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1 Introduction

Complex structure moduli in type IIB string theory are stabilized by turning on fluxes,

and in certain parts of the theory’s moduli space the fluxes lead to large warping effects.

These effects are essential for a detailed understanding of dynamics in the string theory

landscape [1]. Tunneling between flux vacua involves the nucleation of a brane carrying

appropriate charges, but such events appear to be favored in configurations of the Calabi-

Yau geometry where particular cycles are small, and hence, warping due to fluxes through

such cycles is large.

Aside from dynamics, the distribution of vacua for such models is of interest. The

Bousso-Polchinski model of the string landscape [2] suggests that with a sufficient number

of fluxes, one should expect vacuum energies that are sufficiently finely spaced to ensure

that some vacua have cosmological constants in rough agreement with our own. In [3, 4], the

authors developed a convenient framework for carrying out such analyses in the context of

type IIB string theory compactifications. The theoretical vacuum distributions for certain

simple Calabi-Yau compactifications have also been supported by numerical studies [5].
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A quite general result of these studies is that vacua appear to accumulate around

the conifold point in the complex structure moduli space. In fact, the density of these

vacua diverges logarithmically. However, in light of the fact that warping becomes strong

precisely near the conifold point for any finite volume Calabi-Yau compactification, the

natural question arises of what effect — if any — warping may have on the distribution

of vacua.

A related point is whether the vacuum density is well-captured by the simpler to

compute index density. In the absence of warping, the index is simpler to compute since

it is similar to the Chern class of the moduli space, whereas there is no straightforward

geometric quantity that corresponds to the vacuum count. As we shall see, when warping

is included the overall agreement between number and index densities continues to hold,

but the topological nature of the latter becomes more complicated.

In section 3 we review the general framework for deriving theoretical distributions of

vacua for unwarped Calabi-Yau compactifications as originally laid out in [4]. We then

explain how to modify this construction to derive the warped version of the number and

index densities. The methods are then used to explicitly compute the densities in the

vicinity of a conifold point. In section 4 we numerically generate near-conifold distributions

of vacua and compare these to the theoretical distributions of section 3.

2 Background

Type IIB string theory compactified on a Calabi-Yau manifold yields scalar fields, known

as moduli, in the low energy supergravity theory. These moduli are related to geometrical

parameters of the internal Calabi-Yau manifold and can in certain models number in the

hundreds. Unfortunately, these moduli appear as massless fields without any potential

governing their dynamics, rendering the physics unrealistic. Fortunately string theory

contains other ingredients with the capacity to resolve this problem. In particular, these

scalar fields can be stabilized by turning on various p-form fluxes in the internal manifold,

a procedure that generates the Gukov-Vafa-Witten superpotential:

W (z) =

ˆ

Ω3 ∧G3 (2.1)

Here, Ω3 is the holomorphic (3, 0) form defined on the Calabi-Yau, G3 = F3 − τH3 is the

type IIB 3-form field strength, τ is the axio-dilaton, and z denotes the set of complex

moduli mentioned above upon which the holomorphic three form depends. Given this

superpotential, the scalar potential for the moduli becomes:

V (z, τ) = eK/M2
P

(
KabDaW DbW −

3

M2
P

|W |2
)

(2.2)

where the sum runs over the complex moduli (i, j = 1, 2, . . . , n), with n = h2,1CY, as well as

the axio-dilaton (i, j = 0). Here, the covariant derivative acts as Da = ∂a+Ka where Ka is

the derivative of the Kähler potential with repsect to the ath complex modulus or τ . This

ensures that DW transforms in the same way as W itself under a Kähler transformation
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so that the physical potential V (z, τ) is invariant under Kähler transformations. Super-

symmetric minima of the potential V occur at points in moduli space where DaW = 0

with a running over all of the moduli and the axio-dilaton. In general, the potential has

many minima, each of which represents a stable low energy configuration of the internal

Calabi-Yau. These configurations arise from the large number of discrete fluxes that can

thread through the Calabi-Yau’s various 3-cycles. It is thus natural to explore this large

landscape of flux vacua using statistical methods, as was first done in [3, 4], as we now

briefly review.

3 Analytical distributions

3.1 Counting the vacua

Here we will review the derivation of the index density given by Douglas and Denef in [4],

focusing on areas where our analysis, including the effects of warping, will differ. We will

restrict attention to vacua that satisfy DaW = 0 for all complex moduli and the axio-

dilaton. The strategy is to consider these equations as constraints on the choice of fluxes

and otherwise, simply allow the fluxes to scan. First, assume that fluxes are fixed and

consider the function on moduli space given by1

δ2n+2
(
DW (z)

)
≡ δ
(
D0W (z)

)
. . . δ

(
DnW (z)

)
δ
(
D0W (z)

)
. . . δ

(
DnW (z)

)
. (3.1)

Clearly this provides support only at the locations of the vacua. However, as written each

vacuum does not contribute with the same weight. To see this, rewrite equation (3.1) as a

sum of delta functions which explicitly spike at the locations of the minima:

δ2n+2
(
DW (z)

)
=
∑

vac

δ2n+2(z − zvac)

| detD2W |
. (3.2)

Here the determinant arises from expanding the delta functions near each minimum in

much the same way as δ(f(x)) =
∑

δ(x− xzero)/|f
′(x)|, and is of the (2n+ 2)× (2n+ 2)

matrix (
∂aDbW ∂aDbW

∂aDbW ∂aDbW

)
, (3.3)

where we let a, b range over the n moduli as well as the axio-dilaton. Note that the partial

deriviatives in the matrix above can be replaced by covariant derivatives at the vacua

since there the conditions DaW = 0 render the two expressions equivalent. If we then

integrate this over the moduli space we find contributions from each vacuum associated

with a fixed set of fluxes with weight | detD2W |−1. Since this value is not constant over

the moduli space, the result will not reflect the number of vacua. To count the vacua, we

must compensate by integrating over the delta-functions appropriately weighted:
ˆ

d2nzd2τ δ2n+2
(
DW (z)

)
| detD2W | . (3.4)

1Our conventions for the delta functions and integration measures depending on a complex variable z

are given by δ2(z) = δ(Re z)δ(Im z), and d2z = d(Re z)d(Im z).
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This expression defines the vacuum count for a given set of fluxes. Another useful quantity

considered in [4] is the index, which involves dropping the absolute values around the

determinant of the fermion mass matrix:
ˆ

d2nzd2τ δ2n+2
(
DW (z)

)
detD2W . (3.5)

This integral then counts the number of positive vacua minus the number of negative vacua,

where parity is given by the sign of the determinant of the matrix in equation (3.3). To

count all vacua, we must also sum over fluxes subject to the tadpole cancellation condition

L =

ˆ

CY
F3 ∧H3 ≤ L∗ . (3.6)

Here L∗ is the maximum possible value for L. It will turn out to be useful to lift this

discussion to F-theory where we consider our manifold M as an elliptically fibered Calabi-

Yau 4-fold, whose base consists of the original 3-fold and fibers are given by the auxiliary

2-torus whose period is given by the axio-dilaton τ . We decompose the holomorphic 4-form:

Ω4 = Ω1 ∧ Ω3 , (3.7)

where Ω1 is the holomorphic one form on the two torus parameterizing the axio-dilaton,

and Ω3 is the usual holomorphic three form on the Calabi-Yau. In particular, if we consider

the two one-cylces A and B on the torus, we can define the two one forms α and β dual

to the cycles A and B such that
´

A γ =
´

T 2 α ∧ γ and
´

B γ =
´

T 2 β ∧ γ for all closed one

forms γ. Then, as long as we define our holomorphic one-form Ω1 as

Ω1 = α− τβ , (3.8)

we will have τ =
´

AΩ1/
´

B Ω1 as we want for the complex structure of the torus. Further-

more, if we define a flux four form as G4 = β ∧ F3 − α ∧ H3, we can write the tadpole

condition as
1

2

ˆ

M
G4 ∧G4 = −

ˆ

T 2

α ∧ β

ˆ

CY3

F3 ∧H3 (3.9)

