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1 Introduction

The Batalin-Vilkovisky (BV) formalism [1, 2] allows reformulating nearly any gauge sys-

tem as a universal BV theory that has an elegant and unique form irrespective of the

particular structure of the starting point system. In so doing all the information about the

Lagrangian, gauge transformations, Noether identities and higher structures of the gauge

algebra are encoded in the BV master action. This is achieved by introducing ghost fields

and antifields in such a way that the entire field-antifield space acquires an odd Poisson

bracket (the antibracket). All the compatibility conditions like gauge invariance of the

action, reducibility relation and so on are then encoded in the master equation which is

merely equivalent to requiring the BRST transformation to be nilpotent.

All the ingredients of the BV formalism can be naturally seen as geometric objects

defined on an abstract manifold and the BV formalism makes perfect sense in the purely

geometrical setting. In the context of local gauge field theory the manifold in question has

an extra structure: it is the space of suitable maps (field histories) between the space-time

and the target-space manifolds. Moreover, all the ingredients such as the Lagrangian, gauge

generators, structure functions and so on are required to involve space-time derivatives of

finite order. In the BV formalism the locality is usually taken into account [3–5, 5] by

approximating the space of field histories by the respective jet bundle (see e.g. [6–9] for a

review on jet bundle approach). More technically, the formalism involves the total de Rham
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differential along with the BRST differential so that the naive BRST complex becomes a

part of the appropriate bicomplex.

Although the jet space extension of the BV formalism has proved extremely useful in

studying, e.g., renormalization, anomalies, and consistent deformations [3, 5, 10] (see [11]

for a review) it is not completely satisfactory because the jet space approximation can be

too restrictive. For instance, the boundary dynamics is not captured in a straightforward

way. In addition, the jet space structures such as, e.g., generalized connections and cur-

vatures of [12–14] do not have a direct dynamical meaning and are not manifestly realized

in the formulation.

An interesting alternative to the jet space description of gauge theories is the unfolded

formalism [15, 16] developed in the context of higher spin gauge theories. In this approach

on-shell independent derivatives of fields are treated as new independent fields and the

equations of motion are represented as a free differential algebra (FDA) [17]. The latter

structure also underlies somewhat related approaches to supergravity [18, 19]. It is within

the unfolded framework that the interacting theory of higher spin fields on the AdS space

has been derived [20–22]. The unfolded approach is also a powerful tool in studying gauge

field theories invariant under one or another space-time symmetry algebras [23, 24].

At the level of equations of motion the relation between the BV formalism and the

unfolded approach was established in [25] (see also [26, 27]) for linear systems and in [28]

in the general case by constructing the so-called parent formulation such that both the BV

and the unfolded formulation can be arrived at via straightforward reductions. The parent

formulation itself or some of its extensions can be considered as a new formulation gener-

alizing and unifying both the BV and the unfolded formulation at the level of equations

of motion. Moreover, it is the parent formulation that gives a systematic way to construct

(and proves the existence of) the unfolded form of a given theory.

In this paper we specialize the parent formulation to the case of Lagrangian systems

giving a parent extension of the BV formalism. In particular, we identify the precise set of

fields and antifields, prescribe the antibracket and construct the master action satisfying

the classical master equation. We show that for diffeomorphism-invariant theories the par-

ent formulation is a sigma model of Alexandrov-Kontsevich-Schwartz-Zaboronsky (AKSZ)

type [29] (see also [30–40] for further developments and applications of AKSZ-type sigma

models) for which the target space is the BV jet space of the starting point system while

the starting point Lagrangian plays the role of a potential.

2 Parent Lagrangian

2.1 Preliminaries

Suppose we are given a regular local Lagrangian gauge field theory. Within the BV for-

malism the theory is defined by the master action S[ψ,ψ∗], where ψA, ψ∗A are fields and

antifields. The space of fields and antifields carry an integer ghost degree gh(·) such that

fields of the theory are those ψA with gh(ψA) = 0 while the remaining ψA-s are ghost fields,

ghosts for ghosts, and so on, and carry positive ghost degrees. The master action S carries
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vanishing ghost degree and satisfies the master equation

(
S, S

)
= 0 , (2.1)

with respect to the antibracket defined by

(
ψA(x), ψ∗A(x′)

)
= δA

Bδ
(n)(x− x′) ,

(
ψA(x), ψB(x′)

)
=

(
ψ∗A(x), ψ∗B(x′)

)
= 0 , (2.2)

where xµ, µ = 0, . . . , n − 1 denote space-time coordinates. The ghost numbers and the

Grassmann parities of the antifields are determined by those of the fields through gh(ψ∗A) =

−1−gh(ψA) and |ψ∗A| = |ψA|+1mod 2 so that the antibracket is Grassmann odd and carries

ghost degree 1.

We restrict ourselves to the case of theories with closed algebra. For such theories

S[ψ,ψ∗] can be chosen at most linear in antifields. More precisely, S can be taken as

S =

∫
dnxL0[ψ] +

∫
dnxψ∗A(γψA) , (2.3)

where γ is a gauge part of the complete BRST differential s and L0[ψ] is the Lagrangian.

In our case, γ is nilpotent and enters the complete BRST differential s =
(
·, S

)
as s = δ+γ.

Here, δ is the Koszul-Tate term implementing the equations of motion determined by L0

and their reducibility relations. Note that in general γ is nilpotent only modulo equations

of motion and s = δ + γ + . . . , where dots refer to terms originating from the terms in S

of the second and higher orders in ψ∗A.

We first recall the construction [28] of the parent theory at the level of the equations

of motion. In the present context it is convenient to concentrate on the gauge structure en-

coded in γ and temporarily disregard the actual equations of motion implemented through

δ and the antifields ψ∗A. This corresponds to the off-shell version of the parent formulation

in [28]. The extended set of fields (including ghost fields etc.) is given by ψA
(λ)[ν], where

(λ) denotes a symmetric multi-index and [ν] an antisymmetric one. Introducing bosonic

variables yλ and fermionic variables θν, all the fields can be packed into the generating

function

ψ̃A(x, y, θ) =
∑

k,l >0

1

k!l!
θνl . . . θν1yλk . . . yλ1ψA

λ1... λk|ν1... νl
(x) ≡ θ(ν)y(λ)ψA

(λ)[ν](x) . (2.4)

The ghost degrees of the component fields are determined by the ghost degree of ψA if one

prescribes gh(yλ) = 0 and gh(θν) = 1. For instance, gh(ψA
(λ)|ν) = gh(ψA) − 1. In what

follows we also use the condensed notation ψα for all the fields so that α stands for A, (µ), [ν]

and ranges over an infinite but countable set. The lowest component ψA
()[ ] is identified with

ψA. Fields ψA
(λ)[ν] are refereed to as θ and y-derivatives (or descendants) of ψA.

We need to introduce some useful operations on the space of fields of the parent theory.

