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1 Introduction

The study of two-dimensional conformal field theories in terms of their minimal model

description, their Landau-Ginzburg phase or as gauged linear sigma-models has proven to

be very useful [1, 2]. It has taught us about the space of two-dimensional conformal field

theories, and its geometrical structure. The study has had a profound impact on our under-

standing of compact Calabi-Yau manifolds and mirror symmetry, and it has had interesting

applications in the field of singular manifolds and toric varieties (see [3] for a review).

The extension of this study to include theories with non-compact targets, and in par-

ticular non-compact Calabi-Yau manifolds is very interesting. It is a natural generalization

from the perspective of studying Calabi-Yau manifolds locally, or from the viewpoint of

understanding holography in curved non-compact spaces that asymptotically have a linear

dilaton profile [4, 5]. This field has already given rise to many results including a study of

the map between deformations of the geometry and the spectrum of non-compact confor-

mal field theories [6–10], mirror symmetry for non-compact Gepner models, as well as an

intriguing relation between orbifolds in asymptotically linear dilaton spaces and flat space

toric orbifolds [10]. However many of the results have been based on studying the chiral

(anti-chiral) rings of the theory.

Recently, there has been a lot of progress in our understanding of the elliptic genus of

non-compact N = 2 superconformal field theories with central charge larger than three [11–

13]. In particular, it was understood that the elliptic genus is modular covariant and real.

Non-holomorphic contributions arise from the continuous part of the spectrum of the two-

dimensional conformal field theory. This has led to a physical understanding of the modular

completion of mock modular forms in terms of both a modular Lagrangian path integral

description [11], and a Hamiltonian viewpoint in terms of an integral over a difference of

spectral densities for right-moving primary bosons and fermions [13].

In this paper we apply these new insights to the study of conformal field theories which

are tensor products of N = 2 minimal models and N = 2 Liouville theories (or N = 2

cigar coset models), and their orbifolds. The elliptic genus of tensor product theories is the

product of the individual elliptic genera. For orbifold theories, we can often identify the

elliptic genus via standard twisting procedures.

For orbifolds of products of compact Gepner models, there have been many interesting

results [14–18], especially in the context of mirror symmetry. Given a Landau-Ginzburg

formulation of a compact Calabi-Yau, there is an algorithmic way to construct the mirror.

Most of the results on elliptic genera rely on the fact that, given the Poincaré polynomial

of the target space, there is a unique extension to the elliptic genus and the identification

of mirror pairs thus becomes simpler.

For non-compact conformal field theories, our generic construction will give rise to a

large new class of real Jacobi forms. In particular, when more than one non-compact model

is involved, the product of elliptic genera gives rise to a modular completion of the product

of mock modular forms. Conformal field theory elliptic genera thus provide a natural way

to complete the product of two mock modular forms.

We apply this general reasoning to non-compact Gepner models and their orbifolds in
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type II string theory. The knowledge we gained about non-compact elliptic genera allows

us to check mirror symmetry explicitly in these models in a way coherent with modularity

and ellipticity. The check includes some long multiplet contributions. Our analysis is

constructive in the sense that, starting from the elliptic genus of a given orbifold theory we

rewrite it such that the final expression has a natural interpretation as the elliptic genus

of the mirror model. Under the mirror transform, the Liouville factors naturally go over

into their cigar counterparts.

The paper has the following organization. In section 2 we discuss the elliptic genera

of the basic models, which are the minimal models with c < 3 and the two types of non-

compact models with c > 3, the Liouville and cigar theories. We also describe how to put

these together and construct the elliptic genera of tensor product and orbifold models. In

section 3 we restrict to orbifold models which are non-compact generalizations of Gepner

models in type II string theory. Examples with central charge c = 6 are provided in

section 3.3 and those with central charge c = 9 are discussed in section 4. The technical

ingredients necessary for the calculations in these sections are provided in appendix A. We

end in section 5 with a number of proposals for how to extend our class of examples to a

broader domain.

2 Elliptic genera

In this section, we review the elliptic genera of N = 2 minimal models and N = 2 super-

conformal field theories with central charge greater than three, since these conformal field

theories form the building blocks of the models we study in sections 3 and 4. We also pause

to make a point about an embryonic example of mirror symmetry.

2.1 Definition and properties

We study N = 2 superconformal field theories with a left U(1)R charge J0 and a right

charge J̄0, as well as scaling dimension operators L0 and L̄0. The elliptic genus χ [19, 20]

is defined as a twisted partition sum with periodic boundary conditions for the fermions:

χ(q, z) = Tr (−1)F qL0−
c
24 q̄L̃0−

c
24 zJ0 . (2.1)

We will also use the notation χ(q, z) ≡ χ(τ, α) for the elliptic genus, where the arguments

are related through the equations q = e2πiτ and z = e2πiα. The elliptic genus has elliptic

and modular covariance properties which make it a Jacobi form.

2.2 The building blocks

In this subsection, we list the elliptic genera of the elementary building blocks that we will

use to construct our models.

– 3 –
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2.2.1 The N = 2 minimal models

The elliptic genus of an N = 2 minimal model with central charge c = 3 − 6
k and k a

positive integer is given by [1]:

χ(k;−)(q, z) =
θ11

(

q, z
k−1
k

)

θ11(q, z
1
k )

. (2.2)

This is also the elliptic genus of the compact Landau-Ginzburg model with superpotential

W = Xk . It can, moreover, be derived from the gauged Wess-Zumino-Witten description

of the model. We denote the level of the minimal model as an extra argument for the

elliptic genus, followed by a semicolon. The elliptic genus of the minimal model has an

expansion in terms of twisted Ramond sector characters [1, 21]:

χ(k;−)(q, z) =

k−2
2

∑

j=0, 1
2
,...

Cj
2j+1(q, z) . (2.3)

The basic definitions and the modular and elliptic properties of these characters are re-

viewed in appendix A.

2.2.2 The N = 2 Liouville model

Next, we consider models with central charge c = 3+ 6
l with the level l equal to a positive

integer. The Zl ⊂ U(1)R orbifold of the SL(2,R)l/U(1) coset theory with central charge

c = 3 + 6
l has elliptic genus [11]:

χ(−; l)(q, z) =
iθ11(q, z)

η3
Â2l(z

1
l , z2; q). (2.4)

The level l of the non-compact model follows the semicolon. This elliptic genus is also

the genus of a generalized non-compact Landau-Ginzburg model with superpotential W =

e−lY , coinciding with N = 2 Liouville theory at radius R =
√
lα′.

Let us discuss these points in some detail, since it provides an important embryonic

example of mirror symmetry that pervades the rest of our paper. Note that there are

two known ways to obtain the expression (2.4) for the elliptic genus. The first way is

through the non-compact Landau-Ginzburg model, where one identifies the R-charges of

the fields, and their proper configuration space, then to do a free field calculation to obtain

the holomorphic part of the elliptic genus [11]. A scattering calculation using the Landau-

Ginzburg potential will then further provide the remainder term in the elliptic genus [13],

thus proving that expression (2.4) is the elliptic genus of N = 2 Liouville theory at radius

R =
√
lα′. Alternatively, a path integral calculation shows that this is also the elliptic

genus of the Zl orbifold of the cigar coset conformal field theory [11, 13]. This provides

further evidence for the equivalence of these models [22, 23] in terms of the match of a

modular covariant partition sum.

