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1 Introduction

Recently, there has been remarkable progress in the study of d = 4,N = 2 superconformal

field theories which are realized by wrapping M5-branes on a punctured Riemann surface.

This was triggered by the work [1] where a large class of SU(N) superconformal quiver gauge

theories are constructed from wrapped M5-branes. The Riemann surface wrapped by the

M5-branes is called the “G-curve,” whose complex structure moduli are identified with the

marginal couplings of the theories. The flavor symmetry of the theory is associated with

the punctures on the G-curve. The detailed study of S-duality for such theories leads to the

still mysterious TN -theory which has SU(N)3 flavor symmetry and no marginal couplings.

The gravity duals of such SU(N) superconformal quivers were studied in [2], by us-

ing the knowledge of the half-BPS solutions of eleven-dimensional gravity [3]. The dual

geometry is of the form AdS5 ×X6 where X6 involves the same Riemann surface and has

SU(2)×U(1) symmetry. It was shown that the holographic calculation of the central charge

is consistent with the conformal anomalies of TN -theory which are predicted by S-duality

invariance. The dual gravity solutions associated with the various SU-type tails of quivers

were also studied in [2], which are given in terms of the solutions of a three-dimensional

Toda equation.

On the other hand, the generalization of [1] to the SO/USp-type quiver gauge theories

are studied in [4]. In the type IIA construction of d = 4,N = 2 theories, SO/USp-type
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gauge groups in four dimensions require O4-planes in the D4/NS5/D6-system. Correspond-

ingly, its M-theory lift involves a Z2-quotient. The space of marginal couplings are again

identified with the moduli space of the G-curve, but there are now two different counterparts

of TN -theory; one has SO(2N)3 flavor symmetry and the other has SO(2N)×USp(2N−2)2

flavor symmetry. The various SO/USp-type punctures and tails were also classified in [4].

For some works on these theories and related topics, see e.g. [5–10].

In this paper, we study the gravity duals of such SO/USp superconformal quivers,

that is, the SO/USp counterpart of [2]. Since the two counterparts of the TN -theory

are still mysterious in the field theory side, the corresponding gravity duals are worth

studying. The main difference from the SU(N) quivers is the Z2-quotient in the bulk. We

first identify the dual gravity of SO/USp quivers whose G-curve is a Riemann surface of

genus g without punctures. By using the knowledge of the M-theory lifts of O4-planes, we

can identify the correct Z2-quotient. A holographic calculation in the resulting geometry

reproduces the leading N3 contribution to the conformal anomalies of the corresponding

quiver gauge theory.

What is interesting here is that we can now attach two different gauge groups, namely

SO and USp, to the handles of the G-curve. Correspondingly, there is a class of theories

which share the same G-curve without punctures. We show that such theories have the

same conformal anomalies, which implies that their gravity duals share the same metric.

Such dual gravities of the SO/USp quivers with the same G-curve are further classified by

the torsion part of the four-form flux which is associated to the “B-cycles” of the G-curve.

We also discuss the dual gravities associated with the various SO/USp-type tails of

quivers. The crucial point is again how to identify the Z2-quotient in the bulk. In particular,

the quotient should be consistent with the fact that crossing a D6-brane in the type IIA

configuration replaces RP4×S1 with (S4×S1)/Z2, and vice versa, in the eleven-dimensional

near horizon geometry. We identify such a proper Z2-quotient in the bulk.

This paper is organized as follows. In section 2, we first review the type IIA brane con-

struction of the SO/USp superconformal quivers and their M-theory lifts. We also review

the two mysterious theories with SO(2N)3 or SO(2N) × USp(2N − 2)2 flavor symmetry

and no marginal couplings. In section 3 we consider the gravity duals of SO/USp quivers

whose G-curve is a Riemann surface without punctures, and in section 4 we focus on the

dual gravity solutions of various SO/USp-type punctures.

Throughout this paper, we follow the notation of [4] unless otherwise stated. Note also

that we always count the number of M5-branes on a Z2-orbifold in the covering space.

2 SO/USp quivers from wrapped M5-branes

In this section, we review the M-theory construction of SO/USp superconformal quivers.

In subsection 2.1, we first recall the classification of O4-planes and review the type IIA

constructions of SO/USp superconformal quivers. Their M-theory lifts are described in 2.2.

In 2.3, we briefly review the work [4] to explain that the S-duality invariance of the quiver

gauge theories leads to TSO(2N) and T̃SO(2N) theories; the former has SO(2N)3 flavor sym-

metry while the latter has SO(2N)×USp(2N − 2)2 flavor symmetry.
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O4 (ϑ, ϕ) Gauge theory in four dimensions

O4− (0, 0) SO(2N) gauge theory

O4+ (1, 0) USp(2N) gauge theory

O40 (0, 1) SO(2N + 1) gauge theory

Õ4
+

(1, 1) USp(2N) gauge theory

Table 1. There are four types of O4-planes which are classified by two discrete phases (ϑ, ϕ) ∈
Z2 × Z2. The gauge group which arises in four dimensions depends on the type of O4-planes.

x4,5

x6

Figure 1. An example of the type IIA construction of the SO/USp superconformal quiver gauge

theories in four dimensions. The solid vertical lines denote NS5-branes while the solid horizontal

lines show D4-branes. The dotted lines express O4-planes whose colors are determined by the value

of ϑ. This example realizes SO(3)2 × USp(2)2 × SO(4) gauge theory with two fundamentals in

four dimensions.

2.1 O4-planes and SO/USp superconformal quivers

As was shown in [11], the orientifold four plane has four different types, which are classified

by the topology of NSNS B-field and RR U(1) gauge field:

ϑ ≡ 1

2π

∫
RP2

B2, ϕ ≡ 1

2π

∫
S1

C1, (2.1)

where S1 and RP2 are cycles in RP4 which surrounds the O4-plane. The two phases ϑ and

ϕ take values in H3(RP4, Z̃) ' Z2 and H2(RP4,Z) ' Z2 respectively, where Z̃ is a sheaf of

integers twisted by the orientation bundle of RP4.1 Thus, the four different O4-planes are

classified by (ϑ, ϕ) ∈ Z2 × Z2. Their properties are summarized in table 1.

