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1 Introduction, summary and an application to N = 8 supergravity

Dispersion relations based on analyticity, unitarity and Lorentz invariance of scattering

amplitudes can be interpreted as consistency conditions that constrain low-energy data,

i.e. parameters of an effective action. Conversely, if we know the low energy effective action

of a given theory, dispersion relations either constrain any of its possible UV completions,

or show that no completion exists. Beautiful examples of the latter phenomenon are given

in ref. [1]. In this paper we revisit topics addressed years ago by one of us [2] and find

their implications on the existence and properties of UV completions of low energy effective

theories. In ref. [2] it was argued that when effective field theories of elementary particles

admit a perturbative expansion (in some parametrically small dimensionless coupling con-

stant), then the gyromagnetic ratio of the (weakly interacting) particles described by such

theory had to be close to a preferred “natural” value: g = 2. This result was obtained in a

Lagrangian approach. Many years earlier, Weinberg [3] also proposed an argument, based

on a generalization of the Gerasimov-Drell-Hearn (GDH) [4, 5] sum rule, which similarly

selected g = 2 as the preferred value in weakly interacting theories.

Given a particle of massm and electric charge e, the GDH-Weinberg sum rule connects

the gyromagnetic ratio g to a dispersion integral. As usual, g is defined as the ratio of the

particle’s magnetic moment µ to its spin J , so that (in the particle’s rest frame):

~µ =
eg

2m
~J . (1.1)
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The main ingredient of the Weinberg sum rule is the low energy forward1 Compton

scattering amplitude of a photon with energy ω and helicity λ off a massive target of spin

J . This amplitude, fscat(ω, λ), is a real analytic function of the photon’s energy ω away

from the real ω-axis, where cuts and poles may exist at ω > 0. The imaginary part of fscat
is given by the optical theorem:

Imfscat(ω, λ) =
ω

4π
σtot(ω, λ) , (1.2)

where σtot is the total cross-section for a photon with helicity λ and energy ω. Define now

the following function:

f−(ω
2) ≡ fscat(ω,+1)− fscat(ω,−1)

2ω
. (1.3)

When no intermediate (one particle) state exists in the Compton scattering, with either

mass or spin different from those of the target, then, it can be checked that (see, e.g.,

appendix A):

f−(ω
2 → 0) =

e2Jz
16πm2

(g − 2)2 . (1.4)

Using the optical theorem (1.2) and definition (1.3), we have:

Imf−(ω
2) =

1

8π
∆σ(ω) , ∆σ(ω) ≡ σtot(ω,+1)− σtot(ω,−1) . (1.5)

Assuming that f−(ω
2) vanishes when |ω2| → ∞, one can write an unsubtracted dispersion

relation:

f−(ω
2) =

1

4π2

∫ ∞

0

∆σ(ω′)

ω′2 − ω2 − iǫ
ω′dω′ . (1.6)

The validity of this assumption is far from obvious and its justification requires some

additional assumptions about the UV behavior of the theory. We will argue below that

unsubtracted dispersion relations hold in two important case: superstring theory and any

unitary completion of N = 8 supergravity.

When ω2 = 0, eqs. (1.4) and (1.6), impliy the GDH-Weinberg sum rule [3–5]:

πe2Jz
4m2

(g − 2)2 =

∫ ∞

0

∆σ(ω′)

ω′
dω′ . (1.7)

In weakly interacting systems, the r.h.s. of eq. (1.7) is parametrically smaller than the

l.h.s. , since in the former the final state contains at least two particles and is thus O(e4),

while the latter is O(e2); hence g = 2 +O(e2).

1Assume that the photon propagates along some z-direction with helicity λ = ±1, and the target has a

spin-z projection Jz. For more details, see appendix A.
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1.1 A puzzle with N = 8 supergravity and a possible solution

In truncated N = 2 supergravity theory (where one drops the cosmological and quartic

Fermionic terms from the Lagrangian given in ref. [6]) it can be checked that the gravitino

has indeed g = 2, see also ref. [7]. On the other hand, in spontaneously broken N = 8

supergravity theory [8], see also [16], contrary to expectations, one finds that g = 1, for

both spin-1/2 and spin-3/2 fields. To show this, we use the dimensionally reduced action2

given in ref. [11], and consider only the relevant terms of the Lagrangians for spin-1/2 and

spin-3/2 fields, defined as χabc and ψa
µ, respectively. In our notations (see appendices), and

in units, κ2 = 4πGN = 1, where GN is the 4D Newton’s constant, these terms, written in

flat space-time, unitary gauge (ψa
5 = 0) and near the ground state, take the following form:

L4D(χ) =
1

12
χ̄abc

[

i (∂�+ 2iMabcB�)−Mabc +
1

4
σµνBµν

]

χabc , (1.8)

L4D(ψ) =
1

2
ψ̄a
µ

[

iγµρν (∂ν + 2iMaBν)−Maγ
µρ +

i

2

(

Bµρ − iγ5B̃
µρ
)

]

ψρa , (1.9)

where Bµ is a graviphoton field, Mabc and Ma are the mass matrices of χabc and ψa
µ corre-

spondingly. These spinors are USp(8) tensors, and both are charged under the graviphoton,

with a charge e = 2κm, where m is the mass of the spinor. Notice, also that there is no

χ-ψ-B mixing.

The Lagrangians above should be compared with the Dirac Lagrangian supplemented

with a Pauli term, and the Lagrangian of a charged Rarita-Schwinger field with non-

minimal terms [7]:

LDP = χ̄

[

i(∂�+ ieB�)−m−
e(g1/2 − 2)

8m
σµνBµν

]

χ , (1.10)

LRS = ψ̄µ

[

iγµρν(∂ν + ieBν)−mγµρ +
ie

m

{

3

4

(

g3/2 −
2

3

)

Bµρ − iαγ5B̃
µρ

}]

ψρ , (1.11)

where α is a parameter unrelated to g3/2.
3 Finally, comparing (1.8)–(1.9) with (1.10)–

(1.11), we conclude that in case of the spontaneously broken N = 8 supergravity: g1/2 =

g3/2 = 1 and α = 1/4.4 It appears that g = 1 for all heavy particles in the Kaluza-

Klein theory [12]. This observation was also confirmed within the string theory and on the

example of D0-branes in [14, 15].