– 4 –
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The mock modular form, of which the elliptic genus is the completion, is a holomorphic

Appell-Lerch sum which has an expansion in terms of twisted Ramond N = 2 supercon-

formal characters Ch extended by spectral flow (see [23, 24] for our conventions for the

arguments):

χhol(−; l)(q, z) =
l−1
∑

2j−1=0

Ch

(

j;−1

2
; q, z

)

. (2.5)

2.2.3 The coset conformal field theory

The SL(2,R)l/U(1) supersymmetric coset theory, which we refer to as the cigar theory, has

an elliptic genus obtained by taking the Zl orbifold of the elliptic genus quoted above. It

is given by

χ(−; l)Zl(q, z) =
1

l

iθ11(q, z)

η3

∑

ma,mb∈Zl

e−
2πimamb

l q−
m2

a
l Â2l(z

1
l q

mb
l e

2πimb
l , z2; q). (2.6)

We have denoted the orbifold group as a superscript to the elliptic genus. It is also the

elliptic genus of N = 2 Liouville theory at radius R =
√

α′/l. The holomorphic part of the

elliptic genus can again be expanded in terms of the extended characters:

χhol(−; l)Zl(q, z) =
l−1
∑

2j−1=0

Ch

(

j;−1

2
− (2j − 1); q, z

)

. (2.7)

2.3 Tensor product theories

An elementary but important point is that the elliptic genus of a tensor product conformal

field theory is the product of the individual elliptic genera:

χ(⊗iCFTi) =
∏

i

χ(CFTi). (2.8)

For example, for the tensor product of compact and non-compact Landau-Ginzburg models

with central charges associated to the positive and integer levels (k1, k2, . . . , kp; l1, l2, . . . , lq),

the elliptic genus reads:

χ(k1, k2, . . . , kp; l1, l2, . . . , lq)(q, z) =

p
∏

i=1

θ11(q, z
1− 1

ki )

θ11(q, z
1
ki )

q
∏

j=1

iθ11(q, z)

η3
Â2lj (z

1
lj , z2; q). (2.9)

One can generalize this elliptic genus to one which keeps track of the R-charges of the

individual factor theories. We find a generalized elliptic genus:

χ(k1, k2, . . . , kp; l1, l2, . . . , lq)(q, zi, zj) =

p
∏

i=1

θ11(q, z
1− 1

ki

i )

θ11(q, z
1
ki

i )

q
∏

j=1

iθ11(q, zj)

η3
Â2lj (z

1
lj

j , z2j ; q) .

(2.10)

This is one of many generalizations of the twisted index. One can write down similar

expressions where we replace some of the Liouville factors with cigar coset theories.
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2.4 Twisted blocks

In the following, we consider orbifolds of tensor products of the above models. For sim-

plicity, we restrict our orbifold groups to be discrete subgroups of the product of the U(1)

R-symmetry groups of the factor models. In these circumstances, it is straightforward

to generalize the techniques of [14] to describe the twisted partition sums from which we

build the elliptic genus of the orbifold. In each factor theory, we have partition sums in

the sectors twisted by the generator of an orbifold group Zn to the power ma ∈ Zn and

we can insert an operator corresponding to a generator of the orbifold group to the power

mb ∈ Zn. We then obtain the twisted partition functions:

χma,mb
(q, z) = e2πi

c
6
mambe2πi

c
6
(m2

aτ+2maα)χ(τ, α+maτ +mb). (2.11)

The transformation properties of these twisted elliptic genera are (with λ, µ ∈ Z):

χma,mb

(

− 1

τ
,
α

τ

)

= e2πi
c
6

α2

τ χmb,−ma(τ, α)

χma,mb
(τ + 1, α) = χma+mb,mb

(τ, α)

χma,mb
(τ, α+ λτ + µ) = e2πi

c
6
(maµ−mbλ−λµ)e−2πi c

6
(λ2τ+2λα)χma+λ,mb+µ(τ, z). (2.12)

We assign a canonical phase factor to each factor model:

ǫ(ma,mb) = (−1)ma+mb+mamb , (2.13)

which will ensure that the total orbifolded model is free of discrete torsion. For the partition

sum including the phase, we use the notation:

χ̃ma,mb
= ǫ(ma,mb)χma,mb

. (2.14)

The twisted building blocks for the R-symmetry orbifolds can be simplified using the ellip-

ticity and modular properties of theta functions and completed Appell-Lerch sums Â (see

appendix A for details). It will be convenient to express the twisted building blocks χ̃ma,mb

of the minimal models and the non-compact conformal field theories in terms of the twisted

Ramond sector characters of the conformal field theory. This renders the transformation

properties of each term under the insertion of a generator in the trace manifest. We find

the twisted blocks:

• for the minimal models

χ̃ma,mb
(k;−) = e−

2πimamb
k

k−2
2

∑

j=0, 1
2
,...

e
2πimb

k
(2j+1)Cj

2j+1−2ma
(q, z) . (2.15)

• for the anti-diagonal (or Zk orbifolded) minimal models

χ̃ma,mb
(k;−)Zk = e−

2πimamb
k

k−2
2

∑

j=0, 1
2
,...

e−
2πimb

k
(2j+1)Cj

−2j−1−2ma
(q, z) . (2.16)

– 6 –
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• for the holomorphic part of a Liouville factor:

χ̃hol;ma,mb
(−; l) = e

2πimamb
l

l−1
∑

2j−1=0

e
2πimb

l
(2j−1)Ch

(

j;−1

2
+ma; q, z

)

. (2.17)

• for the holomorphic part of a cigar factor:

χ̃hol;ma.mb
(−; l)Zl = e

2πimamb
l

l−1
∑

2j−1=0

e−
2πimb

l
(2j−1)Ch

(

j;−1

2
− (2j − 1) +ma; q, z

)

.

(2.18)

The completed twisted blocks for non-compact factors are recorded in appendix A.

3 Mirror symmetry for Gepner models

In this section we recapitulate the construction of mirror Gepner models [26], generalized

to include non-compact conformal field theories.

3.1 Non-compact Gepner models

Gepner’s construction of string compactifications in terms of exactly solvable N = 2 super-

conformal field theories [25] can be suitably extended to include factor models with central

charge larger than 3 (see e.g. [10]). We study non-compact Gepner models consisting of p

minimal models at levels ki and q non-compact models at levels lj tensored with R
d−1,1.

They can be characterized in the light-cone as having a

U(1)
d−2
2

2 ×U(1)p+q
2 ×

p
∏

i=1

U(1)ki ×
q
∏

j=1

U(1)lj (3.1)

worldsheet current algebra. The level 2 factors refer to worldsheet fermion numbers, and

the U(1) current algebras at level ki and lj are the R-currents of compact and non-compact

N = 2 superconformal field theories. We have the corresponding charge vectors r:

r = (s
−

d−4
2
, . . . , s0, s1, . . . , sp+q;n1, . . . , np;−2m1, . . . ,−2mq), (3.2)

with inner product:

r(1) · r(2) = −
s
(1)

−
d−4
2

s
(2)

−
d−4
2

4
· · ·+ n

(1)
1 n

(2)
2

2k1
· · · − 2m

(1)
1 2m

(2)
2

2l1
. . . (3.3)

We introduce a vector β0 such that twice its inner product with the left-moving charge

vector is proportional to the left-moving R-charge. It satisfies β0 · β0 = −1. We fix

conventions such that β0 is equal to:

β0 = (1, . . . , 1, 1, . . . , 1; 1, . . . , 1; 1, . . . , 1). (3.4)

If we start from a model diagonal in the charge lattice quantum numbers, then we must

perform an orbifold to render the model local on the worldsheet, in the sense of containing

only purely NS or purely Ramond states. The necessary Z
p+q+(d−4)/2
2 orbifold involves

discrete torsion [26]. To obtain the type II Gepner model, one further performs an integer

R-charge orbifold, and a Z2 GSO projection.

– 7 –
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3.2 Mirror symmetry through orbifolds

Mirror symmetry is implemented in Gepner models through orbifolding by a subgroup of

the discrete group Gphase =
∏p

i=1 Zki ×
∏q

j=1 Zlj of the U(1)R symmetries of the factor

theories [26]. The integer R-charge orbifold Zn is already such a subgroup.1 The maximal

subgroup H of the group Gphase which preserves space-time supersymmetry gives rise to

the mirror theory. Thus, the group H will be the maximal subgroup of Gphase/Zn which

preserves the condition that the left and right R-charge remain integer. Let us denote the

original Gepner model by M1, and the mirror model by M2 = M1/H. Then if we consider

orbifolds of theory M1 by the subgroup H1 ⊂ H, we will find that the theory M1/H1 is

mirror to the theory M2/(H/H1).