By using D4, O4 and NS5-branes, we can construct a type IIA realization of d =

4,N = 2 linear quiver gauge theories with SO/USp gauge groups [4, 11–16], which is the

SO/USp generalization of the brane construction of SU-type quivers [17]. A typical brane

configuration is depicted in figure 1. D4-branes are located at x7,8,9 = 0 and localized in

the (x4, x5)-plane, while NS5-branes are located at x7,8,9 = 0 and localized in x6-direction.

We also have an O4-plane at x4,5,7,8,9 = 0, which realizes the SO/USp gauge groups in four

dimensions. Note that the O4-plane has intersections with the NS5-branes along x6-axis.

1In other words, when we go around a non-contractible loop of RP4, a section of Z̃ receives a reversed sign.
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O4 (ϑ, ϕ) M-theory lift

O4− (0, 0) M-theory on R5 × R5/Z2 × S1

O4+ (1, 0) M-theory on R5 × R5/Z2 × S1. A pair of M5-branes are localized

at the Z2-fixed plane.

O40 (0, 1) M-theory on R5 × (R5 × S1)/Z2.

Õ4
+

(1, 1) M-theory on R5× (R5×S1)/Z2. A single M5-brane is localized at

the Z2-invariant cylinder.

Table 2. The M-theory lifts of O4-planes.

Since an NS5-brane carries one magnetic charge for NSNS two-form, crossing a NS5-brane

shifts ϑ by one unit. This replaces O4− with O4+ as well as O40 with Õ4
+

, and vice versa.

We can also introduce D6-branes at some definite values of x4,5,6. Such D6-branes give

additional fundamental matters in the low energy gauge theory. In this paper, we assume

that all the D6-branes are at x4,5 = 0 just for simplicity, which physically means that the

fundamental matters in four dimensions are massless. In this situation, the O4-plane is

also divided by the D6-branes. Since a D6-brane carries one unit of magnetic charge for

RR U(1) gauge field, crossing D6-brane shifts ϕ by one unit, which replaces O4− with O40

as well as O4+ with Õ4
+

, and vice versa.

When the brane configuration has (n+ 1) NS5-branes, the low-energy gauge theory in

four dimensions includes n gauge groups. We here define di for i = 1, 2, · · · , n so that the

gauge group associated with an interval between i-th and (i+ 1)-th NS5-branes is SO(di)

or USp(di − 2). Then, the conformal symmetry in four dimensions implies

ki = 2di − di−1 − di+1, (2.2)

where ki is the number of D6-branes between i-th and (i+ 1)-th NS5-branes. Then, for a

general SO/USp superconformal linear quiver, we have

d1 < · · · < d` = d`+1 = dr > dr+1 > dn, (2.3)

where ` and r are some positive integers satisfying ` ≤ r. We call the left ` and the right (n−
r+1) gauge groups the left and right “tails.” For example, a brane configuration in figure 1

realizes SO(3)2×USp(2)2× SO(4) superconformal gauge theory with two fundamentals in

four dimensions.

2.2 M-theory lift

We now consider the M-theory lifts of the above type IIA configurations. In [11], the M-

theory lifts of the O4-planes are identified as in table 2. Here, R5 acted by Z2 is transverse

to the O4-planes, and spanned by x4,5,7,8,9. The non-trivial Z2-action on S1 is a half-period

shift of M-theory direction x10. This classification implies that the Z2-action on S1 is trivial

or non-trivial depending on the value of ϕ. In the M-theory lift of an O4+-plane, two M5-

branes are “freezing” at the Z2 fixed plane and cannot move away. This is understood as

a consequence of the non-vanishing torsion element of the four-form flux G4 [11].
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x6
1 x6

2 x6
3 x6

4

x6

Z2Z2

Figure 2. A subspace x4 = x5 = 0 in the multi Taub-NUT space associated with a SO/USp-type

tail. The D6-branes are localized at x6 = x6i in type IIA setup. The non-trivial Z2-quotient appears

or disappears when you cross x6 = x6i .

On the other hand, the D6-branes are lifted to a multi Taub-NUT geometry in M-

theory, whose metric is given by

ds2TN =
V

4
d~x2 +

V −1

4
(dη + ~ω · ~x)2 , (2.4)

where

V = 1 +
∑
a

1

|~x− ~xa|
, ~∇× ~ω = ~∇V, (2.5)

and ~x = (x4, x5, x6) in our notation. The position ~xa in the three dimensions expresses

the location of a-th D6-brane, where x4,5a = 0 because we have assumed the vanishing

fundamental masses. The subspace x4,5 = 0 in the Taub-NUT space is a chain of two-

cycles as shown in figure 2, where the S1-fiber degenerates at each point of x6 = x6a. When

the left tail of the quiver involves ` D6-branes, we call a special P1 between x6 = x6` and

x6 = x6`+1 the “middle” P1. We here see how the Z2-quotient, which is the lift of the O4-

plane, affects these two cycles. Recall that the Z2-action on x6 is trivial since the O4-plane

is extending along x6-direction. On the other hand, the Z2 acts on the S1-fiber trivially

or non-trivially, depending on ϕ. Since crossing the D6-brane shifts ϕ by one unit, the

non-trivial Z2-action on S1 appears or disappears when one of x6a is crossed (See figure 2).

Finally, the D4-branes and NS5-branes in the type IIA configuration are lifted to a

single M5-brane world-volume which is embedded in the multi Taub-NUT space. Since the

multi Taub-NUT space is non-trivially acted by the Z2, the world-volume of the M5-brane

should be consistent with the Z2-quotient.

2.3 S-duality and TSO(2N) theory

In this subsection we briefly review the work [4], where the SO/USp superconformal quivers

are classified by a punctured Riemann surface.

