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detector, with oscillatory modifications due to non-adiabatic effects. We find that in this

setup the acceleration of the detector in effect slows down the disentanglement process in

Minkowski time due to the time dilation in that moving detector.
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1 Introduction

A uniformly accelerated, point-like observer moving in a quantum field in a Minkowski

vacuum will experience the same effect as an inertial observer in a thermal field at a

temperature proportional to the proper acceleration of the observer. This is called the

Unruh effect [1], and the temperature experienced by the observer is called the Unruh

temperature. Since the observer is uniformly accelerated and assumed to be point-like, for

such an observer one can sharply define the event horizon, beyond which no information can

reach the observer. The corresponding geometry is the Rindler space where all uniformly

accelerated detectors follow stationary trajectories in its right wedge R. This model, first

proposed by Unruh to understand the Hawking effect in a black hole, has garnered wide-

spread attention on its own merit in a variety of contexts, relativistic quantum information

being one of the most recent.

In recent years much effort has been made to understand the quantum informational

aspects of the Unruh effect in various setups and for different quantum fields [2–10]. Most

of the work employs arguments that rely on the existence of an event horizon. For example,

one common way to show the thermality experienced by a uniformly accelerated detector on

the right wedge R of the Rindler spacetime is to argue that the event horizon acts to divide

the spacetime into two regions leaving one region, the left wedge L, totally inaccessible
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to observers in the right wedge R. Upon tracing out the field modes in L one sees easily

that the observer in R experiences thermality at the Unruh temperature proportional to

its proper acceleration. Nevertheless, in cases without a Rindler-like spacetime structure

or the presence of an event horizon neither thermality arguments nor geometric properties

are of much use. More generally, in cases where the observer undergoes non-uniform

acceleration there is no timelike Killing vector nor equilibrium condition to define the

Unruh temperature for all times.

The question of how a detector experiences the effects of a quantum field when it

undergoes non-uniform acceleration was raised in the 90s by one of the present authors [11]:

in the absence of an event horizon, will it detect radiation or not? For a purist endorsing

only geometric arguments who insists on the event horizon being the determining factor, the

answer would be no. But physically there is no fundamental distinction between nonuniform

and uniform acceleration, and one would expect radiation, albeit not in a strictly thermal

form. In fact it is natural to ask how the detector responds to a change in kinematic

states, say, from an inertial state to a uniformly accelerated state, or the reverse. This is a

more generic case — what one encounters in the everyday experience of driving a car to go

somewhere and back. This intuitive view, though simple, is not easy to formulate, because

of the non-availability of an event horizon (from the geometric viewpoint) or an equilibrium

condition (from the field theory viewpoint). For a general trajectory one should treat the

detector-quantum field system under fully nonequilibrium conditions. Using stochastic field

theory (based on the influence functional representation of the quantum field, which departs

from an equilibrium condition as the detector deviates from uniform acceleration), the

physical predictions mentioned above (that the observer experience nonthermal radiance)

were confirmed [12]. Furthermore, quantum field theory in the influence functional or in-in

(closed-time-path, or Schwinger-Keldysh) formulation, which is designed to treat causal

evolutions (as distinct from the traditional in-out formulation for scattering problems,

or imposing future dynamical conditions), liberates the physical essence of the problem

from the limitations (or utility, but only when applicable) of geometric constructs such as

an event horizon,1 certainly away from the gravitation and general relativity context, and

attribute the Unruh effect purely as a kinematic effect related to the excitations by vacuum

fluctuations by the motion of the detector in a quantum field.2 The kinematic viewpoint

and the nonequilibrium approach are clearly more encompassing and widely applicable.

For example the “circular Unruh effect” [12–17], which has been related to the Sokorov-

1The event horizon being defined at the infinite future, an assumption of its existence is rather unnatural

for a dynamical (time-evolutionary) problem as the boundary condition is set in the future, not in the past,

i.e., it is introduced in a teleological way, see, e.g., [47] for pathologies arising from such setups.
2We feel that the approach to problems of this nature based on quantum field theory and statistical

mechanics, or nonequilibrium quantum field theory (NEqQFT), is generally more malleable and functional

than the geometric approach, which, like the etiquette of the aristocrats, is invariably more elegant but

restricted. We hasten to add that in contrast to the NEqQFT approach, there have also been developments

along the geometric-spacetime approach to relax the notion of event horizon to more general situations,

from a strictly global to a more quasi-local sense, such as the isolated horizon of Hayward, Ashtekar et

al [48–50] but the effects of quantum fields in spacetimes with such constructs have yet to be explored to

make comparison with the predictions of the nonequilibrium field theory results of the 90s.
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Ternov effect observed in storage rings, can be regarded as a nonequilibrium QED effect

manifest theoretically when electrons are treated as point-like objects rather than plane

waves in space.

One way to study the dynamics of a non-uniformly accelerated detector is to look at

the response function in the transition probability of a uniformly accelerated detector with

finite coupling time to the vacuum [18–22]. One may argue that in the interaction region

the detector acts like a uniformly accelerated one, while it behaves like an inertial detector

in the asymptotic past, provided there is no excitation in an inertial detector initially in its

ground state. Other attempts for the off-uniform acceleration cases, e.g. [23–28], are also

focused on the response functions. We want to issue a note of caution here: the transition

probabilities associated with these detector response functions are usually considered using

time-dependent perturbation theory, which is valid only in the weak coupling (transient)

limit with a nonvanishing proper acceleration [29]. Overall, for the study of entanglement

dynamics of two detectors the response functions are not as convenient as the correlators,

which are what we set forth to calculate below. From the correlators of two detectors

traversing the full history in different states of motion, we can extract the entanglement

dynamics between them.

Previous work using nonequilibrium quantum field theory (NEqQFT — for an intro-

duction, see, e.g., [30]) concentrated primarily on the fluctuation-dissipation aspects of

particles and their energy spectrum. Here we are interested in the quantum informational

aspects of two non-uniformly accelerated detectors. We are specifically concerned with how

quantum entanglement between these two detectors evolves in time, especially in compar-

ison to the previously studied cases of (a) two inertial detectors [8] and (b) between one

inertial detector and one uniformly accelerated detector [2–4, 9]. As a first step we there-

fore consider the situation in which one detector A remains at rest and a second detector

B starts out from an inertial state and ends up in a uniformly accelerated state. We expect

this scenario to be a hybrid nature of cases (a) and (b) above.

There is a coordinate system in Minkowski spacetime that gives a simpler description

of the motion of detector B. It is given by

ds2 = (e−2wξ + e2wζ)(−dξ2 + dζ2) + dy2 + dz2, (1.1)

which was first introduced by Kalnins [31] and later used by Costa and Villalba and oth-

ers [32–36] for the analysis of quantum field theory of a detector undergoing non-uniform

acceleration, and more recently used to study the entanglement degradation due to non-

inertial motion by one of the present authors [37]. The range of the coordinates is

−∞ < (ξ, ζ) < ∞, which covers half of the Minkowski space (the region x > t.) An

observer with worldline ζ = ζ0 for some constant ζ0 is inertial in the asymptotic past and

has uniform acceleration in the asymptotic future. In this sense the coordinates (1.1) re-

semble Minkowski coordinates as t, ξ → −∞ and Rindler coordinates at t, ξ → +∞. Note

that since the trajectory asymptotes to one of uniform acceleration we do have available a

single event horizon, in contrast to the two horizons present for a Rindler observer.

Taking advantage of this simple description, we consider two Unruh-DeWitt (UD)

detectors A and B, with A at rest in conventional Minkowski coordinates, and B accelerated
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non-uniformly so as to be stationary in the coordinates (1.1), in a quantum field initially in

the Minkowski vacuum. The analysis here follows the approach of prior work by two of us

on two UD detectors [8, 9]. Since the motions of the two detectors are highly asymmetric,

we have to resort to numerical computation to obtain the results. Conceptually, our results

demonstrate both the methods and the nature of entanglement degradation in situations

without global geometric constructs such as an event horizon. From this perspective our

approach provides a useful case study for comparison. In addition, our results are useful

for a description of the quantum twin paradox problem [38], with the setup depicted in [11]

where one tries to predict the logbook of entanglement dynamics between these two famous

twins, one staying home whilst the other travels away and returns. The intellectual question

is how their entanglement alters upon return in comparison to both twins staying at home,

and how entanglement in the outbound trip differs from the return trip; the technical

difficulty in this situation is that the returning twin does not see an event horizon.