We further note that the maximal allowed orbifold will give rise to (the GSO projection

of) the T-dual of the original model (before GSO). In the T-dual, all left-moving angular

momenta will have an opposite sign. These statements are true for the compact theory

because a Zk orbifold of the minimal model gives rise to its T-dual. For a singular non-

compact theory (described by a purely linear dilaton background), the statement also

holds. For the deformed or resolved non-compact theories, we need a mild modification.

For instance, the Zl orbifold of Liouville theory at radius R =
√
lα′ is Liouville theory

at radius R =
√

α′/l. That is T-dual to the cigar theory at radius R =
√
lα′. Thus

orbifolding is equivalent to T-duality only for the compact factors. For the non-compact

factors, we must combine orbifolding with an exchange of deformation and resolution in

order to obtain the T-dual model. We confirm this picture by the direct evaluation of

elliptic genera for the mirror pair.

3.3 Models with central charge c = 6

In this subsection, we get our feet wet with simple examples of non-compact Gepner models

with central charge c = 6, and make some preliminary observations. We concentrate on

models involving one compact and one non-compact model at equal levels. As a starting

point, we take a product of a minimal model with central charge c = 3−6/k and an N = 2

Liouville theory at radius R =
√
kα′ with central charge c = 3 + 6/k. The integer R-

charge orbifold is an orbifold by the group Zk. The conformal field theory describes strings

propagating on a space which is asymptotically locally flat, with a linear dilaton slope. It

has a deformed C
2/Zk singularity at the center. Asymptotically, it is T-dual to S3 × R

with a linear dilaton along the non-compact radial direction, and k units of three-form H(3)

flux on the three-sphere. Near the center, the geometry is deformed to the T-dual of k

NS5-branes spread on a circle in a two-dimensional plane, in a doubly scaled near-horizon

limit. See [10, 27] for detailed discussions. The elliptic genus of this theory is given by the

1Here we ignore the fermionic entries in the charge vectors, which we can do if we allow for flat space

charge conjugation.

– 8 –
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orbifold formula applied to the two factor theories:

χ(k; k)Zk =
1

k

k−1
∑

ma,mb=0

χ̃ma,mb
(k;−)χ̃ma,mb

(−; k)

=
1

k

iθ11(q, z)

η(q)3

k−1
∑

ma,mb=0

k−2
2

∑

j=0, 1
2
,...

e
2πimb(2j+1)

k q
m2

a
k z

2ma
k

Cj
2j+1−2ma

(q, z) Â2k(z
1
k q

ma
k e

2πimb
k , z2q2ma ; q) . (3.5)

3.3.1 The ground states

To link our results to known results on massless states, we observe that we can recuperate

the Poincaré polynomial of the target space from these expressions, by taking the limit that

projects onto left-moving (R-charged weighted) Ramond ground states. One thus recovers

the results described for instance in [10].

3.3.2 Mirror symmetry

To advance our analysis of mirror symmetry we first observe that, for this c = 6 model,

the maximal group H of phase symmetries that we can mod out by while preserving

supersymmetry is trivial. Thus, the model must be self-mirror. This can also be seen as

a consequence of the (generalized) hyperkähler structure of the target space. We conclude

that the elliptic genus of the model has to be equal to the elliptic genus of a diagonal

minimal model times the cigar model at radius
√
kα′ modded out by the integer R-charge

and GSO projection. The latter elliptic genus is given by:

χ′(k; k)Zk =
1

k

k−1
∑

ma,mb=0

χ̃ma,mb
(k;−)χ̃ma,mb

(−; k)Zk

=
1

k2
iθ11(τ, α)

η3

k−1
∑

ma,mb=0

k−1
2

∑

j=0, 1
2
,...

e
2πimb(2j+1)

k q
m2

a
k z

2ma
k Cj

2j+1−2ma
(q, z)

×
∑

m′

a,m
′

b
∈Zk

q−
m

′2
a
k e−

2πim′

an′

a
k Â2l(z

1
k q

ma+m′

a
k e

2πi(mb+m′

b
)

k , z2q2ma ; q) . (3.6)

The equality of the elliptic genera in equations (3.5) and (3.6) is non-trivial. To prove

the equality, it is useful to render the N = 2 superconformal representation content of

the compact and non-compact elliptic genera manifest. In particular, let us write the

holomorphic part of the elliptic genus (3.5) in terms of the characters of the minimal

model and the analogous extended characters (2.15) and (2.17):

χhol(k; k)
Zk =

∑

j1,j2

∑

ma,mb∈Zk

e
2πimb

k
[(2j1+1)+(2j2−1)]Cj1

2j1+1−2ma
(q, z)Ch

(

j2;−
1

2
+ma; q, z

)

.

(3.7)

– 9 –
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The sum over mb imposes the GSO constraint and relates the spin of the two individual

factors. In order to render the mirror interpretation manifest, we shift the twisted sector

label ma by −(2j2 − 1) . We then use the integer R-charge constraint in the angular

momentum quantum number of the minimal model character, to end up with the final

expression:

χhol(k; k)
Zk =

∑

j1,j2

∑

ma,mb∈Zk

e
2πimb

k
[(2j1+1)+(2j2−1)]

Cj1
−2j1−1−2ma

(q, z)Ch

(

j2;−
1

2
+ma − (2j2 − 1); q, z

)

.(3.8)

Repackaging this in terms of the twisted blocks, we find

χ(k; k)Zk =
1

k

k−1
∑

ma,mb=0

χ̃ma,mb
(k;−)Zk χ̃hol;ma,mb

(−; k)Zk (3.9)

We recognize this to be the elliptic genus of an anti-diagonal minimal model times the cigar

theory at R =
√
kα′, the whole orbifolded by Zk. Performing a similar calculation for the

non-holomorphic long multiplet contributions gives rise to the modular completion of the

above formula.

In order to fully appreciate the relation between expressions (3.5) and (3.6), we have to

go a bit further. We will give more details in the intricate c = 9 examples, but we already

outline the idea here. We wish to re-interpret the mirror model as an orbifold of a diagonal

model. For this purpose, we note that the elliptic genus of the anti-diagonal minimal model

is related to the diagonal minimal model elliptic genus through a sign flip in the second

argument α, and the addition of an overall sign (see equation (A.6)). Analogously the non-

compact elliptic genus is invariant under such a sign flip (see equation (A.21)). Rewriting

in terms of the twisted blocks we find

χ(k; k)Zk(τ, α) = −1

k

k−1
∑

ma,mb=0

χ̃ma,mb
(k;−)(τ,−α)χ̃ma,mb

(−; k)Zk(τ, α)

= −χ′(k; k)Zk(τ,−α) . (3.10)

Therefore the elliptic genus of the original model is self-mirror and furthermore equal to

the elliptic genus (3.6), up to an overall sign and a sign flip in the second argument α. The

calculation provides a proof of a non-trivial relation between products and sums of theta-

functions and completed Appell-Lerch sums. In the following sections, we will consider

more involved examples of mirror symmetry, including infinite families of mirror pairs,

and many more details on the long multiplet contributions, in the context of non-compact

Gepner models with central charge c = 9.

4 Models with central charge c = 9

In this section we will study two types of models with central charge c = 9. The first

type has tensor products of two minimal models and a Liouville/cigar model. The second
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type has a single minimal model tensored with two non-compact factors. We consider

supersymmetric orbifolds of these models and exhibit families of mirror pairs. The first set

serves to generate an infinite set of mirror pairs (see also [10]), and illustrates in a fairly

simple setting how mirror symmetry acts on elliptic genera in the non-compact case. The

second set analyzes more deeply how mirror symmetry operates in the long multiplet sector.

