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Abstract: We calculate the static potential, the drag force and the jet quenching param-

eter in strongly coupled anisotropic N = 4 super Yang-Mills plasma. We find that the

jet quenching is in general enhanced in presence of anisotropy compared to the isotropic

case and that its value depends strongly on the direction of the moving quark and the

direction along which the momentum broadening occurs. The jet quenching is strongly

enhanced for a quark moving along the anisotropic direction and momentum broadening

happens along the transverse one. The parameter gets lower for a quark moving along the

transverse direction and the momentum broadening considered along the anisotropic one.

Finally, a weaker enhancement is observed when the quark moves in the transverse plane

and the broadening occurs on the same plane. The drag force for quark motion parallel

to the anisotropy is always enhanced. For motion in the transverse space the drag force is

enhanced compared to the isotropic case only for quarks having velocity above a critical

value. Below this critical value the force is decreased. Moreover, the drag force along

the anisotropic direction is always stronger than the force in the transverse space. The

diffusion time follows exactly the inverse relations of the drag forces.

The static potential is decreased and stronger decrease observed for quark-antiquark

pair aligned along the anisotropic direction than the transverse one. We finally comment

on our results and elaborate on their similarities and differences with the weakly coupled

plasmas.
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1 Introduction

Last years there is a lot of effort to understand the heavy-ion collisions and the quark-gluon

plasma (QGP). The Relativistic Heavy Ion Collider (RHIC) findings and the following anal-

ysis suggests that the QGP is a strongly coupled fluid [1–4] and therefore the perturbative

methods of Quantum Chromodynamics (QCD) are in general not appropriate for describ-

ing it. On the other hand there is some progress in Lattice field theory, (see for example [5])

but further progress is very difficult since in QGP we need to study real-time phenomena.

Moreover, a promising approach to study these phenomena is developed with the use of

methods within gauge/gravity duality [6, 7], where an up to date review is in reference [8].

Using the AdS/CFT it is possible to study several observables and properties of the dual

QGP working in the strongly coupled regime. At the moment the studies are mostly in

the qualitative level, but still the information that can be extracted is significant.

Although the exact gravity dual of the QCD is not known, and the theories and

their dual backgrounds used for QGP calculations usually have different characteristics
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and properties than QCD (although some of them disappear in high temperatures), there

are several important results that appear to have some kind of universality among the

different theories. Relativistic hydrodynamics describe well the QGP [9, 10] and one of the

most known results obtained so far is for the prediction of the ratio of shear viscosity over

entropy density [11]. Moreover several methods have been developed for calculations of the

jet quenching, the drag force and the relaxation time, the static potential and the quarkonia

etc. in the dual QGP, which are accompanied with some arguments for normalizing the

results in order to lead to more sensible comparisons with the results obtained from the

experiments.

By now there is a large number of papers which study these quantities in the phase

where the plasma has become already isotropic and at equilibrium. However the plasma

after its creation and for a short period of time is anisotropic both in momentum and

coordinate space. For the RHIC energies the elliptic flow of the matter created is described

quite well by models that assume that the hydrodynamical behavior is applicable at τ .

1 fm. The conformal viscous hydrodynamics predicts times τ ∼ 2 fm but the estimation

depends strongly on the initial conditions (e.g. Color Glass Condensate (CGC) or Glauber)

and details of plasma hadronization. On the other hand, by considering the collision

of two sheets of energy in strongly coupled N = 4 sYM in [13] has been predicted a

thermalization time of order ∼ 0.3 fm. Therefore, the current estimations of thermalization

time vary significantly. In this paper we initiate the study of several observables in a dual

anisotropic strongly coupled QGP. Such anisotropy that we study here, can be referred to

the momentum space and is caused due to locally anisotropic hydrodynamic expansion of

the plasma. We point out that the question we answer accurately in this paper is how

the observables are modified in the dual N = 4 sYM plasma in presence of anisotropy.

Whether or not our results apply to the observed anisotropic QGP, depends mainly on

how well the initial isotropic theory, of which our theory here is a consistent deformation,

describes the QGP. There are several indications that at least qualitatively the predictions

in the isotropic case capture characteristics of the real QGP quite well, so our analysis here

as well could capture properties of the anisotropic plasma, and we find that our results are

indeed consistent to what is expected. Apart from that, it is very interesting on its own

to see how several quantities in context of AdS/CFT are modified in presence of such an

anisotropy we consider here.

Recently there is important progress in the anisotropic gauge/gravity dualities. In [14]

it has been found an anisotropic dual geometry with a naked singularity. This geometry

was used in [15] to study electromagnetic signatures of the dual plasma. In [16] it has been

obtained a deviation from the universality of the ratio of the shear viscosity over entropy

density when rotational symmetry is spontaneously broken and in [17] several effects due

to anisotropy have been studied further in anisotropic superfluids. In [18] a supergravity

solution was found which interpolates between the AdS5 and the Lifshitz-like solution

at zero temperature. In [19, 20] the anisotropic supergravity solutions that were found

are regular on and outside the horizon and are generalizations of the zero temperature

solution [18]. The geometry was used in [21] to find that the longitudinal shear viscosity

over entropy bound is violated. The strong coupling isotropization of a large number of
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anisotropic initial states in the absence of external sources was also studied recently in [22].

In this paper we continue and extend the studies on the anisotropic gauge/gravity dualities.

Regarding the QGP anisotropies, it is known that the existence of them is important

for the QGP evolution. For example, a spatial anisotropy which occurs due to the fact that

in the heavy ion collision the nuclei have finite area and usually collide off-center causes the

hydrodynamic elliptic flow. The flow is associated to the elliptic flow parameter v2 which

is defined as the anisotropy of particle production with respect to the reaction plane and

is a way to measure how the system responds to the initial spatial anisotropy. The elliptic

flow is generated because the pressure gradient along the impact vector direction on the

transverse plane is larger than the one in the transverse direction and the nuclear medium

expands preferably along the impact vector direction. Moreover the interaction between

the particles, leads to a momentum anisotropy distribution on the reaction plane reflecting

the excited medium to the above spatial geometry. The measurement of the elliptic flow

provides information for the thermalization times and can be used to constrain the ratio

of shear viscosity over entropy density.

Here we are mainly interested for the anisotropy which is created by the rapid expansion

of the plasma along the longitudinal beam axis at the earliest times after the collision. The

longitudinal pressure to the beam axis is lower than the transverse one and the momenta

of the partons along the beam direction are lower than the ones in the transverse space.

By considering boosted hadrons with the same velocity the effective temperature increase

with the mass of the hadron species [23]. These momentum distribution anisotropies cause

plasma color instabilities which are responsible for the isotropization short time and process

of the QGP [24–28], at least in the weakly coupled regime.

All the different anisotropies mentioned can occur at the same times. A way to isolate

the anisotropy we are interested on is to think the colliding nuclei as having infinite trans-

verse area, or that the collisions are completely central. After the collisions the partons

are produced at the formation time where the partonic momentum distribution can be

supposed to be isotropic. Then a rapid longitudinal expansion of the plasma along the

beam line occurs. During this process the longitudinal expansion rate is larger than the

parton interaction rate, and the plasma along the longitudinal direction is much colder

than the one in the transverse direction. At this stage the pressure along the longitudinal

and transverse directions satisfy PL < PT and the corresponding momenta
〈

p2L
〉

<
〈

p2T
〉

in the local rest frame. At the time τ = τiso the interaction rate becomes equal to the

expansion rate the plasma reaches the isotropic phase where the hydrodynamic analysis

can be done. This momentum anisotropic plasma have chromo-Weibel instability, which

believed to play important role on the isotropization process at least in the weakly coupled

plasmas.

In this paper motivated by the experimental as well as theoretical studies, we initiate

the study of several observables in a dual anisotropic plasma. We use a high temperature

limit of a static, regular IIB supergravity solution dual to a spatially anisotropic finite

temperature N = 4 super Yang-Mills (sYM) plasma [19, 20]. The geometry characterized

by an anisotropic parameter where its limit to zero is smooth and gives the isotropic
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undeformed finite temperatureN = 4 sYM. This is expected since the supergravity solution

can be seen as a deformation of the original solution, where the anisotropy can be though

as introduced either by a non-zero number density of dissolved branes that do not extend

to boundary and therefore do not add new degrees of freedom, or resulting from a θ-term

which depends on the anisotropic direction. In the dual gravity the particular θ-term

corresponds to an axion depending on the anisotropic direction which can be thought as

generated by the additional D7 branes.

Using this background we start by calculating the static potential and the static force

between a pair of heavy probe quarks QQ̄. We find how the critical length of the pair

distance and the values of the static potential depend on the anisotropic parameter along

the different directions in the plasma. We compare these results to the isotropic case and

then compare with models that study the static potential in the weak coupling regime.

Moreover, another motivation for these calculations is that this study might be useful to

extract qualitative results for the quarkonia in the anisotropic plasma.

Continuing we calculate the drag force and the diffusion time of a heavy quark moving

along different directions of the anisotropic plasma. We derive the analytical results for

quarks moving along the transverse and longitudinal directions, compare them each other

and to the isotropic case.

Then we study the jet quenching parameter. It’s bounds can be measured in the

QGP by the radiative energy loss and the parameter itself can be though as a property

of the strongly coupled medium. In our 4-dim anisotropic plasma we have three different

choices for the transverse momentum broadening. The energetic parton moves along one

of the transverse directions and the momentum broadening happens along the anisotropic

direction. The second is when the parton moves parallel to the anisotropic direction and the

momentum broadening considered in the transverse direction. For the last one the parton

moves along the transverse to the anisotropy directions and the momentum broadening is

calculated along the other transverse direction. In this case although only the transverse

directions are considered, the dependence of the radial metric element on the anisotropic

parameter, modifies sightly the result compared to the one in the undeformed theory. In

general we find enhancement of the jet quenching in presence of anisotropy. Our results

again compared to the results obtained from other models. Finally, we also discuss the

difficulties that arise in our model when we try to give a more precise quantitative prediction

using different comparison schemes. These difficulties appear because we are working on a

small anisotropy over temperature limit.