The paper is organized as follows. In section 2 we introduce the setup of our model.

We show some selected results on the evolution of the self and cross correlators of the

detectors in sections 3.1 and 3.2, and mutual influences of the detectors are discussed in

section 3.3. Then the entanglement dynamics between the detectors in Minkowski time will

be demonstrated in section 3.4, and a summary follows in section 4. In appendix A we give

the retarded distance and the retarded time between the two detectors, and in appendix B

we include details of the numerical calculations for the self and cross correlators of the

detectors. Finally in appendix C we explain some interesting behavior of the self correlators

of the non-uniformly accelerated detector during and after the transition observed in our

numerical results.

2 A non-uniformly accelerated detector

Consider the dynamics of two UD detectors coupled with a quantum field. The action is

given by [9]

S = −
∫

d4x
√−g1

2
∂µΦ(x)∂

µΦ(x) +
∑

d=A,B

∫

dτd ×
{

m0

2

[

(∂dQd)
2 − Ω2

0Q
2
d

]

+ λ0

∫

d4xQd(τd)Φ(x)δ
4
(

xµ − zµ
d
(τd)

)

}

(2.1)

where gµν = diag(−1, 1, 1, 1), ∂d ≡ ∂/∂τd, QA and QB are the internal degrees of freedom

of the point-like detectors A and B, assumed to be two identical harmonic oscillators with

the same mass m0, bare natural frequency Ω0, and the same local time-resolution. The

proper times for QA and QB are τA and τB, respectively. The scalar field Φ is assumed to

be massless and λ0 is the coupling constant. Detector A is at rest in a Minkowski frame

along the world line

zµA = (t,−d, 0, 0) (2.2)
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H2L
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H1L

τA
H3L

τB
H1L

τB
H0L

τB
H2L

t 0 =

x

t

Figure 1. The trajectories of the detectors A (left thick curve) and B (right thick curve) in the

Minkowski frame. The dashed line in the plot is the event horizon for detector B. τ
(n)
A and τ

(n)
B

denote the moments that the n-th order mutual influences on the detectors A and B come into play

(see section 3.3).

whereas detector B moves with non-uniform acceleration, its world line given in Minkowski

space by the Kalnins coordinate

zµB =

(

1

a
sinh aξ − 1

2a
e−aξ,

1

a
cosh aξ − 1

2a
e−aξ, 0, 0

)

, (2.3)

which is at rest at ζ = 0 in the non-inertial frame (1.1) (see figure 1). From (1.1) with

ζ = 0, dζ = dy = dz = 0 and w = a, the proper time of detector B is related to the timelike

parameter ξ by

ds2 = −dτ2 = (e−2aξ + 1)(−dξ2), (2.4)

so
dτ

dξ
=
√

e−2aξ + 1, (2.5)

which implies

τ(ξ) =
1

a
sinh−1 eaξ − 1

a

√

e−2aξ + 1 (2.6)

= ξ +
1

a
ln
(

1 +
√

e−2aξ + 1
)

− 1

a

√

e−2aξ + 1. (2.7)

The inverse function ξ(τ) has no closed form and has to be obtained numerically by finding

the root of ξ in the above equation for a given τ . The 4-velocity and the 4-acceleration of

detector B are, respectively,

vµB =
dzµB
dτ

=
dzµB/dξ

dτ/dξ
=

1√
e−2aξ + 1

(

cosh aξ +
e−aξ

2
, sinh aξ +

e−aξ

2
, 0, 0

)

, (2.8)

and

aµB =
dvµB
dτ

=

(

aeaξ

2(e−2aξ + 1)2
,
a(eaξ + 2e−aξ)

2(e−2aξ + 1)2
, 0, 0

)

. (2.9)
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So the proper acceleration of the accelerated detector B reads

αB ≡
√

aBµa
µ
B =

a

(e−2aξ + 1)3/2
, (2.10)

which approaches zero at the initial moment t0 ≪ −1 (ξ → −∞), increases to a/2 at

t ≈ −0.114/a (e−2aξ = 22/3 − 1), and then to a as t≫ 1 (ξ → ∞).

We pause to note that the non-adiabatic behaviour of the response functions of a single

non-uniformly accelerated detector has been previously considered by expanding in powers

of ȧ/a2 [28]. Unfortunately such analysis is not practical here because our detector B has

α̇B/α
2
B = 3e−2aξ(τ), which is much greater than 1 through the early stage of evolution

(when ξ(τ) is negatively large and αB is almost zero), but not that large as the proper

acceleration undergoes a transition from approximately 0 to a around t ≈ 0. It would be

interesting to look at the dynamics of a detector having a transition from one non-zero

proper acceleration to another in order to appropriately compare our results with these

earlier ones in [28]. However, this would divert the focus of the present paper, which is

concerned with the dynamics of entanglement between an inertial and a non-uniformly

accelerated detector. Suffice it to note that the authors of [28] observed that the behaviour

of the response functions with a≫ Ω is qualitatively different from those with a≪ Ω. We

observe similar behaviour of the self correlators of detector B.

3 Entanglement dynamics and detector correlators

We consider a situation in which the initial state at t = t0 in the Minkowski frame is

a product state of the Minkowski vacuum of the field |0M 〉 (which is Gaussian) and the

Gaussian two-mode squeezed state [8]

ρAB(QA, PA, QB, PB) =
1

π2~2
×

exp−1

2

[

β2

~2
(QA +QB)

2 +
1

α2
(QA −QB)

2 +
α2

~2
(PA − PB)

2 +
1

β2
(PA + PB)

2

]

(3.1)

of the detectors in Wigner representation. At t = t0, the detectors start to couple with the

quantum field. By virtue of the linearity of the combined system (2.1), the quantum state

of the combined system, and therefore the reduced state of the detectors, will always be

Gaussian and fully determined by the covariance matrix

V =

(

vAA vAB

vBA vBB

)

(3.2)

in which the elements of the 2 × 2 matrices vij , i, j = A,B are those symmetrized two-

point correlators vij
mn = 〈 Rm

i ,Rn
j 〉 ≡ 〈 (Rm

i Rn
j +Rn

jRm
i ) 〉 /2 with Rm

i = (Qi(t), Pi(t)),

m,n = 1, 2. We thus have full information of the reduced state of the detector pair at

each moment once we know the history of all the two-point correlators, from which the

dynamics of entanglement between the detectors can be extracted.
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Also, by virtue of linearity, the operators of the detectors in the Heisenberg picture

will evolve to a linear combination of all the detector operators Q̂d, P̂d (d = A,B) and the

field operators Φ̂k, Π̂k defined at the initial moment t0 as

Q̂d(τd) = Q̂D
d (τd) + Q̂F

d(τd), (3.3)

where

Q̂D
d (τd) ≡

∑

d′=A,B

[

φd
′

d (τd)Q̂d′ + πd
′

d (τd)P̂d′

]

, (3.4)

Q̂F
d(τd) ≡

∫

d3k

(2π)3

[

φkd(τd)Φ̂k + πkd(τd)Π̂k

]

. (3.5)

Here φd(τd), πd(τd) are mode functions, and we have P̂d(τd) = m0∂dQ̂d(τd) from (2.1).

Then each symmetrized two-point correlator of the detectors will split into a sum of the

a-part and the v-part [39] as

〈 Rd(τd),R′
d′(τd′) 〉 = 〈 Rd(τd),R′

d′(τd′) 〉a + 〈 Rd(τd),R′
d′(τd′) 〉v , (3.6)

with R,R′ = P,Q and

〈 Rd(τd),R′
d′(τd′) 〉a ≡ 1

2
Tr
[ (

RD
d (τd)R′D

d′(τd′) +R′D
d′(τd′)RD

d (τd)
)

ρAB

]

, (3.7)

〈 Rd(τd),R′
d′(τd′) 〉v ≡ 1

2
〈0M | (RF

d(τd)R′F
d′(τd′) +R′F

d′(τd′)RF
d(τd)) |0M 〉 . (3.8)

The a-part corresponds to the initial state of the detector (3.1), while the v-part corresponds

to the response to the field vacuum |0M 〉. The a-parts of the correlators are relatively easy

to obtain in the perturbative regime with large distance between the detectors. Some

examples will be given in section 3.4. The calculation of the v-parts, however, is more

complicated. Unlike detectors in uniform acceleration, there is no simple symmetry here to

help in obtaining analytic results. All of our computations will be performed numerically,

even in the weak-coupling regime with mutual influences neglected.