The models correspond to Gepner points in target space geometries that are close cousins

to non-compact Calabi-Yau manifolds. They differ in that their asymptotics contains linear

dilaton directions. The topologically non-trivial content of the geometries is coded near

the origin, where we can approximate the models by an abelian orbifold of C3. The linear

dilaton profile can lift some deformations of the flat model. See [10] for more details.

4.1 The (2k, 2k; k) model

From the general discussion on mirror symmetry via orbifolds, it is clear that we must

identify the largest subgroup H of the phase symmetries with which one can orbifold and

still preserve supersymmetry. Let us perform this calculation for the (2k, 2k; k) model

corresponding to two diagonal minimal models and one N = 2 Liouville theory at radius

R =
√
kα′. There exists a Landau-Ginzburg (LG) model which flows to this conformal field

theory in the infrared and it is sometimes convenient to think in terms of such a description.

The LG model contains three chiral superfields X1, X2 and Y3 with superpotential:

W = X2k
1 +X2k

2 + e−kY3 . (4.1)

The phase symmetries of the model are given by Gphase = Z2k ×Z2k ×Zk. We can identify

the elements of the group Gphase with charge vectors in the following manner. A group

element corresponds to a charge vector γ if it multiplies a state with diagonal charge vector

r by the phase e2πiγ·r. We can choose generators γi in each factor of the group Gphase such

that γi is the charge vector with entry 2 in the spot corresponding to the relevant U(1)

charge (see definition (3.3)).

We identify the group G = (Z2k × Z2k × Zk)/Z2k as the subgroup by which we can

divide after taking into account the integer R-charge orbifold Zn = Z2k. The maximal

subgroup H of G that preserves supersymmetry corresponds to charge vectors βm which

are integer linear combinations of the charge vectors γi. The generators βm need to satisfy:

βm =
∑

i

cimγi and βm · β0 ∈ Z. (4.2)

Using our conventions for β0, this is equivalent to

p
∑

i=1

cim
ki

−
q

∑

j=1

cjm
lj

∈ Z , (4.3)

where the ki are the levels of the minimal models while the li refer to the levels of the non-

compact models. The cim are integers. In our specific example, we have three coefficients

ci=1,2,3
m for each generator βm, which have to satisfy:

+
c1m
2k

+
c2m
2k

− c3m
k

∈ Z. (4.4)
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The integers cim are defined modulo (2k, 2k, k). The integer R-charge orbifold corresponds

to cim = (1, 1, 1). Thus, we can use the gauging of the integer R-charge orbifold to put the

last entry to zero. Note also that if we consider the element of the R-charge orbifold group

that squares to one we find that it corresponds to the vector cim = (+k,−k, 0). Thus, we

conclude that the elements of the group H have representatives where the first two entries

are opposite and that these entries are only non-trivial modulo k. We therefore find that

the group H is the Zk group generated by multiplication of the phases of X1 and X2 by

e
2πi
2k and e−

2πi
2k respectively.

4.1.1 An infinite family of mirror pairs

To generate an infinite family of mirror pairs, we can consider subgroups of the group H.

We suppose that the level k of our initial models is equal to the product of two positive

integers k = k1k2. We can then consider orbifolds of our diagonal model with the subgroup

Z2k×Zk1 (or strictly speaking, their semi-direct product) where the first factor corresponds

to the integer R-charge orbifold and the second factor to the subgroup Zk1 of the group

H generated by the phase multiplication e±2πi
k2
2k acting on the fields X1,2. Each group

element of the orbifold group is labeled by a pair of integers (m,n), taking values in Zk

and Zk1 respectively.

Details of the calculation

In what follows, we begin with the elliptic genus of this doubly orbifolded model and show,

analogous to what was done for the c = 6 case, that we are able to rewrite it as the elliptic

genus of the mirror model. In this case, the mirror is a Z2k × Zk2 orbifold of a product

conformal field theory with two minimal model factors and the cigar conformal field theory.

We start out with the holomorphic part of the orbifolded elliptic genus written in terms

of the twisted blocks. It depends only on the charges of the fields under the orbifold group:

χhol(2k, 2k; k)
Z2k,Zk1 =

1

2kk1

∑

ma,mb∈Z2k

∑

na,nb∈Zk1

χ̃ma+k2na,mb+k2nb
(2k;−)

χ̃ma−k2na,mb−k2nb
(2k;−)χ̃hol;ma,mb

(−; k).(4.5)

The first minimal model factor contributes

χ̃ma+k2na,mb+k2nb
(2k;−) = e−

2πi(ma+k2na)(mb+k2nb)

2k

×
2k−2

2
∑

j1=0, 1
2
,...

e
2πi(mb+k2nb)(2j1+1)

2k Cj1
2j1+1−2(ma+k2na)

(q, z) , (4.6)

and similarly for the second minimal model factor with a sign flip for the na, nb quantum

numbers. For the Liouville sector, we have

χ̃hol;ma,mb
(−; k)(τ, α) = e

2πimamb
k

k−1
∑

2j3−1=0

e
(2j3−1)

k
2πimbCh

(

j3;−
1

2
+ma; q, z

)

. (4.7)
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Putting all the factors together we obtain:

χhol(2k, 2k; k)
Z2k,Zk1 =

1

2kk1

∑

j1,j2,j3

∑

ma,mb∈Z2k

∑

na,nb∈Zk1

e
2πimb

2k
((2j1+1)+(2j2+1)+2(2j3−1)) e

2πinb
2k1

((2j1+1)−(2j2+1)−2k2na)

Cj1
2j1+1−2(ma+k2na)

(q, z)Cj2
2j2+1−2(ma−k2na)

(q, z)Ch

(

j3;−
1

2
+ma; q, z

)

.

(4.8)

The sum over the twist insertion mb then imposes the desired integer R-charge constraint:

j1 + j2 + 2j3
k

∈ Z. (4.9)

A second constraint arises from the sum over the values of nb:

j1 − j2 − k2na

k1
∈ Z . (4.10)

Indeed, for any projection beyond the initial integer R-charge projection, we will find a

constraint between spins and a new quantum number. In order to rewrite this as the mirror

elliptic genus we find it useful to eliminate the twisted quantum numbers na in terms of

the spin quantum numbers. In order to solve for the second constraint, recall that the

angular momentum quantum number in the minimal model factor is defined modulo twice

the level. Using this we find that there are precisely k2 solutions to the second equation

(where k = k1 · k2). Solving for na, we substitute:

k2na = j1 − j2 + n′
ak1 with n′

a ∈ Zk2 . (4.11)

This leads to

χhol(2k, 2k; k)
Z2k,Zk1 =

1

2kk2

∑

j1,j2,j3

∑

ma,mb∈Z2k

∑

n′

a,n
′

b
∈Zk2

e
2πimb

2k
((2j1+1)+(2j2+1)+2(2j3−1))e

2πin′

b
2k2

((2j1+1)−(2j2+1)+2k1n′

a)

∑

n′

a∈Zk2

Cj1
2j2+1−2(ma+k1n′

a)
(q, z)Cj2

2j1+1−2(ma−k1n′

a)
(q, z)

× Ch

(

j3;−
1

2
+ma; q, z

)

.