It is often the case that in supergravity theories, e ∼ m/MP , where MP is the Planck

mass, suggesting that the charge can be made arbitrarily small. It is thus natural to ask:

why eq. (1.7) fails so miserably in case of the spontaneously broken N = 8 supergravity

2The N = 8 supergravity theory with global E(6) and local USp(8) invariance was constructed in

five dimensions by Cremmer, Scherk and Schwarz in ref. [8]. Spontaneous symmetry breaking of N = 8

supergravity theory is achieved by dimensional reduction to 4D via the Scherk-Schwarz mechanism [9, 10].
3As was observed in [7], the γ5 matrix in the ψ̄µγ5B̃

µνψν term of (1.11) mixes the “large” and “small”

components of ψµ, and thus gives contributions of higher order in ω. That is why this term does not

contribute to g3/2.
4Similarly, comparing (1.11) with the truncated N = 2 supergravity [6], one can deduce that: g3/2 = 2

and α = 1. In N = 2 supergravity with a gauged central charge [13], g3/2 = 2, however, g1/2 6= 2 or 1.
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theory? One could argue that this happens because f−(ω
2) does not vanish sufficiently

fast, when |ω2| → ∞, since supergravity is power counting non-renormalizable. How-

ever, spontaneously broken N = 8 supergravity can be embedded in type II superstring

theory [17],5 where the condition limω2→∞ f−(ω
2) = 0 holds, order-by-order in string per-

turbation theory.

A more explicit and general argument supporting unsubtracted dispersion relations is

that, as argued in refs. [19, 20] (see also [21]), the gravitational 2-body elastic scattering

amplitude f(s, t) of any theory obeying Hermitian unitarity and crossing symmetry is

polynomially bound in the complex-s upper half plane for fixed Mandelstam variable t.

Hermitian unitarity implies f(s, t)∗ = f(s∗, t∗), thus polynomial boundedness in s for the

forward elastic scattering amplitude (t = 0). Furthermore, eq. (1.6) suggests that the

scattering amplitude f−(s, 0) is not only polynomially bound, but indeed vanishes at large

positive s as ∼ 1/s. Crossing symmetry, Hermitian unitarity, and the same argument used

to prove polynomial boundedness, i.e. the Phragmen Lindelöf theorem, then show that

f−(s, 0) vanishes at large s in the whole complex plane.6

As we will argue, the solution to this puzzle is different and it is one of the main results

of this paper. The point is that the GDH-Weinberg sum rule is modified when the Compton

scattering amplitude includes intermediate one-particle states of masses Mn 6= m.7 Taking

into account this possibility, we find the following generalization of the GDH-Weinberg

sum rule:

e2Jz
4m2

(g − 2)2 = [K†,K]ii +
1

π

∫ ∞

0

∆σ

ω
dω , (1.12)

[K†,K]ii ≡
∑

n

[

(Kni)
†Kni −Kin(Kin)

†
]

, Kni ≡
[

2ωn

√

m(ωn +m)
]−1

〈n|~ǫλ=1
~J |i〉 ,

where m is the mass of the target, Mn is the mass of the intermediate state, ωn =
1
2m(M2

n −m2), ~J is the electromagnetic current, and ~ǫλ is the polarization vector of the

photon with helicity λ. The matrix Kni describes transition between states of different

mass, and possibly spin.

This sum rule should be obeyed not only in string theory, but also in any Lorentz

invariant, causal, unitary UV completion of N = 8 supergravity. Because e ∼ m/MP , the

l.h.s. of (1.12) is O(1/M2
P ), independent of the mass m, and thus is the r.h.s. . Generically

this implies that the new intermediate states have masses Mn independent of m; these

masses thus define a cutoff, below which the theory is described by N = 8 supergravity.

Type II superstring compactified on a 6-torus is a concrete example of this general situation.

In this case the relation between the string mass scale MS ∼ 1/
√
α′ and the Planck scale

is MP = M4
S

√
V6/gS , where V6 is the volume of the 6-torus, and gS is the string coupling

constant. In the perturbative regime, where V6M
6
S ≫ 1 and gS ≪ 1, we have: MP ≫MS .

5Spontaneously broken N = 4, 2, 1 theories can be embedded also in heterotic string theory [18].
6Eq. (1.8) gives a tree-level f−(s, 0) that does not vanish at s = ∞; this fact alone shows that N = 8

supergravity cannot be a perturbatively complete theory of gravity.
7In this case, ∆σ becomes a sum of terms proportional to δ(ω − ωn) plus the contribution from the

continuum.
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When all radii of the torus are O(1/MS), MS becomes the only UV cutoff scale and

Mn = O(MS).

The fact that new states, besides those already present in N = 8 supergravity,8 are

necessary for N = 8 to admit a UV completion has an immediate consequence. It implies

that N = 8 supergravity is not perturbatively complete by and in itself. Such a statement,

that is at variance with other remarkable finiteness properties of the theory (see e.g [22])

warrants further discussion. It follows from two assumptions, besides Lorentz invariance

and unitarity, both satisfied by string theory but holding more generally in any perturbative

regularization of gravity. The first is that the cutoff scale Λ is parametrically smaller than

MP : Λ = λcMP , where λc ≪ 1 is the dimensionless coupling constant of the UV complete

theory. The second assumption is that scattering amplitudes are regular in the limitm→ 0;

more precisely, that the massm appears only with positive powers in scattering amplitudes.