If we normalize the F-theory torus volume so that
´

T 2 α ∧ β = −1, this exactly repro-

duces the tadpole condition in the type IIB picture. With K = dimH3
CY3

we’ve lumped

the 2K fluxes F0, . . . , FK−1, H0, . . . , HK−1 into the 2K components of G4. Also note that

with this definition of the flux four form, we can write the usual type IIB superpotential as

W =

ˆ

M
Ω4 ∧G4 . (3.10)

Let’s choose a particular basis of three forms on the CY3 {Σi}, and denote the inter-

section form in this basis as Qij so that
ˆ

CY3

Σi ∧ Σj = Qij (3.11)

We can extend this basis to M by wedging it with the one forms α and β. In this basis,

we denote the components of the field strength G4 by Na with a = 0, 1, . . . 2K − 1, and
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the intersection form in the full 4 (complex) dimensional space by ηab. Then, the tadpole

condition in equation (3.6) can be written in terms of the components of the two fluxes

(F = F iΣi and H = H iΣi) as

L =
1

2
NaηabN

b = F iQijH
j ≤ L∗ (3.12)

We should then sum only over the fluxes that satisfy this inequality. In particular we can

imagine summing over all fluxes while including a step function.

Index =
∑

Fluxes

θ(L∗ − L)

ˆ

d2nzd2τ δ2n+2
(
DW (z)

)
detD2W (3.13)

We can write the step function as an integral over a delta function,2

θ(L∗ − L) =

ˆ L∗

−∞
δ(L− L̃)dL̃ (3.14)

yielding

Index =
∑

Fluxes

ˆ L∗

−∞
dL̃

ˆ

d2nzd2τ δ(L− L̃)δ2n+2
(
DW (z)

)
detD2W (3.15)

By treating the fluxes N0, . . . , N2K−1 as continuously varying parameters, we can approx-

imate this sum by an integral,

Index =

ˆ L∗

−∞
dL̃

ˆ

d2KN

ˆ

d2nzd2τ δ(L− L̃)δ2n+2
(
DW (z)

)
detD2W (3.16)

It is natural to define the index density in moduli (and axio-dilaton) space by

µI(z, τ) =

ˆ L∗

−∞
dL̃

ˆ

d2KN δ(L− L̃)δ2n+2
(
DW (z)

)
detD2W (3.17)

Upon integrating over τ, z, this will then equal the total index. We now rewrite this

index density in terms of geometric properties of the moduli space. A first step in doing

this is to change basis from {α ∧ Σa, β ∧ Σa} to the set of linearly independent four forms

{Ω4, DaΩ4, D0DiΩ4} ∪ {c.c.} where a ranges over the complex moduli as well as the axio-

dilaton while i ranges only over the moduli. This proposed basis consists of 4(n + 1)

elements where n denotes the number of complex moduli in our theory, which agrees with

the 2K elements of the original basis. This new basis satisfies
ˆ

M
Ω4 ∧ Ω̄4 = e−K(τ,z) (3.18)

ˆ

M
DaΩ4 ∧ D̄b̄Ω̄4 = −e−K(τ,z)Kab̄ (3.19)

ˆ

M
D0DiΩ4 ∧ D̄0̄D̄j̄Ω̄4 = e−K(τ,z)Kτ τ̄Kij̄ , (3.20)

2Note that in [4] the step-function is expressed in terms of a contour integral over an exponential eαL∗ .

Our expression in terms of a delta function proves to be more useful for the analysis incorporating warping

effects.
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with all other combinations vanishing. By rescaling all of our basis elements by the factor

eK(τ,z)/2, the new basis won’t have any of the extra exponentials in their inner products:

ˆ

M
eK(τ,z)/2Ω4 ∧ eK(τ,z)/2Ω̄4 = 1 (3.21)

ˆ

M
eK(τ,z)/2DiΩ4 ∧ eK(τ,z)/2D̄j̄Ω̄4 = −Kij̄ (3.22)

ˆ

M
eK(τ,z)/2D0DiΩ4 ∧ eK(τ,z)/2D̄0̄D̄j̄Ω̄4 = Kτ τ̄Kij̄ , (3.23)

and because of the properties of the covariant derivative, we can accomplish these changes

by rescaling the holomorphic 4-form by this same factor: Ω4 → eK(τ,z)/2Ω4. For notational

simplicity we will redefine Ω4 to represent this rescaled version.3 When we want to explicitly

refer to the actual holomorphic 4-form, we will denote it as Ω̂4:

Ω4 = eK(τ,z)/2Ω̂4 (3.24)

Finally, we can consider the set B = {Ω4, DAΩ4, D0DIΩ4} ∪ {c.c.} where DA ≡ eaADa,

and the vielbeins eaA satisfy eaAe
b̄
B̄
Kab̄ = δAB̄, as usual. The notation is consistent assuming

a suitably defined spin-connection (see appendix A). Our new basis is orthonormal:

ˆ

M
Ω4 ∧ Ω̄4 = 1 (3.25)

ˆ

M
DAΩ4 ∧ D̄B̄Ω̄4 = −δAB̄ (3.26)

ˆ

M
D0DIΩ4 ∧ D̄0̄D̄J̄ Ω̄4 = δIJ̄ . (3.27)

The 4-form flux G4 in the new basis is given by

G4 = XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c. (3.28)

with X,Y Ā, Z Ī , X, Y
A
, Z

I
being the coefficients of G4 in this basis. Note that G4 does

not depend on the complex structure or axio-dilaton, which implies that the coefficients

X,Y A, ZI , . . . depend on zi and τ in a way that precisely cancels the dependences arising

from Ω4 and its derivatives. Since G4 doesn’t depend on the complex structure of the

Calabi-Yau or the axio-dilaton, we can relate these coefficients to various combinations of

3The covariant derivative Da = ∂a + Ka, is the Hermitian metric connection acting on sections of the

complex line bundle L, where Ω3 is a section of H ⊗ L, with H the Hodge bundle and L is a line bundle

whose first Chern class is the Kähler form on the 3-fold’s moduli space. The expression
´

Ω3 ∧ Ω̄3 provides

a metric on L from which the metric connection then follows. When acting on sections of other, related

bundles, the Hermitian metric connection must be appropriately modified.

– 6 –
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derivatives acting on the superpotential. In particular

W =

ˆ

Ω4 ∧G4 = X (3.29)

DAW =

ˆ

DAΩ4 ∧G4 = YA (3.30)

D0D0W = 0 (3.31)

D0DIW =

ˆ

D0DIΩ4 ∧G4 = ZI (3.32)

DIDJW =

ˆ

DIDJΩ4 ∧G4 = FIJKZK (3.33)

DIDJW = δIJX (3.34)

D0̄D0W = X (3.35)

D0̄DIW = 0 (3.36)

where the computations establishing these relations are provided in the appendix. Note

that we have defined the coefficients FIJK = i
´

CY Ω3∧DIDJDKΩ3 = i
´

CY Ω3∧∂I∂J∂KΩ3.

Also, note that W denotes the rescaled superpotential; when we want to explicitly refer to

the original one, we will once again place a hat on top of it (Ŵ ). We can then rewrite our

expressions in terms of these new functions on moduli space, and in particular have for the

tadpole condition

L =
1

2
NηN =

1

2

ˆ

G4 ∧G4 = |X|2 − |Y |2 + |Z|2, (3.37)

where |Y |2 = Y
A
Y ĀδĀA, etc. The index density then becomes

µI(z, τ) =

ˆ L∗

−∞
dL̃

ˆ

d2X d2n+2Y d2nZ J | det g| δ
(
L̃− |X|2 + |Y |2 − |Z|2

)
δ2n+2(YA) |X|2

× det

(
XδIJ − ZIZJ

X FIJKZK

FIJKZK XδIJ − ZIZJ

X

)
(3.38)

Here J is the Jacobian obtained in changing variables from Na to X,YA, ZI , which

we will determine explicitly below. We have included an additional factor of | det g| which

comes from transforming both the delta functions and the determinant to the new variables,

and note that factors of eK cancel between the delta functions and the determinant.

