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1 Introduction

1.1 Dual conformal symmetry and Wilson loops

Among all quantum field theories in four spacetime dimensions, maximally supersymmet-
ric Yang-Mills (SYM) theory, in the ’t Hooft limit of a large number of colors, is a most
remarkable one. For one thing, it is the first and still only known example of an integrable
theory in four spacetime dimensions. This integrability has been exploited successfully, so
far, in the context of computing the spectrum of anomalous dimensions of the theory [1, 2].
This theory is also singled out as being the prototypical example of the AdS/CFT dual-
ity [3], which has produced many insights from strong coupling that have been instrumental
in these developments.

Integrability structures arise in the study of scattering amplitudes. By “integrability”
we mean an infinite dimensional symmetry algebra acts on amplitudes. Most of these sym-
metries are hidden, non-local, symmetries that are not obvious from the usual presentation
of the theory. The simplest example of such a symmetry can be seen from the expression
of the one-loop correction to the four-point 1-loop amplitude. Ignoring regularization for
a moment, this can be written, for a color-ordered partial amplitude, as [4]

A1-loop
4 = Atree

4 × ig2Nc

∫
d4q

(2π)4
(p1 + p2)2(p2 + p3)2

q2(q + p1)2(q + p1 + p2)2(q − p4)2
. (1.1)

Besides being very compact, this expression exhibits a very remarkable symmetry. This
becomes manifest when one introduces the so-called dual coordinates xi which are defined
implicitly through

pµi = xµi − x
µ
i−1, (1.2)

in terms of which the integral becomes simply∫
d4x

(2π)4
(x1 − x3)2(x2 − x4)2

(x− x1)2(x− x2)2(x− x3)2(x− x4)2
. (1.3)

The remarkable symmetry is the inversion xi → xi/x
2
i , which sends (xi − xj)2 → (xi −

xj)2/x2
ix

2
j : Equivalently, the integrand is conformally invariant. This “dual conformal sym-

metry” acts in momentum space and is therefore quite distinct from the familiar conformal
symmetry of N = 4, whose arena is the original spacetime.

Further evidence for this hidden symmetry accumulated in the course of higher-loop
computations, where it was repeatedly found that all integrals appearing in loop corrections
shared this property [5, 6]. Of course, scattering amplitudes are infrared divergent, and
regularization, for instance using dimensional regularization, will break the symmetry. So
in the end most of the symmetry is broken at loop level. Nevertheless, the breaking of
the (bosonic) symmetry occurs in a very restricted and controlled fashion which leads to
powerful constraints on the answer. Specifically, the breaking is entirely captured by the
so-called Bern-Dixon-Smirnov (BDS) Ansatz [7]. Upon dividing by this Ansatz, any (finite)
remainder is exactly conformal invariant [8]. In particular, the BDS Ansatz provides the
full all-loop answer for 4- and 5-points amplitudes, because nontrivial conformal invariants
do not exist in these cases.
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In parallel development Alday and Maldacena [9] studied scattering amplitudes at
strong coupling using AdS/CFT. They confirmed the BDS Ansatz at 4- and 5-points but
observed deviations for sufficiently large number of particles [10]; deviations at 6 points
were also deduced from investigation of Regge limits [11]. These violations are described
by conformal invariant remainders, consistent with the symmetry analysis just mentioned.

The strong coupling analysis led to a very geometrical understanding of the dual sym-
metry: a certain T-duality [12] takes planar N = 4 to itself, loosely speaking interchanging
the dual coordinates and space-time coordinates. It converts a scattering process to the
expectation value of a polygonal Wilson loop with vertices at the points xi,

Mn(p1, . . . , pn)⇔Wn(x1, . . . , xn). (1.4)

Successive segments of the polygonal contour have length pµi ; we refer the reader to [13]
for an excellent review. The “hidden” symmetries of the scattering amplitudes have now
become ordinary conformal transformations of this Wilson loop.

It makes sense to compute the same Wilson loop at weak coupling. The result was
found, by explicit computations, to agree with scattering amplitudes, but with a certain
very specific set of helicity configurations, the so-called MHV amplitudes [14, 15]. This
Wilson loop/MHV amplitude duality has been confirmed up to two loops for the six-point
function [16–18].