One can then use the fact that forward scattering depends only on the relativistic invariant

s = m2 + 2mω to rewrite the sum rule (1.12) as

λ2c
πJz
4Λ2

(g − 2)2 = λ2c

∫ ∞

m2

ds

s−m2

∑

n

fn[m
2, (s−m2)/Λ2]δ(s−M2

n) +O(λ4c). (1.13)

Terms O(λ4c) come from the continuum part of the total cross section, in which the final

state contains at least two particles. By assumption, the m → 0 limit of eq. (1.13) is

smooth, so the functions fn[0, x] are well defined, m-independent and dimensionless. In

the limit m→ 0, dividing both sides of eq. (1.13) by λ2c , we get:

πJz
4Λ2

(g − 2)2 =

∫ ∞

0

ds

s

∑

n

fn[0, s/Λ
2]δ(s−M2

n) +O(λ2c). (1.14)

If the l.h.s. of (1.14) is nonzero, then the r.h.s. must contain new states with masses

Mn = O(Λ), because, by assumption, the only massless states in the theory are those of

N = 8 supergravity.9

One may worry that at energies above MP the cross section ∆σ would never be per-

turbative because contributions from black hole intermediate states would dominate. In

general, these black holes carry mass M , charge Q and angular momentum J . In such

case, the cross section can be crudely approximated by the cross sectional area of a black

hole [19, 20]:

σJ ∼ πr2+ ≈ 4πG2
NM

2 − 2πGNQ
2 − 2π

J2

M2
(1.15)

where r+ = GNM +
√

G2
NM

2 − J2/M2 −GNQ2 is the outer horizon of the Kerr-Newman

black hole, and we assumed J2 + GNM
2Q2 ≪ G2

NM
4 or J ≪ GNM

2, since Q2 = e2 ∼
GNm

2 and m ≪ M . Clearly, the above estimate of the cross section is only applicable

in case r+ ∼ GNM ≥ 1/Λ, where Λ is a cutoff of the theory (as was mentioned above

8In a spontaneously broken phase, where gravitino is massive and charged [8].
9Because of N = 8 supersymmetry, new massless states would necessarily contain an additional massless

spin two particle interacting with supergravity particles, in contradiction with the no go theorem in [23].

– 5 –
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Λ = λcMP and λc ≪ 1). Therefore, our estimate is valid, only when M > ωc, where

ωc ≡MP (MP /Λ) = Λ/λ2c . In this case, the difference between the spin aligned (J = j+1)

and anti-aligned (J = j − 1) cross sections is:

∆σj(ω > ωc) ≡ σj−1 − σj+1 ∼
8πj

ω2
, (1.16)

and therefore, the dispersion integral can be divided into two parts as follows:

∫ ∞

0

∆σj
ω

dω =

∫ ωc

0

∆σj
ω

dω +

∫ ∞

ωc

∆σj
ω

dω ,

∫ ∞

ωc

∆σj
ω

dω ∼ 4πj

ω2
c

∼ O
(

λ2c
M2

P

)

,

(1.17)

where the second part is due to the exchange of black hole states. Since, in supergravity

theories e ∼ m/MP , from eq. (1.7) it follows that the black hole contribution to the

gyromagnetic ratio is:

(g − 2)2B.H. ∼ O
(

λ2c
)

≪ 1 . (1.18)

If N = 8 supergravity is a self-complete theory by itself, our argument shows that, unsur-

prisingly, it must unitarize at the Planck scale, in which case ωc =MP and the black hole

contributions to the dispersive integral becomes O(1).

This paper also generalizes the Weinberg-GHD sum rule in another way: it allows

for off-diagonal couplings in case particles of spin j and |j ± 1| are degenerate in mass.

The general sum rule for Compton scattering on a target of arbitrary nonzero spin-j, with

additional intermediate mass-degenerate states of spin |j ± 1| and possible heavy narrow

resonances, can be written as:

e2Jz
4m2

[

(gj − 2)2 −
(

j +
3

2

)

h2j+1/2 +

(

j − 1

2

)

h2j−1/2

]

= [K†,K]ii +
1

π

∫ ∞

0

∆σ

ω
dω .

(1.19)

where gj is the gyromagnetic ratio for a particle of spin j, and the parameters hj±1/2 are

couplings of the theory defined in eq. (3.4).10

When applied to theories where all states are either proportional to a light mass scale

m or to a higher scale M and where charges are proportional to the mass, such as Kaluza-

Klein theories or spontaneously broken extended supergravities, this sum rule generalizes

eq. (1.14) to

πJz
4M2

[

(gj−2)2−
(

j+
3

2

)

h2j+1/2+

(

j− 1

2

)

h2j−1/2

]

=

∫ ∞

0

ds

s

∑

n

fn[0, s/M
2]δ(s−M2

n)+O(λ2).

(1.20)

Since magnetic dipole couplings are already taken into account by the l.h.s. of eq. (1.20),

the dispersive integral at low s contains only quadrupole or higher multipole interactions;

therefore, fn[0, s/M
2] is at most O(s2/M4) at low s. This implies that, if the l.h.s. in (1.20)

10Notice, that the l.h.s. of eq. (1.19) can be also written as a commutator of some generator like K.

– 6 –
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is nonzero, the r.h.s. must contain contributions from the massive states, since the one-

particle contribution to the dispersive integral due to states that become massless in the

limit m→ 0 vanishes.

This paper is organized as follows: In section 2, we describe a formalism used by

Weinberg to study the low energy Compton scattering. We also study scattering on a target

of spin-1/2, with possible spin-3/2 intermediate state, and deduce some generalization of

the GDH-Weinberg sum rule. In section 3, we consider the generalization of the sum rule

to Compton scattering on a target of arbitrary spin. In section 4, we further generalize

the sum rule, assuming that there are other states with masses different from the mass of

the scatterer. In section 5, we discuss possible implications of our sum rule for nucleon to

delta electromagnetic transitions, in the large Nc limit.

2 Compton scattering: Weinberg’s approach

Define the non-diagonal vertex for the emission of a single soft photon as follows:

〈p′, s′, σ′|J µ(0)|p, s, σ〉 = Γµ
σ′σ(p

′,p) , (2.1)

where J µ is the conserved electromagnetic (EM) current, |p, s, σ〉 is a single-particle state

with momentum p, spin-s and spin z-component σ, as well as energy E(p) =
√

p2 +m2.

We adopt the following normalization:

〈p′, s, σ′|p, s, σ〉 = (2π)32Epδσ′σδ
(3)(p′ − p) . (2.2)

The S-matrix, describing the Compton scattering can be written as:

〈σ′,p′;λ′,k′|S|σ,p;λ,k〉 = iǫ∗
′

ν (k
′, λ′)ǫµ(k, λ) (2π)

4δ(4)(p+k−p′−k′)Mνµ
σ′σ(k;p

′,p) , (2.3)

Mνµ
σ′σ(k;p

′,p) ≡ i

∫

d4x eikx
[

〈p′, s, σ′|T{J ν(0)J µ(x)}|p, s, σ〉+C.T.
]

, (2.4)

where by C.T. we mean other contact terms (seagulls), such as terms emerging from the

interaction of the initial and final photon at a single point.