3.1 Dynamics of single detectors

The reduced state of a single detector is obtained by tracing out the other detector in the

reduced state of the detector pair. Since the latter is Gaussian, the former must also be a

Gaussian state, which is fully determined by the self correlators of that detector.

Neglecting mutual influences between the two detectors, the self correlators of the

inertial detector A have previously been obtained in closed form [29]. For the accelerated

detector B, unfortunately, there is no analytic expression for its self correlators. The v-part

of the latter can be expressed in 2D integrals as, for example,

〈 QB(τ), QB(τ
′) 〉v =

λ20
m2

0Ω
2
×

Re

∫ τ

τ0

dτ̃

∫ τ ′

τ0

dτ̃ ′K(τ − τ̃)K(τ − τ̃ ′)D+(zµB(τ̃), z
µ
B(τ̃

′)), (3.9)
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where τ, τ ′ ≥ τ0 ≡ τ(t0), K(x) ≡ e−γx sinΩx with the coupling strength γ ≡ λ20/8πm0

and the renormalized natural frequency Ω of the detector (see eq. (3.59) in ref. [40] and

eq. (59) in [39], where the τ in q(−) should be τ ′), and

D+(zµB(τ̃), z
µ
B(τ̃

′)) =

~/(2π)2
∣

∣zB(τ̃ − (iǫ/2))− zB(τ̃
′ + (iǫ/2))

∣

∣

2 −
[

z0B(τ̃ − (iǫ/2))− z0B(τ̃
′ + (iǫ/2))

]2 (3.10)

is the positive frequency Wightman function of the massless scalar field. (Note that (3.10)

is not exactly the same as the one in eq. (3.59) in ref. [40]. The latter can yield unphysical

results. See refs. [23–26] and appendix A.1 in [10] for more details.) The above integrand

is singular at τ̃ = τ̃ ′ if ǫ = 0. To treat this singularity properly we calculate the quantity

δ 〈 Q2
B(τ) 〉v ≡ lim

τ ′→τ

[

〈 QB(τ), QB(τ
′) 〉v − 〈 QB(τ), QB(τ

′) 〉v(a→0)

]

=
2γ~

πm0Ω2

∫ τ

τ0

dτ̃

∫ τ

τ0

dτ̃ ′K(τ − τ̃)K(τ − τ̃ ′)f̃(τ̃ , τ̃ ′) (3.11)

instead, where

f̃(τ̃ , τ̃ ′) ≡ − a2

4
(

1 + e−a[ξ(τ̃)+ξ(τ̃ ′)]
)

sinh2 a
2 [ξ(τ̃)− ξ(τ̃ ′)]

+
1

(τ̃ − τ̃ ′)2
(3.12)

(with ǫ neglected). This is the deviation from 〈 QB(τ)QB(τ
′) 〉v(a→0) for inertial detectors

in the Minkowski vacuum, namely, the one for detector A (eq. (A9) in [29]) with t replaced

by τ .

Now the integrand of (3.11) is regular and well controlled because the divergences in

the coincidence limit τ ′ → τ of this theory (corresponding to the large constants Λ1 and

Λ0 defined in ref. [29], which are reference frame independent since they are defined via the

proper times of the detectors) all belong to 〈 Q2
B(τ) 〉v(a→0). Indeed, it is straightforward to

verify that the terms in the curly bracket go smoothly to (1/12)aµ(ξ(T ))a
µ(ξ(T ))+O(τ̃−τ̃ ′),

which is regular as τ̃ − τ̃ ′ → 0. Here T ≡ (τ̃ + τ̃ ′)/2, and the proper acceleration αB(T ) =
√

aµ(ξ(T ))aµ(ξ(T )) has been given in (2.10).

The above integrand is suppressed rapidly when T becomes more and more negative,

meaning that the value of the correlator 〈 Q2
B(τ) 〉v will be very close to the value of

〈 Q2
B(τ) 〉v(a→0) at Ωτ ≪ −1, when the detector is almost at rest in Minkowski frame.

After T ≈ 0, the absolute value of the integrand becomes significant around τ̃ = τ̃ ′, so the

difference δ 〈 Q2
B(τ) 〉v becomes obvious after τ becomes positive.

We show some results in figure 2 (more details on numerical calculations can be found

in appendix B). From the lower-left plot of figure 2 one can see that the value of δ 〈 Q2
B 〉v

has a “jump” around τ ≈ 0 when the proper acceleration significantly departs from zero.

This jump is in fact adiabatic: compared with the lower-right plot of figure 2, the increasing

rate of δ 〈 Q2
B 〉v during the jump is virtually the same as the growth rate of α2

B. From

these numerical results we observed that the jump around τ ≈ 0 is from 0 to a value about

Q ≡ γ~a2

6πm0(γ2 +Ω2)2
. (3.13)

– 8 –
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Figure 2. Here we take γ = 0.01, Ω = 2.3, andm0 = ~ = 1. The curves in these plots are those with

a = 1/4 (solid), 1/2 (short-dashed), 1 (long-dashed), and 2 (dotted), respectively. (Upper-left) The

early evolution of δ 〈 Q2
B(τ) 〉v, whose growth rate is quite similar to the corresponding α2

B = aµa
µ

(upper-right). The oscillations at early times are artifacts caused by the impulse at the initial

moment τ0; they should vanish as τ0 → −∞ when the proper acceleration is exactly zero. (Lower-

left) Evolution of δ 〈 Q2
B(τ) 〉v normalized by a2. All curves with a ≤ 1 behave similarly to α2

B(τ)

(lower-right), with the small oscillations mainly due to the initial impact at τ = τ0 = −80π/Ω. The

oscillations in the curves with a = 2 are due to a non-adiabatic effect associated with the small

time scale of the rapid growth in acceleration. Note that here the height of the “jump” divided by

a2 around τ = 0 is γ/[6π(γ2 +Ω2)2] ≈ 1.896× 10−5 (cf. (3.13) with ~ = m0 = 1).

A discussion on this observation is given in appendix C. Note that the difference of the

asymptotic values of the two-point functions reads

〈 Q2
B(∞) 〉v

∣

∣

aµaµ=a2
− 〈 Q2

B(∞) 〉v
∣

∣

aµaµ→0

=
~

2πm0Ω

{

Re

[

ia

γ + iΩ
− 2iψ

(

1 +
γ + iΩ

a

)]

− i ln
γ − iΩ

γ + iΩ

}

(3.14)

≈ ~

2πm0

γa2

3(γ2 +Ω2)2
+O(a4), (3.15)

from eqs. (A7) and (A11) in [29], where ψ(x) is the digamma function. Interestingly

enough, the O(a2) term in (3.15) is identical to Q, which is always less than the value of

the left hand side of (3.15).

After the jump (τ ≈ 0), we observe that those values of δ 〈 Q2
B 〉v keep growing

roughly as

δ 〈 Q2
B(τ) 〉v ∼

[

〈 Q2
B(∞) 〉v

∣

∣

aµaµ=a2
− 〈 Q2

B(∞) 〉v
∣

∣

aµaµ→0

]

(1− e−2γτ ) +Qe−2γτ (3.16)

in the weak coupling limit. This is similar to the behavior of a harmonic oscillator in

contact with a “thermal” bath at a time-varying “temperature”.
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Figure 3. Evolution of δ 〈 Q2
B(τ) 〉v (left), δ 〈 PB , QB(τ) 〉v (middle), and δ 〈 P 2

B(τ) 〉v (right) in

proper time τ of detector B with a small a and a weaker γ. Here γ = 0.001, Ω = 2.3, m0 = ~ = 1,

and a = 0.1 < 1. The oscillations here are mainly produced by the impulse at the initial moment

and can be suppressed by choosing a more negative initial moment or a smaller a.
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Figure 4. Evolution of δ 〈 Q2
B(τ) 〉v (left), δ 〈 PB(τ), QB(τ) 〉v (middle), and δ 〈 P 2

B(τ) 〉v (right)

in proper time τ of detector B with a large late-time proper acceleration a. Here γ = 0.02, Ω = 2.3,

m0 = ~ = 1, and a = 2 > 1. The oscillations here are due to a non-adiabatic effect during the

transition and cannot be suppressed by choosing a more negative initial moment.