In general, it is rather complicated to analyze the M5-brane world-volume embedded

in the multi Taub-NUT space which is affected by the Z2-quotient. However, we can

simplify the situation by moving the D6-branes to x6 → ±∞, which makes the M5-brane
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world-volume approximately embedded in R3 × S1. It is known that the four-dimensional

low-energy effective theory is independent of the positions of the D6-branes in x6-direction.

When we move a D6-brane in x6-direction crossing some NS5-branes, we have ad-

ditional D4-branes stretching between the D6-brane and the NS5-branes because of the

Hanany-Witten effect [18]. Let d̃i be the number of such newly created D4-branes between

the i-th and (i + 1)-th NS5-branes. Since all D6-branes are attached to either the left or

right tail of the quiver, we can move all the D6-branes in the left tail to x6 → −∞ as

well as those in the right tail to x6 → +∞. In this case, we have di + d̃i = 2N for all

i = 1, 2, · · · , n, which implies that the corresponding M5-brane world-volume is roughly

regarded as the 2N -th cover of a punctured Riemann surface.2

The punctured Riemann surface is called the G-curve [1], and parameterized by the

coordinate t on the “middle” P1 in the multi Taub-NUT space.3 The G-curve has (n+ 3)

punctures on it, which express the locations of M5-branes transversally intersecting with

2N M5-branes on the G-curve. The punctures away from t = 0 and t = ∞ express the

(n+ 1) NS5-branes in the type IIA limit, while the punctures at t = 0 and t =∞ describe

the left and right tails of the quiver, respectively. We denote each of the (n + 1) former

punctures by ×. The punctures at t = 0 and t =∞ are characterized by Young diagrams

which describe the flavor symmetry associated to the left and right tails, respectively. In

particular, we will later consider SO(2N) and USp(2N − 2) flavor symmetries at the tails.

The puncture associated with SO(2N) flavor symmetry is denoted by �, while that for

USp(2N − 2) flavor symmetry is expressed by ?. It is also important that if the tail ends

with SO(3) gauge group then the tail is described by the puncture × [4].

The parameter space of marginal coupling constants in the four-dimensional gauge

theory is identified with the moduli space of the G-curve. There are some points in the

moduli space where the theory has a weekly coupled description, which are related to each

other by S-duality. Let us consider a linear quiver theory with 6N − 9 gauge group

SO(3)×USp(2)× · · · ×USp(2N − 4)× SO(2N − 1)×
USp(2N − 2)× SO(2N)× · · · × SO(2N)×USp(2N − 2)×

SO(2N − 1)×USp(2N − 4)× · · · ×USp(2)× SO(3), (2.6)

whose G-curve is a sphere with 6N − 6 punctures of × (See figure 3). We can deform the

G-curve so that it has three tails with 2N − 2 punctures for each. Each of the three tails

describes a linear quiver of gauge group

SO(2N − 1)×USp(2N − 4)× · · · ×USp(2)× SO(3), (2.7)

and the tails are connected with a sphere with three punctures of �. Here, a SO(2N − 1)

gauge group in each tail is gauging the subgroup of SO(2N) flavor symmetry associated

with � on the sphere. The sphere with three � expresses a theory with SO(2N)3 flavor

symmetry and no marginal gauge coupling. This theory is denoted by TSO(2N) in [4].4

2This case is called the “balanced case” in section 3.2.5 of [19].
3Now, the radius of the “middle” P1 is infinitely large.
4This is the SO(2N) counterpart of TN theory studied in [1].
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Figure 3. Upper: the quiver diagram and the G-curve of a linear quiver gauge theory with the

gauge group (2.6) for N = 3. In the quiver, the grey and black circles with n inside stands for

SO(n) and USp(n) gauge groups respectively, while the number inside a box represents the flavor

symmetry. Lower: the upper G-curve can be deformed as in the lower picture, making three necks

associated with �. The resulting curve has a weakly coupled description which involves TSO(6)

theory and three tails of SO(5)×USp(2)× SO(3).

We can determine the anomalies a and c of TSO(2N) theory so that the total anomaly

of the quiver is the same as that of the original linear quiver with gauge group (2.6).

Following [2], we define nv and nh for TSO(2N) theory so that its conformal anomalies a

and c are written as

a =
5nv + nh

24
, c =

2nv + nh
12

. (2.8)

The explicit expressions for nv and nh of TSO(2N) theory were calculated in [4] as

nv(TSO(2N)) =
8N3

3
− 7N2 +

10N

3
, nh(TSO(2N)) =

8N3

3
− 4N2 +

4N

3
. (2.9)

These are interpreted as the effective numbers of the vector and hyper multiplets of TSO(2N)

theory.

We can also consider a theory with SO(2N)×USp(2N − 2)2 flavor symmetry without

any marginal coupling, which we denote by T̃SO(2N). Such a theory is constructed by

considering a linear quiver of 6N − 7 gauge groups

SO(3)×USp(2)× · · · SO(2N − 1)×
USp(2N − 2)× SO(2N)× · · ·SO(2N)×USp(2N − 2)×

SO(2N − 1)×USp(2N − 4)× · · · ×USp(2)× SO(3), (2.10)

whose G-curve is a sphere with 6N − 4 punctures of × (See figure 4). We now deform this

curve so that it has a single tail with 2N − 2 punctures of × and two tails with 2N − 1

– 7 –
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Figure 4. The construction of T̃SO(2N) from a linear quiver in the N = 3 case.

punctures of ×. The former tail describes the the linear quiver with gauge groups (2.7).

On the other hand, each of the latter tails involves a linear quiver with gauge groups

USp(2N − 2)× SO(2N − 1)×USp(2N − 4)× · · · ×USp(2)× SO(3). (2.11)

The three tails are connected to a sphere with a puncture of � and two punctures of ?,

which implies that the sphere describes T̃SO(2N) theory. We can calculate nv and nh for

this T̃SO(2N) theory, exactly in the same way as for TSO(2N). The result is

nv(T̃SO(2N)) =
8N3

3
− 7N2 +

16N

3
− 1, nh(T̃SO(2N)) =

8N3

3
− 4N2 +

4N

3
. (2.12)

Note that there is no similar theory with USp(2N − 2)3 or SO(2N)2×USp(2N − 2) flavor

symmetry because the puncture ? has a non-trivial Z2 monodromy around it [4].