Given a differential operator O on the space of y, θ and x we associate a functional vector

field OF on the space of fields ψA
(λ)[ν](x) according to (see [28] for more details)

OF (ψ̃A) = (−1)|A||O|Oψ̃A , (2.5)
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where OF is assumed to act from the right. Here, O acts on y, θ, x while OF acts on the

space of fields ψA
(λ)[ν](x). Relation (2.5) is compatible with the commutator in the sense

that ([O1,O2])
F = [OF

1 ,O
F
2 ]. To fit with the usual conventions for the master action (see,

e.g., [41]) we have exchanged the left and right action with respect to [28]. Using (2.5) one

defines dF , σF , ∂F

∂yµ ,
∂F

∂θµ associated to σ = θµ ∂
∂yµ , d = θµ ∂

∂xµ , ∂
∂yµ , and ∂

∂θµ . In what follows

we need some explicit relations:

∂F

∂θν
ψA = (−1)|A|ψA

()ν ,
∂F

∂yν
ψA = ψA

ν[] , dFψA
(λ)[ ] = σFψA

(λ)[ ] = 0 ,

dFψA
()ν = (−1)|A|∂νψ

A , σFψA
()ν = (−1)|A|ψA

ν[ ] . (2.6)

We often employ the language of jet spaces (see, e.g., [6, 7]) and hence replace the

space of field histories ψα(x) by the respective jet space with coordinates xµ, ψα, and all

x-derivatives ψα
(µ). We also use ∂µ to denote the total derivative:

∂µ =
∂

∂xµ
+ ψα

µ
∂

∂ψα
+ ψα

µµ1

∂

∂ψα
µ1

+ . . . . (2.7)

Functional vector fields defined by (2.5) can be also seen as vector fields on the jet space.

The gauge part γ of the BRST differential can then be naturally seen as acting on

the space with coordinates xµ, ψα
(µ). This is achieved as follows: for ψA one defines γ̄ψA =

γψA, where the derivatives ∂(µ)ψ
A in the HRS are replaced by ψA

(µ)[ ]. The action of γ̄

on coordinates ψA
(λ)[ ] is uniquely determined by requiring [ ∂

∂xµ + ∂F

∂yµ , γ̄] = 0. Finally the

action on θ-derivatives ψA
(λ)[ν] and x-derivatives of all the fields is obtained by the usual

prolongation [∂µ, γ̄] = [ ∂F

∂θν , γ̄] = 0.

Finally, the BRST differential of the parent theory is given by [28]

γP = dF − σF + γ̄ . (2.8)

It was shown in [28] that the parent formulation is equivalent to the starting point one via

elimination of generalized auxiliary fields (see section 2.3 for the definition and [25, 42] for

details on this notion of equivalence).

2.2 Parent master action

To simplify the exposition, we assume for the moment that the starting point Lagrangian

L0[ψ] is strictly gauge invariant so that γL0 = 0. The general case where L0 is gauge

invariant modulo a total derivative is considered next.

Associated to each field ψα we introduce an antifield Λα or in components Λ
(µ)[ν]
A and

postulate the usual antibracket, ghost number and Grassmann parity assignments:

(
ψα(x),Λβ(x′)

)
P

= δα
β δ

(n)(x− x′),

gh(Λα) = −gh(ψα) − 1, |Λα| = |ψα| + 1mod 2 . (2.9)

Consider then the following functional

SP =

∫
dnx

(
Λα(dF − σF + γ̄)ψα + L0(ψ

A
(λ)[ ], x)

)
, (2.10)
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where L0(ψ
A
(λ)[ ], x) is the starting point Lagrangian in which derivatives ∂(µ)ψ

A are re-

placed with ψA
(µ)[ ]. Because space-time derivatives enter only through dF this action is a

first-order one.

Proposition 2.1. SP satisfies the master equation along with the usual ghost number and

Grassmann parity assignments

(
SP , SP

)
P

= 0 , gh(SP ) = 0 , |SP | = 0 , (2.11)

and hence can be considered a BV master action of a gauge field theory.

Proof. It is useful to work in terms of integrands (understood modulo total derivatives).

Let K = Λα(dF − σF + γ̄)ψα and L0 be the integrands of respectively the first and the

second terms in (2.10). The equation
(
K,K

)
P

= 0 is just a consequence of the nilpotency

of the vector field dF − σF + γ̄.
(
L0, L0

)
P

= 0 is obvious because L0 is independent of the

antifields. Finally, nonvanishing contributions to
(
L0,K

)
P

can only originate from terms in

K involving Λ
(µ)[0]
A . But (dF −σF )ψA

(µ)[0] = 0 so that
(
L0,K

)
P

=
(
L0,Λ

(µ)[0]
A γ̄ψA

(µ)[0]

)
P

= 0

as a consequence of γL0 = 0.

The number of fields entering master action (2.10) is infinite. This complicates the

analysis and makes ambiguous the interpretation of (2.10) as a BV action of a local gauge

field theory. Fortunately, it turns out that the action can be consistently truncated to the

one involving only finitely many fields and finitely many terms. To see this, we consider

the degree N∂y +N∂θ
, called truncation degree, where

N∂y =
∑

l >0

lψA
λ1...λl[ν]

∂

∂ψA
λ1...λl[ν]

, N∂θ
=

∑

l >0

lψA
(λ)ν1...νl

∂

∂ψA
(λ)ν1...νl

. (2.12)

To construct the truncated theory let us fix integer M which is sufficiently high with respect

to the degree in x-derivatives of the starting point Lagrangian and BRST differential γ. For

a given m > M coordinates ψA
λ1...λk|νl...νl

with k + l = m can be replaced with coordinates

wam , vam such that σFwam = vam because all the coordinates except ψ()[] are contractible

pairs for σF as a consequence of Poincaré Lemma. Moreover, it was shown in [28] that

equations (dF − σF + γ̄)wam can be algebraically solved for vam at wam = 0.

The truncated formulation is obtained by imposing the following constraints:

wam = 0 , (dF − σF + γ̄)wam = 0 , w∗am
= 0 , v∗am

= 0 , m > M . (2.13)

These constraints are equivalent to algebraic and moreover are second class constraints

in the antibracket sense. This guarantees that truncated master action SP
(M) satisfies the

master equation. Moreover, SP
(M) has the following structure

SP
(M) =

∫
dnx




∑

k+l 6M

Λαk,l
(dF − σF + ˜̄γ)ψαk,l + L0(ψ

A
(λ)[ ], x)


 , (2.14)

where ψαk,l ,Λαk,l
denote ψA

λ1...λk|νl...νl
and their conjugate antifields. Note that thanks to

the above constraints the differential γ̄ is replaced by its modification ˜̄γ. The modification
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actually affects the action on higher degree fields only: ˜̄γψαk,l = γ̄ψαk,l for k+ l < M − T ,

where T denotes the total degree of initial γ in space-time derivatives. This implies that

the parent action and its truncation coincide up to terms involving variables of degree

higher than M − T . Because T is fixed and M is arbitrary but finite one can consider SP

as a sort of limit of SP
(M) as M → ∞.1

This observation gives the parent theory the following interpretation: this is the theory

determined by SP
(M) where the truncation bound M is chosen high enough but finite. In

fact, it is even useful not to fix the truncation bound and work as if all necessary fields

were present. This interpretation makes sense because the equations of motion, gauge

symmetries etc. for fields of truncation degree less than M −T do not depend on M . Here

and in what follows we assume that γ and L0 involve derivatives up to a finite order and

the ghost degree of fields ψA is also finite. In particular, this is necessary for the above

truncation to exist.