In those cases with small a (a < Ω/π here), the oscillations on top of the growth

curves of δ 〈 Q2
B(τ) 〉v are mainly due to the impulse at the initial moment (see figures 2

(upper-left) and 3 (left)). One can see this by observing that (2.10) implies the proper

acceleration αB(τ) ≈ ae−3a|τ | when aτ ≪ −1 (as shown in the upper-right plot of figure 2).

Indeed, these oscillations (in the cases with a < 2.3/π ≈ 0.73) will be reduced if we choose

a more negative initial moment τ0 or a larger a (figure 2 (upper-left)) to suppress the

initial value of the proper acceleration αB(τ0). However, in those cases with larger late-

time proper accelerations (a > Ω/π), though the impulse at the initial moment is more

suppressed, the amplitudes of those oscillations after τ ≈ 0 become even larger but almost

independent of the initial moment τ0 for Ωτ0 ≪ −1, as illustrated in our numerical results

in figure 2 (lower-left) and figure 4 (left). This indicates that these oscillations are coming

from the non-adiabatic growth of the proper acceleration around τ = 0 rather than the

initial impulse.

To see the non-adiabatic behavior more closely, we set χ ≡ aξ(τ̃) and χ′ ≡ aξ(τ̃ ′), and

rewrite the τ̃ -integrals into the χ-integrals. eq. (3.11) then becomes

δ 〈 Q2
B(τ) 〉v =

2γ~

πm0Ω2
×

∫ aξ(τ)

aξ(τ0)
dχ

∫ aξ(τ)

aξ(τ0)
dχ′K(τ − τ(χ/a))K(τ − τ(χ′/a))f(χ, χ′), (3.17)
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where

f(χ, χ′) ≡
√

e−2χ + 1
√

e−2χ′ + 1×






−1

4
(

1 + e−(χ+χ′)
)

sinh2
(

χ−χ′

2

) +
1

a2 [τ(χ/a)− τ(χ′/a)]2







. (3.18)

Here τ(ξ) was given in (2.7), implying that f is actually independent of a in terms of χ and

χ′. Now all the dependence on a in (3.17) is coming from the K functions as well as the

upper and the lower limits of the integration. In appendix C we can see that the length

scale of the non-trivial structure of the function f in χχ′-space is roughly of order 1 (see

figure 12), while the length scale of oscillations of K in χ is about aπ/Ω for χ > 0. Thus

for a ≪ Ω/π, K oscillates so rapidly that the structure of f will be averaged out after

integration and so δ 〈 Q2
B(τ) 〉v evolves smoothly, whereas for a > Ω/π, the structure of f

could induce significant non-adiabatic oscillations of δ 〈 Q2
B(τ) 〉v.

Nevertheless, since (3.11) and the counterparts for other self correlators of detector B

are O(γ), the “jumps” (3.13) as well as the oscillations here are always small compared

with the value of the self correlators themselves, which are O(1) in the weak coupling limit.

More details can be found in appendix C.

Similar quantities for the v-parts of other self correlators of detector B can be ob-

tained by replacing K(x) by K ′(x) = dK(x)/dx whenever QB(τ(t)) is replaced by PB(τ(t))

in (3.11). Two examples are shown in figures 3 and 4 . One can see that δ 〈 P 2
B(τ) 〉v be-

haves roughly similar to δ 〈 Q2
B(τ) 〉v, except for the larger oscillations and the lack of a

significant jump around the transition time τ ≈ 0, while δ 〈 QB(τ), PB(τ) 〉v is manifest

only after τ ≈ 0.

3.2 Cross correlators in Minkowski time

From (2.2) and (2.3), we have

〈 QA(t), QB(τ(t)) 〉(0)v

=
2γ~

πm0Ω2
Re

∫ t

t0

dτ̃

∫ τ(t)

τ(t0)
dτ̃ ′ ×

K(t− τ̃)K(τ(t)− τ̃ ′)
[

−d− 1
a cosh aξ̃

′ + 1
2ae

−aξ̃′
]2

−
[

τ̃ − 1
a sinh aξ̃

′ + 1
2ae

−aξ̃′ − iǫ
]2

=
2γ~

πm0Ω2
Re

∫ t

t0

dτ̃

∫ τ(t)

τ(t0)
dτ̃ ′

K(t− τ̃)K(τ(t)− τ̃ ′)

2d+ a−1eaξ̃′
×

[

1

τ̃ + d+ a−1e−aξ̃′ − iǫ
− 1

τ̃ − d− 2a−1 cosh aξ̃′ − iǫ

]

, (3.19)

with ξ̃′ ≡ ξ(τ̃ ′ + iǫ). The v-parts of other cross correlators can be obtained by replacing

K(t − τ̃) by K ′(t − τ̃) whenever QA(t) is replaced by PA(t), and replacing K(τ(t) − τ̃ ′)

by K ′(τ(t) − τ̃ ′) whenever QB(τ(t)) is replaced by PB(τ(t)). An example of the cross

correlators is shown in figure 5. One can see that the early-time behavior of the cross
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Figure 5. Numerical results for the cross correlator 〈 QA(t), QB(τ(t)) 〉v with d = 10 evolving in

Minkowski time t. Other cross correlators 〈 QA, PB 〉v, 〈 PA, QB 〉v, and 〈 PA, PB 〉v have similar

behaviors.

correlators in this setup is quite similar to those of two inertial detectors [8] (see also

figure 11). The absolute values of the cross correlators start to grow significantly after each

detector enters the other’s light cone, then keep growing until the motion of detector B

becomes obvious. After t ≈ 0, the behavior of the cross correlators turns to a fashion similar

to those in the case of uniformly accelerated detectors [9, 10]. They become oscillating in

t with amplitude decaying as e−2γt.

Comparing the results in figure 5 and figure 3 with the same parameters (γ = 0.001,

Ω = 2.3, a = 0.1), we find that even for d = 10, which is not very small, the values of the

v-part of the cross correlators in this parameter regime are much greater than those of the

deviations of the v-part of the self correlators from their zero-acceleration limits.

3.3 Mutual influences

From the equations of motion for the mode functions eqs. (13)–(16) in [9], the mode func-

tions with corrections from mutual influences can be written as

q
(µ)
j = q

(µ)(0)
j +

∞
∑

n=1

q
(µ)(n)
j , (3.20)

where q
(µ)(0)
j are the zeroth order solutions without considering mutual influences, and

q
(µ)(n)
j (τ) =

2γ

Ω

∫ τ

τ0

dτ̃θ
(

τ retj̄ (τ̃)− τ
(n−1)

j̄

)

K(τ − τ̃)
q
(µ)(n−1)

j̄
(τ ret

j̄
(τ̃))

Rj̄→j(τ̃)
(3.21)

with µ ∈ {A,B,+,−}, i, j ∈ {A,B}, Ā ≡ B, B̄ ≡ A, the retarded times τ retA (τ̃) =

tret(zµB(τ̃)) and τ
ret
B (τ̃) = τ(ξret(zµA(τ̃))), τ

(n)
j ≡ [τ retj ]−1(τ

(n−1)

j̄
), τ

(0)
A ≡ t0, τ

(0)
B ≡ τ(ξ(t0)),

and the retarded distance Rj̄→j defined in appendix A (see figure 1).

For the a-part of the correlators, it is straightforward to obtain the corrected results

by simply inserting the corresponding (3.20) into eq. (25) in [9]. For the v-part of the

correlators, the calculation is not as straightforward because of the mode sum
∫

d3k. Nev-

ertheless, we can express the corrected correlators up to the N -th order mutual influences

– 12 –
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Figure 6. Numerical results for the first order corrections to 〈 Q2
A(t) 〉v (left) and 〈 Q2

A(t) 〉a (right)

from mutual influences with d = 10, α = 1.4, and β = 0.2. One can see the profile of the envelope

of the oscillating 〈 QA, QB 〉v in figure 5.

as, for example,

〈 Qi(τi), Qj(τj) 〉v,a ≈
N
∑

m=0

N
∑

n=0

〈 Q(m)
i (τi), Q

(n)
j (τj) 〉v,a , (3.22)

where the (m,n)-th order correlator 〈 Q(m)
i (τi), Q

(n)
j (τj) 〉 can be obtained recursively from

those of lower orders by

〈 Q(m)
i (τi), Q

(n)
j (τj) 〉v,a =

2γ

Ω
×

∫ τj

τ
(0)
j

dτ̃ θ
(

τ retj̄ (τ̃)− τ
(n−1)

j̄

) K(τj − τ̃)

Rj̄→j(τ̃)
〈 Q(m)

i (τi), Q
(n−1)

j̄
(τ retj (τ̃)) 〉v,a (3.23)

(m,n ≥ 1) and their τi or τj derivatives.