Let’s now compute the Jacobian |J |. In the original basis, the components of G4 were

given by Na. We can now write the Na in the new basis

N = η−1
(
XΠ− Y ADAΠ+ ZID0DIΠ+ c.c.

)
(3.39)

Here the Πs are the periods of the rescaled holomorphic four form and are related to the

usual ones by a factor of eK/2.We can see from this expression that the change of basis is

achieved by the application of the matrix M = η−1(Π,−DAΠ, D0DIΠ, c.c.). If we use the

convention that d2z = 1
2idz ∧ dz̄, we find that the appropriate Jacobian is

J = 22(n+1)| detM | = 4n+1| det η|−1/2| detM †ηM |1/2 (3.40)
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We have M †ηM = diag(1,−1n+1,1n, 1,−1n+1,1n), which follows from our choice of an

orthonormal basis of 4-forms. This implies that the Jacobian is given by

J = 4n+1| det η|−1/2 . (3.41)

The final expression is then (after explicitly integrating over YA),

µI(z, τ) = 4n+1| det η|−1/2

ˆ L∗

−∞
dL̃

ˆ

d2X d2nZ | det g| δ
(
L̃− |X|2 − |Z|2

)
|X|2

× det

(
XδIJ − ZIZJ

X FIJKZ
K

FIJKZK XδIJ − ZIZJ

X

)
. (3.42)

We can explicitly integrate over the phases, leaving only integrals over the magnitudes

|X| and |Z|, showing that the tadpole delta function fixes the region of integration to lie

on a circle of radius
√
L̃ in the |X|, |Z| plane. There is therefore no need to integrate over

negative L̃s, and furthermore the remaining finite integral can be evaluated. Following this

approach, one can show that the index density has a nice geometrical interpretation [4]:

µI(z, τ) = det(R+ ωI) , (3.43)

where R is the curvature two form on the moduli space and ω is the Kähler form.

For the case of one complex modulus (and the axio-dilaton), this reduces to µI =

−π2| det η|−1/2ω0 ∧ R1 where ω0 is the Kähler form on the axio-dilaton side while R1

is the curvature form on the moduli space side. In order to obtain this, one must use a

relationship between the Kähler and curvature forms on the axio-dilaton moduli space:

R0 = −2ω0.

3.2 Incorporating warping

A full treatment of warped Calabi-Yau geometry involves using the machinery of gener-

alized complex geometry [6–8]. However, a rough method that produces the appropriate

functional behavior induced by warping near the conifold will suffice for our purposes. This

behavior can be derived by taking the warped Kähler potential to be approximated by [9]

e−K̃ =

ˆ

e−4AΩ ∧ Ω̄ ≈

ˆ

Bulk
Ω ∧ Ω̄ +

ˆ

Conifold

(
1 +

e−4A0

c

)
Ω ∧ Ω̄ , (3.44)

where e−4A = 1+e−4A0/c is the warp factor, with e−4A0 capturing the significant warping at

the conifold while c is a constant related to the overall volume of the Calabi-Yau manifold.

In general, we will use tildes to denote quantities that include warp corrections.

The warp-corrected Kähler metric has been shown to have the near-conifold form [1,

12–14]

K̃ξξ̄ ≈
K1

k
−

1

2πk
log ξ +

Cw

k|ξ|4/3
= Kξξ̄ + K̂ξξ̄ , (3.45)

where ξ is the local coordinate around the conifold point, k = limξ,ξ̄→0 e
K(ξ,ξ̄) and K1

is a constant (to leading order) associated with the Kähler metric’s expansion around

– 8 –
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the conifold. The hatted quantity in the rightmost expression corresponds to the warp

correction to the original, unwarped Kähler metric. The constant Cw is on the order of

the inverse volume of the Calabi-Yau,4 capturing the suppression of the warping effects at

large volume.

Given the form of the Kähler metric near the conifold (3.45), we find that up to shifts

by functions holomorphic and antiholomorphic in ξ, we have

K̃ ≈ K + 9Cw|ξ|
2/3 = K + K̂ , (3.46)

K̃ξ ≈ Kξ + 3Cw
ξ̄1/3

ξ2/3
= Kξ + K̂ξ . (3.47)

To take warping into account in computing the vacuum count and index, we follow

the basic logic of section 3.1 with incorporating various necessary modifications. First,

we continue to define quantities such as X,Y, and Z without making any reference to the

warping. This means that the logic for converting the step function θ(L∗ − L) into an

integral is unchanged. What does change are the expressions within the delta-functions

and the determinant of the fermion mass matrix. In particular, the positions of the vacua

are now determined by the conditions DAW + K̂AW = 0, where the second term is the

correction due to warping. Thus, the delta-functions must now read

δ2n+2(YA + K̂AX) ,

and the quantities appearing in the fermion mass matrix now have to incorporate warp

corrections: (DA + K̂A)(DB + K̂B)W . Note that at a vacuum we have the equivalence

∂A(DBW + K̂BW ) ≡ (DA + K̂A)(DB + K̂B)W , and in general we will make use of similar

equivalences in what follows. We have:

D0

(
DI + K̂I

)
W ≡ ZI ,

(
DI + K̂I

)(
DJ + K̂J

)
W ≡ FIJKZ

K
+ K̂IJX + K̂JYI ,

(
DI + K̂I

)(
DJ + K̂J

)
W ≡

(
δIJ̄ + K̂IJ̄

)
X .

Upon integrating over the YA we find the index density

µI = 4n+1| det η|−1/2

ˆ L∗

−∞
dL̃

ˆ

d2X d2nZ | det g| δ
(
L̃− α|X|2 − |Z|2

)
|X|2

× det

(
XµIJ̄ −

ZIZJ̄
X FIJKZ

K
+ σIJX

FIJKZK̄ + σ̄IJX XµĪJ −
Z ĪZJ

X

)

where α = 1− K̂IK̂
I
, µIJ̄ = δIJ̄ + K̂IJ̄ , and σIJ = K̂IJ − K̂IK̂J .

In order to compute this density, it proves helpful to consider the special case of
one complex modulus as well as the axio-dilaton. In this particular case, we obtain the
expression

µI ∝

ˆ L∗

−∞

dL̃

ˆ

d2X d2nZ | det g| δ
(
L̃− α|X|2 − |Z|2

)(
|Z|4 + (µ2 − |σ|2)|X|4 − (2µ+ |F|2)|X|2|Z|2

)

(3.48)

4In fact, it goes approximately like V
−2/3
CY3

, since it is related to the universal Kähler modulus zero mode.
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Note, that we have eliminated a few terms that will integrate to zero because they

depend explicitly on the phases of X,Z. Far from the conifold, α approaches 1 since the

warping corrections can then be neglected. However, when one moves toward the conifold,

α gets progressively smaller until at some critical value it equals zero, and then the warping

correction drives α negative. As long as α is positive, the tadpole delta function fixes the

range of integration so that |X| and |Z| lie on a finite ellipse. Upon computing the integral,

one therefore obtains a finite value for the index. However, when α goes to zero, this ellipse

becomes increasingly stretched until for α = 0, the range of integration for |X| becomes

unconstrained. At this point, the integral above for the index density diverges. Then, as α

goes negative, this divergence persists as the ellipse turns into a hyperbola. Naively, this

suggests an infinite number of vacua within a finite disk surrounding the conifold point.

However, the more careful analysis taking account of finite fluxes that we carry out below

yields a finite result.