Furthermore, we can also consider a Riemann surface of genus g > 0 as a G-curve.

Then, the low energy gauge theory is described by 2N M5-branes wrapping on the Riemann

surface of genus g, which is not S-dual to any linear quiver theory. In general, theories which

are related to each other by S-duality have the same punctures and genus of the G-curve.

In the next section, we will consider the gravity dual of SO/USp quivers whose G-curve

has no puncture. The dual gravity for various SO/USp-type tails is studied in section 4.

3 The gravity dual without punctures

In this section, we consider the gravity duals of the SO/USp superconformal quivers whose

G-curve is a Riemann surface of genus g without punctures. We first review the gravity

duals of SU quivers in 3.1, which was studied in [2], and then generalize it to the SO/USp

quivers in 3.2. The main difference from SU quivers are the Z2-quotient in the bulk.
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We holographically calculate the conformal anomaly of the four-dimensional theory, which

agrees with the calculation in the field theory side.

What is interesting here is that in general various different quiver gauge theories are

associated with the same G-curve, which is quite different from the SU-type quivers studied

in [1, 2]. In subsection 3.3, we show that such theories associated with the same G-curve

have the same conformal anomalies, which suggests that their gravity duals share the same

metric. Then, in subsection 3.4, we discuss that the gravity duals of such theories are

further classified by the torsion part of the four-form flux.

3.1 The gravity dual of SU(M) quivers

The gravity duals of SU(M) quivers that arise as the low energy theories of M M5-branes

on a Riemann surface was studied in [2]. In particular, when the Riemann surface has

genus g > 1 and no puncture, the near-horizon geometry of the M5-branes is identified

with AdS5 ×Σg × S4, where S4 is non-trivially fibered over the Riemann surface Σg. The

corresponding eleven-dimensional metric is given by

ds2 = (πMl3p)
2
3
W

1
3

2

{
4ds2AdS5

+ 2

[
4
dr2 + r2dβ2

(1− r2)2

]
+ 2dθ2

+
2

W
cos2 θ(dψ2 + sin2 ψdφ2) +

4

W
sin2 θ

(
dχ+

2r2dβ

1− r2

)2
}
, (3.1)

where W ≡ 1+cos2 θ. The parameters θ, ψ, φ and χ are the coordinates on S4, while r and

β parameterize a hyperbolic space. We obtain a Riemann surface by considering a quotient

of the hyperbolic space by some group Γ. This metric has a symmetry SU(2)×U(1) which

is identified with the R-symmetry in the dual field theory. From the above metric, the

conformal anomaly c of the four-dimensional gauge theory is holographically evaluated

as [2, 20]

c =
πR3

AdS5

8G5
N

=
πR3

AdS5
×Vol(Σg × S4)

8G11
N

=
M3

3
(g − 1), (3.2)

where GdN is d-dimensional Newtonian constant and RAdS5 is the curvature radius of the

AdS5. The holographic calculation also implies that the two conformal anomalies a and c

are equal in the large M limit.

The result (3.2) in the gravity side matches with the field theory calculation. The

field theory whose G-curve is a Riemann surface of genus g without punctures is described

by a quiver diagram as in figure 5, which involves mysterious TM theories with SU(M)3

flavor symmetry and no marginal coupling [1]. The anomaly contributions nv and nh of

TM theory can be read off via S-duality invariance [2], which leads to the following total

contributions from the whole quiver:

nv(total) = (g − 1)

(
4M3

3
− M

3
− 1

)
, nh(total) = (g − 1)

(
4M3

3
− 4M

3

)
. (3.3)
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Figure 5. The quiver diagram of the theory whose G-curve is a Riemann surface of genus g without

punctures. Each circle represents SU(M) gauge group while each white triangle expresses the TM
theory.

Then the total anomaly coefficient c is evaluated in the field theory side as

c =
2nv(total) + nh(total)

12
=

[
M3

3
− M

6
− 1

6

]
(g − 1), (3.4)

which agrees with the gravity side calculation (3.2) in the large M limit. Note also that

another anomaly coefficient a = (5nv+nh)/24 has the same leading M3 behavior as in (3.4),

which is consistent with the gravity side analysis. The difference between c and a is in the

subleading contributions at large M . In [2], it was shown that the subleading contributions

in (3.3) are consistent with the anomaly polynomial of the six-dimensional (2, 0) theory

which was calculated by considering the anomaly inflow from the bulk [21].

3.2 Z2-quotient in the gravity dual

We now generalize the above argument to the SO/USp superconformal quivers. The main

difference from the SU-type quivers is the presence of a Z2-quotient. Namely, we consider

2N M5-branes on top of R5/Z2 which are wrapping on a Riemann surface of genus g

without punctures. From table 1 and table 2, we find that such a configuration gives D4-

branes with O4±-plane in the type IIA limit, which lead to SO(2N),USp(2N − 2) gauge

groups in four dimensions. The Z2-quotient only affects R5 spanned by x4,5,7,8,9, which

replaces the S4 surrounding M5-branes with RP4. Then, the corresponding gravity dual is

described by the same metric (3.1) with M = 2N but now θ, ψ, φ and χ parameterize RP4

rather than S4.