From (3.20)–(3.23) we see that the N -th order corrections are roughly O((γ/Ωd)N )

compared with the magnitude of the zeroth order correlators. The presence of the oscil-

lating function K(τ − τ̃) in the integrand of (3.21) further indicates that one detector (j)

will be influenced very little by the off-resonant part of q
(µ)(n−1)

j̄
(τ ret

j̄
(τ̃))/Rj̄→j(τ̃) from

the other detector (j̄) in the weak coupling limit. In our setup since the trajectories of

the two detectors are asymmetric, the retarded field solution from detector j will always

be red- or blue-shifted in view of detector j̄. So most of q
(µ)(n−1)

j̄
(τ ret

j̄
(τ̃))/Rj̄→j(τ̃) are

off-resonant and thus mutual influences can be very small even though the magnitudes of

q
(µ)(n−1)

j̄
(τ ret

j̄
(τ̃))/Rj̄→j(τ̃) appear larger.

According to our analysis and numerical results, mutual influences are indeed neg-

ligible in perturbative regime when the distance between the detectors is always large,

i.e., γ/Ωd ≪ 1. For example, our numerical results show that when γ = 10−3, Ω =

2.3, a = 0.1, d = 10, Λ0 = Λ1 = 20, the magnitudes of the first order corrections

〈 Q2
A(t) 〉

(1)
v ≡ 2 〈 Q(0)

A (t), Q
(1)
A (t) 〉v + 〈 Q(1)

A (t), Q
(1)
A (t) 〉v are less than 10−4 of the mag-

nitude of 〈 Q(0)
A (t), Q

(0)
A (t) 〉v (see figures 6 (left) and 8 (left)), while the magnitudes of the

first order correction 〈 Q2
A(t) 〉

(1)
a ≡ 2 〈 Q(0)

A (t), Q
(1)
A (t) 〉a + 〈 Q(1)

A (t), Q
(1)
A (t) 〉a are about

10−3 that of 〈 Q(0)
A (t), Q

(0)
A (t) 〉a (see figures 6 (right) and 7 (left)). The corrections become

– 13 –
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Figure 7. The evolution of 〈 Q2
A 〉a (left), 〈 Q2

B 〉a (middle), and 〈 QA, QB 〉a (right) with α = 1.4,

β = 0.2 and d = 10 in Minkowski time. The oscillations are consequences of choosing the initial

state of the detectors as a squeezed state. Time dilation in the results for detector B is manifest

after at > −0.114, which makes the cross correlators behave more irregularly.
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Figure 8. Evolution of the v-part of the self correlators 〈 Q2
A 〉v and 〈 Q2

B 〉v in Minkowski time

with d = 10 and Λ0 = Λ1 = 20. Again, time dilation in the results for detector B is manifest

after at > −0.114. The contributions from the differences shown in figure 3 are very small and not

significant in these plots.

even smaller as we decrease γ or increase d. The ratio 〈 Q2
A(t) 〉

(1)
v / 〈 Q2

A(t) 〉
(0)
v is smaller

than 〈 Q2
A(t) 〉

(1)
a / 〈 Q2

A(t) 〉
(0)
a simply because the v-part of the zeroth order cross correlator

〈 QA(t), QB(t) 〉(0)v is suppressed when d is large (see eq. (B.1)), while 〈 QA(t), QB(t) 〉(0)a is

independent of d.

3.4 Entanglement dynamics with weak coupling and large separation

Combining all the above elements with weak coupling and large separation, examples of

the evolution of the a-part of the correlators are shown in figure 7, while those of the v-part

of the self correlators are shown in figure 8.

The dynamics of quantum entanglement between the two detectors in Gaussian state

can be found straightforwardly by examining the behavior of the quantity Σ [9, 41, 42] and

the logarithmic negativity EN [43] defined by

Σ ≡ det

[

VPT +
i~

2
M

]

=

(

c2+ − ~
2

4

)(

c2− − ~
2

4

)

, (3.24)

EN ≡ max {0,− log2 2c−} , (3.25)

whereM is the symplectic matrix 1⊗(−i)σy,VPT is the partial transpose (QA, PA, QB, PB)

→ (QA, PA, QB,−PB) of the covariance matrix V in (3.2), and (c+, c−) is the symplectic
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spectrum of VPT + (i~/2)M, given by

c± ≡
[

Z ±
√
Z2 − 4 detV

2

]1/2

(3.26)

with Z ≡ detvAA+detvBB−2 detvAB. For the detectors in a Gaussian state, the reduced

state of the detectors is entangled if and only if c− < ~/2 [41, 42], when EN > 0 and Σ < 0.

The value of EN indicates the degree of entanglement: we say the two detectors have a

stronger entanglement if the associated EN is greater. However it is more convenient to

use Σ in calculating the disentanglement time [8, 9].

An example of the sudden death of entanglement is given in figure 9, where we see

that the curves with a 6= 0 are stretched horizontally after t ≈ 0 due to the time dilation

of the moving detector B. This increases the disentanglement time.

The contribution by the v-part of the cross correlators to entanglement dynamics is

suppressed efficiently when the coupling is weak (here γ = 0.001, not quite weak, though)

and the distance is large (here d = 10). In the difference EN − (EN |〈RA(t),RB(τ(t)) 〉v=0)

shown in figure 9 (middle), we recognize the profile of the envelopes of the oscillating cross

correlators in figure 5. Thus the nonvanishing cross correlators tend to enhance the degree

of entanglement between the detectors. However the enhancement of EN is tiny — so tiny

that it is safe to neglect the v-part of the cross correlators and skip the time-consuming

computation for them in the weak-coupling limit with long initial distances and large initial

entanglement between the detectors.

In contrast, while the value of each v-part of the self correlators is small compared

with its a-counterpart, they are crucial in obtaining the entanglement dynamics. If one

sets all the v-parts of the self correlators to zero, the evolution of Σ and the logarithmic

negativity EN will be very different (for example, see [9].) Therefore in the perturbative

regime with large initial distance and entanglement between the detectors, the zeroth order

of the a-part of all correlators as well as the v-part of the self correlators are enough to

give the entanglement dynamics to high accuracy.

4 Summary

We have demonstrated that the dynamics of a UD detector in non-uniform acceleration

are similar to those of a harmonic oscillator in contact with a “thermal” bath at a time-

varying “temperature” in the weak coupling regime, while non-adiabatic changes of proper

acceleration will create oscillations on top of the smoothly evolving values of the correlators.

The behavior of the detector is determined by the kinematics in its history rather than by

assuming the presence of a horizon that does not exist until late time.

In our model with weak coupling to the field, large spatial separation and large initial

entanglement between the detectors, the higher-order corrections from mutual influences

are negligible and the early-time behavior of the detectors are dominated by the zeroth

order of the a-parts of the self and cross correlators of the detectors, which correspond

to the initial state of the detectors. The zeroth order contribution of the v-parts of the

– 15 –



J
H
E
P
0
7
(
2
0
1
2
)
0
7
2

-20 0 20 40
Ω t�2π

-0.6

-0.4

-0.2

0.2

Σ
9γ=0.001, Ω=2.3=

-20 0 20 40
Ω t�2π

0.5

1.0

1.5
EN

9γ=0.001, Ω=2.3=

-20 0 20 40
Ω t /2π

0.002

0.004

0.006

0.008

0.010

0.012

∆EN

8γ =0.001,Ω =2.3,a =0.1<

Figure 9. Numerical results with α = 1.4, β = 0.2 in (3.1) for the quantity Σ(t) (left) the

logarithmic negativity EN (t) (middle, solid curves), both indicating the degree of entanglement

between the detector at (2.2) with d = 10 and the detector going along (2.3). The gray, the

thick-lightgray, and the black curves in both plots represent the results with a = 0, 0.1, and 2,

respectively, where the a = 0 case corresponds to those for two inertial detectors both at rest in

space and separated at a distance d = 10 in the same initial state [8]. Quantum entanglement

experiences sudden death at (ΩtdE/2π) ≈ 16 for a = 0.1 and ≈ 30 for a = 2 when EN touches

0 and Σ crosses 0. One can see that the larger the value of a, the longer the disentanglement

time tdE , due to the time dilation of the moving detector B in this setup. (Right) The difference

∆EN ≡ EN − (EN |〈RA(t),R′
B(τ(t)) 〉

v
=0) for a = 0.1. One can see the profile of the envelopes of the

oscillating cross correlators in figure 5. The value of the deference is tiny compared with the value

of EN (the largest ratio is about 3% around t ≈ −18(2π)/Ω).

self correlators of the detectors, which corresponds to the response of the detectors to the

field, is also crucial for entanglement dynamics, though their values are small compared to

their a-counterparts. While the zeroth order of the v-part of the cross correlators would in

general enhance quantum entanglement between the detectors, their values are even smaller

than others and negligible in the perturbative regime if the initial degree of entanglement

between the detectors is large.

