scalars from the new matrix Mas_cyarge and performing the inverse
dualization through (A.23)—(A.24) we obtain the spinning magentic one-brane of five-
dimensional U(1)? supergravity as presented in section 2.

B Three dimensional fields: 4d asymptotically flat

We list all the resulting three-dimensional fields obtained after the action of the group
element (A.36) on the coset matrix Mgey;:

T = —4018233am£fse, (B.1)
xT9 = —4025351amQC;)89, (B.2)
x3 = 4035152am5589, (B.3)
2 2 2
Y1 = EJE’ yQZQ*Q\/gv Z/3:Q*3\/E7 (B.4)
¢ = 4010203515253W, (B.5)
¢ = —2s1c9c3(r? + a’cos? O + 2mrs%)am2089, (B.6)
¢? = —2syc3c1(r? + a’cos? O + 2mrs§)am2089, (B.7)
(3 = —2s3c1c0(r? + a’cos? O + 2mrs§)am2089, (B.8)
(o = 2macos 9818283A§2, (B.9)
G = mcglsl (4ma® cos® 93535 — rQy) (B.10)
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G = mc;82 (4ma? cos® Os7s3 — Q) , (B.11)
Gy = mc;S:g (4ma? cos® Osis3 — Q) , (B.12)
and finally
A
eV = 7% (B.13)

r? + a® cos® 0 + mr(s? + s3 + s3)

é— b
where 91,09, and Q3 are defined in (2.8) and Ag and ¢ are defined respectively in (2.4)
and (2.7). Finally, ¢; = coshay, ¢o = cosh ag, c3 = cosh ag and s; = sinh ay, s9 = sinh g,

(B.14)

o = —4macos fcicacs

s3 = sinh ag.

C Three dimensional fields: 4d subtracted geometry

Here we list all the resulting three-dimensional fields obtained after the action of the group
element (3.11) with the choices (3.7)—(3.10) on the coset matrix M3_charge (here = cos):

ax(Il, — Il
Tr1] = X9 = T3 = —(27”/) (Cl)
Defining
Ay = 2mr(I12 — T12) + 4m>112 — a®22(11, — 11,)?, (C.2)
we have
A,
N=Y2=Y= 5 (C.3)
o0 = 4Am? 100 + a?2?(10,. — T1,)? (.4)
A, (112 - 112) ’ '
1 9 3 azx(2mlls + r(II, — IIy))
= _= = — o 3 C-5
¢ =¢=C A (C.5)
& = % ((TTe—T13)? (Mo +T1,) (P 4 a22%) — 2mir (13 — 201112+ T13) — 4m2T1,112) , (C.6)
G £, (C.7)
. 1
(= T [ — 2mr(T12 — T12)(1 + T2 — 3I12) + 4m2T2(12 — 112 — 1)
dy—1
T — I01,)2(2r2(IL, 4 I1,)? + a222(1 + (I, + 11, S S .
+(Ie — M) (2r" (I + IL5)” + a2 (1 + (I + ILy)”)) +2d1(H§—H§) (C.8)
. 1
&2 = A1) [ — 2mp (T2 — T2)(1 4 112 — 3102) + 4m*TI3(T12 — 112 — 1)
dy—1
o 2 2 2 2.2 2 2

+(IT, — L) (2r= (I, + II5)° + a”2=(1 + (IL. + II,) ))} + 25 (2 — 112) (C.9)

,16,



p 1
s\g p

ds —1
Il — I1,)2(2r%(M, + T15)% + a222(1 + (IL, + II,)2 S — 1
e~ T2 (e ) 00 (1 4 (e 4 1)) | + g (10
and finally
azr 2 2 2 2 2 2
= — [(r° + a”2") (1L, — II,)" (1L, + IIs) — mr(1L. — IL5)(3 + 31I; — II
o = i T L ) (e = L) (I, + T1,) — mr (e — 1) )
om0, (3 + 112 + Hz)]
- - - Il M. —1I
i [(3d1d2d3 d1d2 d1d3 d2d3):| ax(2m 5+7"( c~ 5))’ (C.ll)
2d1dads (I12 — I12) A
2 2.2
2U T +ax 2mr‘ (C.12)

2mn/ AS
D Magnetic one brane of U(1)3 theory

We provide an analysis of physical properties and near horizon limit of the rotating mag-
netic string (2.2).