In what follows we refer to the local gauge field theory determined by SP (or its

generalizations considered below) as the parent formulation. According to the principles of

the BV formalism the fields of the parent formulation are those fields among ψα,Λα that

have the vanishing ghost degree. The respective classical action SP
0 is obtained from SP by

putting all the fields of a nonvanishing ghost degree to zero. Gauge transformations for the

fields are then read off from the complete BRST differential sP =
(
·, SP

)
by δφi = sPφi,

where in the Right-Hand Side we put all the fields of ghost degrees different from 0, 1 to

zero and replace degree-1 fields with gauge parameters.

It turns out that the parent formulation determined by SP is equivalent to the starting

point theory determined by S through the elimination of generalized auxiliary fields. It

is then a BV master action for the parent theory of [28] in the case where the starting

point theory is Lagrangian (recall also that γL0 = 0 and the gauge algebra is closed in our

setting). Moreover, SP is a proper solution to the master equation provided the starting

point S is a proper one. In the rest of the paper we extend the construction to generic

gauge theories, identify the structure of the parent formulation for diffeomorphism-invariant

theories, prove the equivalence to the starting point theory, and illustrate the constructions

by concrete examples.

2.3 Equivalence proof

According to the definition from [42] fields χi, χ∗i are generalized auxiliary fields for the mas-

ter action S if they are canonically conjugate in the antibracket and equations
δS

δχi

∣∣
χ∗i =0

= 0

can be algebraically solved for χi.

Proposition 2.2. The BV formulation determined by SP ,
(
·, ·

)
P

and the starting point

theory S,
(
·, ·

)
are equivalent via elimination of generalized auxiliary fields.

1Note that the above truncation is far from being unique. In concrete examples one or another equivalent

choice can be useful. For instance for linear theories one can simply put to zero all the fields with degree

N∂y + N∂θ
− TghT higher than a truncation bound. Here ghT is the target space ghost degree defined

through ghT(ψA
(λ)[ν]) = gh(ψA).

– 6 –



J
H
E
P
0
7
(
2
0
1
1
)
0
6
1

Proof. All the fields ψA
(λ)[ν] save for ψA = ψA

( )[ ] can be grouped into two sets wa and

vb in such a way that σFwa = va. The set of fields and antifields can then be split

as ψA,ΛA, w
a, va, w∗a, v

∗
a. Let us show that va, wa, v∗a, w

∗
a are generalized auxiliary fields.

More precisely, as χi and χ∗i we take respectively va, w∗a and v∗a, w
a.

Varying first with respect to w∗a and putting v∗, w to zero, we find

[
(dF − σF + γ̄)wa

]
|w=0 = 0 ⇔ va =

[
(dF + γ̄)wa

]
|w=0 . (2.15)

It is almost clear from the last formula that it can be solved for va. The detailed proof uses

the extra degrees (ghost degree and N∂θ
) and was given in detail in [28]. In particular, one

finds that all va vanish except for ψA
(λ)[ ]. If the theory is not truncated then ψA

(λ)[ ] = ∂(λ)ψ
A.

For the truncated theory this is only true for lower order derivatives [28]. However, if the

truncation degree is high enough this does not affect the reduced action because L0 involves

y-derivatives of bounded order.

Varying then with respect to va and putting v∗, w to zero gives:

w∗a =
δR

δva

[
w∗b (d

F + γ̄)wb + ΛAγ̄ψ
A + L0

] ∣∣∣
w=0

. (2.16)

The second and the third terms cannot spoil the solvability with respect to w∗a because

they do not involve w∗a. To see that this is also true for the first term, we use the following

modification of the truncation degree: N∂y +N∂θ
− (T +1)ghT. In the linear order, we then

find that ((dF + γ̄)wb)|w=0 can only involve variables v of the degree lower than that of

wb. It follows that (
δ

δva
(w∗b (d

F + γ̄)wb)|w=0 can only involve w∗-variables of degree higher

then that of w∗a. Because SP is assumed truncated and hence does not involve fields of

sufficiently high degree the equation can be solved order by order using the above degree

and the homogeneity in the fields.

Finally, putting to zero all v∗a, w
a as well as all va except ψA

(µ)[ ] = ∂(µ)ψ
A the master

action SP reduces to

S̃ = S0[ψ
A] + ΛAγψ

A , (2.17)

which is exactly the starting point master action (2.3) if one identifies ΛA with ψ∗A.

Now we are ready to discuss in some more details the truncation introduced in the

previous section. In particular, to relate it to elimination of generalized auxiliary fields.

To this end it is instructive to rewrite parent action (2.10) in the adapted coordinates

ψA
λ1...λk |νl...νl

with k + l6M and wam , v̄am = (dF − σF + γ̄)wam with m > M and their

conjugate antifields. Note that v̄am replace coordinates vam = σFwam . In terms of these

coordinates the integrand of the parent action takes the form

∑

k+l 6M

Λ
λ1...λk|νl...νl

A (dF − σF + γ̄)ψA
λ1...λk|νl...νl

+

∞∑

m>M

w∗am
v̄am + L0(ψ

A
(λ)[ ], x) . (2.18)

It is almost obvious from this representation that variables wam , v̄am , w∗am
, v̄∗am

withm > M ′

for some M ′>M are generalized auxiliary fields. Their elimination is noting but the trun-

cation at level M ′. In this representation it can look like the artificial truncation of the
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previous section is not needed as it can always be achieved by eliminating the above gen-

eralized auxiliary fields from the parent action. This is not the case, however, because the

above change of variables contains x-derivatives (through dF ) and affects infinite number of

coordinates so that it is not a strictly local operation. Indeed, taking for simplicity γ = 0

one finds that algebraic constraints wam = v̄am = w∗am
= v̄∗am

= 0 in terms of original

variables involves any number of space-time derivatives. For instance, by these constraints

ψA
λ1...λM+k[ ] is expressed through ∂λ1 . . . ∂λk

ψA
λk+1...λk+M [ ].

2.4 Generalization

In order to allow for Lagrangians that are γ-closed only modulo a total derivative we

need some more technique. In the setting of the starting point theory, we introduce the

algebra of local forms Ω̂ that are forms on x-space with values in local functions. As a

usual technical assumption we in addition exclude field-independent forms from Ω̂. Local

forms can be seen as functions in the fields, their derivatives, the coordinates xµ, and the

fermionic variables θµ standing for basic differentials dxµ. As is implied by the notation,

the variables θµ are to be identified with the θµ of the previous sections.

In the usual local BRST cohomology considerations (see, e.g., [11]) it is quite useful

to employ the extended BRST differential (recall that γ acts from the right)

γ̃ = −dH + γ , dH =
←
∂ µθ

µ (2.19)

where dH is often refereed to as total de Rham differential. For instance the ghost degree-g

cohomology of γ in the space of local functionals is in fact isomorphic to the total degree

g + n cohomology of γ̃ in the space of local forms without field-independent terms. The

total degree extends ghost degree such that θ carries unit degree.