Anomaly matching. As a SO/USp superconformal quiver gauge theory whose G-curve

is a Riemann surface of genus g without punctures, we can consider a theory described

by a quiver diagram depicted in figure 6. It involves (3g − 3) SO(2N) gauge groups and

(2g − 2) TSO(2N) theories, and therefore the total contributions to nv and nh are

nv(total) = (g − 1)

[
16N3

3
− 8N2 +

11N

3

]
, (3.5)

nh(total) = (g − 1)

[
16N3

3
− 8N2 +

8N

3

]
. (3.6)

– 10 –



J
H
E
P
0
7
(
2
0
1
2
)
0
8
0

Figure 6. A SO/USp superconformal quiver gauge theory whose G-curve is a Riemann surface

of genus g without punctures. A grey circle represents SO(2N) gauge group, while a grey triangle

expresses TSO(2N) theory.

Then the conformal anomaly c of the quiver gauge theory is evaluated as

c =
2nv(total) + nh(total)

12
= (g − 1)

[
4N3

3
− 2N2 +

5N

6

]
. (3.7)

On the other hand, the holographic calculation from the gravity dual gives

c =
πR3

AdS5

8G5
N

=
πR3

AdS5
×Vol(Σg × RP4)

8G11
N

=
4N3

3
(g − 1), (3.8)

which agrees with the leading N3 contribution in (3.7) for large N . This supports the

validity of (2.9) in the large N limit, which was calculated via the S-duality invariance of the

four-dimensional field theory. Note also that another anomaly coefficient a = (5nv+nh)/24

calculated from (3.5) and (3.6) has the same leading N3 behavior as in (3.7), which is

consistent with the gravity side analysis.

Finite N corrections. For completeness, we here describe that the subleading terms

in (3.5) and (3.6) are consistent with the anomaly polynomial of the six-dimensional field

theory. A field theory on 2N M5-branes on top of R5/Z2 is the DN -type (2, 0) theory. The

anomaly polynomial of the theory is evaluated in [22] so that the anomaly coming from

the polynomial is canceled by the anomaly inflow through the Chern-Simons coupling in

eleven-dimensional gravity.5 The explicit expression for the anomaly eight-form is

I8 = NJ8 +N(2N − 1)(2N − 2)
p2(N )

24
, (3.9)

where pi(B) is the i-th Pontryagin class of a bundle B, and N is the normal bundle of the

M5-brane world-volume. The eight-form J8 is the one-loop anomaly polynomial of a single

(2, 0) tensor multiplet:

J8 =
1

48

[
p2(N )− p2(T ) +

(p1(T )− p1(N ))2

4

]
, (3.10)

where T is the tangent bundle of the world-volume.

5The explicit form of the anomaly polynomial of a general ADE (2,0) theory was first conjectured in [23]

after the work of [21].
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Figure 7. Two quiver gauge theories whose G-curve is Σ2. A black circle represents USp(2N − 2)

gauge group, and a black triangle expresses T̃SO(2N) theory. The left quiver involves three SO(2N)

gauge groups and two TSO(2N) theories, while the right one includes two USp(2N − 2) and a single

SO(2N) gauge groups as well as two T̃SO(2N) theories.

By integrating this I8 along the Riemann surface, we can obtain the anomaly six-form

I6 of the four-dimensional theory. The anomaly coefficients of I6 give R-symmetry anoma-

lies in four dimensions, which are related to the conformal anomalies via superconformal

symmetry. Therefore, we can read off a and c from the anomaly coefficients of I6. In fact,

such a calculation was carried out in the appendix of [24], which tells us that the resulting

conformal anomalies are written as

a = (g − 1)
5N + 8N(2N − 1)(2N − 2)

24
, c = (g − 1)

N + 2N(2N − 1)(2N − 2)

6
. (3.11)

By using (2.8), we can then read off nv and nh of the quiver gauge theory, which perfectly

agree with (3.5) and (3.6).6

3.3 Inclusion of T̃SO(2N) theories

We have other four-dimensional quiver gauge theories whose G-curve is the same Σg. For

example, let us consider the simplest case g = 2. In this case, we have previously considered

the theory with three SO(2N) gauge groups and two TSO(2N) theories. However, we can

also consider a theory with two USp(2N − 2) and a single SO(2N) gauge groups together

with two T̃SO(2N) theories, whose quiver diagram is shown in the right picture of figure 7.

The latter theory has two USp(2N − 2) gauge groups instead of SO(2N). Recall that

the M-theory lifts of SO(2N) and USp(2N − 2) gauge theories for ϕ = 0 are both given

by 2N M5-branes on R5 × R5/Z2 × S1. The only difference is that two of 2N M5-branes

are localized at the Z2 fixed plane for USp(2N − 2) gauge theory. This “freezing” of two

M5-branes is due to the non-vanishing torsion part of the four-form flux [11].

Since the torsion element of the four-form flux can be expressed by a flat three-form

potential, we expect that such a torsion part does not affect the anomaly eight-form (3.9)

evaluated by the anomaly inflow method. If this is the case, the two theories in figure 7

have the same conformal anomalies. In order to verify this, we calculate nv and nh for the

right quiver of figure 7. By using the expressions (2.12) for the anomalies of the T̃SO(2N),

6For some interesting observations on the anomaly polynomials of the (2, 0) theory in related topics,

see [25–29].
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Figure 8. An example of superconformal quivers constructed by SO(2N),USp(2N − 2) gauge

groups and TSO(2N), T̃SO(2N) theories. This example is for g = 7.

the total contributions to nv and nh are evaluated as

nv(total) =
16N3

3
− 8N2 +

11N

3
, nh(total) =

16N3

3
− 8N2 +

8N

3
, (3.12)

which are exactly the same as (3.5) and (3.6) for g = 2. This strongly suggests that the

two quiver gauge theories associated with the two quiver diagrams in figure 7 share the

same metric of the dual gravity as studied in the previous subsection.

General Genus case. We can generalize the above argument on the conformal anomalies

to theories with Σg for g > 2. Let us consider an arbitrary superconformal theory which is

constructed from SO(2N) and USp(2N − 2) gauge groups, TSO(2N) theories, and T̃SO(2N)

theories. An example is shown in figure 8. Any such quiver can be obtained by replacing

some SO(2N) and TSO(2N) with USp(2N −2) and T̃SO(2N) in a quiver of figure 6. Since the

T̃SO(2N) theory has SO(2N) × USp(2N − 2)2 flavor symmetry, such a replacement should

be realized by repeating primitive replacements defined below.