In this paper we have tried to present some of the analytic calculations clearly in the

appendices in order to improve the readability of the main text. The structure of the paper

is as follows. In the second section we present the background and the theory we use and

how its parameters are related to the parameters of models using anisotropic momentum

distribution functions. In the following section we investigate the static potential and the

static force in the anisotropic dual plasma. This section is supported by the appendix A,

where the generic gravity dual orthogonal Wilson loop calculations are presented. In section

4, the drag force and the quark relaxation time is studied. The appendix B supports this
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section where the analytical calculations for the drag force are presented for any general

background. In section 5, we study the jet quenching. In this section we present in

the main text the jet quenching calculation and the approximations done to derive the

result for a complete generic background, since the calculation is very interesting and

certain approximations done in the derivation need to be tested in our background. Then

we derive the results in the anisotropic background and comment on them. In the next

section we make an attempt to provide more quantitative predictions of our results using

different comparison schemes. We finalize with the discussion section where we also collect

our results.

2 The model

2.1 The dual geometry

The anisotropic background we use is a deformed version of the N = 4 finite temperature

sYM [19, 20]. The deformation parameter in the field theory is introduced by a θ-parameter

term depending on the anisotropic direction. It turns out that θ = 2πnD7x3, where x3 is

the anisotropic gauge theory space coordinate and nD7 can be thought as the density of D7-

branes homogeneously distributed along the anisotropic direction. The θ angle is related

to the axion of the type IIB supergravity through the complexified coupling constant of

the N = 4 sYM. Therefore in the gravity dual background the anisotropic deformation can

be seen as inserted due to existence of axion term depending on the anisotropic direction,

or as due to the backreaction of the D7-branes. These branes do not add new degrees

of freedom to the theory since they do not touch the boundary. They are wrapped on

the internal space and the transverse directions to the anisotropy, therefore creating the

anisotropy on the deformed AdS geometry.

In the string frame the background is given by

ds2 =
1

u2

(

−FB dx20 + dx21 + dx22 +Hdx23 +
du2

F

)

+ Z dΩ2
S5 . (2.1)

χ = ax3, φ = φ(u) , (2.2)

where a is the anisotropic parameter with units of inverse length, φ is the dilaton, χ is the

axion depending linearly on the x3 coordinate. The anisotropic direction is considered to

be the x3 and the functions F ,B,H depend on the radial coordinate u and the parameter

a. The background has also a RR five form but it is not important for our purposes. The

analytical form of the functions can be found for small anisotropy compared to the tem-

perature or sufficiently high temperatures, T ≫ a. It is enough to consider the expansions

of the fields up to second order in a around the black D3-brane solution:

F(u) = 1− u4

u4h
+ a2F2(u) +O(a4) (2.3)

B(u) = 1 + a2B2(u) +O(a4) , (2.4)

H(u) = e−φ(u), where φ(u) = a2φ2(u) +O(a4) . (2.5)
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Note that only even powers can appear because of the symmetry z → −z. By applying

asymptotic AdS boundary conditions and requiring F2 to vanish at the horizon u = uh,

the Einstein equation can be solved giving:

F2(u) =
1

24u2h

[

8u2(u2h − u2)− 10u4 log 2 + (3u4h + 7u4) log

(

1 +
u2

u2h

)]

,

B2(u) = −u2h
24

[

10u2

u2h + u2
+ log

(

1 +
u2

u2h

)]

,

φ2(u) = −u2h
4

log

(

1 +
u2

u2h

)

. (2.6)

We can find the temperature evaluating the following expression at the horizon

T = −∂uF
√
B

4π

∣

∣

∣

∣

u=uh

=
1

πuh
+ a2uh

5 log 2− 2

48π
+O(a4) (2.7)

and solving for the horizon position uh we get

uh =
1

πT
+ a2

5 log 2− 2

48π3T 3
+O(a4) . (2.8)

As expected the isotropic limit a → 0 reproduce the well know results of the isotropic black

D3-brane solution. The parameters of our background now are the temperature T and the

anisotropy a. The energy density per unit volume can be calculated from

s =
Ah

4GV3
, dAh =

e−
φh
2

u3h
dx dy dz , (2.9)

where dAh is the area element of the hypersurface t = const, u = uh. In our case the result

reads

s ∝ π2N2
c T

3

2
+ a2

N2
c T

16
+O(a4) . (2.10)

The energy and pressures can be found from the expectation value of the stress tensor,

where the element 〈T00〉 is the energy, 〈T11〉 = 〈T22〉 = Px1x2
=: P⊥ denote the pres-

sure along the x1 or x2 direction or the transverse plane and 〈T33〉 = Px3
=: P‖ is the

pressure along the anisotropic direction, calling it also longitudinal one. The analytic

expressions read

E =
3π2N2

c T
4

8
+ a2

N2
c T

2

32
+O(a4) ,

Px1x2
=

π2N2
c T

4

8
+ a2

N2
c T

2

32
+O(a4) ,

Px3
=

π2N2
c T

4

8
− a2

N2
c T

2

32
+O(a4) . (2.11)

Therefore for high temperatures the pressure of the plasma along the anisotropic direction

is always lower than the one in the other two directions

Px3
< Px1x2

. (2.12)

– 6 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
1

Figure 1. Anisotropy in the momentum space for ξ > 0.

2.2 Relation of background parameters to anisotropic momentum distribution

function

In weakly coupled anisotropic plasmas a usual technique used for the study of the ob-

servables is to consider an anisotropic phase space distribution function. The degrees of

freedom in weakly coupled plasmas are split to soft modes that carry momenta of order

gYMT and hard ones that carry moment of order T . The hard modes are particles that

have an anisotropic phase space distribution function.

To make connection of this function with our parameters we can consider a kinematic

example where the accelerated beams with nucleons collide along the x3 anisotropic direc-

tion. This is the beam-axis direction and along this direction the system expands rapidly

initially. The plasma created can be seen as having a distribution function f(t,x,p) which

can be taken homogeneous in position space but anisotropic in momentum space. The

anisotropic distribution function can be written as [29, 30]

faniso(p) = cnorm(ξ)fiso(
√

p2 + ξ(p · n)2) , (2.13)

where the vector n = (0, 0, 1) is the unit vector along the anisotropic direction and the

parameter ξ plays the role of the anisotropic parameter. This distribution represents a

stretched or contracted version of the isotropic case since one direction in the momentum

space is rescaled. For −1 < ξ < 0 the distribution is stretched along the anisotropic

direction while for ξ > 0 the distribution is contracted in the anisotropic direction as in

figure 1.

The parameter ξ is related to the average particle momenta in the transverse pT =

p− n(p · n) and longitudinal pL = p · n to anisotropy directions by

ξ =

〈

p2T
〉

2
〈

p2L
〉 − 1 , (2.14)

where the factor of 2 appears in the denominator due to the number of the transverse

directions. Therefore we see that the anisotropic distribution can be obtained from the
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isotropic one by removing or adding particles that have large momentum component along

the anisotropic direction. The anisotropic plasma created after the heavy ion collisions

correspond to values ξ > 0, and this is the region that we work here.

In order to find a qualitative relation between the anisotropic parameter ξ and the

parameter a of our supergravity background, we have to express the first one in terms of

the pressures of the system. This is done by using the distribution (2.13) and calculating

the pressures through the stress energy tensor components. A new parameter ∆ can be

introduced which measures the degree of momentum anisotropy through pressures and

defined as

∆ :=
PT

PL
− 1 =

Px1x2

Px3

− 1 . (2.15)

After some algebra ∆ can be related to ξ [31] as

∆ =
1

2
(ξ − 3) + ξ

(

(1 + ξ)
arctan

√
ξ√

ξ
− 1

)−1

, (2.16)

which in the small ∆ and consequently small ξ limit, the expression becomes

lim
ξ→0

∆ =
4

5
ξ +O(ξ2) (2.17)

and in the large ξ limit

lim
ξ→∞

∆ =
1

2
ξ +O(

√

ξ) . (2.18)

For our background in the high temperature limit using (2.11) we get for ∆

∆ =
a2

2π2T 2
. (2.19)

In the range of T ≫ a ⇒ ∆ ≪ 1 we can relate the two anisotropic parameters as

ξ ⋍
5a2

8π2T 2
, (2.20)

where ξ has to be positive and very small. The equation (2.20) provides the basic con-

nection between the parameters of our supergravity background and the anisotropic mo-

mentum distribution functions (2.13) considered in several field theory models. However

it should be noted that this relation obtained only through the pressure anisotropies, since

the anisotropic theory we are using here comes from a position θ dependent angle. There-

fore, the equation (2.20), can be seen as a simple connection of the parameter a and the

parameter ξ based on the pressure anisotropies of the two systems.