We have chosen a trajectory for detector B such that it is approximately at rest when

its proper time τ is negatively large, and almost uniformly accelerated when τ is positively

large. As expected, the entanglement dynamics of the detectors here are similar to those

in the case of two inertial detectors [8] when τ is negatively large, and look like those in the

case with one inertial detector and one uniformly accelerated detector when τ is positively

large [9]. These results are commensurate with those obtained previously using alternative

methods for evaluating entanglement dynamics of detectors in relative non-uniform accel-

eration [37]. Note that in [35] Percocco and Villalba computed the Bogoluibov coefficients

of a quantum field in the spacetime (1.1) and obtained a Planckian spectrum with exactly

constant temperature parameter in the asymptotic limit. Nevertheless, it is not clear their

temperature is well-defined since their time derivative ∂u is not a Killing vector.

While the dynamics of the correlators are more subtle during the transition of detector

B from zero to finite accelerations, such interesting behavior is negligible in computing the

entanglement dynamics in the perturbative regime. In our model we do see sudden death

of entanglement (see figure 9). As noted earlier in [9], however, the acceleration in this

case increases rather than decreases the disentanglement time because of the time dilation

of the moving detector B observed in the conventional Minkowski coordinate, though a

higher Unruh temperature is experienced by detector B at late times.
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A number of interesting directions for further research emerge based on our results.

A time-reversed setup where detector B begins in the distant past as almost uniformly

accelerated then becomes approximately inertial in the distant future could be considered.

Combining these results with those obtained in this paper, the case with the world lines

of the detectors similar to the ones in the twin paradox [11] becomes straightforward in

weak coupling limit with large spatial separation [38]. Extending our work to cosmological

settings that go beyond idealizations previously considered [44–46] is another avenue for

further research. Wider parameter ranges, such as those beyond weak coupling, small

acceleration and/or large spatial separation regimes are also worth studying. By using the

well-known correspondence between the Rindler and the Schwarzschild spacetimes, one

can apply the knowledge obtained in this paper and go beyond the test-field description of

black hole physics [9]. Regarding to the exchange of information, the setup in this paper

can also be applied to quantum teleportation between a free-falling agent and an initially

free-falling agent who eventually stays outside the black hole [51].
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A Retarded distance and retarded time

For a massless field in (3+1)D flat spacetime, the retarded time τ ret(xµ) associated with a

field observed at the spacetime point xµ is defined as the proper time τ of the field source

at which the trajectory of the point-like source zµ(τ) intercepts the past light cone of xµ.

It is given by the solution to σ(xµ, zµ(τ ret)) = 0 where

σ(xµ, zµ(τ)) = −1

2
(xµ − zµ(τ)) (xµ − zµ(τ)) (A.1)

is Synge’s world function. Since σ is quadratic, when σ = 0 is satisfied, the Dirac delta

function δ(σ) in the retarded Green’s function of the field will give an 1/R factor in τ -

integrals involving it, where

R =

∣

∣

∣

∣

dσ

dτ

∣

∣

∣

∣

σ=0

(A.2)

is a function of xµ and the location of the source at the retarded time τ ret(xµ). We call R

the retarded distance (see figure 10).

For detector A, one has

σ = −1

2

[

D(x)2 − (t− x0)2
]

, (A.3)
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x

τretHxL
RHxL

z

t

Figure 10. Definitions of τ ret(x) and R(x). The thick curve is the world line of a detector

parametrized by its proper time τ .

where D(x) ≡
√

(x1 + d)2 + ρ2 and ρ2 ≡ x22 + x23. Solving σ = 0, the retarded time of

detector A is found to be

τ retA (x) = tret(x) ≡ x0 −D(x). (A.4)

So the retarded distance is R = D(x). In particular, at the position of the detector B, the

retarded distance from A to B is

RA→B(τ) = D(zµB(τ)). (A.5)

For detector B, one has

σ = −1

2

[

ρ2 − UV +
1

a2
+
U

a
eaξ − 2x0

a
e−aξ − e−2aξ

a2

]

, (A.6)

where U ≡ x0−x1 and V ≡ x0+x1. So the retarded time of the field sourced from detector

B and observed by detector A at (t,−d, 0, 0) is τ retB = τ(ξret(t)), where

ξret(t) =
1

a
sinh−1

[a

2
(t− d)

]

, (A.7)

and the retarded distance from detector B to A is

RB→A(t) =

∣

∣

∣

∣

1

2ℓ
√
ℓ2 + 1

[

2

a
ℓ3 + 2tℓ2 + t+ d

]
∣

∣

∣

∣

, (A.8)

where ℓ ≡ [a(d− t) +
√

4 + a2(d− t)2]/2.
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B Remarks on numerical calculation for correlators

B.1 Self correlators

The periodicity of the integrand of (3.11) can help to reduce the computation time. For

example, from (3.11) one has

δ 〈 Q2
B (τ + (π/Ω)) 〉v

=
2γ~

πm0Ω2

∫ τ+(π/Ω)

τ0

dτ̃

∫ τ+(π/Ω)

τ0

dτ̃ ′K(τ + (π/Ω)− τ̃)K(τ + (π/Ω)− τ̃ ′)f̃(τ̃ , τ̃ ′)

= e−2πγ/Ωδ 〈 Q2
B(τ) 〉v +

2γ~

πm0Ω2
e−2πγ/Ω

[

∫ τ

τ0

dτ̃

∫ τ+(π/Ω)

τ
dτ̃ ′+

∫ τ+(π/Ω)

τ
dτ̃

∫ τ

τ0

dτ̃ ′ +

∫ τ+(π/Ω)

τ
dτ̃

∫ τ+(π/Ω)

τ
dτ̃ ′

]

K(τ − τ̃)K(τ − τ̃ ′)f̃(τ̃ , τ̃ ′).

Thus one can obtain δ 〈 Q2
B (τ + (π/Ω)) 〉v by adding the previously obtained δ 〈 Q2

B(τ) 〉v
multiplied by a factor e−2πγ/Ω to the result of an integration over an L-shaped strip with

width π/Ω and total length 2τ +π/Ω, rather than a large [τ +(π/Ω)]× [τ +(π/Ω)] square,

in the τ̃ τ̃ ′-plane. By designing the grid such that there are exactly N ∈ N lattice sites in

half a natural period of detector π/Ω in τ̃ or τ̃ ′, one can improve the computation time for

evaluating δ 〈 Q2
B(τ) 〉v numerically in duration τf − τ0 from O[(τf − τ0)3] to O[(τf − τ0)2].3

B.2 Cross correlators

In (3.19) the non-linear t-dependence of τ(t) is manifest after t > 0, then the domain

(τ(t0), τ(t)) that τ̃ ′ is integrated over will not increase in equal time-intervals for each

step in t. So the trick of periodicity in obtaining δ 〈 Q2
B 〉(0)v cannot be applied. However

we can still calculate 〈 QA(t), QB(τ
′) 〉(0)v over the tτ ′-plane, where the periodicity of the

integrand can be employed, and then extract 〈 QA(t), QB(τ(t)) 〉(0)v by letting τ ′ = τ(t)

and interpolating. The results of 〈 QA(t), QB(τ
′) 〉(0)v here is also useful in calculating the

mutual influences in section 3.3.