3.3 Finite fluxes

One major difference between the analysis above and numerical simulations is the range of

fluxes. In numerical simulations fluxes are necessarily kept within a finite range, while in the

derivation above, arbitrarily large fluxes were included. To derive a theoretical distribution

that mirrors the effects seen in numerical studies, it is best to include a bound on the fluxes

in the analysis. This complicates the final expression for the theoretical distribution but,

of course, the finite bound on fluxes is physically well motivated since the supergravity

approximation breaks down for large enough fluxes. In the absence of warping, the finite

range of fluxes does not lead to dramatic differences from naively taking the bound to

infinity, but as we will see, this limit is more involved when warping is included.5

Suppose that we bound our fluxes by the range Ni ∈ [−Λ,Λ]. The Na and X,Y, Z

variables are related by

X = NaΠa (3.49)

YA = NaDAΠa (3.50)

ZI = NaD0DIΠa (3.51)

Here the Π’s are the periods of the rescaled holomorphic form, as before. We would

thus expect the ranges on X,Y, Z to be moduli dependent. Let’s separate the phase

and magnitude of X,Y, Z. Although in principle, the ranges of the phases may have

a complicated dependence on both the moduli and the magnitudes |X|, |Y |, |Z|, we will

neglect this subtlety and suppose that they range over the usual [0, 2π]. As a result, we

can easily integrate these variables out, leaving us with the integrals over the magnitudes.

5By way of comparison, if we express the tadpole condition in the manner of [4], it leads to an integral

over a Gaussian-like exponential factor e−NηN/2 = e−|X|2+|Y |2−|Z|2 , a damping term in the absence of

warping due to the SUSY conditions δ(YA). Warping modifies these conditions to YA + K̂AX = 0, and

so the argument of the exponential is not negative definite, requiring an additional regulator bounding the

fluxes.
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We would expect to have these range over the values

|X| ∈ [0,ΛfX(ξ, τ)] (3.52)

|YA| ∈ [0,ΛfY (ξ, τ)] (3.53)

|ZI | ∈ [0,ΛfZ(ξ, τ)] (3.54)

for particular fX , fY , and fZ . Let’s consider fX . The largest value that |X| will take

corresponds to the fluxes Na taking one of their two extreme values of ±Λ; which of two

possibilities maximizes |X| depends on the near conifold behavior of the periods. We must

choose the eight signs for the eight fluxes Na in such a way that we maximize the expression

fX = max

(∣∣∣∣
∑

a

±Πa(ξ, τ)

∣∣∣∣
)

(3.55)

Since the periods are all finite in the near conifold limit, the ξ dependence decouples.

However, the value for fX will still be τ dependent. As far as fY and fZ are concerned,

the idea is the same except for the fact that the ξ dependence can’t be neglected due to

logarithmic divergences. In particular, we find that

fX = fX(τ) (3.56)

fY = f1
Y (τ)|1− f2

Y (τ) log(ξ)| (3.57)

fZ = f1
Z(τ)|1− f2

Z(τ) log(ξ)| (3.58)

Now consider a fixed point in moduli space ξ as well as a fixed value for τ . Then,

the upper limits on these integrals will involve particular constants multiplying the flux

cutoff Λ. Integrating over the variables Y0 in the expression for the index density, the delta

function δ(Y0) fixes Y0 = 0, leaving us with

µI ∝

ˆ L∗

−∞
dL̃

ˆ fXΛ

0
|X|d|X|

ˆ fY Λ

0
|Y |d|Y |

ˆ fZΛ

0
|Z|d|Z| | det g| δ

(
L̃− α|X|2 − |Z|2

)

×δ2
(
Y1 + K̂ξX

)(
|Z|4 + (µ2 − |σ|2)|X|4 − (2µ+ |F|2)|X|2|Z|2

)
(3.59)

The remaining delta function constraints come from the tadpole condition and the su-

persymmetry condition DξW + K̂ξW = 0, equivalent to Y1 + K̂ξX = 0. Satisfying these

constraints will place complicated restrictions on the upper and lower bounds of the remain-

ing integrals. Let’s first examine the region of integration imposed by the supersymmetry

constraint:

• When |X| is at its lower bound of 0, the constraint is trivial to satisfy. Thus, the

lower bound of |X| is unchanged.

• However, when |X| > 0, there will be points in the moduli space where |K̂ξX| > fY Λ.

At such points, the delta function imposing the constraint Y1 = −K̂ξX must vanish.

We thus see that the upper bound of |X| is restricted in such cases to fY Λ/|K̂ξ|.

Solving the delta function constraint for Y1 requires that the upper bound of the |X|

integral be taken to be |X|Λ = min
(
ΛfX ,ΛfY /|K̂ξ|

)
.
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Note that in our scheme for bounding the fluxes, the upper limits of integration for |X|, |Y |

and |Z| all scale with the cutoff Λ in the same way. So, simply taking the limit as Λ → ∞

won’t affect the analysis. From our scheme’s perspective, it is only in the strictly infinite

case where the naive divergence reappears as discussed at the end of section 3.2. (One

could imagine more complicated schemes for bounding the fluxes, treating X,Y , and Z

independently, allowing for a set of continuous limits that recover the divergent results of

the naive approach. Such a scheme would increase the difficulty of relating the numerical

and theoretical analyses, as investigated in unwarped case in [3–5].

Given the new limits of integration on |X|, we can freely integrate out the delta function

fixing the value of Y1:

µI ∝

ˆ L∗

−∞
dL̃

ˆ |X|Λ

0
|X|d|X|

ˆ fZΛ

0
|Z|d|Z| | det g| δ

(
L̃− α|X|2 − |Z|2

)

×
(
|Z|4 + (µ2 − |σ|2)|X|4 − (2µ+ |F|2)|X|2|Z|2

)
(3.60)

To simplify our notation, let’s change variables to u = |X|2 and v = |Z|2. The density can

then be written as

µI ∝

ˆ L∗

−∞
dL̃

ˆ uΛ

0
du

ˆ f2
ZΛ2

0
dv | det g| δ

(
L̃−αu−v

)(
v+(µ2−|σ|2)u2−(2µ+|F|2)uv

)
(3.61)

where uΛ = |X|2Λ = min
(
Λ2f2

X ,Λ2f2
Y /|K̂ξ|

2
)
.

It’s useful to consider the two cases α > 0 and α < 0, separately.

3.3.1 The case α > 0

The delta function in (3.61) arising from the tadpole condition is δ(L̃ − αu − v). This

constrains the value of v to be L̃− αu, as well as constraining the region of integration on

the L̃/u-plane. Let’s first determine the lower bounds on L̃ and u:

• The variables u, v are positive or possibly zero and since α > 0, then L̃ ≥ 0, fixing

the lower bound of 0 for the L̃ integral.

• Let vup = f2
ZΛ

2 be the upper bound on v. If vup < L̃, then the delta function forces

the lower bound on u to be (L̃− f2
ZΛ

2)/α. However, if vup > L̃ then the lower bound

on u is 0. So in general we let the lower bound on u be u+down = max
(
0,

L̃−f2
ZΛ2

α

)
.

Now for the upper bounds:

• If L∗ < αuΛ + f2
ZΛ

2, then it remains the upper bound for the L̃ integral. If on the

contrary, the inequality runs the other way, L∗ > αuΛ + f2
ZΛ

2, then the constraint

L̃ − αu − v cannot be satisfied everywhere along the range 0 < L̃ < L∗, truncating

this range to 0 < L̃ < αuΛ + f2
ZΛ

2 instead. So the upper bound on the L̃ integral is

L+
up = min(L∗, LΛ)

where LΛ = αuΛ + f2
ZΛ

2.
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(a) (b)

(c) (d)

Figure 1. Various possible regions of integration for α > 0. In (a) the L∗ > LΛ, where LΛ =

αuΛ+f2

ZΛ
2 and uΛ = min(Λ2f2

X ,Λ2f2

Y /K̂
2

ξ ) so the region is cut off at uΛ. In (b) f2

ZΛ
2 < L∗ < LΛ.