(4.12)

The sum over the integer n′
b ∈ Zk2 ensures that the numbers n′

a, j1 and j2 satisfy the

constraint (4.11). We now use the integer R-charge constraint to eliminate the spin j2 in

the first minimal model and the spin j1 in the second minimal model character. After a
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shift in the ma variable by −(2j3 − 1), we obtain our final expression:

χhol(2k, 2k; k)
Z2k,Zk1 =

1

2kk2

∑

j1,j2,j3

∑

ma,mb∈Z2k

e−
2πimb

2k
[(2j1+1)+(2j2+1)+2(2j3−1)]

∑

n′

a,n
′

b
∈Zk2

e
2πin′

b
2k2

((2j1+1)−(2j2+1)+2k1n′

a)Cj1
−2j1−1−2(ma+k1n′

a)
(q, z)

Cj2
−2j2−1−2(ma−k1n′

a)
(q, z)Ch(j3;−

1

2
+ma − 2j3 − 1; q, z) . (4.13)

Rewriting this back in terms of the twisted blocks, we find that the final expression is

equal to:

χhol(2k, 2k; k)
Z2k,Zk1 =

1

2kk2

∑

ma,mb∈Z2k

∑

n′

a,n
′

b
∈Zk2

χ̃ma+k1n′

a,mb+k1n′

b
(2k;−)Z2k

χ̃ma−k1n′

a,mb−k1n′

b
(2k;−)Z2k χ̃hol;ma,mb

(−; k)Zk .(4.14)

To infer the mirror we have more work to do. Firstly we have to ensure that the non-

holomorphic part of the orbifold elliptic genus can also be written such that it is the

appropriate modular completion of the above mock modular form. Secondly we need to

have the orbifold of a diagonal model in order to read of the mirror.

4.1.2 The long multiplet sector

In order to complete our matching of elliptic genera of the mirror pairs, we also need to

check the equality for the states in the long multiplet sector. For simplicity, we restrict to

the case in which the levels satisfy k1 = k and k2 = 1. The generalization to the other

cases is straightforward. The remainder term of the orbifold elliptic genus takes the form

χrem(2k, 2k; k)Z2k,Zk =
1

2k2

∑

ma,mb∈Z2k

∑

na,nb∈Zk

χma+na,mb+nb
(2k−; )

χma−na,mb−nb
(2k−; )χrem;ma,mb

(−; k) .

(4.15)

In order to proceed we require the twisted blocks that correspond to the non-holomorphic

piece of the elliptic genus. These are given in appendix A. Using these blocks along with

the expressions for the minimal model elliptic genera, we obtain

χrem(2k, 2k; k)Z2k,Zk =
1

2k2

∑

j1,j2

∑

ma,mb∈Z2k

e
2πimb

2k
((2j1+1)+(2j2+1))

∑

na,nb∈Zk

e
2πinb
2k

((2j1+1)−(2j2+1)−2na)

∑

w,n∈Z

e2πi
nmb
k z

n−kw+2ma
k Cj1

2j1+1−2(ma+na)
(q, z)Cj2

2j2+1−2(ma−na)
(q, z)

(−1)
1

π
i
θ11(τ, α)

η3

∫ +∞−iǫ

−∞−iǫ

ds

2is+ n+ kw
q

s2

k
+

(n−kw+2ma)2

4k q̄
s2

k
+

(n+kw)2

4k .

(4.16)

– 14 –



J
H
E
P
0
7
(
2
0
1
2
)
0
0
5

The calculation follows the same scheme as the previous one. The sum over the integers

mb and nb again imposes the desired constraints:

2j1 + 1

2k
+

2j2 + 1

2k
+

n

k
∈ Z ,

j1
k

− j2
k

− na

k
∈ Z . (4.17)

We eliminate the twisted quantum numbers na in terms of the spins and obtain:

χrem(2k, 2k; k)Z2k,Zk =
1

2k

∑

j1,j2

∑

ma,mb∈Z2k

e
2πimb

2k
((2j1+1)+(2j2+1))

∑

w,n∈Z

e2πi
nmb
k z

n−kw+2ma
k Cj1

2j2+1−2ma
(q, z) Cj2

2j1+1−2ma
(q, z)

(−1)
1

π
i
θ11(τ, α)

η3

∫ +∞−iǫ

−∞−iǫ

ds

2is+n+kw
q

s2

k
+

(n−kw+2ma)2

4k q̄
s2

k
+

(n+kw)2

4k .

We substitute the integer R-charge constraint in the angular momentum variable of the

two minimal models and shift the variable ma to ma − n+ kw and find:

χrem(2k, 2k; k)Z2k,Zk =
1

2k

∑

j1,j2

∑

ma,mb∈Z2k

e
2πimb

2k
((2j1+1)+(2j2+1))

∑

w,n∈Z

e2πi
nmb
k z

−n+kw+2ma
k Cj1

−2j1−1−2ma
(q, z) Cj2

−2j2−1−2ma
(q, z)

(−1)
1

π
i
θ11(τ, α)

η3

∫ +∞−iǫ

−∞−iǫ

ds

2is+n+kw
q

s2

k
+

(−n+kw+2ma)2

4k q̄
s2

k
+

(n+kw)2

4k .

(4.18)

We then flip the sign of the variable mb, and find that all individual factors combined

indeed agree with the twisted blocks of the mirror model:

χrem(2k, 2k; k)Z2k,Zk =
1

2k

∑

ma,mb∈Z2k

χ̃ma,mb
(2k;−)Z2k χ̃ma,mb

(2k;−)Z2k χ̃rem;ma,mb
(−; k)Zk .

(4.19)

This is the modular completion of the mock modular form defined in equation (4.14) for

k1 = k and k2 = 1. We thus extended the proof of the equality of elliptic genera of mirror

symmetric models to the long multiplet sector.

Finally, we can rewrite the formula for the mirror elliptic genus in terms of characters

which are more easily read as being associated to a diagonal spectrum. We find that the

mirror can be written as:

χ(2k, 2k; k)Z2k,Zk(τ, α) =
1

2k

∑

ma,mb∈Z2k

χ̃ma,mb
(2k;−)(τ,−α)

χ̃ma,mb
(2k;−)(τ,−α)χ̃ma,mb

(−; k)Zk(τ,−α), (4.20)

where we have flipped the sign of the summation variables. We have used two facts which we

already encountered while discussing the self-mirror c = 6 example. Firstly, that the anti-

diagonal minimal model elliptic genera are equal to their diagonal model counterpart, up to
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an overall sign change and a change in the sign of the second argument (see equation (A.6)).

Secondly, that the elliptic genus of a non-compact model is equal to itself under the sign

flip of the second argument (see equation (A.21)). Note how a sign flip in the left-moving

angular momentum comes down to T-duality for the compact factor, which is self-dual

under T-duality. For the non-compact factor, the sign flip changes its nature from Liouville

theory to cigar model.

Our final expression is consistent with our expectations about the mirror model. The

original model M1 was a (2k, 2k; k) model with Liouville deformation at radius
√
kα′. The

Z2k×Zk1 orbifold of the model gives rise to the mirrorM2 of this model which is a (2k, 2k; k)

model at radius R =
√
kα′ modded out by Z2k×Zk2 . If the original model M1 is (Liouville)

deformed, then the mirror M2 is expected to be (cigar) resolved, which is indeed the case.

We have thus exhibited an infinite family of models, parameterized by a pair of integers

(k1, k2) that are mirror to one another and for which the elliptic genera match.

4.2 The (k; 2k, 2k) model

We next consider the model with two non-compact factors and one minimal model. The

non-holomorphic sector of this model has qualitatively different features from the models of

subsection 4.1 since it involves the modular completion of a product of two mock modular

forms. The Landau-Ginzburg description of the model is given by the superpotential

W = Xk
1 + e−2kY2 + e−2kY3 . (4.21)

We consider the orbifold by the group Z2k × Zk generated by:

(X1, e
−Y2 , e−Y3) −→

(

e
2πi
k X1, e

2πi
2k e−Y2 , e

2πi
2k e−Y3

)

(X1, e
−Y2 , e−Y3) −→

(

X1, e
2πi
2k e−Y2 , e−

2πi
2k e−Y3

)

. (4.22)

For simplicity we only focus on the orbifold by the full group H = Zk.