In parallel development, it was understood how dual (super)conformal generators act
on the polarization data that defines a scattering amplitude, allowing to define the sym-
metry away from the MHV limit. Tree amplitudes in that case have been shown to be
invariant under a full dual superconformal [19–23] (in fact Yangian [24]) while loops carry
only a (mildly broken) dual conformal invariance [19, 25] (see also [26]).

A certain small piece had thus been missing for some time in order to bring this story to
its full completion: a geometrical understanding of the symmetry for non-MHV amplitudes,
similar to that afforded by the Wilson loop in the MHV case. One of the aims of this paper
is to provide a super-Wilson loop that fulfills just that purpose.1

1.2 Loop integrands

A significant extension of the scope of the duality was proposed recently in [29]. There
it was proposed that the duality holds not only for final answers, but already for suitably
defined integrands. The relevant “integrands” have been defined in two recent papers, in
two very different contexts.

In the context of Wilson loop computations, Eden, Korchemsky and Sokatchev [30]
introduced a “loop integrand” by using the so-called method of Lagrangian insertion. In
this method, loops are computed by taking repeated derivatives with respect to the coupling
constant, which in SYM brings down powers of the Lagrangian density. At ` loops these
are to be integrated over ` copies of space-time, the integrand being given as a tree-
level correlation function of the Wilson loop with ` Lagrangian insertions. This way the

1While this manuscript was being prepared, another Wilson loop, very likely to be equivalent, has been

derived from a very different perspective by Mason and Skinner [27].

– 3 –



J
H
E
P
0
7
(
2
0
1
1
)
0
5
8

computation of a Wilson loop is turned into a set of d4x integrals. By adding suitable total
derivatives to the action density, a “chiral” Lagrangian insertion involving FαβFαβ instead
of FµνFµν can be used, which was found in [30] to be greatly convenient.

Independently, Arkani-Hamed and collaborators [31] including the present author in-
troduced a loop integrand in the context of scattering amplitude computations. At the
simplest level, this “integrand” is just the familiar momentum-space one, obtained af-
ter summing over all Feynman graphs and doing numerator algebra. Normally, such an
integrand is not quite well-defined, because loop momenta are only dummy integration
variables: it is unclear how to add different Feynman graphs under the same integration
sign. One could always shift one diagram relative to the others. This ambiguity turns out
to be absent in the planar limit, where region momenta xi can be used to canonically add
diagrams. This way a gauge-invariant integrand is obtained. The work [31] gave an efficient
recursive procedure for computing it, starting from manifestly on-shell and physical tree
amplitudes.

The two integrands are known empirically to produce the same integrals, and it is
therefore very natural to ask whether they are actually the same. Both integrals are
chiral (non parity-invariant): in the first case due to a technical choice, in the second case
due to one considering MHV amplitudes as opposed to its parity conjugate MHV. Thus
they do not obviously disagree. Remarkably, explicit comparison in [29] has revealed that
they precisely agree! In this paper we aim to provide an explanation for this fact. The
explanation will, in fact, lead directly to a Wilson loop with polarizations, and to a general
proof of the duality.

1.3 Super-Wilson loop and recursion relations

Our starting point is the singularities of the integrand defined by Lagrangian insertions
in [30]. This is a rational function of the insertion point y, with simple poles of the
form 1/(y−xi)2 where y becomes null-separated from a corner of the Wilson loop. These
singularities can be understood at the operator level: a singular propagator knocks out one
factor of Fαβ from a Lagrangian insertion,

F 2 ∼ 1
(y − xi)2

λαλβF
αβ(y) + non-singular. (1.5)

Here λ is some spinor associated with the separation (y − xi) that is becoming null. The
resulting correlation function can be made gauge-invariant in a natural way, by adding two
segments to the Wilson loop joining xi to y and back. Thus the residue at the pole is a
Wilson loop with two more edges and Fαβ inserted at a corner:

F2
→

F
.
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In the scattering amplitude context, exactly the same residue is interpreted as the forward
limit of a NMHV tree amplitude with two particles added [31, 32]. Thus Wilson loops,
with suitable insertions, know about the forward limit of NMHV tree amplitudes!