A particularly important representative of the local BRST cohomology is the La-

grangian density itself.2 It can be represented by a local form L̂[ψ, x, θ] of the total degree

n such that γ̃L̂ = 0. The usual Lagrangian L0[ψ, x] enters L̂ as a coefficient of the volume

form θ0 . . . θn−1. More precisely L0[ψ, x] =
∫
dθn−1 . . . dθ0L̂[ψ, x, θ] and γ̃L̂ = 0 implies

γL0 = ∂µj
µ
1 , γjµ1 = ∂νj

νµ
2 , etc. with some jµ1...µk

k , gh(jk) = k. Note that because of the

above isomorphism any L0 that is γ-closed modulo a total derivative can be represented by

such a γ̃-cocycle L̂. Obtaining L̂ can be also seen as solving the respective descent equation

(see, e.g., [11]) with θ1 . . . θnL0 being the local form of maximal degree.

Representing the Lagrangian density through L̂ we easily generalize parent master

action (2.10) as

SP =

∫
dnx

[
Λα(dF − σF + γ̄)ψα +

∫
dnθL̂(ψ̃A

(λ), x, θ)

]
, (2.20)

where by a slight abuse of notation we have denoted ψ̃A
(λ) =

∑ 1
k!θ

νk . . . θν1ψA
(λ)ν1...νk

≡

θ[ν]ψA
(λ)[ν].

2Note that if instead of γ-cohomology one considers the cohomology of the complete BRST operator

s = γ + δ + . . ., a nontrivial Lagrangian can be a trivial representative of s-cohomology. For instance this

happens for free theories or pure gravity because the respective Lagrangians vanish on-shell.
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Let us show that SP indeed satisfies the master equation modulo total derivatives.

The only nontrivial point is to check that γP
∫
dnθL̂(ψ̃A

(λ), x, θ) is a total derivative. We

first observe that∫
dθn−1 . . . dθ0L̂(ψ̃A

(λ), x, θ) =
[
∂θ

0 . . . ∂
θ
n−1L̂(ψA

(λ), x, θ)
] ∣∣∣

θ=0
, (2.21)

where ∂θ
µ =

←

∂

∂θµ
− ∂F

∂θµ is a total right derivative with respect to θµ. It is then useful to

employ the extended parent differential [28]:

(γ̃)P = −

( ←

∂

∂xµ
+

∂F

∂yµ

)
θµ + dF − σF + γ̄ , (2.22)

which is nilpotent and satisfies (γ̃)P |θ=0 = γP and [∂θ
µ, (γ̃)P ] = −∂µ.

Using then [∂θ
µ, (γ̃)

P ] = −[∂θ
µ, dH ] gives

γP
[
∂θ

0 . . . ∂
θ
n−1L̂(ψA

(λ), x, θ)
] ∣∣∣

θ=0
= (−1)n

[
∂θ

0 . . . ∂
θ
n−1 dHL̂(ψA

(λ), x, θ)
] ∣∣∣

θ=0
=

= (−1)n
∫
dnθ dH L̂(ψ̃A

(λ), x, θ) , (2.23)

so that the master equation is indeed satisfied modulo a total derivative. Finally one can

check that the equivalence proof of section 2.3 is not affected by the extra terms in the

parent Lagrangian.

The structure of the parent formulation can be simplified by packing the fields Λ
(µ)[ν]
A

into superfields Λ̃
(µ)
A (θ) such that Λαψ

α = Λ
(µ)[ν]
A ψA

(µ)[ν] = (−1)n
∫
dnθΛ̃

(µ)
A ψ̃A

(µ). It is then

useful to employ the language of supergeometry. Namely, consider a supermanifold M with

coordinates being ψA
(λ) and Λ

(λ)
A , gh(Λ

(λ)
A ) = −gh(ψA

(λ))+n−1 and equipped with the (odd)

Poisson bracket defined by {
ψA

(µ),Λ
(ν)
B

}
M

= δA
Bδ

(ν)
(µ) . (2.24)

The bracket carries ghost degree 1 − n and the Grassmann parity (1 − n)mod 2.

We consider the function

SM(ψ,Λ, x, θ) = Λ
(µ)
A γ̄ψA

(µ) + L̂(ψA
(µ), x, θ) , (2.25)

where as before L̂(ψA
(µ), x, θ) is obtained from L̂[ψ] by replacing ∂(µ)ψ

A with ψA
(µ). Note

that gh(SM) = n and |SM| = nmod 2. Master action (2.20) can then be written as

SP =

∫
dnxdnθ

[
Λ̃

(µ)
A dψ̃A

(µ) − Λ̃
(µ)
A σF ψ̃A

(µ) + SM(ψ̃, Λ̃, x, θ)
]
. (2.26)

The space of field histories can be identified in this representation with the space of maps

from the source supermanifold with coordinates xµ, θµ into the target-space supermanifold

with coordinates ψA
(µ),Λ

(µ)
A . In particular, the antibracket (2.9) is induced on the space of

maps from the target space bracket (2.24) (see e.g. [31, 40] for details on brackets related

in this way).

If L̂, γ in (2.26) can be chosen x, θ-independent and the second term can be removed

by a field redefinition, then the above master action defines what is known as the AKSZ

sigma model. As we are going to see next this is exactly what happens if the starting point

theory is diffeomorphism invariant.
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2.5 Diffeomorphism-invariant theories

We now specialize to the case where the starting point theory is diffeomorphism invariant

and diffeomorphisms are in the generating set of gauge transformations so that γ contains

a piece γ′ such that γ′ψA = (∂µψ
A)ξµ, where ξµ are diffeomorphism ghosts and ψA all

the fields including ξµ. We assume in addition that this is the only term in γ involving

undifferentiated ξµ. Under this condition it is known [43] that by changing coordinates on

the space of local forms as ξµ − θµ → ξµ, the −
(←
∂ µ −

←

∂

∂xµ

)
θµ term in γ̃ can be absorbed

by γ so that γ̃ = −

←

∂

∂xµ
θµ + γ after the redefinition. It then follows that representatives of

the γ̃ cohomology can be assumed x, θ-independent as we do from now on. Note that in

many cases L̂ can be taken in the form ξ1 . . . ξnL[ψ], where L is a Lagrangian density.

Turning to the parent formulation and following [28] we in addition redefine the θ-

descendants of ξµ accordingly, i.e., ξµ

()ν → ξ
µ

()ν − δ
µ
ν while keeping all the other fields

unchanged. By this field redefinition, the term σF in γP is absorbed into γ̄. The following

statement follows from γ̃L̂ = 0 and the representation (2.26) of the parent master action

Proposition 2.3. Let the starting point theory be diffeomorphism invariant in the above

sense. The function SM defined by (2.25) can be then assumed x, θ-independent and hence

defines a function on M satisfying the following master equation

{SM, SM}
M

= 0 . (2.27)

Parent master action (2.20) can be represented in the explicitly AKSZ form

SP =

∫
dnxdnθ

[
Λ̃

(µ)
A dψ̃A

(µ) + SM(ψ̃, Λ̃)
]
, (2.28)

where the tilde indicates that the variables are now fields depending on both xµ and θν.

We stress that in order for (2.28) to define a theory equivalent to (2.20), we need to

restrict to field configurations with ξ
µ
()ν(x) invertible. Recall also that according to the

discussion in section 2.2 a parent action should be truncated in order to be equivalent in a

strictly local sense to the starting point action, no matter which representation is used. It is

also worth mentioning that just like in the non-Lagrangian case considered in [28] once the

theory is rewritten in the form of an AKSZ sigma model one can use generic coordinates

xa (along with associated θa) on the source space that are not at all related to the starting

point coordinates xµ. Field ξ
µ
()a(x) is then identified as the respective frame field.