We will need the pole structure of Mνµ (σ, σ′ indices are dropped for convenience).

Inserting a complete set of states between the current operators, the time-ordered product

can be written as:

i

∫

d4x eikx〈p′, s, σ′|T{J ν(0)J µ(x)}|p, s, σ〉 (2.5)

=

∫

d3pn
2En(pn)

∑

n

{

〈p′, s, σ′|J ν(0)|n〉〈n|J µ(x)|p, s, σ〉 δ(3)(pn − p− k)

En(pn)− E(p)− ω − iǫ

+ 〈p′, s, σ′|J µ(0)|n〉〈n|J ν(x)|p, s, σ〉 δ(3)(pn − p′ + k)

En(pn)− E′(p′) + ω − iǫ

}

=
∑

n

{

Γν(p′,p+k)Γµ(p+ k,p)

2En(p+k)[En(p+k)−E(p)−ω−iǫ] +
Γµ(p′,p′−k)Γν(p′−k,p)

2En(p′−k)[En(p′−k)−E′(p′)+ω−iǫ]

}

.

– 7 –
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If |n〉 is a single-particle intermediate state with the same mass m as the target, then both

terms in the sum above have a pole at kµ = 0. Using eq. (2.5), in the forward scattering

limit, and near the ω = 0 pole, we get:

Mνµ(k;p′,p) ≈− 1

2mω

[

Γν(p′,p+ k)Γµ(p+ k,p)− Γµ(p′,p′ − k)Γν(p′ − k,p)

]

+O.T. ,

(2.6)

where by O.T. we mean other terms that do not contain poles at ω = 0. As usual, the

scattering amplitude will be defined as:

fscat(k
′, λ′;k, λ) =

1

8πm
ǫ∗

′

j ǫiM
ji(k′,k, ω) . (2.7)

The case when s = s′ was considered in detail by Weinberg [3]. Here, we are interested in

the case when the intermediate state could be a particle of different spin (but of the same

mass) as the target. To be more specific, we will consider a situation when |s′−s| = 1 or 0.

In particular, when s = 1/2 and s′ = 3/2, the vertex function is [see also eq. (C.2)]:11

Γν
σσ′(p′, p′ + k′) =

ieκM
2m2

ǫµναβp′µk
′
αū

σ(p′)ψσ′

β (p′ + k′) . (2.8)

In case of spin-1/2 target, we take the intermediate states to be either spin-1/2 or spin-3/2

particle state. Here, we will only need to compute the part of the amplitude with spin-

3/2 intermediate state, since the result in case of the spin-1/2 intermediate state is already

known. Using eqs. (2.6) and (2.7) [also eq. (B.7) to sum over Rarita-Schwinger (RS) states]

we compute:12

fRS(k
′, λ′;k, λ) =

iωe2κ2M
12πm2

[

(~n′ × ~ǫ′∗)× (~n× ~ǫ)
]

~J . (2.9)

In the forward-scattering limit, fRS = fRS(ω, λ), and we can define the following amplitude:

g−(ω
2) ≡ fRS(ω,+1)− fRS(ω,−1)

2ω
, (2.10)

in which case, it can be checked that:

g−(ω
2 → 0) = − e2κ2M

12πm2
Jz . (2.11)

Therefore, assuming g−(|ω2| → ∞) → 0, the total scattering amplitude will satisfy the

following generalized unsubtracted dispersion relation:

4π2[f−(0) + g−(0)] =
πe2

m2

(

κ2p −
1

3
κ2M

)

Jz =

∫ ∞

0

σtot(ω
′,+1)− σtot(ω

′,−1)

ω′
dω′ , (2.12)

where κp = (g − 2)/2 is the anomalous magnetic moment of the target (see appendix A).

Eq. (2.12) is a generalization of the GDH-Weinberg sum rule, when there is a spin-3/2

11This vertex clearly implies the conservation of EM current: kνΓ
ν
σσ′ = 0.

12From eq. (2.8) and current conservation: kµM
νµ(k;p′,p) = 0, we can deduce that O.T. in eq. (2.6) do

not contribute to this part of the amplitude.
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intermediate state in the Compton scattering process, that has the same mass as the spin-

1/2 target. One of the consequences of this sum rule is that in weakly coupled theories, the

gyromagnetic ratio for spin-1/2 particle can be different from its “natural” value g = 2.

As can be deduced from eq. (2.12),

g = 2

(

1± 1√
3
κM

)

+O(e2) . (2.13)

The same result can be obtained using Feynman diagrams in appendix C.

3 Generalization to spin-j target: first sum rule

The non-diagonal transition vertex for the emission of a single soft photon can be written

as in [26]:

Γµ(k,0) ≡ 〈k, j′, σ′|J µ|0, j, σ〉 = −2im ǫ0µαβkα〈j′, σ′|µβ |j, σ〉+O(ω2) , (3.1)

where µi is the magnetic moment and j 6= j′. Applying the Wigner-Eckart theorem, the

matrix elements of the magnetic moment can be parametrized as follows: 〈j, σ|µ3|j, σ〉 =
egjσ/2m and

〈j ± 1/2, σ − 1/2|µ−|j ∓ 1/2, σ + 1/2〉 = ± e

2m
hj
√

(j ∓ σ + 1)(j ∓ σ) , (3.2)

where µ± ≡ µ1 ± iµ2. Using eqs. (2.6) and (2.7), which are valid for any spin, the non-

diagonal contribution to the forward scattering amplitude on a target of arbitrary spin-j

( 6= 0) is:

f̃scat = − 1

16πm2ω
ǫ∗

′

ν ǫµ

[

Γν†(k,0)Γµ(k,0)− Γµ†(−k, 0)Γν(−k, 0)

]

(3.3)

= − ω

4π

∑

j′σ′

2〈j, σ|µ[i|j′, σ′〉〈j′, σ′|µi′]|j, σ〉(~n× ~ǫ′∗)i(~n× ~ǫ)i′ .