As we will see, the duality is not limited to forward limits: with suitable insertions
along the contour, general NMHV tree amplitudes are also reproduced. Furthermore, there
is no reason to stop at NMHV level. We will define a super-Wilson loop that knows about
all NkMHV amplitudes, and agrees with all MHV-stripped super-amplitude Mn where

An ≡
gn−2(2π)4δ4(

∑
p)δ8(

∑
q)

〈12〉〈23〉 · · · 〈n1〉
×Mn. (1.6)

This new sweep of super-Wilson loops depends on the same momentum and polariza-
tion data as scattering amplitudes do. Importantly, within this enlarged sweep of objects,
recursion relations become possible that relate objects with ` Larangian insertions to other
objects with fewer Lagrangian insertions but more edges. These recursion relations will be
seen to be identical to those found in [31], establishing that the two sweeps of objects are
the same, to all loops, for arbitrary polarizations, at the integrand level.

This paper is organized as follows. In section 2 we introduce the coordinates that prove
to be particularly well-suited for our description of scattering amplitudes, the so-called
momentum twistor variables. In section 3 we begin the construction of the super-Wilson
loop through a process of “reverse-engineering the answer.” We complete the construction
in section 4 by requiring that the object be supersymmetric, in a certain specific sense.
Then in 5 we give a simple example confirming that the super-Wilson loop is indeed able to
reproduce 1-loop NMHV amplitudes. The remainder of the paper is devoted to establishing
the recursion relations, at tree-level 6 and for loop integrands 7. The paper ends with some
conclusions, together with appendices that give more details about the Wilson loop operator
and various computations. In a final appendix we outline, based on physical arguments,
how divergences are expected to factorize within the Lagrangian insertion procedure.

2 Lightning introduction to momentum twistors

There are many useful ways to describe tree amplitudes in N = 4 SYM. Since we are
interested in the dual Wilson loop picture, we should employ those variables that make
the symmetries of the Wilson loop most manifest. Incidentally, these variables are also
the ones which produce the most compact analytic expressions: These are the momentum
(super-)twistor variables introduced by Hodges [21].

Momentum twistors can be used in any planar theory with massless particles. Their
main achievement is to explicitly solve both the momentum conservation and mass-shell
condition constraints, allowing for a constrain-free description of the external data. The
constrains can be solved in two successive steps. The first step was already implicit in the
introduction: one can trivialize momentum conservation in a planar theory by introducing
variables xi such that

pµi = xµi − x
µ
i−1. (2.1)
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Planarity provides the required ordering of the particle labels. In the scattering amplitude
picture the xi are called region momenta, while in the dual theory they are the positions
of the corners of the Wilson polygon.

To solve the mass-shell constraints (xi−xi−1)2 = 0 we proceed to assign a “momentum
twistor” to each particle. This is a four-component object

Zαi ≡

(
λαi
µα̇i

)
=

(
λαi

xiα
α̇λαi

)
, (2.2)

where the spinor λαi is the one entering the standard decomposition pαα̇i = λαi λ̃
α̇
i , for

p2
i = 0. λαi is defined only projectively and so is Zαi : Zαi and tiZ

α
i are to be identified, for

any nonzero complex number ti.
The fact that this does solve the on-shell conditions will be explained shortly. As a first

check one can count the degrees of freedom. We have 4n momentum twistor components,
subject to n projective invariances and 4 translation invariances for the xi, leaving (3n−4)
degrees of freedom. The original scattering data, on the other hand, has 4n variables
subject to n+ 4 constraints, giving also (3n− 4) degrees of freedom. Thus all constraints
have become symmetries.

The inverse change of variable can be constructed explicitly [21]:

xαα̇i =
λαi µ

α̇
i+1 − λαi+1µ

α̇
i

〈i i+1〉
. (2.3)

The symbol 〈ab〉 is the standard antisymmetric 2-bracket, defined using the upper two
components λαa,b of Za and Zb (and more precisely defined in appendix). Another useful
equation is

λ̃α̇i =
〈i−1 i〉µα̇i+1 + 〈i i+1〉µα̇i−1 + 〈i+1 i−1〉µα̇i

〈i−1 i〉〈i i+1〉
, (2.4)

while the Lorentz-invariant distance is simply

(xi − xk)2 = 〈i i+1〉〈k k+1〉 × 〈i i+1 k k+1〉 (2.5)

where 〈abcd〉 is the totally antisymmetric contraction εi1i2i3i4Z
i1
a Z

i2
b Z

i3
c Z

i4
d .