To complete the discussion of the diffeomorphism invariance, we note that similarly

to [28] any theory can be reformulated as an AKSZ sigma model by adding yµ, ξν as extra

variables in the target space and replacing differential γ̄ by its extension ¯̃γ which is γ̃ where

the role of xµ, θν is played by yµ, ξν . More precisely, in this case

¯̃γyµ = −ξµ , ¯̃γξµ = 0 , ¯̃γψA
(µ1...µk) = −ψA

(µ1...µkν)ξ
ν + γ̄ψA

(µ1...µkν) . (2.29)

In the Lagrangian setting under consideration now, in addition to extra coordinates yµ, ξν

supermanifold SM also involves their conjugate antifields/momenta. For instance, in the
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well-known case of a 1-dimensional system (mechanics) these are the momenta conjugated

to time variable and the reparametrization ghost momenta (see the example in section 3.3).

The master action of the parametrized parent formulation is then given by (2.28) where in

the expression (2.25) for SM differential γ̄ is replaced with the above ¯̃γ and where at the

equal footing with ψA
(λ) and their conjugate Λ

(λ)
A the expression involves yµ, ξν and their

conjugate antifields/momenta.

We finally comment on the interpretation of the (odd) symplectic manifold M equipped

with { · , · } and SM. In the 1d case the structure of (2.28) coincides with the AKSZ-type

representation in [31] of the BV master action associated to a constrained Hamiltonian

system with the trivial Hamiltonian. Moreover, M is an extended phase space of the

respective Batalin-Fradkin-Vilkovisky (BFV) formulation [44–46] with { · , · } being the

extended Poisson bracket, SM being the BRST charge, and (2.27) the BFV version of the

master equation. Note that this interpretation is compatible with the ghost degree and

Grassmann parity as gh(SM) = |SM| = 1 and the bracket has zero degrees in this case. Of

course, to relate M to the usual extended phase space, one first needs to eliminate many

trivial pairs (see, e.g., the example in section 3.2). In fact already master action (2.26) can

be interpreted in terms of the Hamiltonian BFV formalism by relating the second term

in (2.26) to a Hamiltonian (indeed it can be represented as a term linear in θµ) in agreement

with [31]. In the general case it is natural to consider M equipped with the bracket and

SM as a multidimensional generalization of the BFV extended phase space.

3 Examples

3.1 Mechanics

Consider the mechanical system described by a Lagrangian L(q, ∂q), where ∂ denotes to-

tal time derivative. If there is no gauge symmetry differential γ vanishes and parent

action (2.10) truncated at degree 2 takes the familiar form (see e.g. [47])

SP = SP
0 =

∫
dt

[
p(∂q − q(1)) + p(1)(∂q(1) − q(2)) + L(q, q(1))

]
, (3.1)

where q(l) =
(

∂F

∂y

)l
q, p =

(
∂F

∂θ
q
)∗

, and p(1) =
(

∂F

∂θ
q(1)

)∗
. The total set of variables is given

by q, q(1), q(2), p, p
(1), which have zero ghost degree, and their conjugate in the antibracket

variables q∗, q∗(l), l = 1, 2 and ∂F

∂θ
q, ∂F

∂θ
q(1) of ghost degree −1. These last are to be interpreted

as antifields. Note that the parent master action SP coincides with the classical action SP
0

because there is no gauge symmetry.

The variables p, p(1) and q(1), q(2) are clearly auxiliary fields and their elimination brings

back the starting point Lagrangian with q(1) replaced by the “true” time derivative ∂q. This

argument is essentially a specific realization of the general equivalence proof in section 2.3.

A general feature that can be seen already in this naive example is that a different

reduction is also possible. To see this, we first eliminate q(2), p
(1) as before and suppose

for simplicity that there are no constraints so that equation p = ∂
∂q(1)

L can be solved for

q(1). The variable q(1) is then an auxiliary field. Indeed, varying with respect to q(1) gives

– 11 –
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p = ∂
∂q(1)

L. Solving this for q(1) gives

Sred
0 =

∫
dt (p∂q − (pq(1)(q, p) − L(q, q(1)(q, p))) , (3.2)

which is easily recognized as a Hamiltonian action where p plays the role of momenta. We

also note that the respective phase space can be seen as a reduction of the manifold M

while the canonical Poisson bracket is simply the reduced version of the bracket (2.24).

This example has a straightforward generalization to the case of field theory without

gauge symmetry. Taking for definiteness the scalar field with Lagrangian L = 1
2∂µφ∂

µφ−

V (φ) and reducing the resulting parent action as in the above example one arrives at

Sred
0 =

∫
dnx

[
πµ∂µφ−

(
1

2
πµπµ + V (φ)

)]
. (3.3)

This is a usual first-order action of the scalar field. We note that by separating space and

time components, this action is seen to become a Hamiltonian action.

Although the construction is almost trivial in this simple example, it is much less ob-

vious in the case of gauge theories. From the perspective of the above example, parent

action (2.20) is a natural generalization of (3.1) to the case of gauge field theories. More-

over, this generalization maintains (general) covariance of the starting point formulation

in a manifest way.

We also mention an interpretation of action (3.3) as a covariant Hamiltonian action

of the De Donder-Weyl (DW) formalism (see, e.g., [48, 49]). For instance the second

term is identified with the DW Hamiltonian while πµ as the polymomenta. Moreover,

the polysymplectic form of [48] can be related to the (odd) Poisson bracket (2.24) of the

parent formulation. A similar interpretation can be given in the general case and will be

discussed elsewhere.

3.2 Relativistic particle

The relativistic particle is defined by the Lagrangian

S[X,λ] =
1

2

∫
dτ

[
λ−1gµν(X)∂Xµ∂Xν + λm2

]
=

∫
dτL . (3.4)

The BRST description is achieved by introducing the ghost ξ and the BRST differential

γXµ = ξ∂Xµ , γλ = ∂(ξλ) , γξ = ∂ξξ , (3.5)

Note that γL = ∂(ξL) so that L̂ = (ξ − θ)L, which becomes θ-independent after the

redefinition and can be used in (2.25).

Because of the diffeomorphism invariance, γψA contains ∂ψAξ and the parent theory

is an AKSZ-type sigma model with the target space being a supermanifold with the coor-

dinates Xµ, ξ, λ, all their derivatives Xµ

(l), ξ(l), λ(l) considered as independent coordinates,

and canonically conjugate momenta p
(l)
µ , ξ

(l)
∗ , λ

(l)
∗ (these are momenta not antifields because

the bracket (2.24) has zero ghost degree and Grassmann parity). Here we use the notation

– 12 –
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such that (l) refers to the order of the y-derivative, e.g., λ(l) =
(

∂F

∂y

)l
λ. The source space is

simply given by a time line with a coordinate τ extended by the Grassmann odd variable

θ. The target space function SM is given by

SM = pµξX
µ
(1) − ξ∗ξξ(1) + λ∗ξλ(1) + λ∗ξ(1)λ+

1

2
ξ(λ−1gµνX

µ
(1)X

ν
(1) + λm2) + . . . (3.6)

where dots refer to terms Λ
(l)
A γ̄ψA

(l) with l> 1 and whose explicit form is in fact not

needed here.