Taking into account that:

〈j, σ|µ−|j ∓ 1, σ + 1〉 = ± e

2m
hj∓1/2

√

(j ∓ σ ∓ 1 + 1)(j ∓ σ ∓ 1) , (3.4)

〈j, σ|µ+|j ± 1, σ − 1〉 = ± e

2m
hj±1/2

√

(j ∓ σ ± 1 + 1)(j ∓ σ ± 1) ,

and applying the definition in eq. (1.3) for f̃scat(ω, λ), we arrive at the following result in

the forward scattering limit:

4π2f̃−(0) = − πe2

8m2
Jz

[

(2j + 3)h2j+1/2 − (2j − 1)h2j−1/2

]

. (3.5)

Therefore, a more general form of the sum rule can be written as:

πe2Jz
4m2

[

(gj − 2)2 −
(

j +
3

2

)

h2j+1/2 +

(

j − 1

2

)

h2j−1/2

]

=

∫ ∞

0

∆σ(ω′)

ω′
dω′ . (3.6)
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As before, tree-level unitarity demands:

(gj − 2)2 +
(2j − 1)

2
h2j−1/2 =

(2j + 3)

2
h2j+1/2 . (3.7)

This is in agreement with the observation made, e.g., in ref. [26], proposing that g = 2,

when hj = 0, for all j. As a simple illustration, when j = 1/2:

(g1/2 − 2)2 = 2h21 , (3.8)

suggesting, h1 =
√

2
3κM =

√
2κp, where we recalled eq. (2.13). Similarly, when j = 3/2,

(g3/2 − 2)2 − 3h22 + h21 = 0 . (3.9)

4 Generalization for arbitrary intermediate state: second sum rule

Consider a situation when the intermediate state in the Compton scattering process is a

very narrow resonance of mass Mn ( 6= m). Then, using eqs. (2.5) and (2.7), near each pole

the forward scattering amplitude on a target at rest becomes (see also ref. [3]):

f (n)(ω → ωn, λ) →
1

16πm

〈0, s, σ|~ǫ ∗
λ
~J |k, sn, σn〉〈k, sn, σn|~ǫλ ~J |0, s, σ〉

(

√

M2
n + ω2 −m− ω

)

√

M2
n + ω2

n

, (4.1)

where ωn = 1
2m(M2

n −m2), so that:
√

M2
n + ω2

n = m+ ωn. Now, defining:

Kni ≡
√

m

2En

〈k, sn, σn|Jx + iJy|0, s, σ〉
M2

n −m2
, Kin ≡

√

m

2En

〈0, s, σ|Jx + iJy|k, sn, σn〉
M2

n −m2
,

(4.2)

the amplitude f
(n)
− (ω2), determined using eq. (1.3), near each pole, becomes:

f
(n)
− (ω2) = − 1

4π

ω2
n

ω2 − ω2
n

[

(Kni)
†Kni −Kin(Kin)

†
]

. (4.3)

For the total forward scattering amplitude, f tot− (ω2), with an appropriate contour of inte-

gration, we will have:

1

2πi

∫

C

f tot− (ω′2)

ω′2 − ω2
dω′2 =

1

π

∫ ∞

0

Im f tot− (ω′2)

ω′2 − ω2 − iǫ
dω′2 . (4.4)

In the case ω2 = 0 and when the integration contour encircles all the particle poles we

obtain:

4π[f−(0) + g−(0)]− [K†,K]ii =
1

π

∫ ∞

0

∆σ(ω′)

ω′
dω′ , (4.5)

[K†,K]ii ≡
∑

n

[

(Kni)
†Kni −Kin(Kin)

†
]ω2

n

0
.
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It is also interesting to consider the case when ω2 = ω2
k in eq. (4.4). Then one obtains a

relation between the derivatives of the matrix elements Kni and the dispersion integral.

Notice that f−(0) and g−(0) can be expressed in terms of commutator of some generators

like Kni, in which case the left hand side of (4.5) would take a more compact form.

Summarizing, when all other intermediate states in the Compton scattering have

masses (and spins) different from the mass (or spin) of the scatterer, we have the sec-

ond sum rule:

e2Jz
4m2

(g − 2)2 =
1

π

∫ ∞

0

∆σ

ω
dω + [K†,K]ii ≥ 0 . (4.6)

Since the left hand side of eq. (4.6) is always non negative, so should be the right hand

side. Ignoring the integral, we can rewrite eq. (4.6) at leading order in e2, as follows:

g − 2 = ±2m

e

√

[K†,K]ii
Jz

. (4.7)

This means that the gyromagnetic ratio may receive corrections even at tree level, if

[K†,K]ii ≥ 0. In supergravity theories, e ∼ m/MP , and we expect g− 2 to be independent

on m, therefore, [K†,K]ii ∼ e2/m2, suggesting that g − 2 ∼ O(1), as for spontaneously

broken N = 8 supergravity [8].

Finally, allowing for an intermediate state, in a Compton scattering off of a target

of spin j, to be any narrow resonance of arbitrary mass and spin, we arrive at the most

general sum rule:

e2Jz
4m2

[

(gj − 2)2 −
(

j +
3

2

)

h2j+1/2 +

(

j − 1

2

)

h2j−1/2

]

= [K†,K]ii +
1

π

∫ ∞

0

∆σ

ω
dω . (4.8)

This sum rule can be extended by taking into account other global charges of the theory

at hand. We will not consider such an extension here, since it depends on the specific form

of the theory. Instead, below we will study a particular case, namely the example of the

N → ∆ magnetic transition.

5 Some applications to QCD

Application of eq. (2.12) or (3.6) for j = 1/2, directly to Compton scattering on a nucleon

(N(938)) with a possible delta (∆(1232)) intermediate state would be wrong for two main

reasons. First of all, the mass difference δ between ∆ and N is around 300 MeV and the

forward scattering amplitude, in the ω → 0 limit, would behave as ω2/(δ−ω) ∼ O(ω2). It

is only when δ → 0 that the scattering amplitude becomes of order O(ω) and contributes

comparably to the forward amplitude. The second reason is that these baryons are strongly

coupled systems and loop corrections may be significant. However, we can still make

a formal use of the first sum rule if we work in the limit when Nc → ∞, in which case

δ ∼ O(1/Nc) (see, e.g. refs. [30, 31]). We also need to take e→ 0 and Nc → ∞ limits in such

a way that if ∆σ ∼ Nk
c , then e

2Nk+2
c ≪ 1, and the dispersive integral can be safely ignored.
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Comparing eqs. (C.1) and (C.2) one can deduce that:

µp→∆+ = gM (0) =

√

2

3
κM = ±

√
2κp , (5.1)

where we work in units of nuclear Bohr magneton, and we took into account the appropriate

isospin factor T 3 corresponding to the p → ∆+ transition. Taking the experimental value

of the proton’s anomalous magnetic moment, κp ≈ 1.79, we will obtain µp→∆+ ≈ ±2.54.