Geometrically, the point xi in Minkowski space is identified with the line (i i+1) in
momentum twistor space, that passes through the points Zi and Zi+1. The condition that
xi and xj be null separated is that 〈i i+1 j j+1〉 = 0. Geometrically, this happens if and
only if the lines (i i+1) and (j j+1) intersect.

We can now see why the mass-shell conditions are solved: the lines (i i−1) and (i i+1)
automatically intersect, the intersection being just the point Zi. Thus p2

i ≡ (xi−xi−1)2 = 0
for any value of the momentum twistors.

Momentum twistors make conformal properties manifest, even though conformal in-
variance is not a prerequisite for their use. The conformal group in four dimensions is
SO(4,2) which is realized linearly on the momentum twistors. More precisely, momentum
twistors transform in the spinor representation of (the double-cover) of SO(4,2). Recall
that we are describing the dual conformal transformations, which are those acting simply
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in the xi coordinates of the Wilson loop and not to be confused with the ordinary conformal
transformations (acting on the original spacetime where the scattering process occurs).

Because the antisymmetric tensor εABCD is invariant, any expression made out of
4-brackets is conformally invariant, while any 2-bracket breaks conformal invariance.

To describe N = 4 polarization states one introduces the expansion for the on-shell
states [33]

|i〉 = |g+
i 〉+ η̃Ai |ψiA〉+

1
2
η̃Ai η̃

B
i |φiAB〉+

1
3!
εABCDη̃

A
i η̃

B
i η̃

C
i |ψ̃Di 〉+

1
4!
η̃4
i |g−i 〉. (2.6)

(Notice our nonstandard use of tildes in this expansion. Untilded η-variables will be defined
shortly.) Capitalized indices range from 1 to 4 and carry the SU(4)R R-symmetry charge,
yielding two gluon helicities, four chiral fermions, four antichiral fermions and 6 scalars.

Similarly to the xi coordinates, one can introduce Grassman anticommuting coordi-
nates θi such that λαi η̃

A
i = θαAi − θAi−1. Momentum super-twistors are then defined as

Zα =

 λαi
µα̇i
ηAi

 =

 λαi
xiα

α̇λαi
θAiαλ

α
i

 . (2.7)

The inverse map is

η̃Ai =
〈i−1 i〉ηAi+1 + 〈i i+1〉ηAi−1 + 〈i+1 i−1〉ηAi

〈i−1 i〉〈i i+1〉
. (2.8)

Similar to the xi, the θi trivialize super-momentum conservation
∑

i λiη̃i, which is
part of the supersymmetry algebra. A consequence is that θ and η only make sense on the
support of suitable super-momentum conserving delta functions. That is why, whenever
one works with super-momentum twistors, one has to work with the MHV-stripped stripped
amplitudes Mn introduced above. Dual conformal invariance of the tree-level scattering
amplitudes in N = 4 amounts to Mn being expressible, using Zi and ηi variables, using
only four-brackets.

3 NMHV tree amplitudes from Wilson loops

The (super) momentum twistors make tree amplitudes extremely well localized in the
coordinates xi; this is the coordinate space of Wilson loop and so this is particularly
relevant for us. For instance, consider the NMHV super-amplitude. It admits the very
compact form [19, 21].

MNMHV
n =

∑
1<i<j<n−1

[1 i i+1 j j+1] (3.1)

where the square bracket is the ubiquitous supersymmetry invariant (Yangian invariant)

[a b c d e] =
δ0|4(ηa〈b c d e〉+ cyclic)

〈a b c d〉〈b c d e〉〈c d e a〉〈d e a b〉〈e a b c〉
. (3.2)

With simple choices of η̃i the same expression gives NMHV tree amplitudes in pure
Yang-Mills theory. The amplitudes with such values of η̃ are nontrivial linear combinations

– 7 –
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of those with prescribed η values, and the conversion between η- and η̃-amplitudes requires
full N = 4 amplitudes. In that sense the duality under consideration requires the full
N = 4 supersymmetry: it is those amplitudes with prescribed η that will appear on the
Wilson loop side.