The primitive replacement is defined as a replacement of a closed chain of SO(2N)

gauge groups and TSO(2N) theories of the form

,

(3.13)

with the following closed chain of USp(2N − 2) gauge groups and T̃SO(2N) theories:

.

(3.14)

Here the leftmost and rightmost gauge groups in each chain are identified. Since the

original chain has equal numbers, say k, of SO(2N) gauge groups and TSO(2N) theories, the
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primitive replacement replaces k SO(2N) with k USp(2N − 2) as well as k TSO(2N) with k

T̃SO(2N). What is important here is that this replacement keeps nv and nh invariant, which

follows from

nv(SO(2N)) + nv(TSO(2N)) = nv(USp(2N − 2)) + nv(T̃SO(2N)), (3.15)

nh(TSO(2N)) = nh(T̃SO(2N)). (3.16)

Since any quiver which only involves SO/USp gauge groups and TSO, T̃SO theories can

be obtained by repeating the primitive replacements in a quiver of figure 6, it has the same

nv and nh as (3.5) and (3.6). Hence, if a SO/USp superconformal quiver has a G-curve

Σg without punctures, then its conformal anomalies are determined only by the genus g of

the G-curve and independent of the choice of gauge groups associated with the handles of

Σg. This particularly suggests that they share the same metric of the dual gravity as the

one studied in subsection 3.2. In the next subsection, we see how we can distinguish the

gravity duals of such theories with the same G-curve Σg.

3.4 The torsion part of four-form flux

We have seen that there are several quiver gauge theories which have the same G-curve Σg

and the same anomaly contributions nv, nh. In fact, such theories are further classified by

the torsion part of the four-form flux in M-theory.7

Let us first consider M5-branes on R5×R5/Z2× S1. Since the spacetime (from which

the M5-brane locus is removed) is contractible to RP4×S1, the topology of the three-form

potential is measured by H4(RP4 × S1, Z̃).8 As discussed in [11], the cohomology group

H4(RP4 × S1, Z̃) includes two-torsion:

H4(RP4 × S1, Z̃) ' Z⊕ Z2, (3.17)

where the integrations over RP4 and S1 induce projections H4(RP4 × S1, Z̃) → Z and

H4(RP4 × S1, Z̃) → Z2, respectively. This means that the first Z in (3.17) counts the

number of M5-branes wrapping on R5 × S1, while the torsion part Z2 can be identified

with H3(RP4, Z̃) which measures the topology of NSNS B-field in the type IIA limit. In

particular, the phase ϑ defined in (2.1) is equivalent to the integral of the four-form flux

along S1×RP3.9 Thus, the difference between O4+ and O4−-planes is lifted to a difference

in the torsion part Z2.

Now, let us consider two types of “pairs of pants” in the G-curve as in figure 9, which

correspond to the M-theory lifts of TSO and T̃SO-theories, respectively. Each type of the

pants has three tubes attached to it, and each such tube is associated with a one-cycle S1
(i)

7The author thanks Yuji Tachikawa for pointing out this fact.
8Note here that, since the Z2-fixed plane carries M5 charge −1 (counted in the covering space), the

four-form flux [G4/2π] itself is not a cohomology class in H4(RP4 × S1, Z̃) [11]. To make an element of

H4(RP4 × S1, Z̃), we need to define a modified cohomology class [G̃4/2π] ≡ 1
2
([G4/π] − χE) ∈ H4(RP4 ×

S1, Z̃), where χE denotes the twisted Euler class. Then, the H-flux in type IIA limit is obtained by∫
S1 [G̃4/2π] = [H/2π] ∈ H3(RP4, Z̃). For more detail, see the appendix of [11].

9Since the flux is a twisted four-form and RP3 × S1 is an untwisted cycle, this integral is well-defined as

an element of Z2.
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Figure 9. Left: the “pair of pants” in a G-curve associated with TSO-theory. Right: its T̃SO-theory

counterpart. We can draw a red line along which the non-vanishing torsion of the four-form flux is

turned on.

for i = 1, 2, 3 with the orientation as in figure 9. The torsion part of the four-form flux

associated to the i-th tube is measured by integrating the flux along S1
(i)×RP3. We denote

such integral of the flux by ϑi for the i-th tube.10 The left and right examples in figure 9

have (ϑ1, ϑ2, ϑ3) = (0, 0, 0) and (1, 1, 0), respectively. Since ϑi ∈ Z2, one might think that

a single pair of pants generally has four possibilities of (ϑ1, ϑ2, ϑ3) up to permutation.

However, the fact
∑

i S
1
(i) = 0 implies that

3∑
i=1

ϑi = 0 (3.18)

as an element of Z2, which forbids (ϑ1, ϑ2, ϑ3) = (1, 0, 0), (1, 1, 1). This is consistent

with the absence of the four-dimensional theory which has SO(2N)2 × USp(2N − 2) or

USp(2N − 2)3 flavor symmetry and no marginal coupling.

The non-trivial torsion part of the four-form flux can be expressed by drawing a red

line through tubes with ϑi 6= 0, as in figure 9. Due to the absence of the pair of pants which

has SO(2N)2×USp(2N −2) or USp(2N −2)3 flavor symmetry, such a red line should form

a closed curve (figure 10). This particularly implies that the non-vanishing torsion part of

the four-form flux is associated to one-cycles of the G-curve which are transverse to the

M-theory circle, as long as the curve has no punctures.

It is now clear that the gravity duals of SO/USp quivers with the same G-curve Σg

are further classified by the torsion part of the four-form flux which is associated to the

“B-cycles” of the G-curve. The example for the quiver of figure 8 is shown in figure 10.

In other words, the gravity duals of SO/USp quivers whose G-curve has no punctures are

fully classified by the genus g of the G-curve and the torsion part of the four-form flux.