Unfortunately, nothing can be said about the sign, since our sum rule relates the squares

of the couplings. Nevertheless, in absolute value, our result for µp→∆+ is not very far from

similar ones, obtained within the framework of other models, like the Skyrme model [31],

and holographic QCD [32], which respectively give the values 2.3 and 2.58 (the experimental

value is: µp→∆+ = 3.46± 0.03 [33]).

In all models of baryons in the large-Nc limit, baryons are finite size objects, whose

sizes (R) do not scale with Nc, while their masses (M) do. As in the case of the GDH-

Weinberg sum rule [34, 35], in the zero radius limit, whenMR→ 0, we expect the magnetic

transition moment to approach its canonical value (5.1). However, in the Skyrme model

R is fixed and MR ∼ O(Nc). This is not surprising, since the Lagrangian of the Skyrme

model [31] is known to behave badly at high energies.

Now, we want to apply the second sum rule to the same system. In this case, we take the

physical masses of N and ∆ and only assume that these are narrow resonances. Although

in this case the scattering amplitude with ∆ intermediate state vanishes when ω → 0, it

contributes to the dispersion integral, when ω → ωn. Employing ref. [28, 29], we obtain:

〈k, 3/2, σ′|~ǫλ ~J |0, 1/2, σ〉 =
√

3mN

2M∆

ieµp→∆+

(mN +M∆)
ω ψ̄σ′

r (k)uσ(0) (~n× ~ǫλ)r . (5.2)

After straightforward computations, the second sum rule gives:

κp = ±2
m2

N

(mN +M∆)

µp→∆+

√

m2
N +M2

∆

. (5.3)

Numerically, µp→∆+ ≈ ±1.91κp; therefore, taking κp = 1.79, we obtain µp→∆+ ≈ ±3.42.

In absolute value this result is coincidentally close to the experimental value: µp→∆+ =

3.46± 0.03 [33].

Consider another example (also relevant for large-Nc QCD), when the target has spin-

1/2 and the intermediate particle is an excited state with the same spin. Then, using

ref. [36], the general form of the transition matrix element can be written as:

√

m

2En

〈k, 1/2∗, σ′|Jx + iλJy|0, 1/2, σ〉
M2

n −m2
= 2eG∗ω

m

(Mn −m)

√

mMn

M2
n +m2

(σ1 + iλσ2)σσ′ ,

(5.4)

where G∗ is some dimensionful coupling. Direct computations show that [K†,K]ii < 0,

which means that for this theory with excited states to be unitary at tree level, we need

G∗ = 0. However, this conclusion might change if we include intermediate states with

spin-3/2.
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A Low energy Compton amplitude for a spin-1/2 target

Consider the Compton scattering process:

N{p, σ}+ γ{k, ǫµ(k)} → N{p′, σ′}+ γ{k′, ǫ′ν(k′)} , (A.1)

where p and p′ are initial and final 4-momenta of scatterer (which is a spin-1/2 particle),

σ and σ′ are projections of initial and final spin along the z-direction. Analogously, k,

ǫµ(k) and k
′, ǫ′ν(k

′) are the 4-momenta and polarizations of initial and final photons. We

take the external particles to be on-shell, that is: k0 = |k|, k′0 = |k′|, p0 =
√

p2 +m2 and

p′0 =
√

p′2 +m2. The scattering amplitude corresponding to process in (A.1) is:

M =− e2ū(p′, σ′)

{

Γν(p′, p+ k)ǫ∗
′

ν (k
′)

p�+ k�+m

(p+ k)2 −m2
Γµ(p+ k, p)ǫµ(k)

+ Γµ(p′, p− k′)ǫµ(k)
p�− k�′ +m

(p− k′)2 −m2
Γν(p− k′, p)ǫ∗

′

ν (k
′)

}

u(p, σ) , (A.2)

Γµ(p2, p1) ≡γµFD(q
2) +

iσµν

2m
qνFP (q

2) , (A.3)

where e is the electric charge of scatterer, m is its mass, and q = p2 − p1. Using the

notations of Peskin & Schroeder, a� ≡ aµγ
µ, σµν = i[γµ, γν ]/2. Here, FD(q

2) and FP (q
2)

are Dirac and Pauli form factors, which for q2 = 0 are: FD(0) = 1 and FP (0) = κp, where

eκp/(2m) is the anomalous magnetic moment of the scatterer. The latter arises from the

Pauli Lagrangian:

LP = −eκp
4m

ū σµνu Fµν . (A.4)

In what follows, we will adopt a ‘gauge’ in which the initial and final photon are

transverely polarized in the laboratory frame. That is, we choose:

ǫ(k) · k = ǫ∗
′

(k′) · k′ = ǫ(k) · p = ǫ∗
′

(k′) · p = 0 , (A.5)

where p = (m,0), implying that ǫ0 = ǫ′0 = 0 and ~ǫ ~k = ~ǫ
′~k′ = 0. We also adopt the

following normalization: ǫ(k) · ǫ∗(k) = ǫ′(k′) · ǫ∗′(k′) = −1. Using the Dirac equation:

(p�−m)u(p) = 0, and after some simplifications, we can rewrite the amplitude as follows:

M =
e2µ

2m
ū(p′, σ′)

[

(

ǫ�′+µ′ǫ�′k�′
)

(

ǫ�k�

ω
+
1−µ
µ

ǫ�

)

+

(

ǫ�−µ′ǫ�k�
)(

ǫ�′k�′

ω′
+
1−µ
µ

ǫ�′

)]

u(p, σ) ,

(A.6)
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where ω ≡ pk/m, ω′ ≡ pk′/m, ǫ�′ ≡ γµǫ∗
′

µ , µ
′ ≡ κp/(2m) and µ = 1+ 2mµ′ is the magnetic

moment. Since we work in the frame where p0 = m and p = 0, we have: ω = k0 and

ω′ = k′0. The initial state is uT (p, σ) =
√
m {ξ, ξ}, where ξ is a spinor such that ξ†ξ = 1.