To see how η-components localize along the Wilson loop consider for instance the
component proportional to η1η2ηkηk+1 in the scattering amplitude. It comes from only
one term,2

[1 2 3 k k+1] ' η1η2ηkηk+1 ×
1

〈1 2 k k+1〉
. (3.3)

Manifestly, this is completely localized to the corners x1 and xk of the Wilson loop: by
inserting scalar field operators at corners of the Wilson loop

φAB(xi)
〈i i+1〉

ηAi η
B
i+1 (3.4)

and connecting two corners with a scalar propagator this will be reproduced

η1η2ηkηk+1

〈12〉〈k k+1〉(x1 − xk)2
= η1η2ηkηk+1 ×

1
〈1 2 k k+1〉

. (3.5)

1 2

kk+1

.

This completely fixes the dependence of a putative super-Wilson loop on the product
ηiηi+1, if the tree NMHV amplitude is to be reproduced. Any other dependence on ηiηi+1

could not reproduce this simple result.
Other simple lessons gathered from the NMHV formula are that no dependence can

occur on products such as ηiηi+2 (because this would generate terms not in (3.1)), and that
any operator inserted on the edge pi can depend only on the single momentum twistor ηi.

To find out what these edge insertions are for scalar field components, consider the
component η2

2ηkηk+1 of the super-amplitude

[1 2 3 k k+1] ∼ η2
2ηkηk+1 ×

〈1 3 k k+1〉
〈1 2 k k+1〉〈2 3 k k+1〉

. (3.6)

According to the above analysis we must reproduce this using a propagator linking the
corner (k k+1) to the edge p2, or its endpoints. A natural Ansatz for the edge operator on
segment 2, which will be motivated shortly, is

1
4

∫ 1

0
dt
λ̃2vDφAB(x1 + tp2)

〈2v〉
ηA2 η

B
2 . (3.7)

2To avoid cluttering the notation, here we omit the SU(4)R indices on the variables ηAi . Whenever we

write a product of four η’s, it is understood that all η’s have different R-charge. Here, for instance, we

could be extracting the component η1
1η

2
2η

3
kη

4
k+1.

– 8 –



J
H
E
P
0
7
(
2
0
1
1
)
0
5
8

The derivative is required to match with the dimensionality of the corner term and its form
will be explained in a moment. For the moment this Ansatz contains an undetermined
spinor vα. To determine it we compute the partial amplitude η2

2ηkηk+1 it produces:

1
2

∫ 1

0
dt

λ̃2v∂

〈2v〉〈k k+1〉
1

(x1 + tp2 − xk)2
=

λ̃2v(xk − x1)
〈v2〉〈k k+1〉(x1 − xk)2(x2 − xk)2

. (3.8)

This conformal properties of this expression are not obvious. To make such properties
manifest we rewrite the right-hand side using momentum twistor variables:

〈v k k+1 [1〉〈2 3]〉
〈1 2 k k+1〉〈2 3 k k+1〉〈v2〉

(3.9)

where the square bracket means cyclic sum. It now becomes apparent that the choice
vα = λα1 produces almost the right answer:

〈1 k k+1 [1〉〈2 3]〉
〈1 2 k k+1〉〈2 3 k k+1〉〈12〉

=
〈1 3 k k+1〉

〈1 2 k k+1〉〈2 3 k k+1〉
+

〈31〉
〈2 3 k k+1〉〈12〉

, (3.10)

where we have used the Schouten identity. The remainder is localized on the corner (23),
and can be dealt with by a suitable corner term.

Some comments are in order. First, the integral has produced a rational function of
the external data (e.g., there is no logarithm). This is surprising because integration often
produces logarithms. Here this can be traced to the chiral derivative acting on φ. In fact,
a rational answer will only be obtained for derivatives of the form λ̃2α̇D

αα̇ or λ2αD
αα̇.

Investigation of the latter case reveals that it is incapable of producing the correct NMHV
answer, leaving the above Ansatz as the only possibility.

Therefore what we have found so far is that the coupling of the Wilson loop to scalar
fields can be uniquely determined by “reverse-engineering” the NMHV formula:

∑
i

1
4

∫ 1

0
dt
λ̃iλi−1DφAB(xi−1 + tpi)

〈i i−1〉
ηAi η

B
i + φAB(xi)

ηAi
〈i i+1〉

(
ηBi+1 −

1
2
〈i−1i+1〉ηi
〈i−1 i〉

)
.