The integrand of (3.19) appears to be singular at τ̃ = d + a−1e−aξ̃′ and τ̃ = d +

2a−1 cosh aξ̃′ if ǫ = 0. However the presence of the nonzero ǫ and the fact that the denom-

inators in the square bracket of the above expression are linear in τ̃ makes it possible to

3We applied Simpson’s rule generalized to two dimensions for numerical integrations in this paper. Each

square in our lattice has five sampling points: the four vertices in the corner and the center point. Similar

to Simpson’s 1/3 rule we assign a 1/12 weighting factor for the value of the integrand at each vertex and

a 2/3 factor for the value at the center. The error would be O(L4) with lattice constant L and would not

accumulate because the integrand is oscillating.
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deal with the “singularities” in the following way:

〈 QA(t), QB(τ(t)) 〉(0)v

=
2γ~

πm0Ω2
Re

∫ τ(t)

τ(t0)
dτ̃ ′
∫ t

t0

dτ̃
K(τ(t)− τ̃ ′)

2d+ a−1eaξ̃′
×





K(t− τ̃)−K
(

t+ d+ a−1e−aξ̃′
)

+K
(

t+ d+ a−1e−aξ̃′
)

τ̃ + d+ a−1e−aξ̃′ − iǫ

−
K(t− τ̃)−K

(

t− d− 2a−1 cosh aξ̃′
)

+K
(

t− d− 2a−1 cosh aξ̃′
)

τ̃ − d− 2a−1 cosh aξ̃′ − iǫ





=
2γ~

πm0Ω2
Re

∫ τ(t)

τ(t0)
dτ̃ ′ ×







∫ t

t0

dτ̃
K(τ(t)− τ̃ ′)

2d+ a−1eaξ̃′





K(t− τ̃)−K
(

t+ d+ a−1e−aξ̃′
)

τ̃ + d+ a−1e−aξ̃′
−

K(t− τ̃)−K
(

t− d− 2a−1 cosh aξ̃′
)

τ̃ − d− 2a−1 cosh aξ̃′





+K
(

t+ d+ a−1e−aξ̃′
)

ln

∣

∣

∣
t+ d+ a−1e−aξ̃′

∣

∣

∣

∣

∣

∣
t0 + d+ a−1e−aξ̃′

∣

∣

∣

−

K
(

t− d− 2a−1 cosh aξ̃′
)

ln

∣

∣

∣
t− d− 2a−1 cosh aξ̃′

∣

∣

∣

∣

∣

∣
t0 − d− 2a−1 cosh aξ̃′

∣

∣

∣







. (B.1)

Those terms in the square bracket of the last expression are smooth, so we can apply

elementary numerical methods such as Simpson’s rule to carry out the 2D integration

to high accuracy. The remainder is a one-dimensional integral over τ̃ ′, which is easy to

deal with. Although the integrand of the latter appears to have a logarithmic singularity

at t0 + d + a−1e−aξ̃′ = 0, the integral is still finite (and well defined by ǫ). Note that

|t0 − d − 2a−1 cosh aξ̃′| is always positive here, and the combination K(x) ln |x| is regular

at |t− d− 2a−1 cosh aξ̃′| = 0 and |t+ d+ a−1e−aξ̃′ | = 0.

Comparing the numerical results for the cross correlator 〈 QA(t), QB(τ(t)) 〉(0)v and

the analytical results for the case of two inertial detectors sitting at fixed distance [8] in

figure 11, we find excellent agreement at very early times when the distance between the

two detectors is almost constant.

C Behavior of δ 〈 Q2

B
〉
v
during and after transition

The jump of δ 〈 Q2
B 〉v in figure 2 is actually a smooth increase at the same rate as the square

of the proper acceleration (2.10) grows. The behavior of δ 〈 Q2
B 〉v and the approximately

universal value of the height of the jump divided by a2 in figure 2 can be estimated as

follows.
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Ω t/2π

-0.00015

-0.00010

-0.00005

<QA ,QB>v

8γ =0.001,Ω=2.3, a=0.1<

10 20 30 40 50
Ω t/2π

-0.0010

-0.0005

0.0005

0.0010

<QA ,QB>v

8γ =0.001,Ω=2.3, a=0.1<

Figure 11. Early-time evolution of the cross correlator 〈 QA(t), QB(τ(t)) 〉v with d = 10 (solid

curves) shown in figure 5 compared with the analytical results of the cases with two inertial detectors

sitting at a fixed distance in ref. [8]. The left plot is a close up of the very early-time behavior in the

right plot. The dotted curves are obtained by inserting the initial distance d+(t0+
√

t20 + (2/a2)) be-

tween the two detectors, which is temporally constant, into the fixed-distance analytical expressions

in [8], while the dashed curves are obtained by naively inserting the distance d+(t+
√

t2 + (2/a2))

at each moment t into the same fixed-distance analytic expression. One can see that at very early

times the value of the numerical result here agrees with the analytic results quite well.

The contour plot of f defined in (3.18) on the χχ′-plane is shown in figure 12. One

can see that when both χ, χ′ < −1, the value of f is very small, and when χ, χ′ > 0, a

ridge emerges along χ = χ′. During the transition −1 < (χ, χ′) < 2, the values of f in the

domain of integration are roughly independent of ∆ ≡ χ−χ′ so all the contours are almost

perpendicular to the X ≡ (χ+ χ′)/2 directions. Expanding f in ∆ about ∆ = 0 yields

f(χ, χ′) = f (0)(X)− (1− 4e−2X)

240(1 + e−2X)4
∆2 +O(∆4). (C.1)

where

f (0)(X) ≡ 1

12(1 + e−2X)2
. (C.2)

While the zeroth order term of the above expansion f (0)(X) undergoes significant change

around −1 < X < 2 (see figure 13 (Left)), the error of the approximation f(X,∆) ≈
f (0)(X) is always less than 0.05 times of the value of f(X,∆) in the region −1 ≤ X ≤ 2

and X − 2 ≤ ∆ ≤ 2−X.

During the transition −1 ≤ X ≤ 2, the integral in (3.17) is mainly contributed by the

integrand in 0 ≤ X ≤ 2, where a(τ − τ(ξ)) ≈ aξ(τ) − χ according to (2.7). So we further

approximate

K(τ − τ(χ/a)) ≈ e−γ(aξ(τ)−χ)/a sin
Ω

a
(aξ(τ)− χ). (C.3)

The error from the deviation of the linearization aξ(τ)−χ from a(τ − τ(ξ)) for X < 0 will

be suppressed efficiently because f is small while K(τ, τ(χ/a)) oscillates wildly there.

Let X2(τ) ≡ aξ(τ). Combining the above approximations for f ≈ f (0) in (C.2) and K
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in (C.3), and neglecting the contribution from the X < −1 region, we have

δ 〈 Q2
B(τ) 〉v

≈ 2γ~

πm0Ω2

∫ X2

χ(τ0)
dX

∫ −2(X2−X)

2(X2−X)

d∆

2

[

cos
Ω

a
∆− cos

2Ω

a
(X2 −X)

]

e−2γ(X2−X)/a

12(1 + e−2X)2

=
γ~

12πm0Ω2

2a

Ω

(

1− Ω
∂

∂Ω

)

Re

∫ X2

χ(τ0)
dX

e−2(γ−iΩ)(X2−X)/a

i(1 + e−2X)2
, (C.4)

which is expected to be a good approximation for 0 < X2 < 2 if χ(τ0) ≪ −1. The above

integral has an analytic result in a closed form, which is a function of X2. For X2 ≥ 2 and

χ(τ0) is negatively large, most of the terms goes to zero except the following:

δ 〈 Q2
B(τ) 〉v ≈ γ~a

12πm0Ω3
×

(

1− Ω
∂

∂Ω

)

Re

[

(1 +W)

i(2 +W)
e4X2

2F1

(

1, 2 +W, 3 +W,−e2X2
)

]

, (C.5)

where W ≡ (γ + iΩ)/a, and 2F1 is the hypergeometric function, which oscillates in X2

around a finite, nonzero constant for X2 ≥ 2, whose value can be obtained by, mathemat-

ically, taking X2 → ∞ when the oscillation is damped out (see figure 13 (Right)). So we

end up with

δ 〈 Q2
B(τ) 〉v

∣

∣

aξ(τ)=X2=2

≈ γ~a

12πm0Ω3

(

1− Ω
∂

∂Ω

)

Re

[

−ie2X2 +
i(1 +W)

W +O(e−2X2)

]

X2→∞

=
γ~a

12πm0Ω3

(

1− Ω
∂

∂Ω

)

aΩ

(γ2 +Ω2)

=
γ~a2

6πm0(γ2 +Ω2)2
, (C.6)

which is consistent with our observations in figure 2 and eq. (3.13).