Similarly, for |p′| ≪ m,

ū(p′, σ′) =
√
m

{

ξ′†
(

1 +
1

2m
~σp′

)

, ξ′†
(

1− 1

2m
~σp′

)}

. (A.7)

Taking ω = ω′ and defining ~n ≡ ~k/ω and ~n′ ≡ ~k′/ω′, we can perform direct matrix

and vector multiplications to arrive to the final result. After tedious but straightforward

calculations, the answer can be written in a familiar form [24, 25]:

fscat =
e2

4πm

{

−~ǫ′∗~ǫ+ iκp
m
ω ~J (~ǫ

′∗ × ~ǫ)− iµ2

m
ω ~J

[

(~n′ × ~ǫ′∗)× (~n× ~ǫ)
]

(A.8)

− iµ

2m
ω ~J

[

{~n(~n× ~ǫ) + (~n× ~ǫ)~n}~ǫ′∗ − {~n′(~n′ × ~ǫ′∗) + (~n′ × ~ǫ′∗)~n′}~ǫ
]

}

,

where fscat ≡ M/(8πm) and ~J ≡ δσ′σξ
†
σ~σξσ/2, with ~J being the spin of the scatterer (when

σ = σ′).

B General properties of Rarita-Schwinger field

The Lagrangian for a free massive spin-3/2, Rarita-Schwinger (RS) field, ψµ, can be writ-

ten as:

LRS = ψ̄µ (iγ
µνρ∂ρ −mγµν)ψν , (B.1)

where γµν ≡ γ[µγν] and γµνρ ≡ γ[µγνγρ]. The equations of motion that follow from this

Lagrangian can be equivalently written as Dirac equations along with the transversality

and tracelessness constraints:

(i∂�−m)ψµ = 0 , ∂µψµ = 0 , γµψµ = 0 . (B.2)

These constraints guarantee that among 16 independent components of RS field only 2s+

1 = 4 physical degrees of freedom will propagate.

The wave function for the RS field can be written as a product of massive spin-1

and spin-1/2 polarizations: eµ(~p,n) with n = −1, 0, 1, and u(~p, σ) with (σ = ±1/2),

respectively. More specifically (see, e.g. refs. [37]):

ψµ(~p, r) =
∑

σ,n

〈
(

1

2
, σ

)

(1,n) |
(

3

2
, r

)

〉 u(~p, σ) eµ(~p,n) , (B.3)

where u(~p, σ) satisfies equations: (p� − m)u(~p, σ) = 0 and σ̂zu(~p, σ) = σu(~p, σ). The

polarization vectors satisfy the following normalization and transversality conditions:

e∗µ(~p,n)e
µ(~p,n′) = −δ

nn
′ , pµeµ(~p,n) = pµe∗µ(~p,n) = 0 . (B.4)
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Substituting the values of the Clebsch-Gordan coefficients in eq. (B.3), that are proportional

to δr,n+σ, we will get:

ψ±3/2
α = e±1

α u±1/2 , ψ±1/2
α =

1√
3

(

e±1
α u∓1/2 +

√
2e0αu

±1/2
)

, (B.5)

where ψα(~p, r) ≡ ψr
α, u(~p, σ) ≡ uσ and eµ(~p,n) ≡ enµ. These solutions satisfy the Dirac

equation, as well as transversality and tracelessness constraints. Moreover, the RS states

are normalized as:

ψ̄α(~p, r)ψ
α(~p, r′) = −2mδrr′ , ψ̄α(~p, r)γµψ

α(~p, r′) = −2pµδrr′ . (B.6)

In what follows it would be useful to note that:

Pµν(p) ≡
∑

r

ψν(~p, r)ψ̄µ(~p, r) = −(p�+m)Πµν(p) , (B.7)

Πµν(p) ≡
(

gµν −
pµpν
m2

)

− 1

3

(

γµ − pµ
m

)(

γν +
pν
m

)

.

In the chiral representation of the γ-matrices (as in Peskin & Schroeder), it can be

checked that, when p = (m, 0, 0, 0), the solutions for uσ and enµ are:

u−1/2 =
√
m(0, 1, 0, 1)T , u+1/2 =

√
m(1, 0, 1, 0)T , (B.8)

e+µ =
1√
2
(0, 1, i, 0) , e−µ = − 1√

2
(0, 1,−i, 0) , e0µ = (0, 0, 0,−1) .

Writing the quantized RS field as,

Ψµ(x) =

∫

d3p

(2π)3
1

2Ep

∑

λ

{

e−ipxψµ(~p, λ)a~p,λ + eipxψC
µ (~p, λ)a

†
~p,λ

}

, (B.9)

{a~p,λ, a†~p′,λ′} = (2π)32Epδλλ′δ(p− p′) , {a~p,λ, a~p′,λ′} = {a†~p,λ, a
†
~p′,λ′} = 0 , (B.10)

and using eq. (B.7), it can be deduced that:

〈0|Ψν(x)Ψ̄µ(y)|0〉 =
∫

d3p

(2π)3
1

2Ep

∑

λ

ψν(~p, λ)ψ̄µ(~p, λ)e
−ip(x−y) (B.11)

= −(i∂�x +m)Πµν(i∂x)

∫

d3p

(2π)3
1

2Ep

e−ip(x−y) ,

〈0|Ψ̄µ(y)Ψν(x)|0〉 =
∫

d3p

(2π)3
1

2Ep

∑

λ

ψC
ν (~p, λ)ψ̄

C
µ (~p, λ)e

−ip(y−x) (B.12)

= (i∂�x +m)Πµν(i∂x)

∫

d3p

(2π)3
1

2Ep

e−ip(y−x) .