(3.11)
It is clear that by considering more and more polarizations we could continue with this

“reverse-engineering” process and determine couplings to fermions and gauge boson. The
tree-level NMHV analysis, however, will always be determined by free-theory two-point
functions and is incapable of constraining non-linear couplings. To fully determine the
super Wison-loop this way, we would have to consider N2MHV tree amplitudes, or NMHV
loop amplitudes, and so on. Fortunately there is a better way to proceed.

4 The full Wilson loop from supersymmetry constraints

Tree-level scattering amplitudes are known to be invariant under dual super-conformal
transformations. They are in fact invariant under a whole Yangian algebra, but here we
should focus only on those symmetries which the Wilson loop formulation is expected
to make manifest. These contain the Poincaré supersymmetries q, q̃ of the Wilson loop

– 9 –
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which are expected to match certain elements of the SU(4|4) supersymmetries acting on
momentum twistors. Specifically, the expected correspondence is obtained by matching
the quantum numbers:

qαA ⇔
∑
i

λαi
∂

∂ηAi
=
∑
i

∂

θAαi
, (4.1)

q̃Aα̇ ⇔
∑
i

ηAi
∂

∂µα̇i
=
∑
i

θAαi
∂

∂xαα̇i
. (4.2)

(Notice that the R-charges carried by elementary fields are opposite in the T-dual theory.)
The theory is also invariant under super-conformal generators sAα and s̃α̇A, which will be
discussed below.

It is useful to note that qA does not actually act on the original space-time scattering
data: from that viewpoint qA is simply a redundancy in the θ variables, much like transla-
tion invariance of the xi. Thus the super-Wilson loop has better be invariant under these
transformations. However, contrary to translation symmetry, the bosonic part

∮
dxµAµ is

not trivially invariant under qA: this invariance is a very nontrivial constraint.
To proceed we write the general couplings in the form

Wn ≡
1
Nc

Tr
[
Pe

R 1
0 dtE1(t) V12 Pe

R 1
0 dtE2(t) V23 · · · Pe

R 1
0 dtEn(t)Vn1

]
(4.3)

where the Ei(t) ≡ Ei(xi−1 + tpi) are edge operators and the Vi i+1 are vertex operators. In
line with the above analysis, we will impose that Ei depends only on ηi, and that Vi i+1

depend only on ηi and ηi+1. Ultimately this is justified by the fact that a solution will be
found with these constraints.

The edge operator begins with the gauge connection Ei = −pi·A. The variation of this
term is nonzero, as said above, qαApi·A = 1

2λ
α
i λ̃iβ̇ψ̃

β̇
A. This forces us to add a fermion term

such that (qαA + c0
∑
λα ∂

∂ηA
)W = 0:

Ei = −pi·A+
1

2c0
λ̃iβ̇ψ̃

β̇
Aη

A
i + . . . (4.4)

This is unique if we assume that Ei depends only on ηi.

4.1 The Wilson loop in component form

The procedure is systematic and by repeating it one obtains terms of higher and higher
order in η. With some algebra we find

2Ei = −λ̃iλiA+
1
c0
λ̃iψ̃Aη

A
i +

1
2c20

λ̃iλi−1DφAB
〈i i−1〉

ηAi η
B
i

− 1
3!c30

εABCD
λ̃iλi−1λi−1Dψ

A

〈i i−1〉2
ηBi η

C
i η

D
i −

1
4!c40

εABCD
λ̃iλi−1λi−1λi−1DF

〈i i−1〉3
ηAi η

B
i η

C
i η

D
i ,

(4.5)

together with the vertex terms

Vi i+1 = 1 +
φAB

c20〈i+1 i〉

(
ηAi+1η

B
i −

1
2
〈i−1 i+1〉
〈i−1 i〉

ηAi η
B
i

)
+ . . . (4.6)
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The somewhat lengthy expression for the vertex term is reported in appendix.
The overall factor of 2 in the edge term is just from dxµAµ → dxαα̇

2 Aαα̇: for simplicity
all terms are written as spinor products. In each term there is a unique way to contract the
indices, taken conventionally to be with a lower spinor index on the left and upper index
on the right.

The constant c0 has appeared because the two supersymmetries act on different su-
perspaces: it is not a-priori obvious how to normalize one compared to the other. The
correct value can be obtained by matching with the NMHV tree amplitude. With careful
normalization (which was omitted in the previous section) we find

c0 =
(
g2Nc

4π2

)1/4

. (4.7)

Our construction and verification that the Wilson loop is invariant under the claimed qαA
supersymmetry has proceeded by brute force application of the supersymmetry generators
given in appendix. More precisely, the edges transform by total derivatives, which are
cancelled by vertex variations. The precise form of the total derivative is given in appendix.
It is also important to use the equations of motion.