Moreover if fiso represents an ideal gas momentum distribution and ξ is small enough,

the anisotropic parameter is related to shear viscosity over entropy density and to the proper

time of the plasma. For one dimensional Bjorken expansion the analytic relation is [32]

ξ =
10η

Tτs
, (2.21)

where the anisotropy increases with the expansion rate. In the following sections we calcu-

late several physical observables, we explain our results and try to qualitatively compare

our results with experimental data and the weakly coupled plasma models.1

1Comparisons using gauge/gravity dualities with the corresponding weakly coupled results in isotropic

case have been performed for example in [33, 34].
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Zoomed

0.220 0.225 0.230 0.235 0.240
L T

-0.5

-0.4

-0.3

-0.2

-0.1

V

T

Figure 2. The static potential close to Lc for QQ̄ pairs aligned along the anisotropic and the

transverse direction with respect to L. Their relation is |V‖| < |V⊥|. The corresponding critical

lengths are Lc‖ < Lc⊥. Settings: blue dotdashed line-V‖, red solid line-V⊥ and T = 3, a = 0.3T .

3 QQ̄ static potential and static force in the anisotropic N = 4 plasma

In this section we study the static potential and the static force in the finite temperature

anisotropic dual plasma. In order to do so we are using the analytic equations (A.9)

and (A.10) derived in the appendix A. We will compare the static potential to the isotropic

case as well as the potentials along the different anisotropic directions.

We use the usual ansatz for the string world-sheet choosing the static gauge and the

σ dependence on the radial direction:

x0 = τ and xp = σ, u = u(σ) , (3.1)

where xp = x1 =: x⊥ or xp = x3 =: x‖ . (3.2)

In the first case we align the QQ̄ pair along the direction of x1, which is equivalent aligning

it along x2. Then the pair is placed along the anisotropic x3 direction. Finally in order

to compare with the isotropic finite temperature N = 4 sYM theory we set a = 0 and

calculate the static potential, where the particular analysis is equivalent to the configuration

considered in [35]. These are the three different static potentials we study and compare

each other.

Initially we fix the temperature and the anisotropy parameter and consider the static

potential of quark pairs with different separation lengths. By applying the formulas derived

in the appendix A we find that the potential for the pairs aligned along the anisotropic

direction tends to be slightly weaker compared to transverse alignment as can be seen in

figures 2 and 3 :2

V‖ < V⊥ < Viso for
a

T
6= 0 and constant. (3.3)

We also find that the difference between the potentials in two directions gets bigger as

the distance of the quarks approach the critical length Lc. Moreover, the critical length is

reduced in presence of anisotropy as

Lc‖ < Lc⊥ < Lc iso for
a

T
6= 0 and constant. (3.4)

2We should comment here that in some of the plots we choose the anisotropic parameter a of order 0.3T

or so. Although smaller values give the same behavior, their effects are not visible in the plots clearly.
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0.220 0.225 0.230 0.235
L T

0.85

0.90

0.95

1.00

Vd1

Vd2

Figure 3. The ratios of the static potentials for pairs aligned along different directions. All the

fractions reduce as the pair distance increase and approach the critical length. Settings:V‖/V⊥-black

dotdashed color, V‖/Viso-blue dashed line, V⊥/Viso-solid red line and T = 3, a = 0.35T .

0.12 0.14 0.16 0.18 0.20 0.22 0.24
L T

0.75

0.80

0.85

0.90

0.95

1.00

V1þ

V2þ

Figure 4. V‖ for two values of the anisotropic parameter. The static potential decreases for

increasing the anisotropy. Settings: a1 = 0.5T , a2 = 0.01T and T = 3.

0.188222 0.188224 0.188226 0.188228
L T

-1.4824

-1.4822

-1.4820

-1.4818

-1.4816

-1.4814

-1.4812

V

T

Figure 5. The V‖ and V⊥ where the string world-sheet turning point is fixed to u0/uh = 0.5

and a increases. The a ⋍ 0 point is where the lines cross, and as a increases the lines diverge.

By comparing the two final points of the curves which correspond to a ≃ 0.5T we see that as a

increases the background geometry and the potentials along the parallel direction is affected more

than transverse one. Settings: as in figure 2 and T = 3.
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0.05 0.10 0.15 0.20 0.25
L T

-15

-10

-5

0

Vþ

L

Figure 6. The form of the potential in anisotropic background is the same as the undeformedN = 4

sYM one. This is not unexpected since the anisotropy introduced by a continuous deformation to

N = 4 sYM. Settings: T = 1 and a = 0.001.

In order to study the static potential dependence on the anisotropy parameter we keep

constant the temperature and vary the anisotropic parameter. Increase of anisotropy leads

to decrease of the absolute value of the static potential in any direction compared to the

isotropic case (figure 4) and therefore to decrease of the critical length

a ր ⇒ V‖,⊥ ց ⇒ Lc ‖,⊥ ց . (3.5)

A more detailed analysis shows that as the anisotropy increases, the deviations of the

anisotropic static potentials along the different directions increase (figure 5). The aniso-

tropy affects the configuration along the anisotropic direction stronger than the transverse

one. This can be seen in figure 5, where we fix the temperature, the ratio u0/uh and so

consequently the length L of the Wilson loop with respect to the horizon position, and

we increase the parameter a. Notice that now along the x-axis, same lengths L along

different directions, correspond to different values of anisotropy but the first and the last

points in the two curves correspond to the same value of the anisotropy parameter. We

see that V‖ = V⊥ for a → 0, and by increasing a the potentials and the pair distances

along the different directions deviate. This happens because the different strength on the

modifications of the background geometry along the different directions is reflected to the

static potential.

Finally, by keeping the anisotropy constant and increase the temperature the static

potential in any direction gets lower absolute value and the critical length reduces (figure 6).

This is not unexpected since our dual theory is a smooth deformation of N = 4 sYM where

the same behavior has been observed [35].

3.1 Comments and comparison with other models

To interpret our findings one could think that lower pressure in the parallel direction,

which results having less energetic gluons leads to the further screening of the potential.

However this seems not to be the case. The enhancement of the anisotropy while keeping

constant temperature, results to increase of Px1x2
and simultaneous decrease of Px3

as
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can be seen from (2.11), or equivalently leads to contraction of the momentum in the

anisotropic direction, by removing for example energetic gluons in that direction. At the

same time momentum extension happens along the transverse direction and increase of the

relevant pressure. However, here we find that in both directions the absolute value of the

static potential is decreased. An other observation that indicates that the static potential

is not related directly to the pressures is that at least to a2 the pressures are modified

by the same amounts from the initial one. If the force modification between the quarks

would depend mainly on the pressure then the magnitude of modification should be almost

equal in parallel and transverse directions. This does not happen and it is not expected to

happen judging from the differences in the metric in the two directions. The decrease of

the static potential is more likely to be related to the increase of energy or entropy density

of the system as found in equations (2.10) and (2.11).

Here it should be noted that in general the static potential normally has a constant

term which seems to be not physical. In our analysis we need to take the derivative of the

static potential to get rid of the constant term and compare the static forces:

FQQ̄ =
∂V

∂L
. (3.6)

The static force turns out to be decreased in presence of anisotropies, i.e. the screening

is increased. Further decrease happens as the anisotropy is increasing. However, the

decrease here seems to be slightly less in the anisotropic direction that the transverse one,

qualitatively following the ordering:

FQQ̄,⊥ < FQQ̄,‖ < Fiso . (3.7)

These results are plotted in the figure 7.

Notice that at some point in our analysis we have compared the potential in anisotropic

background to the isotropic one. When comparing the potentials along the parallel and

transverse directions in the anisotropic background for fixed a/T the horizon of the black

hole remains at the same position and only the corresponding geometry that the string

worldsheets extend is modified. While comparing to the isotropic case the position of the

black hole horizon differs but the comparison can be made by identifying the temperatures

in the isotropic and anisotropic backgrounds.

Our theory does not have dynamical degrees of freedom in the fundamental representa-

tion. Inclusion of quarks in isotropic N = 4 sYM with additional D7 flavor branes beyond

the probe limit is expected to lead to screening of the potential at least at scales close to

the string breaking one [36–38]. When the anisotropy introduced in a background that

contains already dynamical degrees of freedom is not clear from our analysis whether or

not the potential will be further reduced. This will depend on the flavors dependence of the

anisotropy. If for example the density of flavors turn out to depend on the anisotropy and it

is reduced for increasing anisotropy then the static potential could increase since screening

will be weaker and the decrease due to gluons found here will be an antagonizing behavior.

On the other hand if the density of the flavors will be independent of the anisotropy, then

the potential even in presence of flavors will be reduced as we have found here. Addi-

tionally, the relation between the static potential along the different directions might get

– 12 –
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Zoomed

0.0794 0.0795 0.0796 0.0797 0.0798 0.0799 0.0800
L T186

187

188

189

190
FQQ

Figure 7. The static force along different directions. The forces in presence of anisotropy are

decreased compared to the isotropic plasma with the order (3.7). The forces along the transverse

and parallel directions for a = 0.35 are zoomed in, in order to observe their ordering since they are

very close. Settings: T = 3, and the curves starting from bottom; a = 0.35T : FQQ̄,⊥-brown solid,

FQQ̄,‖-blue dashed; a = 0.30T : FQQ̄,‖-green solid, FQQ̄,⊥-black dot-dashed and Fiso-red solid.

modified after the inclusion of flavors, since their dependence on the anisotropic parameter

and therefore their contribution to screening can not be a priori predicted. Therefore in

this paper we have found the behavior of the static potential in presence of anisotropy

and matter in adjoint representation, but to predict the results in presence of unquenched

dynamical quarks, further analysis is needed.