Now the numerical behavior of δ 〈 Q2
B(τ) 〉v can be understood as follows. The domain

of the χχ′-integration is the square with both χ, χ′ ∈ [aξ(τ0), aξ(τ)]. X2(τ) ≡ aξ(τ)

increases as τ increases. When the vertex (X2(τ), X2(τ)) of the domain touches X ≈ −1,

the growth of f(χ, χ) becomes significant so δ 〈 Q2
B(τ) 〉v starts to grow. The latter keeps

growing smoothly until the vertex of the domain reaches X ≈ 2 (the boundary of the

domain at this moment is indicated by the dashed lines in figure 12 (Right)), then the

evolution enters another phase where δ 〈 Q2
B(τ) 〉v grows slowly in a time scale of 1/2γ

as shown in (3.16), with oscillations on top of the growing, towards the late-time value

δ 〈 Q2
B(∞) 〉v.
To obtain more insight into the behavior of δ 〈 Q2

B(τ) 〉v after X2 ≈ 2, let us consider

the following simple approximations. Let τ2 ≡ τ(ξ)|aξ=2. In the region τ2 ≤ τ̃ ≤ τ or

τ2 ≤ τ̃ ′ ≤ τ we observed that

f̃(τ̃ , τ̃ ′) ≈ f̃ (0)(∆̃) ≡ 1

∆̃2
− a2

4 sinh2(a∆̃/2)
(C.7)
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Figure 12. The topography (left) and the contour plot (right) of f(χ, χ′) defined in (3.18).
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0.00020

9γ=0.1, Ω=2.3, a=1=

Figure 13. (Left) The evolution of the zeroth order term of (C.1) in X. The value of f (0) changes

significantly around −1 < X < 2 (shaded interval). (Right) The values of the right hand side of

eq. (C.5) as a function of X2. We see that δ 〈 Q2
B(τ) 〉v

∣

∣

aξ(τ)=X2

grows smoothly from zero after

X2 ≈ 0, then starts to oscillate about the limiting value of the function as X2 → ∞.

in the integrand of (3.11) with ∆̃ ≡ τ̃ ′ − τ̃ . So δ 〈 Q2
B(τ) 〉v for τ > τ2 ≫ τ0 can be

approximated by

δ 〈 Q2
B(τ) 〉v ≈ δ 〈 Q2

B(τ) 〉(0)v ≡ 2γ~

πm0Ω2
[I1(τ) + I2(τ)] , (C.8)

where

I1 ≡
∫ 2

χ(τ0)
dχ

∫ 2

χ(τ0)
dχ′K (τ − τ(χ/a))K

(

τ − τ(χ′/a)
)

f (0)(X),

I2 ≡
(
∫ τ

τ0

dτ̃

∫ τ

τ0

dτ̃ ′ −
∫ τ2

τ0

dτ̃

∫ τ2

τ0

dτ̃ ′
)

K(τ − τ̃)K(τ − τ̃ ′)f̃ (0)(∆̃). (C.9)

By modifying the earlier calculation in obtaining (C.5), it is straightforward to see

I1 ≈
e−2γη+4×2

24Ω
Re

{(

1− e−2iΩηΩ
∂

∂Ω

)[

a

i

(

1 +W
2 +W

)

F1+W(−e2×2)

]}

(C.10)
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with Fy(x) ≡ 2F1(1 + y, 1, 2 + y, x), and η ≡ τ − τ2 since τ ∼ ξ (= χ/a) in this region by

(2.7). For I2, by noting that the first and the second terms of f̃ (0) in (C.7) are nothing

but the Hadamard functions of the massless scalar field experienced by an inertial detector

and a uniformly accelerated detector with proper acceleration a, respectively [39, 40], we

apply the techniques similar to those in refs. [39] and [29] to obtain

I2 =
πm0Ω

2

2γ~

[

〈 Q2(η0) 〉v
∣

∣

aµaµ=a2
− 〈 Q2(η0) 〉v

∣

∣

aµaµ→0

]

−1

2
Re

{

e−2γη

(

1− e−2iΩη +
iΩ

γ

)

×
[

Γ (0,Waη̄)− e−(1+W)aη̄

1 +W FW

(

e−aη̄
)

− ψ (1 +W) +
1

2W + lnW
]

+

e−2γη0

(

1− e−2iΩη0 +
iΩ

γ

)

×
[

Γ (0,−Waη̄)− e−(1−W)aη̄

1−W F−W

(

e−aη̄
)

− ψ (1−W)− 1

2W + ln(−W)

]}

(C.11)

with η0 ≡ τ − τ0, η̄ ≡ τ2 − τ0, and the v-part of the self correlator 〈 Q2(τ − τ0) 〉v
∣

∣

aµaµ=a2

of a uniformly accelerated detector with proper acceleration a moving in a massless scalar

field initially in vacuum state (see eqs. (A3) and (A9) in [29]). In figure 14 we illustrate

that the above approximation can indeed describe the behavior after τ > τ2 qualitatively.

The major difference is the amplitude of the non-adiabatic oscillations on top of the rising

curve. Since the 1/∆̃2 term in f̃ or f̃ (0) in (C.7) dominates whenever |∆̃| is large, the error
of the above approximation will be localized in the vicinity of (τ̃ ≈ τ2, τ̃

′ < τ2) and (τ̃ < τ2,

τ̃ ′ ≈ τ2) with small τ̃ − τ̃ ′. As shown in figure 15 (right), f̃ (0) − f̃ is mostly positive, so the

approximation (C.8) usually gives the non-adiabatic oscillations a larger amplitude than

the true amplitude, while these oscillations will be damped out at late times. In the weak

coupling limit, the approximation (C.8) behaves similarly to (3.16).

The behavior of δ 〈 QB, PB 〉v during the transition can be obtained straightforwardly

since 〈 QB(τ), PB(τ) 〉v = ∂τ 〈 Q2
B(τ) 〉v /2. For δ 〈 P 2

B 〉, the calculation is similar except

that the functions K(τ − τ(χ/a)) in (3.17) are replaced by

K ′(τ − τ(χ/a)) = e−γ(τ−τ(χ/a)) [Ω cosΩ (τ − τ(χ/a))− γ sinΩ( τ − τ(χ/a) )]

≈ e−γ(aξ(τ)−χ)/a

[

Ωcos
Ω

a
(aξ(τ)− χ)− γ sin

Ω

a
(aξ(τ)− χ)

]

(C.12)

during −1 < X < 2. This gives δ 〈 P 2
B(τ) 〉v

∣

∣

aξ(τ)=X2
≈ 0 as X2 → ∞, which is consistent

with the observations in figures 3 and 4 that there is no significant jump for δ 〈 P 2
B(τ) 〉v

around τ ≈ 0.

Suppose a(τ2 − τ0) ≫ 1. Then the amplitude of the non-abiabatic oscillations in (C.8)
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Figure 14. Approximated evolution of δ 〈 Q2
B(τ) 〉v by (C.8). The left and the right plots are made

for comparison with the lower-left plot of figure 2 and the left plot of figure 4. Our approximation

agrees well with the numerical results qualitatively, except the non-adiabatic oscillations are over-

estimated. The horizontal dot-dashed line in the left plot indicates the value of Q/a2 with Q defined

in (3.13).
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Figure 15. A comparison between f̃ given in (3.12) (left) and the error of our approximation

f̃ (0) − f̃ (right) on the τ̃ τ̃ ′-plane. Here a = 1, f̃ (0) = f (0)(X(τ̃ , τ̃ ′)) defined in (C.2) for τ̃ , τ̃ ′ < τ2,

and f̃ (0)(τ̃ , τ̃ ′) defined in (C.7) otherwise. One can see that the error is quite localized and mostly

positive.

will be

γ~e−2γη

πm0Ω2

∣

∣

∣

∣

iae8

12

∂

∂Ω

[(

1 +W
2 +W

)

F1+W(−e4)
]

+
1

2W + lnW − ψ (1 +W)

∣

∣

∣

∣

≈ γ~e−2γη

2πm0Ω2

a
√

Ω2 + γ2
(C.13)

for a ≫
√

Ω2 + γ2. This is approximately the amplitude for the cases with a sudden rise

of proper acceleration from 0 to a. Thus if detector B has been almost in the steady state

before τ2, the amplitude of the non-adiabatic oscillations of the values of its self correlators

after τ2 will be no greater than O(γa) for large a. Since the values of the self correlators

of detector B are O(γ0a) at late times [29], those non-adiabatic oscillations will not be

significant in the ultraweak coupling limit. Of course if a(τ2 − τ0) is not very large and so

detector B is far from steady state at τ2, the non-adiabatic oscillations can be enhanced.
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