D.1 Physical properties

From the ¢"" component of the metric it is seen that the solution has a regular outer
horizon at r = r; := m + v/m? — a? and an inner horizon at r = r_ := m — vVm?2 — a?.
The extremal limit is when the two horizons coincide, i.e., m = a. The ADM stress tensor
takes the form

m m
ﬂt:ﬁ(Z‘i_S%"_S%‘i‘S%), TZZ:—%

where T}, and T}, are respectively the energy and linear momentum density along the

(1+sf+s5+s3), T.=0, (D.1)

string. T, is the pressure density; the ADM tension is 7 = —T,,. Physical properties of
the solution such as mass, inner and outer horizon areas, angular momentum, and angular
velocities can be straightforwardly calculated. For the asymptotic quantities one finds

R

M = 27RT}; = % (2+ 52 4 53+ 52) , (D.2)
2R
Pz = 27TRT,5Z = 0, J¢ = 7TGmCL01C2C37 (D3)
where z ~ z + 27R. For quantities at the outer (r = ry) and inner (r = r_) horizon
one finds
2

a a~S5159S83
O T — o T AT = 872R (r? 2 . D.4
A vr———— ricicocs’ T H TR (rs +a)ecncs (D-4)

Temperatures of the inner and the outer horizons can be calculated from surface gravities,

'r'i - T:F
4m(r3 4+ a?)cicacs

Ty = (D.5)
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Magentic charges are defined as Q1 = ﬁ fSQ FI' = —2mG~'srcr. The magnetic poten-

tials dual to these charges can be guessed, say using the Smarr relation”
3 + A+ L OF I
M = <4GT Af +Q J¢>+ ST(2rR) + Z‘I’ Qi (D.6)
This guess is then confirmed by explicitly verifying the first law

dM = —GT+dA+ + Q) dT, + Z ®'dQt, + 2nTdR. (D.7)
I=1

We find ®&; = ”RSI . Moreover, the product A A, = 4(872R)?>m2a*cic3c3 = (837G Jy)?
takes the expected form [36].
Of particular interest is the fact that for the un-boosted solution the linear velocities

+

vE (D.4) are non-zero, while the ADM momentum P, is zero. Since v vanish if either a = 0

or any of the ay = 0, this is a cumulative effect of rotation and all three magnetic charges.

D.2 Near horizon limit

The near-horizon limit of the solution in section 2.1 is obtained as follows. First, we write
the extremal rotating solution (m = a) in comoving coordinates and second we zoom in
close to the horizon. More precisely, we perform

t t t
r=a+pr, t—=— ¢=0+Q—, z—z4+v.—, (D.8)
I u u
with ]
515253
0, _ D.9
¢ 2acicacs’ vz cicacs’ (D-9)

and send p — 0. In this limit asymptotically flat region is dispensed with. The resulting
configuration is a solution of the U(1)3 supergravity. The geometry has enhanced isometry
SL(2,R)xU(1)xU(1), as is familiar from general near-horizon limits [37, 38]. The solution
reads as

d dax?
ds?, = T(x) —<k¢>2r2dt2+i+ T 4 o6 (2)€R + 2762 (@)es ex + s ()€

= fé(x)qu + fH(x)e., = hl(x) (D.10)

where ey = d¢ + kyrdt, e, = dz + k.rdt. All functions are most easily expressed as
(x = cos @)

1 2515283 1 1/3
¢ 2a2cicoc3’ z acicacs’ (@) 2 (©1085) 77,
4¢ ¢ — da*z?c3cicl

Yoz = V2 = 8as15283

(219203)2/3’ (21020Q3)2/3 7

A first principle calculation of the magnetic potentials requires appropriately generalizing the formalism
of [35] (see also [17]) to the U(1)® theory. Such a generalization is beyond the aspirations of the present
study.
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16a2s2s2s2(¢ — 4a*2?c3c3c3)? + 2a* 233 (1 — 22) Q10203

A £(019204)°73 |
1+ (1+2s2)(1+ 252) 15283
1_ 3 2 3 1 g2
fo =4zs1010 o, , f; =4xa 0,
Al = (210:03)30; . (D.11)

The rest of the functions f;, fj; and f2, f3 are obtained by obvious cyclic permutations.

In all expressions in (D.11) the functions Q; and £ are computed at r = a. An alternative

presentation of these function can also be given as in [11]. Now let us look at various

interesting limiting cases:

1. Upon setting all three M5 charges equal one recovers exactly the expressions previ-

ously obtained in (11) of [11].

When M5 charges are set to zero the solution reduces to the NHEK geometry [39]
times a circle, as expected.

The non-trivial observation of [11] is that in the limit of no rotation, while keep the
number of M5 branes n; fixed, the solution reduces to a null orbifold of AdS3xS?,

ds®> = 2 dr’ _ 2rdtdz | + 1% dS
o 472 527772
Al = —%wdqb, z~2z+27R, ol = —=, (D.12)

where the two sphere has radius lg, = %Ep(nlngng)l/:s, the AdS3 radius is | =
Cy(ninang)'/3, with £, = (4G /m)Y/3. This solution has zero entropy and zero an-
gular momentum.
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