It is interesting to report in this section some findings of the static potential in the

weak coupling regime. In [39] it has been found stronger attraction for quark pairs aligned

along the direction of the anisotropy than for transverse alignment and that the potential

generally gets enhanced in presence of anisotropy. These results are valid on distance

scales on the order of the inverse of the Debye mass (while the relevant plots are for

L ∼ (0.5, 2)m−1
D ) and for small anisotropic parameter. In this regime a naive extrapolation

shows that already in our configuration we have entered in the deconfined phase. Moreover

the authors find that as the separation length of the pair gets reduced the difference between

the potential in the transverse and parallel directions is reduced. The static potential

results in our strong coupling theory without flavors differ with the ones observed for

the weak coupling plasmas. This difference might be generated from the different values

of the non-physical constant in the static potential. However, we point out there exist

several differences between the two models apart of course for the main difference that

these findings are in weak coupling.

Before we move on to the drag force analysis we summarize only some of the findings.

In this section we have found that the anisotropy in our model results to the decrease of

the static potential and affects more significantly the potential for a pair aligned along

the anisotropic direction. The static potentials along different directions follow the rela-
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tion (3.3) and increase of the anisotropy leads to decrease of the static potential in any

direction. The critical lengths Lc‖,⊥ depend on the anisotropy and for increasing anisotropy

they reduce (3.4). The static force is decreased for increasing anisotropy and along the dif-

ferent directions follows the inequality (3.7).

4 Drag force on the heavy quarks in the anisotropic plasma

The drag force in an anisotropic plasma depends on the direction of the motion of the heavy

external probe quark. We consider a heavy quark moving along the anisotropic direction

and then along the transverse direction with a fixed velocity v, in an infinite volume of

gluon plasma and fixed finite temperature T [40, 41].3 As usual the force we measure here

is the one that needs to be imposed on the quark in order to keep it moving with the

constant velocity v. This force can be generated for example from a constant electric field,

which will balance the backward drag force on the quark generated from the interaction of

quark with gluons and quarks in the plasma.

The velocity v is bounded in order the drag force calculation to be valid. To make

sure that the quark indeed loses energy and the generated force from the plasma is a

backward drag force, it should move well above the subthermal velocities vsubthermal ∼
√

T/MQ, where MQ is the mass of the heavy quark. So the low bound in the velocity is

v ≫ vsubthermal. Additionally there is an upper bound which should be imposed in order

for our calculation to be valid. This is required because for example to keep very large

constant speed v through the plasma, a very large electric field is needed which after a

critical value would produce qq̄ pairs. There are different ways to calculate the maximum

value of the velocity: either by consider the DBI action of a D7-brane that represents the

heavy quark and taking a reality condition or by comparing the deceleration forces from

drag and vacuum radiation and imposing the first one to be the dominant. The maximum

value of the velocity in our theory remains approximately similar to the undeformed N = 4

sYM and is:

v2 < 1−
(√

λT

MQ

)4

, (4.1)

where
√
λT/MQ ≪ 1.

In order to describe the trailing string for a motion along the xp := x‖,⊥ directions we

use the radial gauge choice:

x0 = τ, u = σ, xp = vτ + f(u) , (4.2)

where in the other directions the world-sheet is localized. The drag force derivation can

be done generically for any background. We derive the force in the appendix B. The final

equations we obtain and we use in this section are the equations (B.5) and (B.7). It is

interesting that the drag force depend on the time metric element, on the metric element

along the direction where the quark moves and only indirectly to the radial metric element

through (B.5).

3A discussion of the early-time energy loss is in [42].
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The results obtained in this section are analytical and we have also check them nu-

merically. The radial position u0, where the numerator and denominator change sign

simultaneously in (B.4) in order to keep f(u)′ real, can be written as:

u0‖ = u01‖ + a2u02‖ , u0⊥ = u01⊥ + a2u02⊥ , (4.3)

where u01 and u02 can in principle depend on all the parameters of the problem, but not on

the anisotropic parameter a. They are considered for parallel and transverse motion with

respect to the anisotropy parameter. Plugging them in the equation (B.5) for parallel and

transverse motion correspondingly and solving each of them separately and for different

orders, we obtain:

u01‖ = u01⊥ =

(

1− v2
)1/4

πT
= u0 iso , (4.4)

u02‖ = −
√
1− v2

(

1 +
√
1− v2

)

+
(

7v2 − 5
)

log
(

1 +
√
1− v2

)

48π3T 3 (1− v2)3/4
, (4.5)

u02⊥ = −
√
1− v2

(

1 +
√
1− v2

)

+
(

4v2 − 5
)

log
(

1 +
√
1− v2

)

48π3T 3 (1− v2)3/4
. (4.6)

Notice that the u01 is equal to the isotropic result as expected and the only difference

in u02 expressions for different directions is a numerical factor. The drag forces using

equation (B.7) are given by:

Fdrag,‖√
λ

= − πT 2v

2
√
1− v2

(4.7)

−a2
v

48π





v2

(1−v2)
(

1+
√
1−v2

)+
2(1−v2)+

(

1+v2
)

log
(

1+
√
1−v2

)

(1−v2)3/2



 ,

Fdrag,⊥√
λ

= − πT 2v

2
√
1− v2

(4.8)

−a2
v

48π





v2

(1−v2)
(

1+
√
1−v2

)+
2(1−v2)−

(

5−4v2
)

log
(

1+
√
1−v2

)

(1−v2)3/2



 .

The 0th order term in anisotropy is equal to the drag force in the isotropic undeformed

background as it should be. The anisotropic correction does not depend on the temperature

in any direction and it is consistent with the dimensional analysis.

The a2 term in the Fdrag,‖ is always negative for any value of v indicating enhanced

drag force for motion along the anisotropic direction. The corresponding term in Fdrag,⊥

is positive for velocities smaller than v ≤ vc ≃ 0.909 indicating decrease of the drag force

in this region, compared to the undeformed force. Above this critical value the drag force

even in the transverse direction is enhanced, compared to the isotropic one as can be seen

from (4.8). It is also worth noticing that the value of the critical velocity is independent

of the temperature and anisotropy.
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0.05 0.10 0.15 0.20

Α

T
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1.0020

1.0025

Fdrag1

Fdrag2

Figure 8. The drag force dependence on the anisotropic parameter a. The velocity is chosen close to

1, v ≃ 0.98. The exact value of the velocity as far as is in this region, does not affect qualitatively the

results. All the ratios in this plot are greater than one but for v . 0.909 the Fdrag,⊥/Fdrag,iso is lower

than unit and reduces as the anisotropy increases. Settings: black dotdashed line-Fdrag,‖/Fdrag,⊥,

blue dashed line-Fdrag,‖/Fdrag,iso, red solid line-Fdrag,⊥/Fdrag,iso and T = 1.

0.7 0.8 0.9 1.0
v

1.0002

1.0004

1.0006

Fdrag1

Fdrag2

Figure 9. The drag force dependence on the quark velocity v for fixed a and T . The only quantity

lower that 1 is the Fdrag,⊥/Fdrag,iso for v . 0.909. Settings: as in figure 8 and a = 0.1 and T = 1.

1 2 3 4

T

Α

1.0005

1.0010

1.0015

Fdrag1

Fdrag2

Figure 10. The drag force ratios dependence on the temperature T . We choose v = 0.98, where

all ratios are above unit. As the temperature increases the ratios decrease. Settings: as in figure 8

and a = 0.1.

– 16 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
1
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0.9998

1.0002

1.0004

Fdrag1

Fdrag2

Figure 11. The drag force ratios dependence on the temperature T . We choose v = 0.8 where

the ratio Fdrag,⊥/Fdrag,iso < 1. As the temperature increases the deformed forces approach to the

undeformed one. Settings: as in figure 8 and a = 0.1.

Moreover the drag force in the anisotropic direction is always greater than the one in

the transverse direction and their ratio reads:

Fdrag,‖

Fdrag,⊥
= 1 + a2

(

2− v2
)

log
(

1 +
√
1− v2

)

8π2T 2 (1− v2)
. (4.9)

The correction term is always positive and depends on the temperature as expected from

the dimensional analysis.

For better understanding of our findings we plot the following results. In the figure 8

are presented the drag forces along parallel and transverse directions normalized with the

undeformed isotropic result Fdrag,iso, as well as the fraction Fdrag,‖/Fdrag,⊥, depending on

the anisotropy. We see that increase of the anisotropy leads to increase of the deviation of

all the drag forces. The strongest dependence on anisotropy is observed for quarks moving

along the anisotropic direction as was also observed for the static potential.

In the figure 9 we plot the same quantities depending on the velocity of the quark for

constant a and T . We observe that increase of the velocity of the probe quark leads to

increase of the drag force. Where again for high enough velocities the drag force for motion

along the anisotropic direction is affected stronger by the anisotropy. From the plot it is

clear that for v . 0.909 the drag force in an isotropic background is stronger than the force

on the quark moving along the transverse direction to anisotropy. For higher velocities all

the drag forces are enhanced compared to the isotropic case.

In figures 10, 11 we plot the drag force ratios for fixed anisotropy and velocities. We

observe the differences for v < vc and v > vc. Common in both plots is that as the

temperature increases with respect to anisotropy the drag forces approach the isotropic

ones as expected by construction of our background.

To summarize qualitatively our results:

Fdrag,‖ > Fdrag,iso and Fdrag,‖ > Fdrag,⊥ ,

Fdrag,⊥ > Fdrag,iso for v > vc, while below this velocity Fdrag,⊥ < Fdrag,iso.
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Τ
¦

Τiso

Figure 12. The ratio of the diffusion time in the transverse direction of the anisotropic holographic

model to the diffusion time of the isotropic theory. For v . 0.909 the ratio is above 1. Settings:

red solid line-a = 0.1, blue dashed line-a = 0.2, black dotdashed line-a = 0.3 and T = 1.