4.2.1 The short multiplet bound states

Using the twisted blocks in equations (2.15) and (2.17), the holomorphic part of the elliptic

genus of the double orbifold takes the form:

χhol(k; 2k, 2k)
Z2k,Zk =

1

2k2

∑

j1,j2,j3

∑

ma,mb∈Z2k

∑

na,nb∈Zk

e
2πimb

2k
(2(2j1+1)+(2j2−1)+(2j3−1))e

2πinb
2k

((2j2−1)−(2j3−1)+2na)

Cj1
2j1+1−2ma

Ch

(

j2;−
1

2
+(ma + na); q, z

)

Ch

(

j3;−
1

2
+(ma − na); q, z

)

.

(4.23)

We find the constraints:

2j1 + j2 + j3
k

∈ Z and
j2
k

− j3
k

+
na

k
∈ Z . (4.24)
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As before we will find it useful to eliminate the twisted quantum numbers na in terms of the

spins, while retaining the integer R-charge constraint as it is. We then substitute the R-

charge constraint in the angular momentum variable of the two Liouville factors. Redefining

the variable ma variable to m′
a = ma − (2j1 − 1), we finally obtain the expression:

χhol(k; 2k, 2k)
Z2k,Zk =

1

2k

∑

ma,mb∈Z2k

∑

j1,j2,j3

e−2πimb
2j1+j2+j3

k Cj1
−2j1−1−2ma

(q, z)

Ch

(

j2;−
1

2
+ma − 2j2 − 1; q, z

)

Ch

(

j3;−
1

2
+ma − 2j3 − 1; q, z

)

. (4.25)

Repackaging this in terms of the twisted blocks, we find:

χ(k; 2k, 2k)Z2k,Zk =
1

2k

∑

ma,mb∈Z2k

χ̃ma,mb
(k−; )Zk χ̃hol;ma,mb

(−; 2k)Z2k χ̃hol;ma,mb
(−; 2k)Z2k .

(4.26)

As was done in the earlier examples we turn now to a calculation of the non-holomorphic

completion of the elliptic genus in order to read off the mirror model. The non-holomorphic

contribution for this model is qualitatively different in nature and throws up new and

interesting points.

4.2.2 The long multiplet scattering states

Schematically, the fully modular elliptic genus of this orbifold model can be decomposed

into a holomorphic and non-holomorphic piece as follows:2

χ = χ1 χ2 χ3 = χ1
hol

(

χ2
holχ

3
hol +

[

χ2
holχ

3
rem + χ2

remχ3
hol + χ2

remχ3
rem

])

, (4.27)

where we have suppressed the summation indices over the twisted blocks of the orbifold.

The terms in the square parenthesis are the non-holomorphic completion for the product

of two mock modular forms. The mirror analysis of the first two terms in this comple-

tion parallel the discussion in the previous subsections and we do not show the details of

the calculation since we obtain the expected result parallel to the one obtained in equa-

tion (4.26). The last term is of a new type, and we consider it in detail below. Denoting

it by T3, and reinstating the missing summation indices, let us use the twisted blocks for

2We elaborate on this point in section 5.
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the non-holomorphic sector and write it out in full glory:

T3 =
1

2k2

2k−1
∑

ma,mb=0

k−1
∑

na,nb=0

χ̃ma,mb
(k;−)χ̃rem;ma+na,mb+nb

(−; 2k)χ̃rem;ma−na,mb−nb
(−; 2k)

=
1

2k2

(

i

π

θ11
η3

)2
∑

j1

∑

w1,n1

∑

w2,n2

∑

ma,mb

∑

na,nb

e
2πimb((2j1+1)−ma)

k Cj1
2j1+1−2ma

× e
2πi
2k

((mb+nb)(n1+(ma+na))+(mb−nb)(n2+(ma−na))) × z
n1−2kw1+2(ma+na)

2k
+

n2−2kw2+2(ma−na)
2k

×
∫

ds1
2is1 + n1 + 2kw1

q
s21
2k

+
(n1−2kw1+2(ma+na))2

8k q̄
s21
2k

+
(n1+2kw1)

2

8k

×
∫

ds2
2is2 + n2 + 2kw2

q
s22
2k

+
(n2−2kw2+2(ma−na))2

8k q̄
s22
2k

+
(n2+2kw2)

2

8k .

(4.28)

The phase factors give rise to the two constraints:

n1 − 2kw1

2k
+

n2 − 2kw2

2k
+

2j1 + 1

k
∈ Z ,

n1 − 2kw1

2k
− n2 − 2kw2

2k
+

2na

2k
∈ Z . (4.29)

We have used the fact that na is defined modulo k. As before we can solve for the variable

na using the second constraint:

2na = (n2 − 2kw1)− (n1 − 2kw1) . (4.30)

The variable na appears in two different combinations with the other variables in both of

the non-compact factors. Let us label those combinations e1 and e2, where

e1 = (n1 − 2kw1) + 2(ma + na) and e2 = (n2 − 2kw2) + 2(ma − na) . (4.31)

Substituting for na, we see that the combinations e1 and e2 become

e1 = n2 − 2kw2 + 2ma and e2 = n1 − 2kw1 + 2ma . (4.32)

We use the integer R-charge constraint in equation (4.29) to obtain:

e1 = −(n1 − 2kw1) + 2ma − 2(2j1 +1) and e2 = −(n2 − 2kw2) + 2ma − 2(2j1 + 1) .

(4.33)

– 18 –



J
H
E
P
0
7
(
2
0
1
2
)
0
0
5

Shifting the variable ma by (−2j1 − 1) and substituting for the combinations ei in the

expression for T3, we find the final form:

T3 =
1

2k

(

i

π

θ11
η3

)2
∑

j1

∑

w1,n1

∑

w2,n2

∑

ma,mb

e
2πimb(2(2j1+1)+n1+n2)

2k z
(−n1+2kw1+2ma)

2k
+

(−n2+2kw2+2ma)
2k

×
∫

ds1
2is1 + n1 + 2kw1

q
s21
2k

+
(−n1+2kw1+2ma)2

8k q̄
s21
2k

+
(n1+2kw1)

2

8k

×
∫

ds2
2is2 + n2 + 2kw2

q
s22
2k

+
(−n2+2kw2+2ma))2

8k q̄
s22
2k

+
(n2+2kw2)

2

8k Cj1
−2j1−1−2ma

=
1

2k

∑

ma,mb

χ̃hol;ma,mb
(k;−)Zk χ̃rem;ma,mb

(−; 2k)Z2k χ̃rem;ma,mb
(−; 2k)Z2k .

(4.34)

The factors agree with the twisted blocks of the mirror model. Indeed, one can now

combine all terms in equation (4.27) and rewrite the full elliptic genus as the integer R-

charge orbifold of an anti-diagonal minimal model at level k, tensored with the two cigar

theories at level 2k. Thus, all terms in the elliptic genera confirm the mirror symmetry

of the models, including the long multiplet contributions. We can also rewrite this as the

elliptic genus of a diagonal minimal model combined with two cigars (up to an overall

minus sign, and a minus sign in the second argument of the elliptic genus). Note how our

calculation again gives rise to non-trivial identities between the orbifolded product of two

modular completed Appell-Lerch sums Â.

Finally, let us stress that our method, ultimately based on T-duality, will work for any

number of products of minimal models and Liouville/cigar theories and their orbifolds.

5 Notes on mock modular forms

In this section, we make various remarks on mock modular forms, a field which is in full

development in both mathematics (see e.g. [29, 30]) and physics (see e.g. [31–35]). We

propose that the embedding of the mathematics of mock modular forms in our present

conformal field theory perspective provides a fruitful point of view.