In (c), L∗ < f2

ZΛ
2, and uΛ < L∗/α. Finally, (d) shows a region where L∗ < f2

ZΛ
2 and uΛ > L∗/α.

• If, at a fixed L̃, we had αuΛ > L̃, then since the lower bound on v is 0, this places

an upper bound on u of L̃/α. If the inequality is reversed, then the upper bound on

u is uΛ. So, in general the upper bound on u is u+up = min(uΛ, L̃/α).

Various possible regions of integration in the L̃/u-plane are illustrated in figure 1.

Using the bounds described above and integrating over v yields

µ+
I ∝

ˆ L+
up

0
dL̃

ˆ u+
up(L̃)

u+
down

(L̃)
du| det g|

(
(L̃− αu)2 + βu2 + γu(L̃− αu)

)
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where and β = µ2 − |σ|2 and γ = −2µ − |F|2. Then, expanding everything out and

integrating over u, we obtain

µ+
I ∝

ˆ L+
up

0
dL̃| det g|

(
L̃2(u+up − u+down) +

γ − 2α

2
L̃
(
(u+up)

2 − (u+down)
2
)

+
α2 + β − αγ

3

(
(u+up)

3 − (u+down)
3
))

where the L̃ dependence of uup and udown has been suppressed in the last line.

In order to integrate over L̃, we must separate the integral above into two parts since

u+up and u+down are different functions of L̃. Let I +
up be the portion of the integral involving

terms containing powers of u+up and I
+
down be the portion of the integral containing u+down.

Note that we remove the | det g| factor from these integrals. Focusing first on I +
up we see

that for6 0 < L̃/α < u+up(L∗), we can replace instances of u+up(L̃) in the integral with L̃/α,

while if u+up(L∗) < L̃/α, then u+up = uΛ, which is independent of L̃. So I +
up splits into

integrals over the two regions:

I
+
up =

ˆ αu+
up(L∗)

0
dL̃

(
1

α
+

γ − 2α

2α2
+

α2 + β − αγ

3α3

)
L̃3

+

ˆ L+
up

αu+
up(L∗)

dL̃

(
L̃2uΛ +

γ − 2α

2
L̃u2Λ +

α2 + β − αγ

3
u3Λ

)
(3.62)

Integrating yields

I
+
up =

(
1

α
+

γ − 2α

2α2
+

α2 + β − αγ

3α3

)
α4
(
u+up(L∗)

)4

4

+

(
(L+

up)
3 − α3

(
u+up(L∗)

)3)
uΛ

3
+

γ − 2α

4

(
(L+

up)
2 − α2

(
u+up(L∗)

)3)
u2Λ

+
α2 + β − αγ

3

(
L+
up − αu+up(L∗)

)
u3Λ (3.63)

For the integral I
+
down, we consider the regions 0 < L̃ < f2

ZΛ and f2
ZΛ < L̃. In the

first case, u+down = 0 in which case this entire portion of the integral vanishes, while in the

6Note that we could have considered u+
up(L

+
up) instead of u+

up(L∗) as the upper part of the interval.

However, recall that L+
up is the smaller of either L∗ or LΛ. If L∗ > LΛ, u

+
up(L

+
up) = u+

up(LΛ) = uΛ since

from the definition of LΛ, the intequality uΛ < LΛ/α always holds.
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second, u+down = (L̃− f2
ZΛ)/α. If L∗ < f2

ZΛ
2 then the entirety of I

+
down = 0, so we have

I
+
down = −θ(L∗ − f2

ZΛ
2)

ˆ L+
up

f2
ZΛ2

dL̃

(
1

α

(
L̃3 − f2

ZΛ
2L̃2
)
+

γ − 2α

2α2

(
L̃3 − 2f2

ZΛ
2L̃2 + f4

ZΛ
4L̃
)

+
α2 + β − αγ

3α3

(
L̃3 − 3f2

ZΛ
2L̃2 + 3f4

ZΛ
4L̃− f6

ZΛ
6
))

= −θ(L∗ − f2
ZΛ

2)

ˆ L+
up

f2
ZΛ2

dL̃

((
1

α
+

γ − 2α

2α2
+

α2 + β − αγ

3α3

)
L̃3

− f2
ZΛ

2

(
1

α
+

γ − 2α

α2
+

α2 + β − αγ

α3

)
L̃2

+ f4
ZΛ

4

(
γ−2α

2α2
+

α2+β−αγ

α3

)
L̃− f6

ZΛ
6α

2+β−αγ

3α3

)

Integrating yields

I
+
down = −θ(L∗ − f2

ZΛ
2)

(
f8
ZΛ

8

(
1

12α
−

γ − 2α

24α2
+

α2 + β − αγ

12α3

)

−f6
ZΛ

6α
2 + β − αγ

3α3
L+
up + f4

ZΛ
4

(
γ − 2α

4α2
+

α2 + β − αγ

2α3

)
(L+

up)
2

−
1

3
f2
ZΛ

2

(
1

α
+
γ−2α

α2
+
α2+β−αγ

α3

)
(L+

up)
3+

(
1

4α
+
γ−2α

8α2
+
α2+β−αγ

12α3

)
(L+

up)
4

)

Notice that when one ignores warping and the finite fluxes, α = 1, K̂ξ = 0, and Λ → ∞,

implying β = 1, γ = −2−|F|2, u+up(L∗) = L∗, and L+
up = L∗. In this case, we must go back

to the expression (3.62) and note that the second integral in that expression vanishes since

the lower and upper bound of integration are both L∗. Furthermore the integral I
+
down

vanishes due to the θ-function prefactor. The index density in the unwarped case is thus

µUnwarped
I (ξ, τ) = | det g|I +

up = | det g|
L4
∗

4

(
6+3γ−6+2+2β−2γ

6

)
= | det g|

L4
∗

4!
(2− |F|2)

(3.64)

This precise combination gives us the curvature tensor as argued in [3, 4]. So, our expression

reduces to the correct form in the unwarped, infinite flux case. We now turn our attention

to the case where α < 0.

3.3.2 The case α < 0

Once again, we first establish the lower and upper bounds on L̃ and u:

• Suppose we are at the lower bound on v, namely v = 0. In this case, the tadpole

constraint L̃−αu−v = 0 tells us that the lower bound attained by L̃ is L−
down = αuΛ.

Note that this is negative.

• Consider some fixed L̃ ≤ f2
ZΛ

2; If L̃ > 0, then there is always a v = L̃ to cancel it,

and the lower bound for u in this case is 0. However, if L̃ < 0, the fact that v ≥ 0
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implies that for the constraint to hold, we need the lower bound for u to be L̃/α. So

in general, the lower bound for u is u−down = max(0, L̃/α).

• By similar reasoning to the previous case, if L∗ < f2
ZΛ

2, then it may remain the

upper bound on L̃. However, if L∗ > f2
ZΛ

2, then the upper bound on L̃ becomes

f2
ZΛ

2. So in general, the upper bound on L̃ is L−
up = min(L∗, f

2
ZΛ

2).

• Consider again a fixed L̃, and suppose v is at its upper bound of f2
ZΛ

2. If αuΛ >

L̃−f2
ZΛ

2, then the upper bound of u must be truncated to (L̃−f2
ZΛ

2)/α. Otherwise,

if αuΛ < L̃ − f2
ZΛ

2, then the upper bound on u remains uΛ. In general then, u−up =

min
(
uΛ, (L̃− f2

ZΛ
2)/α

)
.