0.6 0.7 0.8 0.9
v

0.997

0.998

0.999

1.000

Τþ

Τiso

Figure 13. The ratio of diffusion time for motion along the anisotropic direction to the diffusion

time of the isotropic theory for different values of the anisotropic parameter. Settings as in figure 12.
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0.998

0.999
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¦

Figure 14. The ratio of diffusion times along the anisotropic direction to the transverse one is

always lower than the unit. For higher velocities the ratio diverges increasingly from the unit.

Settings as in figure 12.
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4.1 The drag coefficient and the diffusion time

The drag coefficient is defined as

dp

dt
= −nDp , with p =

MQv√
1− v2

. (4.10)

Therefore the diffusion time τD is given by:

τD,‖,⊥ =
1

nD,‖,⊥
= − 1

Fdrag,‖,⊥

MQv√
1− v2

(4.11)

and corresponds to the time where the initial momentum is reduced by e−1 factor. The

equation (4.11) indicates that the time inequalities between the different directions will be

just inverted compared to the drag force results. For example the ratio of the diffusion

time for motion along parallel and transverse direction is given by:

τD,‖

τD,⊥
= 1− a2

(

2− v2
)

log
(

1 +
√
1− v2

)

8π2T 2 (1− v2)
, (4.12)

meaning that the diffusion time along the anisotropic direction is lower compared to the

one in the isotropic direction. The other two ratios are:4

τD,‖

τD,iso
= 1− a2

T 2

√
1− v2

(

1 +
√
1− v2

)

+
(

1 + v2
)

log
(

1 +
√
1− v2

)

24π2 (1− v2)
, (4.13)

τD,⊥

τD,iso
= 1− a2

T 2

√
1− v2

(

1 +
√
1− v2

)

−
(

5− 4v2
)

log
(

1 +
√
1− v2

)

24π2 (1− v2)
. (4.14)

The diffusion time τD,⊥ is longer than the isotropic one for v < vc, while for v > vc it is

shorter as expected from the drag force results. In figures 12, 13, 14 we plot the ratios

of diffusion times with respect to velocity of the quarks for three different values of a.

Increase of the velocity of the moving quark or increase of the anisotropy makes the ratios

τD,‖/τD,(iso,⊥) to increasingly diverge from the unit.

To briefly summarize, we find that for very high velocities the diffusion time in presence

of anisotropy is reduced compared to the isotropic theory. Hence the diffusion process is

faster in presence of the anisotropy for high velocities. We also find that the anisotropy

affects more the diffusion time in the anisotropic direction that in the transverse one. More

particularly the relation between the different diffusion times are:

τ‖ < τiso and τ‖ < τ⊥ , (4.15)

τ⊥ < τiso for v > vc, while below this velocity τ⊥ > τiso . (4.16)

4Notice that here we are considering as negligible the modifications to the mass of the quark from the

thermal medium. As we discuss in section 6, the medium induced corrections to the mass are independent

of the directions in anisotropic theory, but are expected to be slightly modified compared to the isotropic

case.
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5 Jet quenching in the anisotropic strongly coupled N = 4 sYM plasma

In this section we calculate the anisotropy effects on the jet quenching parameter. Its

bounds can be measured in the QGP by the radiative energy loss and the parameter

itself can be though as a property of the strongly coupled medium. The jet quenching

is generated when the momentum of an energetic parton changes while it moves in the

medium. The interaction with the medium result the parton to radiate gluons which is

the reason of the transverse momentum broadening. The jet quenching is defined as the

fraction of the mean transverse momentum obtained by the hard parton in the medium

over the distance it has traveled.

In the field theory the transverse momentum broadening can be calculated using a

Wilson line in the adjoint representation along a light cone direction. In the gravity dual

description the jet quenching can be calculated from the minimal surface of a world-sheet

which ends on an orthogonal Wilson loop lying along two light-like lines. These two long

parallel lines of the Wilson loop, with length say L−, are related to the partons moving at

relativistic velocities and are taken to be much more larger that the other two sides of the

loop with length Lk related to the transverse momentum of the radiated gluons.

The Wilson loop we calculate in supergravity side is in fundamental representation

but in the planar limit the expectation value of the adjoint Wilson loop is related to the

Wilson loop in the fundamental representation as

〈

WA(C)
〉

=
〈

WF (C)
〉2

, (5.1)

because trAdj = tr2Fund. The l.h.s. of the above equation is related to the jet quenching

parameter as [43]
〈

WA(C)
〉

≈ exp
− 1

4
√
2
q̂L2

k
L− . (5.2)

To calculate the corresponding Wilson loop we go to the light-cone coordinates by the

coordinate transformation
√
2x± = t± xp, where xp is chosen to be x‖ or x⊥, as in (A.3) .

The generic metric (A.1) becomes

ds2 = G−−(dx
2
+ + dx2−) +G+−dx+dx− +Gii(i 6=p)dx

2
i +Guudu

2 (5.3)

G−− =
1

2
(G00 +Gpp), G+− = G00 −Gpp

Taking advantage of the condition L− ≫ Lk, where Lk is the length of the string in the k

direction, we assume that the string worldsheet is translational invariant along xk. This

simplifies things significantly. We present here the full calculation of the jet quenching

because under certain approximations we can arrive in an analytic expression valid for any

background. We numerically check our analytical expressions with the exact ones and we

find that our approximations are correctly considered.

The ansatz for the string configuration is

x− = τ, xk = σ, u = u(σ) (5.4)

x+, xi 6=p are constant , (5.5)
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which represents a Wilson loop extending along the xk direction and lying at a constant

x+, xi 6=p. The indices p, k here denote a chosen direction. The action then reads

S =
2L−

2πa′

∫

Lk
2

0
dσ
√

G−−(Guuu′2 +Gkk) =:
2L−

2πa′

∫

Lk
2

0
dσ

√
D (5.6)

and the analysis has some similarities to the QQ̄ action analysis presented appendix A.

Using Hamiltonian formalism we obtain

H =
G−−Gkk√

D
. (5.7)

The Hamiltonian is a constant of motion, and we set it equal to c. We can solve for the u′

and get

u′2 =
(GkkG−− − c2)Gkk

c2Guu
, (5.8)

where at the turning point the string satisfies

Gkk = 0 , or GkkG−− = c2, or G−1
uu = 0 . (5.9)

Usually the interesting equation in this case is the last one which is satisfied for u = u0 = uh.

The short length of the string is then given by

Lk

2
=

∫ uh

0
du

√

c2Guu

(GkkG−− − c2)Gkk
. (5.10)

Since we are interested in the small Lk length and the integral goes from the boundary to

the turning point, the constant c must be very small. Therefore, we expand our formula,

and at the end we will check the validity of the expansion numerically to justify it. The

constant of motion turn out to be given by the analytic expression

c =
Lk

2

(

∫ uh

0
du

1

Gkk

√

Guu

G−−

)−1

+O(L3
k) . (5.11)

Before we substitute to the action we need to eliminate the infinity in the action that

appears due to the bounds of the integral. We use the mass subtraction scheme where we

subtract the two straight string world sheets described by: x− = τ, u = σ. The self energy

reads:

S0 =
2L−

2πα′

∫ uh

0
du
√

G−−Guu . (5.12)

The total action subtracted the divergences is equal to:

S − S0 =
2L−

2πα′

∫ uh

0
du
√

GuuG−−

(
√

G−−Gkk

G−−Gkk − c2
− 1

)

. (5.13)

After some algebra the normalized action takes the simple form

S − S0 =
L−Lk

4πa′
c , (5.14)
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where expressed in metric elements

S =
L−L

2
k

8πa′

(

∫ uh

0
du

1

Gkk

√

Guu

G−−

)−1

+O(L4
k) . (5.15)

We have checked numerically that in our case the small c approximation is valid where the

equations (5.13) and (5.15) take the same values for small values of c. The jet quench-

ing parameter for an energetic parton moving along the p direction while the broadening

happens along the k direction is given by:

q̂p(k) =

√
2

πα′

(

∫ uh

0

1

Gkk

√

Guu

G−−

)−1

, (5.16)

where to normalize correctly we have taken into account the equation (5.1). The equa-

tion (5.16) is very useful, since can be applied directly to any background that satisfies the

approximations we have made here.

For our 4-dim anisotropic plasma we have three different choices for the transverse

momentum broadening. The first one, q̂‖(⊥), is for the energetic parton moving parallel

to the anisotropic direction and the momentum broadening occurring along the transverse

direction. The second one, q̂⊥(‖), is for an energetic parton moving along x1 or x2 direction

and the momentum broadening happens along the anisotropic x3 direction. The last one,

q̂⊥(⊥), is for a parton moving along the transverse to the anisotropy directions and the mo-

mentum broadening is considered along the other parallel direction. In this case although

only the directions along the transverse space are involved, the dependence of the radial

direction metric element on the anisotropic parameter, modify although sightly the result

compared to the isotropic theory. Therefore the configurations we consider are:

q̂ xp xk Energetic parton moves along Momentum broadening along

q̂⊥(‖) x⊥ x‖ x⊥ x‖
q̂‖(⊥) x‖ x⊥ x‖ x⊥
q̂⊥(⊥) x⊥,1 x⊥,2 x⊥,1 x⊥,2

Where the x‖,⊥ are defined with respect to the anisotropy direction.