Since the Feynman propagator is defined as SF
µν(x− y) ≡ 〈0|TΨν(x)Ψ̄µ(y)|0〉, we have:

SF
µν(x− y) = −(i∂�x +m)Πµν(i∂x)DF (x− y) , (B.13)

DF (x− y) ≡
∫

d4p

(2π)4
i

p2 −m2 + iǫ
e−ip(x−y) , (B.14)

where DF (x− y) is the Feynman propagator of a free scalar field. More explicitly,

SF
αβ(p) = −i (p�+m)

p2 −m2 + iǫ

[

gαβ − 1

3
γαγβ − 2pαpβ

3m2
− (γαpβ − γβpα)

3m

]

. (B.15)
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C First sum rule for spin-1/2 target: alternative approach

The most general form of the vertex function, describing interactions between photon, spin-

1/2 and spin-3/2 particles of the same mass, following Jones and Scadron [27] can be written

in terms of magnetic dipole (gM ), electric quadrupole (gE), and Coulomb quadrupole (gC)

form factors. This interaction vertex effectively emerges from the following Lagrangian

(see, e.g. [28, 29]):

Lint =
3ie

4m2
ūT 3

[

gM (∂µψν) F̃
µν + igEγ5 (∂µψν)F

µν − 2gC
m

γ5γ
α∂[αψν]∂µF

µν

]

+ h.c. ,

(C.1)

where F̃µν = ǫµναβFαβ/2 and T 3 is an operator due to additional internal degrees of

freedom (such as global or isospin charge) that the fields could carry.

In the soft momentum transfer (or near forward) limit that we are interested in, only

the first term will matter. We will rewrite the Lagrangian describing the magnetic dipole

transition as:

LM1
int =

ieκM
2m2

ū (∂µψν) F̃
µν + h.c. . (C.2)

The interaction vertex describing the dominant magnetic dipole 3/2 → 1/2 transition is:

Γνβ(p′, p′ + k′) =
eκM
2m2

ǫµναβp′µk
′
α , (C.3)

where p′ is the momentum of spin-1/2 state and k′ is the photon momentum. Similarly,

the vertex of 1/2 → 3/2 transition is:

Γνβ(p+ k, p) = −eκM
2m2

ǫµναβpµkα , (C.4)

where p is the momentum of spin-1/2 state and k is the photon momentum. For forward

scattering, when p1 = p2 = (m, 0, 0, 0) and ω = ω′, we have:

Γνβ(p′, p′ + k′) = −Γνβ(p+ k, p) =
eκM
2m

ω ǫ0νβknk . (C.5)

Consider the scattering in (A.1), where the intermediate state is a spin-3/2 Rarita-

Schwinger particle with the same mass as the scatterer. We want to find the amplitude

corresponding to this process. It can be written as:

iMRS =ū(p′, σ′)

{

Γνα(p′, p+ k)ǫ∗
′

ν (k
′)Sαβ(p+ k)Γµβ(p+ k, p)ǫµ(k)

+ Γµβ(p′, p− k′)ǫµ(k)Sβα(p− k′)Γνα(p− k′, p)ǫ∗
′

ν (k
′)

}

u(p, σ) , (C.6)

where vertices are defined in eqs. (C.3)–(C.4), and propagator of RS field, Sαβ , is given by

eq. (B.15).

Since we are interested in the near forward scattering amplitude up to order O(ω),

and using eqs. (C.3) and (C.4), direct computations for fRS = MRS/(8πm) give:

fRS(ω, λ) =
i

12π

e2κ2M
m2

ω
[

(~ǫ
′∗ × ~n′)× (~ǫ× ~n)

]

~J = − λω

12π

e2κ2M
m2

Jz .
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Finally, using the definition for g−(ω
2), given in eq. (2.10), in the forward limit we have:

4π2g−(0) = −πe
2κ2M

3m2
Jz , (C.7)

which is in agreement with the previous result (2.11), as should be expected.

References

[1] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity

and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [INSPIRE].

[2] S. Ferrara, M. Porrati and V.L. Telegdi, g = 2 as the natural value of the tree level

gyromagnetic ratio of elementary particles, Phys. Rev. D 46 (1992) 3529 [INSPIRE].

[3] S. Weinberg, Lectures on Elementary Particles and Quantum Field Theory, Volume 1,

Brandeis University Summer Institute 1970, S. Deser, M. Grisaru and H. Pendleton (eds.),

M.I.T. Press, Cambridge (1970).

[4] S. Gerasimov, A sum rule for magnetic moments and the damping of the nucleon magnetic

moment in nuclei, Sov. J. Nucl. Phys. 2 (1966) 430 [INSPIRE].

[5] S. Drell and A.C. Hearn, Exact Sum Rule for Nucleon Magnetic Moments,

Phys. Rev. Lett. 16 (1966) 908 [INSPIRE].

[6] D.Z. Freedman and A.K. Das, Gauge Internal Symmetry in Extended Supergravity,

Nucl. Phys. B 120 (1977) 221 [INSPIRE].

[7] S. Deser, V. Pascalutsa and A. Waldron, Massive spin 3/2 electrodynamics,

Phys. Rev. D 62 (2000) 105031 [hep-th/0003011] [INSPIRE].

[8] E. Cremmer, J. Scherk and J.H. Schwarz, Spontaneously Broken N = 8 Supergravity,

Phys. Lett. B 84 (1979) 83 [INSPIRE].

[9] J. Scherk and J.H. Schwarz, Spontaneous Breaking of Supersymmetry Through Dimensional

Reduction, Phys. Lett. B 82 (1979) 60 [INSPIRE].

[10] J. Scherk and J.H. Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B 153

(1979) 61 [INSPIRE].

[11] E. Sezgin and P. van Nieuwenhuizen, Renormalizability properties of spontaneously broken

N = 8 supergravity, Nucl. Phys. B 195 (1982) 325 [INSPIRE].

[12] A. Hosoya, K. Ishikawa, Y. Ohkuwa and K. Yamagishi, Gyromagnetic ratio of heavy particles

in the Kaluza-Klein theory, Phys. Lett. B 134 (1984) 44 [INSPIRE].

[13] C.K. Zachos, N = 2 supergravity theory with a gauged central charge,

Phys. Lett. B 76 (1978) 329 [INSPIRE].

[14] M. Duff, J.T. Liu and J. Rahmfeld, Dipole moments of black holes and string states,

Nucl. Phys. B 494 (1997) 161 [hep-th/9612015] [INSPIRE].

[15] M. Duff, J.T. Liu and J. Rahmfeld, g = 1 for Dirichlet 0-branes,

Nucl. Phys. B 524 (1998) 129 [hep-th/9801072] [INSPIRE].

[16] L. Andrianopoli, R. D’Auria, S. Ferrara and M. Lledó, Gauging of flat groups in
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