4 Solutions for SO/USp tails

We here discuss the gravity duals of various SO/USp punctures on the G-curve. The

punctures are constructed by inserting some additional M5-branes on the 2N M5-branes

10For the same reason as before, this flux is the modified flux [G̃4/2π]. To be more specific, ϑi =∫
S1
(i)
×RP3 [G̃4/2π].
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Figure 10. The non-vanishing torsion part of the four-form flux is turned on along the “B-cycles”

of the G-curve. This is the example for the theory of figure 8.

studied in the previous section. We need to find its appropriate gravity dual which is

consistent with the Z2-quotient. Without the Z2-quotient, such a M5-brane insertion

rather gives SU-type punctures studied in [2]. We briefly review the dual gravity of the

SU-type tails in 4.1, and consider its Z2-quotient in 4.2.

4.1 SU-type tails

The dual gravity solutions for SU-type punctures were studied in [2] by using the general

construction of half-BPS solutions in eleven-dimensional supergravity. In particular, a

solution which is U(1)-symmetric around the puncture is obtained by solving an axially

symmetric electrostatics problem in three dimensions:

V̈ + ρ2V ′′ = 0. (4.1)

Here, we used the short-hand notations V̇ = ρ∂V∂ρ and V ′ = ∂V
∂η , where ρ is the radial

coordinate of a two-dimensional plane and η is the “height” coordinate parameterizing the

third direction. The equation (4.1) has a solution with a line charge density at ρ = 0:

V̇ |ρ=0 = λ(η). (4.2)

For each SU-type tail, this line charge density λ(η) is determined uniquely as follows.

We consider the region η ≥ 0, and first determine λ(i) = Ni for i ∈ N so that the i-

th gauge group from the edge of the tail is SU(Ni) (figure 11). The value of λ(η) for

η 6∈ N is determined so that λ(η) has a constant slope in the interval (i, i + 1). Then,

the eleven-dimensional metric of the gravity dual near the puncture is written in terms of

V associated with the boundary condition V̇ |ρ=0 = λ(η). In particular, in the vicinity of

ρ = 0, the metric and the 3-form potential are written as

ds211 ∼ κ
2
3

(
V̇ ∆̃

2V ′′

) 1
3
[

4ds2AdS5
+

2V ′′V̇

∆̃
ds2S2 +

2V ′′

V̇

(
dρ2 + ρ2dχ2 + dη2

)
+

4

∆̃

(
dβ + V̇ ′dχ

)2 ]
, (4.3)

∆̃ ∼ 2V̇ V ′′ + (V̇ ′)2,

C3 ∼
1

8π2

[
(−V̇ + ηV̇ ′)dχ+

(
V̇ V̇ ′

∆̃
− η

)
(dβ + V̇ ′dχ)

]
dΩ2, (4.4)
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Figure 11. An example of the line charge density λ(η) for a tail of SU(8) quivers. In the SU-type

quiver, the number in a white circle represents the rank of the gauge group, while that in a white

box expresses the number of fundamentals.

where β and χ have period 2π. Since we are now considering the region ρ ∼ 0, we can use

the approximation V̇ ′ ∼ λ′(η). The various checks of this solution were performed in [2, 30].

The explicit solution V (ρ, η) to the Laplace equation (4.1) for a general boundary condition

were constructed in [31].

4.2 Z2-quotient for tails

Now, we consider a generalization of the above solutions to the SO/USp-type tails. To

identify the dual gravity, we need to determine λ(η) for SO/USp-type tails and take into

account the Z2-quotient in the bulk.

To identify λ(η) for a SO/USp tail, we first note that in the metric (4.3) the space

spanned by ρ, χ, η and β has a structure which is similar to the multi Taub-NUT space.

In fact, since the slope V̇ ′|ρ=0 = λ′(η) can change only at η = i ∈ N, we can generally

write V̇ ′′|ρ=0 = −
∑

i kiδ(η − i) with ki ≥ 0. This means that, in the vicinity of points

(ρ, η) = (0, i) for ki 6= 0, the quantity V ′′ can be approximately written as

V ′′ ∼ ki
2

1√
ρ2 + (η − i)2

. (4.5)

Thus, we find that the four-dimensional space we are considering has C2/Zki singularity

near η = i, which corresponds to ki D6-branes in the type IIA configuration.11 On the

other hand, since the number ki is equivalent to the change of the slope λ′(η) at η = i, we

have a relation

ki = 2λ(i)− λ(i− 1)− λ(i+ 1). (4.6)

11Away from the points (ρ, η) = (0, i), the four-dimensional metric differs from that of Taub-NUT space,

due to the backreaction of M5-branes.
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Figure 12. Two examples of the line charge densities λ(η) for SO/USp tails. The bottom pictures

shows the line segment AB mentioned in the main text. The S1
χ × S2 bundle over the segment is

topologically S4, which is surrounding 2N M5-branes wrapping on the Riemann surface.

By comparing this with equation (2.2), we find that

λ(i) = di, (4.7)

for i = 1, 2, 3, · · · . We determine the value of λ(η) for i < η < i+1 so that it has a constant

slope in the interval (i, i+ 1). Two examples are shown in figure 12.

What we need to do next is to identify the Z2-quotient in the bulk. From table 1 and

table 2, we can see that the near horizon geometry of M5-branes which give SO/USp gauge

theory in four dimensions involves S1 × RP4 or (S1 × S4)/Z2, depending on the value of

ϕ. The phase ϕ measures a non-trivial RR U(1) gauge field background in the type IIA

setup. In particular, crossing a D6-brane shifts ϕ by one unit, changing the near horizon

geometry. We need to find an appropriate Z2-quotient in the bulk which is consistent with

this property.