Let us start with the case where the quark moves along the anisotropic direction and

the momentum broadening occurs along the transverse one. Then

Gpp = G33 and Gkk = G11 . (5.17)

We find that the jet quenching in presence of anisotropy is enhanced with respect to the

isotropic case. Stronger anisotropy leads to further enhancement of the fraction q̂‖(⊥)/q̂0,

where q̂0 := q̂iso. Notice that normalization with q̂⊥(⊥) instead of q̂0, leads to almost

identical results. In figure 15 we show some representative results. The form of the function

is linear and particularly:
q̂‖(⊥)

q̂0
≃ 1 + 0.122

a

T
(5.18)
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Figure 15. The jet quenching for a heavy quark moving along the anisotropic direction q̂‖(⊥)

as a function of a/T . The results are normalized with the isotropic jet quenching. Notice that

normalization with q̂⊥(⊥) gives almost identical results. Settings: T = 5.
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Figure 16. The momentum broadening q̂⊥(‖) along the anisotropic direction for a heavy quark

moving in the transverse space. Settings: T = 5.
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Figure 17. Quark motion and broadening in transverse space:q̂⊥(⊥). Settings: T = 5.

in a very good approximation, where the numerical factor does not depend strongly on the

other parameters of our background. However, it is normal to expect that the lower order

in a/T will be (a/T )2 and the above linear behavior appears only approximately in small
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Figure 18. Comparing the jet quenching parameters. The q̂‖(⊥) is much more bigger than the

other two as expected. The q̂⊥(‖), q̂⊥(⊥) are closer and are plotted here. Settings: Blue solid

line-q̂⊥(‖), red dashed line-q̂⊥(⊥), T = 5.

anisotropies. The form of the function then becomes:

q̂‖(⊥)

q̂0
≃ 1 + 0.475

( a

T

)2
(5.19)

Comparing to the other jet quenching parameters q̂⊥(‖), q̂⊥(⊥) we will see that the aniso-

tropy affects stronger the jet quenching for the quark moving along the anisotropic direction

than the other ones.

To examine the q̂⊥(‖) we need to set

Gpp = G11 and Gkk = G33 (5.20)

and substitute to (5.16). Some representative results are shown in the figure 16. Again

we observe enhancement of the jet quenching, but this time is much more weaker than the

q̂‖(⊥). The form of the function is no more approaching to linear behavior, but increase of

anisotropy still leads to increase of the jet quenching.

Finally, we look at q̂⊥(⊥) where we need to choose

Gpp = G11 and Gkk = G22 . (5.21)

We show that a weak enhancement of the jet quenching observed as can be also seen in

figure 17. Although the quark motion and the momentum broadening happen along the

transverse directions the jet quenching gets modified due to the fact that the time and

the radial metric elements are dependent on the anisotropy parameter. We compare q̂⊥(⊥)

with q̂⊥(‖) in figure 18 where we observe important differences in their magnitudes.

There are some common features that we observe for all the jet quenching parameters.

We find that when anisotropy is present the jet quenching is enhanced. Increasing the

anisotropy parameter leads to increase of the enhancement. The presence of anisotropy

affects mostly the momentum broadening of a quark moving along the anisotropic direction.

This is something we have seen in the static potential and the drag force. Alignment of the

QQ̄ pair along the anisotropic direction, as well as motion of the quark with the trailing

– 24 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
1

string along this direction led to maximum modifications on the relevant results due to

anisotropies.

To summarize our findings: We find that the jet quenching is in generally enhanced in

presence of anisotropy compared to the isotropic case and that its value depends strongly

on the direction of the moving quark and the direction which the momentum broadening

occurs. More particularly

q̂‖(⊥) > q̂⊥(‖) > q̂⊥(⊥) > q̂iso , (5.22)

which in our conventions translated as: the jet quenching is stronger enhanced for a quark

moving along the anisotropic direction and momentum broadening happens along the trans-

verse one. The parameter gets lower for a quark moving along the transverse direction and

the momentum broadening considered along the anisotropic one. A very weak enhancement

is observed when the quark moves in the transverse plane and the broadening happens on

the same plane.

5.1 Comparison with other results

It has been shown in many different studies that certain jet quenching parameters in an

anisotropic plasma are increasing in presence of anisotropy. Moreover, in these studies the

ordering of q̂⊥(‖), q̂⊥(⊥) agrees with the one we have found here. However, we should keep

in mind that the models mentioned below have several other differences from our theory

apart from the fact that are in the weak coupling limit. Nevertheless, the comparison is

useful since these differences are not a priori known how much they affect the corresponding

results.

It has been found using kinetic theory that in the leading-log order the jet quenching

of a heavy quark moving along one of the transverse directions to anisotropy is larger when

the momentum broadening is along the anisotropic axis, which in this case coincide with the

beam axis, compared to when the broadening occurs in the other transverse direction [44].

In our conventions these results can be written as q̂⊥(‖) > q̂⊥(⊥). This is in agreement with

our results as can be seen in figure 18.

In [45] the jet quenching was calculated in an unstable non-Abelian weakly coupled

SU(2) plasma. Using numerical simulations taking into account hard elastic collisions and

soft interactions mediated by classical Yang-Mills fields, and a separation scale between

them, the authors found that the fields develop unstable modes which lead to q̂⊥(‖) > q̂⊥(⊥)

in our notation.

In [46] the jet quenching is estimated in leading logarithmic approximation by the

broadening of the massless quark interacting via gluon exchange. The energetic hard

quark considered propagates in one of the transverse directions to the anisotropy and the

momentum broadening is estimated in the transverse to the motion plane, which include

the anisotropic direction. The jet quenching in the anisotropic plasma was found to be

enhanced with respect to the isotropic one.

It is important to notice here that our jet quenching results are in some agreement

with STAR findings, e.g. [47]. This might be an additional indication that the QGP in

LHC and RHIC is not in equilibrium.
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6 Attempts for more quantitative comparison

In this section we make an attempt to predict the effect of the anisotropy on the observables

in a more quantitative way. To do that we need to use sensible comparison schemes and

give realistic values to the parameters of the model. There are several differences between

our anisotropic deformed theory and the QCD but a comparison between strongly coupled

plasmas in the two theories could be done under some logical normalization schemes. For

example one motivation for these comparisons is that there are indications from lattice QCD

calculations which show that lattice QCD thermodynamics are in good approximation with

conformal theories for some finite range of temperatures T > 2Tc.

For the heavy test quarks we used we can choose the charm and bottom quarks. Their

effective masses are difficult to be determined precisely in the thermal medium, but the most

representative values are: Mc = 1.5GeV and Mb = 4.8GeV. We can include the medium

induced correction to these masses, by specifying their dependence on the temperature. As

we mention in the appendix A, the mass of the static quark is represented by the static

straight string stretched along the radial radiation starting from the boundary of the space

and reaching the black hole horizon. However, this string is infinite and that is the reason

that is used to normalize the infinite static potential. Therefore in the UV, a regulator

should be introduced to make the result finite. The value of the regulator has to be fixed

by matching the MQ(T = 0) to the physical quark mass. Notice that the medium induced

corrections to the masses are not affected of the direction of the anisotropy. On the other

hand, they are very slightly modified compared to the isotropic case, since the horizon

position is modified.

To compare the observables in the theories we need to fix appropriately the theory

parameters. Our model is not a confining and the static potential does not include the

linear term. However, by comparing the renormalized charge or the static force of the

conformal theory with the lattice data for relatively small separation lengths of the quark

pair, it is possible to find that a well estimated value in order to agree for the t’ Hooft

coupling is λ = 5.5. The next parameter we need to determine for comparison is the choice

of temperature in our anisotropic deformed theory and the QCD. The degrees of freedom

in two theories as well as the field content are very different. For example in our case we

do not have flavors and we have very large number of the color branes. To qualitatively

compare the two theories we normalize the quantities firstly according to a fixed energy

density scheme. By approximating the QCD plasma as a free gas the energy density is

ǫQGP ≃ π2(N2
c − 1 +NcNf )

15
T 4
QGP ≃ 11.2 T 4

QGP, where Nc = Nf = 3 , (6.1)

and the factor N2
c −1+NcNf is the degrees of freedom of SU(Nc) QCD with Nf flavors. By

counting the degrees of freedom in N = 4 sYM can be found that there are approximately

2.7 times more than the ones in QCD above the confinement phase transition, in our

case ≃ 45. Taking advantage of the fact that our theory is deformed with a very small

deformation parameter a and equating the energy densities in these two theories we obtain

the relation [48]

TSYM,anisot = 2.7−1/4TQCD . (6.2)
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The next parameter we need to fix is the anisotropy. From (2.20) we find that

a2 =
8π2T 2ξ

5
(6.3)

and therefore we are in the region of small ξ. If the anisotropic parameter ξ is small then it

is also related to the shear viscosity of the plasma, where in one-dimensional boost invariant

expansion governed by Navier-Stokes evolution [31, 32, 50, 51], the result given from (2.21)

ξ =
10η

Tτs
(6.4)

where the η/s is the viscosity to entropy ratio, and τ−1 defines the expansion rate, since

τ is the proper time. The dimensionless parameter Tτ determines the magnitude of the

anisotropies and in the strong coupling in the RHIC and LHC initial conditions respectively

this can be approximated to

Tτ ≃ 0.35 for RHIC conditions (6.5)

Tτ ≃ 0.43 for LHC conditions , (6.6)

where we have assumed τ0 ≃ 0.2 fm, T = 350MeV and τ0 ≃ 0.1 fm, T = 850MeV

respectively, since at LHC energies the initial time is expected to be small. To get a

better picture of the above assumptions and the qualitative picture we fix the total entropy

and observe the behavior of Tτ . By assuming that the entropy scales as s ∝ T 3 and

V0 ∝ τ0, with S = s0V0 we can estimate the corresponding times at different conditions.

For example, by considering T0 = 250MeV to correspond to τ0 ≃ 1, then for temperature

T0 = 350MeV the corresponding time is τ0 ≃ 0.36. Therefore, increase of temperature

leads to decrease of τ0 which is in agreement with the assumptions made to get (6.6). By

choosing in the strong coupling limit that η/s ≃ 0.1 as a representative value, we get for

the initial conditions ξ ≃ 2.3 and ξ ≃ 2.8, where the smaller momentum space anisotropies

correspond to the LHC initial conditions. Notice that reduction of the number of the flavor

degrees of freedom, result also lower values for τ0 since the temperature increases.