It turns out that all the variables except X, p, ξ, ξ∗ are trivial in the sense that all the

fields they give rise to (i.e. their θ-derivatives) are generalized auxiliary fields. By inspecting

the definition of generalized auxiliary fields it follows that it is enough to show that these

variables are generalized auxiliary fields for SM considered as a master action. In turn,

this can be easily seen using a new coordinate system where X,λ are unchanged while ξ

is replaced by C = λξ. The derivatives Xµ
(l), C(l), λ(l) and conjugate momenta p

(l)
µ , C

(l)
∗ , λ

(l)
∗

are then defined as before but starting from the new coordinates and hence are related

to the original ones through a canonical transformation. In terms of the new coordinate

system, SM takes the form

SM = pµλ
−1CX

µ
(1) + λ∗C(1) +

1

2
C(λ−2gµνX

µ
(1)X

ν
(1) +m2) + . . . (3.7)

It is now obvious that C(1), λ − 1 as well as C(n+1), λ(n) for n> 1, and their conjugate

momenta are all generalized auxiliary fields (we chose λ−1 because λ is assumed invertible).

Moreover, the variables Xµ

(l) and p
(l)
µ for l> 2 are also generalized auxiliary fields.

After the elimination we are left with

Sred
M = C(pµX

µ
(1) +

1

2
gµνX

µ
(1)X

ν
(1) +m2) . (3.8)

In fact X(1) and p(1) are also generalized auxiliary fields because the equation
∂Sred

M

∂X
µ
1

can

be algebraically solved for Xµ
1 (C is to be considered invertible because it contains an

invertible einbein as its θ descendant). The reduction then gives Ω = −1
2C(gµνpµpν −m2)

which is a BRST charge of the particle model. It is easy to see that the Poisson bracket of

the remaining variables is not affected by the reduction3 and is given by

{Xµ, pν}M
= δµ

ν , {C,P}
M

= 1 , (3.9)

where we denoted C∗ by P to agree with the usual conventions of the BFV formalism.

In this way we have reduced the theory to the 1d AKSZ sigma model with the target

space being the BFV phase space of the relativistic particle equipped with the BRST charge

Ω and the extended Poisson bracket. This AKSZ model is known [31] to be just the BV

formulation of the respective first-order Hamiltonian action.

3Strictly speaking the elimination of generalized auxiliary fields χa, χ∗a is the reduction to the second

class surface defined by χ∗a = 0 and
δS

δχa
= 0 so that the reduced bracket is the Dirac bracket (see [25] for

more details).
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The example we have just described is the Lagrangian/Hamiltonian version of the one

in [28] (see also [13] for the respective BRST cohomology treatment). We stress that al-

though the algebraic procedure that leads from the Lagrangian to Hamiltonian description

of a particle is somewhat analogous to the usual Legendre transform it is in fact applied

to the gauge theory and is operated in the BRST theory terms. In particular, it allows

identifying constraints and constructing the corresponding BFV-BRST formulation with-

out actually resorting to the Dirac-Bergmann algorithm and subsequently constructing the

BRST charge.

The last observation in fact remains true in field theory as well. By explicitly extracting

the “time” coordinate and treating the spatial coordinates implicitly the parent master

action can be represented as a 1d (generalized) AKSZ sigma model of the type proposed

in [31]. Its target space comes equipped with the respective BRST charge and the BRST-

invariant Hamiltonian so that by eliminating the generalized auxiliary fields in the target

space one arrives at the usual BFV description.

3.3 Parameterized mechanics

As an example of the parametrized parent Lagrangian let us consider the simplest and well-

known example of a parametrized mechanical system. Starting with the mechanical system

of section 3.1 the parametrization is achieved by treating the time t as a configuration space

coordinate and using new parameter τ as a new independent variable. We now construct

parametrized parent formulation as explained at the end of section 2.5.

Besides the coordinates q(l) and their conjugate momenta p(l) supermanifold M involves

in this case coordinate t and reparametrization ghost ξ along with their conjugate momenta

π, P. Just like in the previous example of relativistic particle bracket (2.24) on M is

Grassmann even and has vanishing ghost degree. According to (2.29) in this case BRST

differential ¯̃γ is given by
¯̃γt = −ξ , ¯̃γq(l) = −ξq(l+1) , (3.10)

where we used that γ = γ̄ = 0 as the starting point system is not gauge invariant. Function

SM has then the following form:

SM = −πξ − ξpq(1) − ξ
∑

l=1

p(l)q(l+1) + ξL0(q, q(1)) . (3.11)

As in the previous section we take a shortcut and eliminate the auxiliary variables at

the level of SM (of course all the steps can be repeated in terms of the complete parent

master action). Thanks to the third term in (3.11) variables p(l), q(l+1) for l > 0 are clearly

auxiliary and can be eliminated without affecting the remaining terms. Furthermore, if

L0(q, q(1)) is nondegenerate q(1) can be eliminated through its own equation of motion and

one arrives at

Sred
M = −ξ(π +H(q, p)) , H = pq(1)(q, p) − L(q, q(1)(q, p)) (3.12)

which is easily recognized as the BRST charge implementing the familiar reparametrization

constraint π+H = 0 with the help of reparametrization ghost ξ. Meanwhile the superman-

ifold with coordinates p, q, t, π, ξ,P obtained by reducing M is recognized as the respective
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BFV phase space. The associated AKSZ action is simply the extended Hamiltonian action

implementing the constraint with the help of the Lagrange multiplier e = ∂F

∂θ
ξ. Let us fi-

nally emphasize that we have just demonstrated how the parametrized version of the parent

formulation automatically reproduces the Hamiltonian formalism for parametrized systems.

3.4 Yang-Mills-type theory

The set of fields for Yang-Mills-type theory are the components of a Lie algebra valued

1-form Hµ and a ghost C. The gauge part of the BRST differential is given by

γHµ = ∂µC + [Hµ, C] , γC =
1

2
[C,C] . (3.13)

The dynamics is determined by a gauge invariant Lagrangian L0[H].

We explicitly identify the field content and the action of the parent formulation. At

ghost number zero we have fields (Hµ)(λ)[ ](x) and C(λ)|µ(x). It is useful to keep the y

variables and to work in terms of the following generating functions:

Aµ(x|y) = −C(λ)|µ(x)y(λ) , Bµ(x|y) = (Hµ)(λ)[ ](x)y
(λ) . (3.14)

The parent action takes the form (for simplicity we keep only fields of zero ghost number)

SP
0 =

∫
dnx

[
〈πµν , ∂[νAµ] −

∂

∂y[ν
Aµ] +

1

2
[Aν , Aµ]〉 +

+
〈
Πµν , ∂νBµ −

∂

∂yν
Bµ −

∂

∂yµ
Aν − [Bµ, Aν ]

〉
+ L0[B]

]
. (3.15)

where we have introduced the notation

πµν(x|p) = π(λ)µν(x)p(λ) , Πµν(x|p) = Π(λ)µν(x)p(λ) (3.16)

for the generating functions containing antifields conjugate to respectively C(λ)|µν and

(Hµ)(λ)|ν . In addition we introduced inner product 〈, 〉 comprising the natural pairing

between the Lie algebra and its dual and the standard inner product (contraction of indices)

between polynomials in yµ and pµ. The gauge transformation for all the fields including

the Lagrange multipliers π,Π can be read off from the complete SP for which the above

SP
0 is the classical action. We note that action SP

0 was implicit in [16] (see also [50]). We

also mention a somewhat related formulations in terms of bi-local fields [51–53].