Given these bounds on u and L̃, we may now integrate over v, eliminating the tadpole

delta function to get

µ−
I ∝

ˆ L−
up

L−
down

dL̃

ˆ u−
up(L̃)

u−
down

(L̃)
du | det g|

(
L̃2 + (γ − 2α)L̃u+ (α2 + β − αγ)u2

)
(3.65)

Carrying out the u integration yields

µ−
I ∝

ˆ L−
up

L−
down

dL̃| det g|

(
L̃2(u−up − u−down) + L̃

(
γ − 2α

2

)(
(u−up)

2 − (u−down)
2
)

+
α2 + β − αγ

3

(
(u−up)

3 − (u−down)
3
))

(3.66)

where we have suppressed the L̃ dependence of u−up, and u−down.

As before, split the integral into two parts, I −
up and I

−
down, involving just the u−up and

u−down parts, respectively. To compute I −
up we consider two cases:

• Suppose L∗ < LΛ, where we recall LΛ = αuΛ+f2
ZΛ

2. Note that since α < 0, we have

that LΛ < f2
ZΛ

2, and thus, L−
up = L∗ in this case. We also see that u−up = uΛ, and so

in this case, the integral I −
up is simply

I
−
up =

ˆ L∗

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2Λ +

α2 + β − αγ

3
u3Λ

)

• Suppose that L∗ > LΛ. In this case, for L̃ < LΛ, u
−
up = uΛ as before, but when

L̃ > LΛ we have u−up = (L̃− f2
ZΛ

2)/α. So the integral splits into two parts

I
−
up =

ˆ LΛ

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2Λ +

α2 + β − αγ

3
u3Λ

)

+

ˆ L−
up

LΛ

dL̃

(
L̃2

(
L̃− f2

ZΛ
2

α

)
+ L̃

(
γ − 2α

2

)(
L̃− f2

ZΛ
2

α

)2

+
α2 + β − αγ

3

(
L̃− f2

ZΛ
2

α

)3)
(3.67)
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These two expressions can be joined if we introduce Lmid = min(L∗, LΛ):

I
−
up =

ˆ Lmid

L−
down

dL̃

(
L̃2uΛ + L̃

(
γ − 2α

2

)
u2Λ +

α2 + β − αγ

3
u3Λ

)

+

ˆ L−
up

Lmid

dL̃

(
L̃2

(
L̃− f2

ZΛ
2

α

)
+

(
γ − 2α

2

)
L̃

(
L̃− f2

ZΛ
2

α

)2

+
α2 + β − αγ

3

(
L̃− f2

ZΛ
2

α

)3)
(3.68)

The integral in the second line above vanishes if Lmid = L∗, since in that case L−
up also is

L∗. Carrying out the integral yields (after plugging in L−
down = αuΛ)

I
−
up =

uΛ
3
(L3

mid − α3u3Λ) +
γ − 2α

4
u2Λ(L

2
mid − α2u2Λ) +

α2 + β − αγ

3
u3Λ(Lmid − αuΛ)

+
1

4

(
1

α
+

γ − 2α

2α2
+

α2 + β − αγ

3α3

)(
(L−

up)
4 − L4

mid

)

−
f2
ZΛ

2

3

(
1

α
+

γ − 2α

α2
+

α2 + β − αγ

α3

)(
(L−

up)
3 − L3

mid

)

+
f4
ZΛ

4

2

(
γ − 2α

2α2
+

α2 + β − αγ

α3

)(
(L−

up)
2 − L2

mid

)

−f6
ZΛ

6

(
α2 + β − αγ

3α3

)
(L−

up − Lmid)

The integral I
−
down vanishes when L̃ > 0 since in that case u−down = 0. Thus, the only

region that contributes is where L−
down ≤ L̃ ≤ 0, in which u−down = L̃/α. We have,

I
−
down = −

ˆ 0

L−
down

dL̃

(
1

α
L̃3 +

γ − 2α

2α2
L̃3 +

α2 + β − αγ

3α3
L̃3

)

which gives

I
−
down =

1

4

(
1

α
+

γ − 2α

2α2
+

α2 + β − αγ

3α3

)
α4u4Λ

where we have again used L−
down = αuΛ.

The full index density is thus

µI(ξ, τ)/ det g = (I +
up + I

+
down)θ(α) + (I −

up + I
−
down)θ(−α) (3.69)

In the unwarped, infinite flux case where a consise geometric result is obtained, one can

integrate out the axio-dilaton to obtain an effective density only in terms of the complex

moduli. However, in our case this type of integration proves intractable. As a result we

will when comparing with simulations have to fix a value of the axio-dilaton and compare

the un-integrated form of our density.
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4 Numerical vacuum statistics

To perform a numerical study of the distribution of vacua in moduli space near the

conifold point, we will randomly choose appropriate fluxes F = (F0, F1, F2, F3) and

H = (H0, H1, H2, H3) and then solve the conditions DτW = 0 and DξW = 0 for the

moduli space coordinate ξ. Here W = NiΠi is the superpotential, and N is an 8-vector

whose first four components are those of F and last four are those of H. We work in a

basis such that the vector of 4-fold periods Π = (Σ, τΣ), where Σ is the vector of periods

on the 3-fold. Near the conifold point, the vector of 3-fold periods takes the form:

Σ =
∞∑

n=0

anξ
n + bξ log(−iξ) , (4.1)

where the an and b are constant vectors associated with the expansion of the periods. Note

that in the case of a single complex modulus, the vector b = (0, 0, 0, b0), since only Σ0 has

non-trivial logarithmic behavior near the conifold. Also, the local coordinate around the

conifold point is proportional to Σ3, which implies that the vector a0 = (0, a20, a
1
0, a

0
0).

4.1 Unwarped analysis

The unwarped Kähler potential is

e−K= −iΣ ·Q ·Σ = −i
(
(an ·Q ·am)ξ̄nξm+(b ·Q ·am)ξmξ̄ log(iξ)+(an ·Q · b)ξ̄nξ log(−iξ)

)
,

(4.2)

where the term proportional to b ·Q · b has been dropped since given b and η it vanishes.

For SUSY vacua in the unwarped case

DξW = N · (∂ξΠ+ΠKξ) = 0 . (4.3)

Keeping logarithmic and constant terms gives

(F − τH) ·
(
a1 + b(log(−iξ) + 1)

)
− (F − τH) · a0

a0 ·Q · a1
a0 ·Q · a0

= 0 , (4.4)

where the fact that a0 · Q · b = 0 has been used to simplify the expression. This is an

equation of the form

A+ B log(−iξ) = 0 , (4.5)

with

A =
1

c
(F− τH) · b(a0 ·Q · a0) + (F− τH) · a1(a0 ·Q · a0)− (F− τH) · a0(a1 ·Q · a0)

(4.6)

B = (F− τH) · b(a0 ·Q · a0) . (4.7)

The leading-order constraints arising from requiring DτW = 0 are

τ =
F · Σ

H · Σ
=

F · a0
H · a0

. (4.8)
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This implies that

F − τH =
(H · a0)F − (F · a0)H

H · a0
(4.9)

Before considering the effects of warp corrections, it’s worth determining how close

to the conifold vacua may be found in the unwarped scenario. The DξW = 0 constraint

implies that |cξ| is exponentially suppressed by the ratio of |A/B|, so if |A| is even just a

couple of orders of magnitude greater than |B|, we should expect to see vacua on the order

of 10−100 units away from the conifold point — indeed, this has been observed in previous

studies. In order for |A| to differ appreciably from |B| the quantity |(F − τH) · b| should be

relatively small compared to |(F − τH) ·a0| or |(F − τH) ·a1|. Using the form of the vector

b above, this indicates that the fluxes through the collapsing cycle, F3 and H3 should be

small relative to some of the other fluxes.

4.2 Warped analysis

Introducing warping leads to the corrections (3.46) and (3.47) to the Kähler potential and

its derivative. The modification to the near-conifold SUSY vacuum condition is then

DξW −→ DξW + 3Cw
ξ̄1/3

ξ2/3
N ·Π . (4.10)

Now, assuming that Cw is small (i.e. the volume of the 3-fold is large) these new terms will

matter only close to ξ = 0. The SUSY condition thus leads to

A+ B log(−iξ) + C
ξ̄1/3

ξ2/3
= 0 , (4.11)

with A and B as before and

C = 3Cw(F − τH) · a0 . (4.12)

From this, we can see the rough influence of warping on the distribution of vacua.