5.1 The shadow

As a prelude to our discussion, it will be useful to introduce the concept of a shadow. It

is sometimes convenient to make explicit the dependence of the twisted partition function

(which is a real Jacobi form) on the anti-holomorphic parameter τ̄ . Once the partition

function is known, this dependence can be read off from its anti-holomorphic derivative

which we refer to as the shadow [29, 30]. For starters, let us explicitly compute the

shadow [29] of the elliptic genus of N = 2 Liouville theory at radius R =
√
lα′ directly from

the partition function [11].3 The shadow is defined (up to normalization and conjugation)

3The shadow was also obtained in this fashion by Sameer Murthy.
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as the anti-holomorphic derivative of the real Jacobi form χ(−; l):

χshad(−; l) = ∂τ̄χ(−; l)

= − 1

4
√
lτ2

θ11(τ, α)

η3

∑

w,n∈Z

z
n−lw

l (n+ lw)q
(n−lw)2

4l q̄
(n+lw)2

4l

= −1

2

√

l

τ2

θ11(τ, α)

η3

∑

m∈Z2l

Θm,l(q, z
2
l )Θ

3
2
m,l(q̄), (5.1)

where we used the definitions of the theta-functions of weight 1/2 and 3/2 at level l:

Θm,l(q, z) =
∑

p∈Z

ql(p+
m
2l
)2zl(p+

m
2l
)

Θ
3
2
m,l(q) =

∑

p∈Z

(

p+
m

2l

)

ql(p+
m
2l
)2 . (5.2)

The shadow is a sum of terms which are the product of a holomorphic theta-function of

weight 1/2, and an anti-holomorphic theta-function of weight 3/2.

5.2 The product of mock modular forms

Modular forms exhibit a ring structure. In particular, the product of modular forms gives

rise to another modular form. For mock modular forms, the corresponding ring structure

is not yet fully understood. We therefore believe that it is interesting to observe that if

mock modular forms can be interpreted as the holomorphic parts of the elliptic genera of

conformal field theories, then their product can be interpreted as the holomorphic part

of the elliptic genus of the tensor product conformal field theory (as in equation (2.8)).

Thus, the tensor product operation on conformal field theories can give rise to a natural

product of mock modular forms, or to a suggestion of how to extend the definition of mock

modular forms to include these products. Clearly, the completions of these products of

mock modular forms will include products of mock modular forms and remainder functions,

as well as the product of remainder functions. Indeed, imagine we have two real Jacobi

forms χ1,2, which are modular completions of mock modular forms χ1,2
hol, then their product

will have a remainder term of a new type:

χ1χ2 = χ1
holχ

2
hol + (χ1

holχ
2
rem + χ1

remχ2
hol + χ1

remχ2
rem). (5.3)

These sums of products of holomorphic and non-holomorphic pieces give rise to generalized

shadows including the product of remainder terms (consisting of properly weighted modular

integrals of theta-functions) and the shadows of individual non-compact elliptic genera (for

example as in equation (5.1)).

5.3 The orbifolds of completions of mock modular forms

We gave an explicit example of an orbifold of such a product of completed mock modular

forms in subsection 4.2. It is clear that our construction gives rise to a large class of

real Jacobi forms that is non-trivial. The corresponding mock modular forms may contain
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multiple poles.4 Beyond the orbifolds discussed in this paper, we can imagine many different

types of mock modular forms and their completions that can arise in physical contexts.

Instead of performing R-charge orbifolds as we have done up to now, we can extend the

orbifold group much further.

For instance, we can consider symmetric product orbifold groups. It is straightforward

to write down the elliptic genus of a symmetric product orbifold, using its Lagrangian

description in terms of a sum over coverings of the torus by the torus. The result is

a new Jacobi form obtained from the seed through Hecke operators. The Hamiltonian

interpretation of the resulting formula could prove interesting. Moreover, we can introduce

discrete torsion in more general abelian or non-abelian orbifolds, further enlarging the class

of expressions that one can obtain on the physics side, providing more examples of what

could be called (generalized) mock modular forms.

Yet another class of theories that can be examined, are Landau-Ginzburg theories with

mixes of polynomial potentials, and exponentials. One can compute their elliptic genus

using free field techniques. For the polynomials, one uses the techniques of [1] while for

the exponentials, one uses the approach of [11]. This could potentially open up a whole

new realm of mock modular forms, corresponding to elliptic genera of conformal field

theories that may not be exactly solvable but that can be described as infrared limits of

supersymmetric field theories.

5.4 Uniqueness

Since the mathematics of mock modular forms is not yet set in stone, it is harder at

the moment to prove the uniqueness of modular completions of the largest class of mock

modular forms (see however [28–30] for interesting results in this direction). In particular,

the approach (used for compact models) of identifying polar parts and using ellipticity and

modularity to prove equality of elliptic genera is not yet available for generic completed

mock modular forms (though it may apply to the case of a single non-compact factor

examined in subsection 4.1.2). Such a general mathematical theory could give rise to the

physical statement that the long multiplet sector matching is guaranteed by ellipticity

and modularity. That would provide interesting information on the asymptotics of these

non-compact Gepner models from their bound state spectrum, and vice versa.
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A Characters

A.1 Minimal model characters

One way to define N = 2 minimal model characters is implicitly:

∑

n∈Z2k

Cj(s)
n (τ, α)Θn,k

(

τ,−2α

k

)

= χj(τ, 0)Θs,2(τ,−α). (A.1)

We used the theta-functions defined by the formula:

Θn,k(τ, α) =
∑

m∈Z

e2πiτk(m+ n
2k

)2e2πiαk(m+ n
2k

). (A.2)

The Ramond sector ground states correspond to states with R-charges ±((2j+1)/k−1/2).

The characters for representations built on ground states are Cj(+1)
2j+1 and Cj(−1)

−2j−1. We note

that these two lists are in fact identical when we use the equivalence relation (j, n, s) ≡
(k/2 − j − 1, n + k, s + 2). From their implicit definition, we find the character transfor-

mation rule:

Cj(s)
n (τ, α+maτ +mb) = q−

c
6
m2

az−
c
3
mae2πi(

n
k
−

s
2
)mbCj(s−2ma)

n−2ma
(τ, α). (A.3)

We also need the twisted Ramond sector characters Cj
n which we define as:

Cj
n = Cj(1)

n − Cj(−1)
n . (A.4)

They satisfy the transformation rule:

Cj
n(τ, α+maτ +mb) = (−1)ma+mbq−

c
6
m2

az−
c
3
mae2πi

n
k
mbCj

n−2ma
(τ, α), (A.5)

as well as the equality:

Cj
−n(τ, α) = −Cj

n(τ,−α). (A.6)

A.2 Minimal model twisted blocks

In computing the minimal model twisted blocks, we assume that for an individual model

we have a partition function in which we sum over left and right spins which satisfy s = s̄

modulo 2. This is a diagonal sum in terms of NS and R sectors. We then find for the

elliptic genus:

χ(k;−) =
θ11(q, z

k−1
k )

θ11(q, z
1
k )

=

k−2
2

∑

j=0, 1
2
,...

Cj
2j+1(q, z) . (A.7)

The twisted blocks are:

χma,mb
(k;−) = e2πi

c
6
mambe2πi

c
6
(m2

aτ+2maα)

k−2
2

∑

j=0, 1
2
,...

Cj
2j+1(τ, α+maτ +mb)

= e2πi
c
6
mamb(−1)ma+mb

k−2
2

∑

j=0, 1
2
,...

e2πimb
2j+1

k Cj
2j+1−2ma

(τ, α). (A.8)
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Inserting the standard phase ǫ, we obtain

χ̃ma,mb
(k;−) = e−

2πimamb
k

k−2
2

∑

j=0, 1
2
,...

e2πimb
2j+1

k Cj
2j+1−2ma

(τ, α). (A.9)

We have used the known elliptic properties of the Ramond sector characters in order to

derive the twisted blocks. Equivalently, we can perform the calculation using the ellipticity

properties of the theta-function. We obtain

χ̃ma,mb
(k;−) = z−

ma
k
θ11(z

(1− 1
k
)q−

ma
k e−

2πimb
k )

θ11(z
1
k q

ma
k e

2πimb
k )

. (A.10)

We note in passing that with this choice of phase ǫ, the twisted blocks of [14] and [16]

agree. It remains to compare this to the sum of the Ramond sector characters. We rewrite:

χ̃ma,mb
(k;−) = z−

ma
k
θ11(z

′(1− 1
k
) q−ma ; q)

θ11(z
′
1
k ; q)

, (A.11)

with

z′ = zqma e2πimb . (A.12)

Using the elliptic property of the theta-function, we can write this as

χ̃ma,mb
(k;−) = (−1)maq

m2
a
2

(1− 2
k
)zma(1−

2
k
)e−

2πimamb
k

θ11(z
′(1− 1

k
); q)

θ11(z
′
1
k ; q)

. (A.13)

The ratio of theta functions can be expanded in terms of the Ramond-sector characters

as in equation (A.7). We then again use the elliptic properties of the minimal model

characters (A.5) to find that the result agrees with equation (A.9). We have come full

circle.