For RHIC energies the typical formation times cover a range of 0.2fm to less than

1 fm for temperatures T0 = 250−350MeV, estimation made by fixing the total entropy to

reproduce the measured rapidity density of hadrons at a given centrality, e.g., at impact

parameter b ≃ 7 fm [49]. Additionally, the hydrodynamical models normally require ther-

malization times τtherm in the range of 0.6− 1 fm in order to reproduce the magnitude of

elliptic flow which is observed at RHIC. We need to choose a representative value for ξ, at

T = 250MeV and by considering τ ≃ 0.6 fm, then Tτ ≃ 0.76 and

ξR ≃ 1.30 . (6.7)

This is the value we choose as a representative one for RHIC energy. Notice that the choice

of the value depends strongly on the values we chose for the viscosity over entropy ratio and

for the proper time. Since the exact values for both of these quantities are quite uncertain

our numerical value should be taken with caution. For the viscosity over entropy ratio the

– 27 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
1

value that is predicted in the AdS/CFT is around the well known η/s ≃ 1/4π [11]. For

RHIC conditions it has been estimated for a hot gluon plasma for SU(3) pure gauge model

using lattice QCD simulation a range of values 0.1-0.4 [52]. More recently for the SU(3)

gauge theory an estimate of η/s ≥ 0.134(33) is predicted at T = 1.165Tc [5]. Therefore, a

choice of η/s ≃ 0.1 as representative is sensible. The proper time value has chosen to have

this value in order to be larger than formation time and close to the lower bound of the

thermalization time so to estimate the anisotropy effects before the thermalization.

The formation time at the LHC is estimated lower than the RHIC, at least to

0.1 fm [49]. Then by choosing a representative value τ ≃ 0.5fm and T = 450MeV, relevant

for LHC conditions we get Tτ = 1.14 and

ξL ≃ 0.87 . (6.8)

Therefore in order to compare between our anisotropic theory and the QCD, the last thing

we need to specify is the relation between their proper times. One first approximation

would be to consider proper times approximately equal. An other option is to fix the

total entropy of motion since in our model the anisotropy parameter is very small. This

assumption seems to be logical and in agreement with the discussion for heavy quarks

in [49]. In that case the formation times between two theories with different degrees of

freedom follow the relation

τ0N=4 sYM =

(

TQCD

TN=4 sYM

)3( d.o.f.QCD

d.o.f.N=4 sYM

)

τ0QCD . (6.9)

Then we get for the formation times

τ0N=4 sYM ≃ 2.7−1/4τ0QCD (6.10)

and for the Tτ

(Tτ0)N=4 sYM = 2.7−1/2(Tτ0)QCD . (6.11)

We see that both the formation time and the Tτ quantity is lower in N = 4 (anisotropic)

sYM. This implies for ξ close to the initial conditions

ξN=4 sYM ≃
√
2.7 ξQCD , (6.12)

while the numerical values for the LHC and RHIC initial conditions we chose are translated

to ξR N=4 sYM ≃ 4.60 and ξL N=4 sYM ≃ 3.78.

We can assume that the proper time relation (6.9) between the two theories carry

on beyond the formation time, for any proper early time we would like to compare:

τ1N=4 sYM = 2.7−1/4τ1QCD for our comparison purposes. For example this can be though

as measuring the time with respect to the formation time in the two theories. In that case

ξR aSYM ≃ 2.14 for the representative RHIC value (6.7) and ξL aSYM ≃ 1.43 for the repre-

sentative LHC value (6.8). Therefore from (6.3) the resulting values for the supergravity

anisotropy parameter are (a/T )R ≃ 5.81 and (a/T )L ≃ 4.75. For these values our current

background can not be used for predictions since we are in T ≫ a approximation.
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Notice if we would fix the entropy density instead of the energy density the rela-

tion between the formation times by making the above assumption of the constant total

entropy would obviously be τ0N=4 sYM ≃ τ0QCD. This would lead to (Tτ0)N=4 sYM =

2.7−1/3(Tτ0)QCD and consequently to ξN=4 sYM ≃ 2.71/3 ξQCD. In this case to the values

of ξ parameters are very close to the ones found above, so qualitatively for our purposes

there is no change.

Using the direct scheme where the temperatures of the two theories are identified, the

isotropization time would be equal in the two theories since in N = 4 sYM it was found

that τiso ≃ 0.7/T [53]. Then the values of ξ near the isotropization would coincide in the

two theories and take the values (6.7) and (6.8) leading to 4.53 and 3.7 respectively. The

a/T values turn out to be greater than one and close to the values predicted above. So for

our purposes the interesting outcome here is that by fixing different quantities in the two

theories the proper times and more importantly the Tτ quantities do not differ significantly,

and all of them lead to relatively high a/T values if we trust the equation (2.21).

To make the comparison using our model we should have had at most say a/T ≃ 0.3

which gives ξaSYM ≃ 0.005 which correspond to extremely high temperature according to

equation (2.21). Therefore, we need to go to higher values of a/T than our approximation

allows. However, for higher values of a/T without considering the expansion, the pressure

inequality Px3
< Px1x2

get reversed and when this happens the supergravity solution does

not describe anymore an expanding plasma with the desirable properties. Notice that

the values for the parameters we have used here are approximate, however any sensible

values for the proper time (and how it is modified in the comparison scheme used) and the

viscosity over entropy ratio that could be chosen would lead to the similar outcome for the

range of values of large a/T and anisotropy ξ.

The results we have obtained in our paper show how the particular observables are

modified in presence of anisotropy in the strong coupling limit, and the qualitative pattern

that they follow is clear. However for completeness we consider a/T ≃ 0.3 and plug its

value to our results. Then the jet quenching modified as

q̂‖(⊥)

q̂0
≃ 1.036 ,

q̂⊥(‖)

q̂0
≃ 1.0009 ,

q̂⊥(⊥)

q̂0
≃ 1.0002 . (6.13)

While the drag force, for velocity v = 0.95 is

F‖

F⊥
≃ 1.0035 ,

F‖

Fiso
≃ 1.0036 ,

F⊥

Fiso
≃ 1.0001 . (6.14)

7 Conclusions and list of results

In this paper we have studied the jet quenching, the drag force and the static potential,

in the strong coupling dual anisotropic QGP. We have seen how certain quantities of the

finite temperature isotropic N = 4 sYM theory are modified in presence of anisotropy.

In the QGP plasma, similar anisotropies can be created due to the expansion along the

longitudinal direction. We have found several interesting results where some of them are

listed briefly below:

– 29 –



J
H
E
P
0
7
(
2
0
1
2
)
0
3
1

• Jet quenching. In presence of anisotropy the jet quenching is enhanced compared

to the isotropic case and its value depends strongly on the direction of the moving

quark and the direction which the momentum broadening occurs. The jet quenching

is strongly enhanced for a quark moving along the anisotropic direction and momen-

tum broadening happens along the transverse plane. It reduces for a quark moving

along the transverse direction and the momentum broadening considered along the

anisotropic one. Finally, it reduces further when the quark moves in the transverse

plane and the broadening happens on the same plane. We can write our findings in

a more compact form as

q̂‖(⊥) > q̂⊥(‖) > q̂⊥(⊥) > q̂iso . (7.1)

Additionally the dependence of q̂‖(⊥) on the a/T is linear in a very good approxima-

tion at small a/T with
q̂‖(⊥)

q̂0
≃ 1 + 0.122

a

T
, (7.2)

but since normally is expected that the lower order term will be of second order the

dependence becomes
q̂‖(⊥)

q̂0
≃ 1 + 0.475

( a

T

)2
. (7.3)

• Drag force. In presence of anisotropy the longitudinal drag force Fdrag,‖ is always

enhanced. The transverse force Fdrag,⊥ is enhanced above a critical velocity value

v ≃ 0.909, while below this value is reduced. In both cases the anisotropic terms con-

tributing to the anisotropy do not depend on the temperature (4.7), (4.8). Comparing

the forces between longitudinal and transverse directions we get

Fdrag,‖

Fdrag,⊥
= 1 + a2

(

2− v2
)

Log
[

1 +
√
1− v2

]

8π2T 2 (1− v2)
. (7.4)

which indicates that Fdrag,‖ > Fdrag,⊥ .

• Diffusion time. The diffusion time behavior is in direct analogy with all the findings

of the drag force inverted. In the transverse direction τ⊥ < τiso for v & 0.909 while

this relation is inverted for velocities lower than the critical value. The diffusion

time along the longitudinal direction is always lower that the time in the isotropic

medium. The relation between the times in the longitudinal and transverse directions

are τ‖ < τ⊥. The analytic relations for τ‖, τ⊥ normalized with the isotropic diffusion

time are given by (4.13), (4.14) and their fraction by (4.12).

• Static potential and force. We find that the static potential in presence of anisotropy

becomes weaker in absolute value. The relation of the static potential of a pair

aligned longitudinal to the anisotropy compared to the static potential of a pair

aligned transverse direction is

V‖ < V⊥ < Viso (7.5)
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when the comparison is done in terms of LT keeping the anisotropy parameter and

temperature fixed. Moreover the critical length of the string is decreased in presence

of anisotropy as

Lc‖ < Lc⊥ < Lc iso . (7.6)

In order to get rid of the non-physical constant in the potential we consider the static

force, and we find that indeed the force is screened in presence of anisotropy with the

order

FQQ̄,⊥ < FQQ̄,‖ < Fiso (7.7)

and that increase of anisotropy leads to further decrease of the static force.