For that, we first note that a four-cycle which surrounds the M5-branes wrapped on

the Riemann surface is constructed as follows [2]. Let us consider a line segment AB in

(ρ, η)-plane as depicted in figure 12, which starts at η = 0, ρ 6= 0 and ends at ρ = 0, η = η1
for η1 satisfying λ(η1) = 2N . We consider a S1×S2 fibration over the line segment, where

the S2 is that for the second term in the metric (4.3) and shrinks into zero size at the point

A. On the other hand, the S1 is parameterized by χ and shrinks into zero at the point B.

Thus, the bundle we are considering is topologically S4. From the explicit expression for C3
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Figure 13. The Z2-action on S1
β′ . In the example, the right-most two-cycle is the “middle” P1,

and the left tail has three points where S1
β′ degenerates into point. When one crosses the points

η = 3, 5, the non-trivial Z2-action appears or disappears because the slope V̇ ′|ρ=0 changes by one.

On the other hand, crossing η = 1 does not changes the Z2-action on S1
β′ . The reason for this is

that at the point η = 1 the slope V̇ ′|ρ=0 changes by an even number.

in (4.3), it follows that the total four-form flux through this four-cycle is 2N , which implies

that the four-cycle is surrounding the 2N M5-branes wrapped on the Riemann surface.

Since such M5-branes are those studied in the previous section, the Z2-quotient should

only affect the four-cycle surrounding the 2N M5-branes, leaving the Riemann surface

invariant. To be more specific, the Z2-quotient just replaces the four-cycle with RP4,

which is equivalent to the replacement

S1
χ → S1

χ /Z2, S2 → RP2, (4.8)

where the Z2-action on S1
χ is a half-period shift. Note that the Z2 trivially acts on other

coordinates in the metric (4.3). Then, the resulting geometry is described by

ds211 ∼ κ
2
3

(
V̇ ∆̃

2V ′′

) 1
3
[

4ds2AdS5
+

2V ′′V̇

∆̃
ds2RP2 +

2V ′′

V̇
(dρ2+ρ2dχ2+dη2)+

4

∆̃

(
dβ+V̇ ′dχ

)2]
,

(4.9)

with identifications β ∼ β + 2π and χ ∼ χ+ π.

Now, we verify that the Z2-quotient (4.8) is consistent with the previously men-

tioned property of the SO/USp-type tails. Recall that, before the Z2-quotient, the four-

dimensional space spanned by ρ, χ, η and β has a structure similar to the multi Taub-NUT

space. In particular, there is a chain of two-cycles in the subspace ρ = 0. Each two-cycle

can be regarded as a S1-fibration over a line segment on η-axis (figure 13). Here the S1 is

parameterized by

β′ ≡ β + V̇ ′χ, (4.10)

which shrinks into zero size at points where the slope V̇ ′ discontinuously changes. Then,

how does the Z2-quotient (4.8) affect these two-cycles? The replacement S2 → RP2 does not

affect the four-dimensional space we are considering. On the other hand, the replacement
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S1
χ → S1

χ/Z2 changes the period of χ-direction into χ ∼ χ+π. This does or does not affect

S1
β′ , depending on the value of V̇ ′. In fact, the Z2-quotient implies an identification

(χ, β′) ∼ (χ+ π, β′ + V̇ ′π), (4.11)

in (χ, β′)-plane, which is trivial for S1
β′ if V̇ ′ is even, while it is non-trivial for S1

β′ if V̇ ′

is odd. In other words, the non-trivial Z2-action on S1
β′ appears or disappears when V̇ ′

changes by one, that is, when a single D6-brane is crossed in the type IIA configuration.

This is in perfect agreement with the property of SO/USp-type tails, where the non-trivial

Z2-action on the Taub-NUT circle appears or disappears when one crosses a Taub-NUT

center, as depicted in figure 2.

5 Discussions

In this paper, we have studied the gravity dual solutions of SO/USp superconformal quiver

gauge theories which are realized by the IR limits of M5-branes on a Riemann surface

together with Z2-quotient. In section 3, we have considered the gravity duals of the theories

whose G-curve is a Riemann surface without punctures. The dual geometry is determined

by the genus g of the G-curve, and holographically gives the correct four-dimensional

conformal anomalies. We have also found that there are generally several theories which

have the same G-curve Σg and the same conformal anomalies nv and nh. The gravity

duals of such theories share the same metric of the near horizon geometry, but are further

classified by the torsion part of the four-form flux associated to the “B-cycles” of the G-

curve. In section 4, we have considered the gravity duals of the SO/USp-type tails. We

have identified the correct line charge density λ(η) and Z2-quotient in the bulk, which is

consistent with the property of the SO/USp-tails.

For future direction, it would be interesting to study the gravity duals of SO/USp

quivers whose G-curve has genus g > 1 and various punctures. For that, we need to solve

the Toda equation rather than the axially symmetric electrostatics problem [2], and also

take into account the torsion part of the four-form flux. The existence of the torsion part

will give a rich class of gravity duals of d = 4,N = 2 superconformal theories.

It would also be interesting to study the relation between the torsion part of the four-

form flux and the outer-automorphism twist on the G-curve. As pointed out in [4], some

of the SO/USp punctures have a Z2-monodromy around them which flips the sign of a

world-volume scalar field on the G-curve. This is related to the outer-automorphism twist

on the G-curve [6], which distinguishes SO and USp gauge groups associated with the

handles of the curve. On the other hand, as explained in section 3, we can distinguish

the two gauge groups by the torsion part of the four-form flux, if the SO and USp gauge

groups are realized by O4±-planes. However, if the two gauge groups are realized by O40

or Õ4
+

-plane, then there is no torsion element of the four-form flux [11]. In fact, the

difference between O40 and Õ4
+

is lifted to the difference between even and odd elements

of H4((S4 × S1)/Z2, Z̃) ' Z.12 In terms of the line charge density λ(η), this difference

12The integration along S1 maps the even and odd elements of H4((S4×S1)/Z2, Z̃) to zero and non-zero

elements in H3(RP4, Z̃) ' Z2, respectively.
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corresponds to whether λ(i) is even or odd for i ∈ N. It would be interesting to perform

further study on the relation between this and the outer-automorphism twist.
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