A.3 The Zk orbifold and mirror symmetry

Consider the Zk orbifold the N = 2 minimal model (with s = s̄ mod 2) of central charge

c = 3− 6/k. Let us calculate the elliptic genus of the orbifold:

χ(k;−)Zk =
1

k

∑

ma,mb∈Zk

χ̃ma,mb
(k;−)

=
1

k

∑

m,n∈Zk

e−2πi
mamb

k

k−2
2

∑

j=0, 1
2
,...

e2πimb
2j+1

k Cj
2j+1−2ma

(τ, α). (A.14)

The sum over the variable mb puts ma = 2j + 1 (mod k) and adds a factor of k. We can

most easily eliminate ma from the sum and find:

χ(k;−)Zk =

k−2
2

∑

j=0, 1
2
,...

Cj
−2j−1(τ, α)

= −
k−2
2

∑

j=0, 1
2
,...

Cj
2j+1(τ,−α). (A.15)
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This is one of the simplest examples of mirror symmetry in conformal field theory. We

recognize the previous to last line as the elliptic genus of the anti-diagonal minimal model.

Note that for these compact models, the Zk orbifold is equivalent to performing T-duality.

A.4 Characters at c > 3

The elliptic genus of N = 2 Liouville theory at radius R =
√
lα′ contains a holomorphic

part and a remainder term, namely it is a completed Appell-Lerch sum Â2l:

χ(; l) = χhol + χrem

= i
θ11(τ, α)

η3
Â2l(z

1
l , z2; q)

χhol(; l) = i
θ11(τ, α)

η3

∑

m∈Z

qlm
2
z2m

1− z
1
l qm

χrem(; l) = − 1

π
i
θ11(τ, α)

η3

∑

w,n∈Z

z
n−lw

l

∫ +∞−iǫ

−∞−iǫ

ds

2is+ n+ lw
q

s2

l
+

(n−lw)2

4l q̄
s2

l
+

(n+lw)2

4l (A.16)

The holomorphic part of the Liouville elliptic genus can be expanded in terms of the twisted

Ramond sector characters. We have the equation:

χhol(−; l) =
iθ11(q, z)

η3

∑

m∈Z

qlm
2
z2m

1− zqlm

l−1
∑

2j−1=0

z
2j−1

l qm(2j−1)

=
l−1
∑

2j−1=0

Ch(j;−1

2
; q, z) . (A.17)

We notice that the elliptic genus is expressed as a sum over extended characters. These

correspond to ordinary characters summed over spectral flow orbits that shift the angular

momentum quantum number by multiples of the level l.

The holomorphic part of the cigar elliptic genus can also be written in terms of these

extended characters:

χhol(−; l)Zk(q, z) =
∑

m=0,1,...l−1

∑

w

iθ11(q, z)

η3
qlw

2−mwz2w−
m
l

1− zqlw−m
.

=

k−1
∑

2j−1=0

Ch(j;−1

2
− (2j − 1); q, z). (A.18)

The modular and ellipticity properties of the extended characters are (for ma,mb ∈ Z):

Ch(j; r′; q, zqmae2πimb) = (−1)ma+mbq−
c
6
m2

az−
c
3
mae

2πimb(2j+2r′)

l Ch(j; r′ +ma; q, z). (A.19)

The angular momentum of the representations corresponding to these characters is 2j+2r′.

We also have the following transformation rules for the holomorphic and remainder term
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of the elliptic genus:

χhol(−; l)(τ,−α) = χhol(−; l)(τ, α)− iθ11
η3

∑

m∈Z

qkm
2
z2m

χrem(−; l)(τ,−α) = χrem(−; l)(τ, α) +
iθ11
η3

∑

m∈Z

qkm
2
z2m. (A.20)

The extra term is a reminder of the ambiguity of the holomorphic part of the elliptic genus,

due to the bound state spectrum touching the delta-function normalizable continuum.

Together, these equations give rise to the equality:

χ(; l)(τ,−α) = χ(; l)(τ, α), (A.21)

which can also be derived directly from the integral representation of the non-compact

elliptic genus.

A.5 Twisted building blocks at c > 3

A.5.1 Character formulae

Using these properties, we can calculate the holomorphic part of the twisted blocks for the

Liouville and cigar elliptic genera:

χma,mb
(−; l)(τ, α) = e2πi

c
6
mambe2πi

c
6
(m2

aτ+2maα)
l−1
∑

2j−1=0

Ch

(

j;−1

2
; τ, α+maτ +mb

)

= (−1)ma+mbe2πi
c
6
mamb

l−1
∑

2j−1=0

e2πimb
2j−1

l Ch

(

j;−1

2
+ma; τ, α

)

.

(A.22)

We use the value of the central charge c = 3 + 6/l, multiply by the phase factor ǫ and

obtain:

χ̃hol;ma,mb
(−; l) = e

2πimamb
l

l−1
∑

2j−1=0

e
(2j−1)

k
2πimbCh

(

j;−1

2
+ma; q, z

)

. (A.23)

For the cigar, we find:

χ̃hol;ma.mb
(−; l)Zl = e

2πimamb
l

l−1
∑

2j−1=0

e
−(2j−1)

l
2πimbCh

(

j;−1

2
− (2j − 1) +ma; q, z

)

.

(A.24)

A.5.2 Twisted blocks for the non-holomorphic sector

For the continuous character part of the elliptic genus we find, for the Liouville theory

twisted block:

χ̃rem;ma,mb
(−; l) = (−1)

1

π
i
θ11(τ, α)

η3

∑

w,n∈Z

e2πi
(n+ma)mb

l z
n−lw+2ma

l

∫ +∞−iǫ

−∞−iǫ

ds

2is+ n+ lw
q

s2

l
+

(n−lw+2ma)2

4l q̄
s2

l
+

(n+lw)2

4l . (A.25)
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For the cigar theory, we end up with:

χ̃rem;ma,mb
(−; l)Zl = e2πi

mamb
l (−1)

1

π
i
θ11(τ, α)

η3

∑

w,n∈Z

e−2πimb
n
l z−

n−lw
l

+ 2ma
l

∫ +∞−iǫ

−∞−iǫ

ds

2is+ n+ lw
q

s2

l
+

(n−lw−2ma)2

4l q̄
s2

l
+

(n+lw)2

4l . (A.26)

A.5.3 Exact expressions for twisted blocks

Finally, we give the expressions for the complete twisted building blocks, for the Liouville

theory:

χ̃ma,mb
(−; l) = e

2πimamb
l q

m2
a
l z

2ma
l

iθ11(τ, α)

η3
Â2l(z

1
l q

ma
l e

2πimb
l , z2q2ma ; q), (A.27)

and for the cigar theory at radius R =
√
lα′:

χ̃ma,mb
(−; l)Zl =e

2πimamb
l q

m2
a
l z

2ma
l

iθ11(τ, α)

η3

× 1

l

∑

m′

a,m
′

b
∈Zl

q−
m

′2
a
l e−

2πim′

an′

a
l Â2l(z

1
l q

ma+m′

a
l e

2πi(mb+m′

b
)

l , z2q2ma ; q). (A.28)
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