The modifications of most of our results due to anisotropy are stronger along the

anisotropic direction. This happens because we have found that the geometry is mod-

ified more in the anisotropic direction than in transverse one, phenomenon that gets

even stronger as the anisotropy parameter is increased. The geometry modifications re-

flect to the observable results. Moreover, for larger anisotropies where also the pressure

anisotropy (2.12) is inverted the behavior of the observables we have found here is expected

in some cases to be different. It should also be noted that the comparison of observables

between anisotropic and isotropic theories have been done mostly by identifying the tem-

peratures in these theories.

It is worth noticing that for large velocities the drag force and jet quenching parameter

have the same qualitative behavior. This qualitative agreement has been observed in other

cases too. In [54], the fraction of drag forces and jet quenching in cascading plasma or

charged plasma over the N = 4 sYM have been found to follow similar patterns. for

completeness we point out that exact numerical agreement for the fractions q̂‖(⊥)/q̂0 and

Fdrag,‖/F0 can be found for velocities v ≃ 0.9996. Moreover it has been found that the

presence of R-charges enhances the jet quenching [55–57]. Therefore, the inclusion of

anisotropy and R-charges is expected to lead to further enhancement.

The particular enhancement in jet quenching due to the anisotropy and the longitudi-

nal, transverse relations q̂⊥(‖) > q̂⊥(⊥) we have obtained are in partial agreement with sev-

eral models for weak coupling plasmas, e.g. [44–46] as well as with the STAR findings [47].

The static potential findings are different than the ones obtained in weak coupling limit,

but in a different setup in [39] where the potential was calculated from the Fourier trans-

form of the static gluon propagator in a hard loop approximation. Moreover in [58] for

the weakly anisotropic plasmas it was also found that the quarkonium binding is stronger

for non-vanishing viscosity and expansion rate, result that is in agreement with [39]. In

strong coupling limit using our model where no dynamical flavor degrees of freedom, we

find weaker potential due to anisotropy. Although the inclusion of flavors beyond probe

(unquenched) approximation in an isotropic theory is expected to lead to further screen-

ing [36–38] it is not clear a priori what happens in case of presence of anisotropy. We have

commented on the reasons in the section 3.1.

Moreover, using some sensible comparison schemes we have tried to make a more

‘quantitative’ predictions and comparison with the experimental results. However, the
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limit we have considered T ≫ a and the background is analytically known and has the

desirable pressure anisotropy along the different directions, corresponds to low values of

anisotropic parameter ξ, that seem not to be the ones that the observed QGP has, if we

trust the equation (2.21).

There are several other studies that can be performed using the AdS/CFT for aniso-

tropic QGP. The quarkonium physics, where the introduction of flavor branes are needed in

order to insert to the background information for the dynamical degrees of freedom and the

mesons. The electromagnetic observables are also interesting to be studied and is believed

that they contain information about the initial stages of the anisotropic QGP. An effort to

this directions has been done in [15] using the background [14]. The photon and dilepton

thermal production by the plasma has been studied in the weak coupled anisotropic plasma

in [59–62]. Very interesting is also the derivation of supergravity anisotropic solutions which

depend on the time and describe the isotropization of the plasma.

It would be also interesting to see if and how the generic conditions for the cancelation

of the UV divergences in the Wilson loops with the use of the Legendre transform for

isotropic backgrounds, derived in [63] are modified in case of anisotropic backgrounds. In

the special case of the orthogonal static potential Wilson loop, it seems that the result of

the UV divergence with the use of the Legendre transform, gives the same formula as the

isotropic case. However, for more complicated Wilson loops the analysis is more involved.

Note added. The results of this paper were reported in a talk, at 31 January of 2012 in

the workshop ‘Exploring QCD frontiers: from RHIC and LHC to EIC’, Stellenbosch 2012.

While this paper was in final stage of typing for submission the author has received the

reference [66] which has small partial overlap with our drag force results, and in particular

there is an agreement for small a/T limit. Moreover, some time after the appearance of

our paper the same authors have studied the jet quenching for generic quark motion and

for the whole range of a/T [67]. In the small a/T limit their results again agree with ours.

For larger anisotropies a/T , where however the pressure inequality (2.12) is inverted, the

jet quenching behavior changes in some directions.
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A QQ̄ strings in generic weakly coupled backgrounds

In this section we present the world-sheet calculation of a string in static gauge in weakly

coupled backgrounds and their energy which corresponds to the static potential. The string

in the anisotropic background (2.1), is a special case of the strings we examine here. The
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following equations have been derived in various forms in several in other papers too [36, 64].

By writing the metric of the space as

ds2 = G00dτ
2 +Giidx

2
i +Guudu

2 , (A.1)

we choose the static gauge for the string

x0 = τ and xp = σ, (A.2)

which is extended in the radial direction, so u = u(σ). The xp coordinate represents the

direction along which the pair is aligned and can be chosen to be

xp = x1,2 =: x⊥ or

xp = x3 =: x‖ . (A.3)

Then the induced metric gαβ = GMN∂αX
M∂βX

N for our world-sheet read:

g00 = G00, g11 = Gpp +Guuu
′2. (A.4)

Supposing that we are working in Lorentzian signature the Nambu-Goto action is5

S =
1

2πα′

∫

dσdτ
√

−G00(Gpp +Guuu′2) =:
1

2πα′

∫

dσdτ
√
D . (A.5)

The Hamiltonian then is equal to

H =
G00Gpp√

D
(A.6)

and is a constant of motion. Setting it equal to −c we can solve for u′ and get the turning

point equation

u′ = ±
√

−(G00Gpp + c2)Gpp

c2Guu
, (A.7)

which is solved for

G−1
uu = 0 , or Gpp = 0 , or G00Gpp = −c2 . (A.8)

The above equations, normally the last one, specify how deep the world-sheet goes into the

bulk, and we call this value of the turning point u0.

The length6 of the two endpoints of the string on the brane is given by

L = 2

∫ u0

∞

du

u′
= 2

∫ ∞

u0

du

√

−Guuc2

(G00Gpp + c2)Gpp
. (A.9)

5In the case of Euclidean signature, the formulas change with a minus sign wherever the G00 element is.
6The limits of the length integral depend on where we choose as the starting point measuring L. When

the string in the boundary extends from −L/2 to L/2, then the corresponding solution of the u′ is positive

for (0, L/2) since the turning point corresponds to L = 0. When the string extends from (0, L) the u′ in

(0, L/2) is negative. In any case the final result in the definite integral is (A.9).
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Moreover, the energy of the string using as renormalization method the mass subtraction

of the two free quarks is

2πα′E = 2

(∫ ∞

u0

dσL −
∫ ∞

uk

du
√

G00Guu

)

= cL+ 2

[

∫ ∞

u0

du
√

−GuuG00

(
√

1 +
c2

GppG00
− 1

)

−
∫ u0

uk

du
√

−G00Guu

]

,

(A.10)

where uk is the possible horizon of the metric. Notice that we already used that fact that

the world-sheet is symmetric with respect to turning point u0 and hence the r.h.s. of the

above equation are already multiplied by two.

Using the equations (A.9) and (A.10) the static potential can be found in terms of the

distance of the QQ̄ pair for any gravity dual background at least numerically. The deriva-

tion of the analytical expressions depend on whether the integrals can be done analytically

and if the inversion of u0(L) is possible analytically.

B Drag force on trailing string in general weakly coupled backgrounds

It is possible to calculate the drag force analytically in a generic background, for example

as in [65], and as we have done for the static potential. We consider the background with

the generic metric (A.1) and the following ansatz for the trailing string with radial gauge

choice and motion along the xp direction:

x0 = τ, u = σ, xp = vτ + f(u) , (B.1)

where in the other directions the world-sheet is localized. The xp is chosen to be x‖ or x⊥,

like the (A.3) for the static potential analysis. It denotes the direction along which the

heavy quark moves with velocity v. Moreover, the function f(u) at the boundary should

be equal to zero in order to resemble a constant quark motion. The Nambu-Goto action

in our case reads

S = − 1

2πα′
T
∫

du
√

− (G00 +Gppv2)Guu −G00Gppf ′2 =: − 1

2πα′
T
∫

du
√

D1 . (B.2)

The action produces one non-trivial equation for f and since it does not depend explicitly

on f , it has a constant of motion the canonical momentum

Π1
u =

1

2πα′

G00Gppf
′

√
D1

. (B.3)

The f ′ function must be real and to elaborate on the reality condition we need to solve (B.3)

for f ′ to get

f ′ =

√

− (G00 +Gppv2)Guu
√

−G00Gpp

(

1 +G00Gpp (2πα′Π1
u)

−2
)

. (B.4)
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To keep f ′ real, both the numerator and denominator must have the same sign at any value

u. The numerator vanishes for u = u0 satisfying

Guu(G00 +Gppv
2) |u=u0

= 0 , (B.5)

where usually the solution comes from the expression within the brackets. The momentum

then can be expressed in terms of u0 where the denominator simplified significantly

Π1
u = −

√

−G00Gpp

2πα′

∣

∣

∣

∣

u=u0

. (B.6)

Since we have chosen the physical solution which describes the momentum flowing along

the string from the boundary to the horizon, the total drag force on the string for motion

along the xp direction is given by

Fdrag,xp = Π1
u = −

√
λ

√

−G00Gpp

(2π)

∣

∣

∣

∣

u=u0

. (B.7)

Therefore in any generic background the drag force can be calculated by solving (B.5) to

specify the point u0 and then by plugging its value to the equation (B.7).
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