In the unwarped case, we expect to find vacua 10−100 or so away from the conifold with

fluxes yielding |A| ∼ 100|B| (which with fluxes constrained to lie in (0, 100 is about the

maximum order of magnitude difference that we expect). If however, Cw ∼ 10−20, then for

|ξ| ∼ 10−100, the warp term contribution is on the order of 1010, swamping the logarithmic

contribution and requiring fluxes |A| ∼ 1010 which lies beyond the range we consider.

In the region of strong warping where the logarithmic term is dominated by the warping

term, the distance of a vacuum from the conifold point is thus set by |C/A|3. Given that A

is at maximum of roughly 100 or so, the constant Cw, and thus, the overall volume of the

Calabi-Yau, determines how near the conifold vacua lie. This can dramatically truncate

the range — since the assumption of large but finite volume is well satisfied by volumes of

order 1020, but in those cases, vacua will not show up much closer than 10−60. We can get

vacua at around 10−120 by taking a volume of order 1040, but in the absence of warping,

vacua as far in as 10−200 are expected. Thus, warping pushes vacua away from the conifold

point.
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4.3 Monte-Carlo vacua

For the numerical analysis, we use the Calabi-Yau manifold labeled model 3 in the ap-

pendix of [1]. This family of Calabi-Yau can be expressed as a locus of octic polynomials in

WP
4,1,1,1,1. The corresponding orientifold arises from a certain limit of F-theory compact-

ified on a Calabi-Yau fourfold hypersurface in WP
12,8,1,1,1,1, following the methods of [10],

and briefly described in [11]. For our purposes, we use the fact that the fourfold has Euler

characteristic χ = 23328, which implies that Lmax = χ/24 = 972 for the tadpole condition

for flux compactification on the corresponding orientifolded 3-fold.

Since the warped form of the near conifold equation is not as simple to solve as in the

unwarped case, a slightly more involved approach is necessary. We begin by defining two

real variables ρ and θ such that

− iξ = ρ3eiθ (4.13)

We take ρ ≥ 0 and 0 ≤ θ ≤ 2π. In terms of these variables, eqn (4.11) and its complex

conjugate expression take the form

A+ 3B ln(ρ) + iBθ +
C

ρ
e−iθ = 0 (4.14)

A+ 3B ln(ρ)− iBθ +
C

ρ
eiθ = 0 (4.15)

Multiplying the first equation by B and the second one by B, and then adding and

subtracting the two, we find two purely real or imaginary equations. Letting A = aeiα,

B = beiβ , and C = ceiγ , we have

a sin(α− β) + bθ +
c

ρ
sin(γ − β − θ) = 0 (4.16)

a cos(α− β) + 3b log(ρ) +
c

ρ
cos(γ − β − θ) = 0 (4.17)

We now solve for ρ in terms of θ and then numerically solve the final equation for θ.

It seems natural to solve equation (4.16) for ρ since it is a linear equation. However,

this approach fails in the limit Cw → 0 since then c → 0 too. Instead we solve for ρ in

equation (4.17). One can rearrange the equation as

ρeΓ log(ρeΓ) = −
ceΓ

3b
cos(γ − β − θ) (4.18)

Here we have defined the constant Γ = a cos(α−β)
3b . This is of the form x log(x) = y which

has the solution x = y/W (y) where W (y) is the Lambert W -function. We therefore find

ρ(θ) =
−c cos(γ − β − θ)

3bW
(
− ceΓ

3b cos(γ − β − θ)
) (4.19)

Consider equation (4.16), which now only depends on θ. Under the assumption that

there is only one near conifold vacuum for each set of fluxes, the left hand side must

either start out positive, and go negative or vice versa. To find the zero-crossing, we

– 20 –



J
H
E
P
0
7
(
2
0
1
2
)
0
6
6

Figure 2. A comparison between numerical and analytical distributions. Red circles mark the

numerical data while the blue curve is the integrated analytical distribution. Distance from the

conifold |ξ| is plotted on a log scale on the horizontal axis, while the vacuum count is plotted on

the vertical axis.

divide the region [0, 2π] into two equally pieces and then determine in which region (if

any) equation (4.16) changes sign. If such a region is found, we apply the same method to

that region, splitting it into two smaller intervals, continuing in this way until we reach a

predetermined level of accuracy. There are two relevant comments. First, in equation (4.19)

it is not clear that the value of ρ is real, or even positive. We must therefore exclude the

regions where ρ is either negative or complex. Fortunately, if ρ is real, it is never negative

since W (x) must have the same sign as x. A necessary and sufficient condition for ρ to

be real is that the argument of the Lambert W function is greater than or equal to −1/e.

This means that the relevant region to begin with may not be the entire interval [0, 2π].

Second, it turns out that the Lambert W function has two real branches for arguments

between −1/e and 0. Thus, both of these branches must be considered.

To better compare the numerical and analytical and numerical distributions, we fix

τ and then select a random sets of fluxes F and H consistent with our choice of τ and

satisfying the tadpole condition, F ·Q ·H ≤ Lmax. For the particular model we consider,

Lmax = 972, and we display a run using τ = 2i, and Cw = 10−15 in figure 2. The figure

shows a numerical run compared to the analytical distribution. We plot the vacuum count

and integrated analytical distribution as measured around the conifold point using a log

scale for the distance from the conifold. As is evident from the figure, the count receives two

major contributions: the one farther away from the conifold point is the usual contribution
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that is present without warping. However, we also see a major contribution much closer

to the conifold at a distance roughly on the order of C3
w. This contribution is due to the

strong warping effects and is matched by the cumulative analytical results.

5 Discussion

We’ve analyzed the distribution of flux vacua in the vicinity of the conifold point, including

the effects of warping, and confirmed our results by a direct numerical Monte Carlo search.

In comparison with the well known results, that don’t include warping, we find a significant

dilution of vacua in close proximity to the conifold, with the proximity scale set by the

volume of the Calabi-Yau compactification.

One complication in the analytical approach, relative to the unwarped case, is the need

to bound the fluxes — a physically sensible requirement but one that can be avoided in

the unwarped analysis, yielding the geometrical result of [3, 4]. It would be interesting

to see whether the warped distribution of vacua can once again be related to intrinsic

properties of the moduli space through a more complete geometrical treatment, likely

requiringing careful consideration of the generalized complex geometry of conformal Calabi-

Yau spaces [6, 7].
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A Covariant derivatives

We start with the standard definition of the Kähler potential

e−K =

ˆ

Ω̂4 ∧ Ω̂4

A rescaling of the holomorphic 4-form Ω̂4 → ef(z)Ω̂4 implies that K → K − f(z) − f(z).

The covariant derivative is defined so that it is covariant under such rescalings:

DaΩ̂4 → ef(z)DaΩ̂4 = (Da − ∂af)
(
ef(z)Ω̂4

)

implying that DaΩ̂4 = (∂a +Ka)Ω̂4. Note also that the holomorphic covariant derivative

annihilates antiholomorphic objects, i.e. DaΩ̂4 = ∂aΩ̂4 = 0. We see then that

Dae
−K = (∂a +Ka)e

−K = 0

Notice that covariance dictates that

Dae
K = (∂a −Ka)e

K = 0
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In addition to this Kähler scaling structure, the complex structure moduli space is

a manifold with a natural Kähler metric Kab̄ = ∂a∂b̄K. We can thus define a metric

compatible connection via

Γa
bc = Kad̄Kd̄bc

where Kd̄bc = ∂cKd̄b. Note that the connection components with mixed holomorphic and

antiholomorphic indices vanish. By suitably extending the covariant derivative Da, we

can ensure that it transforms covariantly under both Kähler rescalings and coordinate

transformations on the complex moduli space. In particular, since the connection is metric

compatible, DaKbc̄ = 0.