Following the same logic as in the above examples, we eliminate contractible pairs for

−σF + γ̄ and their conjugate antifields. As in [28] it is useful to identify contractible pairs

for −σF +γ̄ as the θ-descendants of γ̃-trivial pairs in the starting point jet space. All the jet

space coordinates are known to enter γ̃-trivial pairs except for C̃ = C−θµHµ replacing the

undifferentiated ghost C, curvature F y
µν = ∂F

∂yµHν −
∂F

∂yνHµ +[Hµ,Hν ] and the independent

components of its covariant derivatives. Here we identified jet space coordinates (besides

θµ, xµ) with the y-derivatives of C,Hµ. After eliminating the trivial pairs the reduced

differential is determined by the “Russian formula” [54]

γ̃C̃ =
1

2
[C̃, C̃] − F y , F y =

1

2
F y

µνθ
µθν , (3.17)
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and further relations defining the action of γ̃ on independent components of (the covariant

derivatives of) F y
µν .

It then follows that all the parent formulation fields are generalized auxiliary except

the θ-descendants of C̃ and (the covariant derivatives of) F y
µν together with their associated

antifields. Moreover, the action of the reduced −σF + γ̄ can be read off from (3.17) and its

analog for the curvatures (see [28] for more details). In particular, (3.17) implies

(−σF + γ̄)redC̃()µν = −[C̃()µ, C̃()ν ] + F y
µν + . . . (3.18)

where the dots stand for the terms involving fields of nonvanishing ghost degree.

Assuming that the Lagrangian depends on undifferentiated curvature only one finds

that all the θ-descendants of other curvatures along with their conjugate antifields are also

generalized auxiliary fields because the corresponding equations of motion merely express

the higher curvatures through the x-derivatives of the lower ones. After eliminating all the

above generalized auxiliary fields one stays with just θ-descendants of C̃, undifferentiated

curvature F y and their conjugate antifields. The action for ghost-number-zero fields πµν =
1
2 (C̃()µν)∗, Aµ = −C̃()µ, and F y

µν takes then the form

Sred
0 =

∫
dnx

[
〈πµν , ∂νAµ − ∂µAν + [Aν , Aµ] − F y

νµ〉 + L0(F
y)

]
. (3.19)

By eliminating π, F through their equations of motion one gets the starting point La-

grangian formulation where F y in L0(F
y) is replaced with the usual curvature dA+ 1

2 [A,A].

Another reduction of (3.19) depends on the particular form of L0. Taking for def-

initeness L0(F ) = −1
4η

µρηνσ〈Fµν , Fρσ〉 where by slight abuse of notation 〈 , 〉 denotes a

nondegenerate invariant form on the gauge algebra, one observes that varying with respect

to F y allows expressing F y through π as F y
µν = −ηµρηνσπ

ρσ where the identification of

the gauge algebra and its dual through the invariant form is implied. It follows F y is an

auxiliary field and the reduced action takes the well-known form (see, e.g., [55])

Sred−1
0 =

∫
dnx

(〈
πµν ,

∂

∂xµ
Aν −

∂

∂xν
Aµ + [Aµ, Aν ]

〉
+

〈
πµν , πµν

〉)
. (3.20)

We note that the formulation in (3.19) has an advantage over (3.20) because it allows for

more general Lagrangians, not necessarily of the form 〈Fµν , Fµν〉. Further generalizations

can be achieved using the parent Lagrangian (3.15).

3.5 Metric gravity

In the BRST description of metric gravity, the fields are the inverse metric gab and a ghost

field ξa that replaces the vector field parametrizing an infinitesimal diffeomorphism. The

gauge part of the BRST differential is given by

γgab = Lξg
ab = ξc∂cg

ab − gcb∂cξ
a − gac∂cξ

b , γξc = (∂aξ
c)ξa . (3.21)

The dynamics is specified by the diffeomorphism-invariant Lagrangian L[g] that is assumed

to satisfy γL = ∂a(ξ
aL) along with the standard regularity conditions.
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For metric gravity, γX contains (∂aX)ξa for any fieldX so that the general discussion of

diffeomorphism-invariant theories applies. In particular, L̂ representing the Lagrangian can

be chosen as L̂ = ξ0 . . . ξn−1L0[g] and parent formulation can be written as the AKSZ sigma

model. Its target space has coordinates ξa
(b), g

ab
(c) along with their canonically conjugate

antifields/momenta π
(b)
a and u

(c)
ab .

It is useful to work in terms of generating functions. For this, we introduce formal

variables pb in addition to ya and consider the algebra of polynomials in y, p equipped with

the standard Poisson bracket {ya, pb} = δb
a. The target space coordinates gab

c1...cl
and ξa

c1...cl

can then be encoded in

G =
1

2
gab
(c)y

(c)papb , Ξ = ξa
(c)y

(c)pa , (3.22)

and the action of γ on these coordinates can be compactly written as

γΞ =
1

2
{Ξ,Ξ} , γG = {G,Ξ} . (3.23)

The same variables can be used to encode antifields/momenta into the generating

functions:

Π = π(b)
a p(b)y

a , U =
1

2
u

(c)
ab p(c)y

ayb . (3.24)

In addition, we introduce the natural symmetric inner product 〈, 〉 on the space of poly-

nomials in y, p such that e.g. 〈ya, pb〉 = δa
b . In components it simply amounts to natural

contraction between indices of the coefficients. The parent master action then becomes

SP =

∫
dnxdnθ

[
〈Ũ , dF G̃〉 + 〈Π̃, dF Ξ̃〉 + SM(G̃, Ξ̃, Ũ , Π̃)

]
,

SM =
〈
Ũ ,

{
G̃, Ξ̃

}〉
+

1

2

〈
Π̃,

{
Ξ̃, Ξ̃

}〉
+ ξ̃0 . . . ξ̃n−1L0[G̃] . (3.25)

where ξ̃ enters Ξ̃ as a y-independent term and where as before the tilde indicates that the

fields are functions of x, θ.

We now concentrate on the classical action SP
0 . Fields F,A of vanishing ghost degree

enter the expansions of G,Ξ in θ as

G̃(x, θ|y, p) = F (x, y, p) + . . . , Ξ̃(x, θ|y, p) = Ξ(x|y, p) +Aµ(x|y, p)θµ + . . . . (3.26)

As regards the antifields/momenta, the n − 1-form P and n − 2 form π components of

respectively U and Π are of vanishing ghost degree and play the role of Lagrange multipliers.

The classical action can be then written as

SP
0 =

∫
dnxdnθ

[
〈P , dF + {F,A}〉 +

〈
π, dA+

1

2
{A,A}

〉
+ e0 . . . en−1L0[F ]

]
, (3.27)

where ea = eaµ(x)θµ enters A(x, θ|y, p) as A = θµeaµ(x)pa + . . . and is to be identified as the

frame field. Action (3.27) was implicitly in [16] (see also [50]). We also mention somewhat

related descriptions from [56, 57].