The superpotential

Ŵ =

ˆ

G4 ∧ Ω̂4

scales as Ω̂4, and thus

DaŴ = ∂aŴ +KaŴ

A supersymmetric vacuum satisfies the conditions DaŴ = 0. The components of the

fermion mass matrix are

∂aDbŴ = ∂a∂bŴ +KabŴ +KbŴa

Notice that at a generic point in the moduli space the quantity

DaDbŴ = ∂aDbŴ +KaDbŴ − Γc
abDcŴ = ∂aDbŴ +KaDbŴ −Kabd̄K

d̄cDcŴ

does not equate to the fermion mass matrix. However, the extra terms drop out at super-

symmetric vacua.

Now let Ω̂4 → Ω4 = eK/2Ω̂4 and similarly for the (0,4)-form. Notice that the scaling

properties of Ω4 imply that

DaΩ4 =

(
∂a +

1

2
Ka

)
Ω4 =

(
∂a +

1

2
Ka

)(
eK/2Ω̂4

)
= eK/2(∂a +Ka)Ω̂4 = eK/2DaΩ̂4

The rescaled (4,0) and (0,4) forms are convenient since they remove factors of eK from

various expressions. In particular we have
ˆ

Ω4 ∧ Ω4 = 1

We can also go to an orthonormal frame by introducing vielbeins δAB = eaAe
b
B
Kab̄.

The covariant derivative must be extended so as to keep the vielbeins covariantly constant:

Dae
b
B = ∂ae

b
B +Kbd̄Kd̄ace

c
B − ωaB

CebC = 0

implying that

ωAB
C = eaAωaB

C = eCb e
a
A∂ae

b
B +Kbd̄Kd̄ace

a
Ae

c
Be

C
b

Given these definitions, we can now go to rescaled expressions in the orthonormal frame:

DADBW = ∂ADBW +KADBW − ωAB
CDCW

once again, the expression above agrees with the fermion mass matrix components evalu-

ated at a vacuum.
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B Computations

In this section, we provide derivations for the equations (3.29)–(3.36). To do so, recall from

equation (3.28) that the flux four form written in the basis B = {Ω4, DAΩ4, D0DIΩ4, Ω4,

DAΩ4, D0DIΩ4} is

G4 = XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c. (B.1)

It’s useful to note that DADBΩ4 is a (2,2)-form. In fact, given the nature of our

Calabi-Yau 4-fold, essentially factorizing into a 3-fold and a torus, this (2,2)-form can be

decomposed as (2, 2) = (1, 0)∧ (1, 2)⊕ (0, 1)∧ (2, 1). To see this, note that DAΩ4 could be

a mixture of a (3, 1)⊕ (4, 0), but the (4,0) component vanishes:
ˆ

M
DAΩ4 ∧ Ω4 = DA

(
ˆ

M
Ω4 ∧ Ω4

)
−

ˆ

M
Ω4 ∧DAΩ4 = 0

where the two terms vanish given the properties of the covariant derivative defined above.

Similarly DADBΩ4 could in principle have (2, 2)⊕ (3, 1)⊕ (4, 0) structure. However,
ˆ

M
DADBΩ4 ∧ Ω4 = DA

(
ˆ

M
DBΩ4 ∧ Ω4

)
−

ˆ

M
DBΩ4 ∧DAΩ4 = 0

implying that there is no (4, 0) component. Furthermore
ˆ

M
DADBΩ4 ∧DCΩ4 = DA

(
ˆ

M
DBΩ4 ∧DCΩ4

)
−

ˆ

M
DBΩ4 ∧DADCΩ4

the first term on the left-hand-side is equal to DAδBC = 0. The second term becomes

δAC

ˆ

M
DBΩ4 ∧ Ω4 = 0

which shows that there is no (3, 1) component in DADBΩ4. We now turn to the identities

of interest.

• W = X

By the definition of the superpotential, we have

W =

ˆ

M
G4 ∧ Ω4

=

ˆ

M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧ Ω4 = X (B.2)

In the last step we used the orthonormality of the basis.

• DAW = YA
Once again, we will use the orthonormality of the basis. In particular we have (since

G4 is independent of the moduli)

DAW =

ˆ

M
G4 ∧DAΩ4

=

ˆ

M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧DAΩ4

= −Y B̄

ˆ

M
DB̄Ω4 ∧DAΩ4 = +YA (B.3)

In the last step we again used (
´

MDB̄Ω4 ∧DAΩ4 = −δB̄A).
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• D0D0W = 0

We have

D0D0W =

ˆ

M
G4 ∧D0D0Ω4 (B.4)

Now D0Ω4 is a (0, 1) ∧ (3, 0)-form. In fact, we see that

Dτ Ω̂1 = (∂τ +Kτ )(α− τβ) = Kτ (α− τβ) = Kτ Ω̂1

where we have used Kτ = −1/(τ − τ). Using the fact that the vielbein e00 = 1/Kτ ,

we have D0Ω4 = Ω1 ∧ Ω3, however we know that D0Ω1 = 0, so the identity holds.

• D0DIW = ZI

This identity follows from orthonormality:

D0DIW =

ˆ

M
G4∧D0DIΩ =

ˆ

M

(
XΩ4−Y ADAΩ4+ZID0DIΩ4+c.c.

)
∧D0DIΩ = ZI

(B.5)

• DIDJW = FIJKZ
K

We will again use the definition for G4

DIDJW =

ˆ

M

(
XΩ4 − Y ADAΩ4 + ZID0DIΩ4 + c.c.

)
∧DIDJΩ4 (B.6)

As discussed above DADBΩ4 is a (2,2)-form which breaks up as (1, 0)∧(1, 2)⊕(0, 1)∧

(2, 1). Now, DIDJΩ4 is precisely a (1, 0) ∧ (1, 2)-form, so the covariant derivatives

only act on the 3-fold factor. The only pieces of the integral above that can yield

a non-zero result must be of the form (0, 1) ∧ (2, 1), which are thus proportional to

D0DIΩ4. This leaves us with

DIDJW = Z
K
ˆ

M
D0DKΩ4 ∧DIDJΩ4

The DK and D0 derivatives commute, so we have

DIDJW = Z
K
DK

(
ˆ

M
D0Ω4 ∧DIDJΩ4

)
− Z

K
ˆ

M
D0Ω4 ∧DKDIDJΩ4

The first term on the right-hand-side vanishes due to orthonormality since D0Ω4 is

a (3,1)-form while DIDJΩ4 is a (1, 0)∧ (1, 2)-form. Factorizing Ω4 = Ω1 ∧Ω3, we see

that D0Ω4 = Ω1 ∧ Ω3. The integral over the torus will simply yield a factor of −i,

leaving us with

DIDJW = iZ
K
ˆ

CY
Ω3 ∧DKDIDJΩ3

However, pulling out all scaling factors and vielbeins, we see that the resulting deriva-

tives can all be converted to partials. This allows us to rearrange the ordering and

gives

DIDJW = iZ
K
ˆ

CY
Ω3 ∧DIDJDKΩ3 = FIJKZ

K
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• D̄ĀDBW = δĀBX

First consider

D̄āDbŴ = ∂̄ā(∂b +Kb)Ŵ = (∂̄ā∂b +Kbā +Kb∂̄ā)Ŵ = KabŴ

The first and last term vanish since Ŵ is holomorphic in the moduli. Then, since

W = X, by reintroducing the scaling factor eK/2 and the vielbeins, we have

D̄ĀDBW = δĀBX (B.7)

• D̄0̄DIW = 0

We can easily see this by noting that the outer derivative is a regular partial derivative

and that this commutes with the inner derivative. Then, since Ŵ is holomorphic in

τ , ∂̄0̄ sends the expression to zero.
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