We now perform the reduction of the parent formulation for gravity leading to its

frame like form. We are going to implement the Lagrangian version of the analogous
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reduction considered in [28] (see also [16, 25]). Details on identification of trivial pairs for

the BRST differential can be found in [4, 12, 43]. In particular, all the variables in Ξ and

G except ξa
(), ξ

a
b , metric gab, and (the independent components of the covariant derivatives

of) the curvature are contractible pairs for γ̄. All their θ-descendants as well as all the

associated antifields are then the generalized auxiliary fields for the parent formulation.

Moreover, under the usual assumption that metric (entering G as a gabpapb) is close to a

flat metric ηab, the components of the difference gab−ηab together with the symmetric part

of ξa
c η

cb and their associated antifields give rise to generalized auxiliary fields and hence

can also be eliminated.

The action of the reduced γ̄ on the remaining coordinates ξa, ξa
b , Ra

b cd and Rb
c1...cka1a2a3

,

where the latter denote the covariant derivatives of the curvature Ra
b cd is given by (see

e.g. [12, 28, 43] for more details)

γ̄ξa = ξa
c ξ

c , γ̄ξa
b = ξa

c ξ
c
b −

1

2
ξcξdRa

b cd , (3.28)

and

γ̄Rb
c1...cka1a2a3

= ξc0Rb
c0c1...cka1a2a3

− ξb
dR

d
c1...cka1a2a3

+

+ξd
c1
Rb

dcka1a2a3
+ · · · + ξd

a3
Rb

c1...cka1a2d . (3.29)

If L0 depend on undifferentiated curvature only all the fields associated to the covariant

derivatives of the curvature are generalized auxiliary. Indeed, it follows from (3.29) that

the respective equations of motion express Rb
c1...cka1a2a3

through Rb
c1...ck−1a1a2a3

so that θ-

derivatives of Rb
c1...cka1a2a3

with k > 0 and all the associated antifields can be eliminated.

In this way one ends up with only θ derivatives of ξa, ξa
b , R

a
b,cd and the associated anti-

fields/momenta.

We then introduce the component fields entering ξ̃a, ξ̃a
b , R̃

a
b,cd:

ξ̃a(x, θ) = ξa − θµeaµ +
1

2
θνθµξa

µν + . . . ,

ξ̃a
b (x, θ) = ξa

b − θµωa
µb +

1

2
θνθµξa

bµν + . . . , R̃a
b,cd(x, θ) = Ra

b,cd + . . . (3.30)

where dots stand for terms of higher order in θ. In particular, fields eaµ, ω
a
µb, R

a
b,cd carry

vanishing ghost degree. Besides them antifields πµν
a = (ξa

µν)∗ and π
bµν
a = (ξa

bµν)∗ also

carry vanishing ghost degree and play the role of Lagrange multipliers. After the reduction

action (3.27) takes the following form

Sred
0 [πa, πa

b , e
a, ωab] =

∫
dnxdnθ

[
πa(de

a + ωa
b e

b) +

+πb
a

(
dωa

b + ωa
cω

c
b −

1

2
ecedRa

bcd

)
+ e0 . . . en−1L0(R)

]
, (3.31)

where antifields πa and πb
a are represented in a dual way as n − 2-forms. Fields πbµν

a and

Ra
bcd are clearly auxiliary ones. By eliminating them the second term is gone and we get

Sred−1
0 [πa, ea, ωab] =

∫
dnxπµν

a (∂[νe
a
µ] + ωac

[ν e
c
µ]) +

∫
dnxdnθ e0 . . . en−1L0[e, ω] . (3.32)
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Just like in other examples, it is now easy to explicitly get back the starting point

Lagrangian. Indeed, the fields π and ω are auxiliary because varying with respect to πµν
a

gives the condition dea + ωa
b e

b = 0 that is uniquely solved for ωa
b in terms of ea. At the

same time variation with respect to ωa
µb gives equation πµν

a ebν +(π -independent terms) = 0

which can be uniquely solved for πµν
a . Substituting the solutions back to (3.32) one finds

that only the term with L0 expressed through ea stays.

If the starting point L0 is precisely the Einstein-Hilbert Lagrangian another reduction

is also possible that leads to the usual first order action

S1[e
a, ωab] =

∫
dnxdnθ ǫa1...an−2an−1ane

a1 . . . ean−2(dωan−1an + ωan−1
c ωcan) , (3.33)

depending on ea, ωa
b as independent fields. The difference with (3.32) is only in the first

term in (3.32) and its extra dependence on π
µν
a . That (3.32) is equivalent to (3.33) via

eliminating auxiliary fields is obvious if one eliminates πµν
a and ωab

µ in (3.32) as explained

above and eliminates ωab
µ through its own equations of motion in (3.33).

In fact (3.33) can be obtained from (3.32) via a straightforward reduction. Indeed, let

us change the field variables such that ωab
µ = αab

µ (e) + ω̄ab
µ where αab

µ [e] is a unique solution

to dea +αa
ce

c = 0 so that field ω̄ab
µ is related to torsion in an invertible way. In terms of ω̄ab

µ

action (3.33) decomposes as S1[e, α(e)] + S2[e, ω̄] where S2 is bilinear in undifferentiated

ω̄ab
µ . Using this representation for the second term in (3.32) one observes that ω̄ab

µ is an

auxiliary field and can be expressed through π
µν
a and eaµ. Using then an invertible field

redefinition such that a new ωab
µ [e, π] replaces πµν

a the reduced action (3.32) can be brought

to the form (3.33).

4 Conclusions

In this paper, we have specialized the parent formulation of [28] to the Lagrangian level.

More precisely, for a given Lagrangian gauge theory, we have constructed the first-order

parent BV formulation by explicitly specifying the field-antifield space, the antibracket,

and the BV master action. As a technical assumption, we restricted ourselves to the case

of theories with a closed gauge algebra. But the parent formulation can also be defined

in general. Indeed, SP can be defined in exactly the same way, and the only difference is

that in the general case, it satisfies the master equation only modulo the parent equations

of motion. These last are determined by the classical action SP
0 , which is also well defined

in general and can be obtained from SP by putting all the fields of nonzero ghost degrees

to zero. The complete master action can then be obtained via the usual BV procedure

starting from SP
0 and its gauge symmetries.

Although the construction of the parent formulation applies to an already specified

gauge theory, our hope is to use this formulation to construct new models in the parent

form (or related forms) from the very beginning. This strategy has proved fruitful [58–60]

in the context of higher-spin gauge theories, where a version of the parent formulation at

the level of the equations of motion [25, 27, 28] was successfully used.

Among possible applications of the present results, Vasiliev’s interacting higher-spin

theory [20–22], where the Lagrangian formulation is currently unknown, seems to be the
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most attracting. We hope that the present approach gives the correct framework for

addressing this issue. This is supported by a concise parent-like formulation of the nonlinear

higher-spin theory at the off-shell level [61] (see also [16]). As far as higher spin fields are

concerned let us note that the present approach should give a systematic way to derive

frame-like actions (such as those of [62–64]) starting from the metric-like ones or provide

a framework for addressing this problem for systems where Lagrangian formulation in

not available such as, e.g., mixed symmetry AdS fields where actions are known only for

particular cases [65–68]. Another interesting perspective is to relate the parent action to

that of the recently proposed double field theory [69, 70].
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