4.2 Symmetries

What about other symmetries? Consider the generator s̃A. It is easy to compute the lowest
term in the edge variation:(̃
sα̇A+c0µα̇i

∂

∂ηAi

)(
−λ̃iλiA+

1
c0
λ̃iψ̃Aη

A
i +. . .

)
= −(λiβxα̇β)λ̃iψ̃A−µα̇λ̃iψ̃A+. . . = 0 +O(η).

(4.8)
Thus the lowest term of the variation vanishes; here we have used the definition of µα̇.
Since the higher-order terms in η are obtained by repeated action of qA, and since qA and
s̃A commute, this can be used to show that the full operator is invariant. More precisely,
s̃AW is annihilated by qA, vanishes in lowest degree, and depends on edge i only through
ηi. But there is no such thing, so s̃AW = 0 to all orders in η.

The same argument shows that the operator is (formally) conformal invariant. In fact
there is nothing to compute, since we already know that the Wilson loop is conformal
invariant to order η0. So Kαα̇W vanishes in lowest component, is annihilated by q (using
that [qA,K] ∝ s̃A and that s̃A is already known to be a symmetry), and depends on edge i
only through ηi: this implies KW = 0. We say “formally” because, contrary to qA and s̃A,
Kαα̇ contains bosonic derivative which make it more singular at short distances. Indeed
it is well-known that Kαα̇ becomes anomalous at loop level [8]; qA and s̃A do not become
anomalous, however.

Finally, one might ask whether the operator is well defined, given that it contains
null-separated fields. It appears that built-in cancellation mechanisms prevent ill-defined
contractions of null-separated fields from occurring in it. For instance, the scalar field
component φ(y) proportional to η2η2 that is induced from edge 2 and vertex 2, as seen
from (3.6), vanishes when φ becomes null-separated from the endpoints of edge 2. Thus no
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singular contraction involving this component of the is possible. In other cases supersym-
metric cancellations can be seen. Indeed a formal argument based on supersymmetry can
be given to argue the absence of problematic contractions: by using 12 of the supercharges
Zα ∂

∂ηA
to set three adjacent ηA to zero, any potential power-divergent contraction between

the two vertices will be prevented. Now of course one could do this anywhere around the
loop, suggesting no such contraction occurs anywhere. Another line of argument is that
the operator is essentially generated by repeated action of qA on the bosonic Wilson loop:
since one never worries about the power-divergent contractions of Aµ (only about loga-
rithimc divergent contributions at loop level), this leaves little reason to worry about such
contractions for the super-extension of the operator. For these reasons we will discuss such
issues any longer.

In summary, we have defined a super-Wilson loop operator that is manifestly invariant
under qαA and s̃α̇A and is also formally conformal invariant. Its scalar component agrees
with that obtained in the preceding subsection. It is not invariant under the remaining
supersymmetries, as will be discussed below.

4.3 Connection with the work by Mason and Skinner: superconnection

In a remarkable recent paper, which appeared while this manuscript was being prepared,
Mason and Skinner [27] introduced a Wilson loop in momentum twistor space, whose ex-
pectation value they argued (using MHV rules in momentum twistor space [34]) reproduces
all-loop scattering amplitudes inN = 4 SYM. The twistor transform of this operator, which
they also discussed, gives a Wilson loop in the same four-dimensional space-time as the
Wilson loop we are considering. This space-time Wilson loop they expressed as the integral
over a super-connection,

W =
1
Nc

Tr
[
Pe−

R
A
]

(4.9)

where

A ≡ dx

2

(
A+ψ̃AθA+

1
2
DφABθ

AθB− 1
6
εABCDDψ

AθBθCθD+
1
24
εABCDDFθ

AθBθCθD+. . .
)

+dθA
(
−1

2
φABθ

B+
1
3
εABCDψ

BθCθD+
1
6
εABCDFθ

BθCθD+. . .
)
. (4.10)

Reference [27] explained the general method for constructing this operator and gave also
explicit expressions up to scalar components. Here we wrote down a few extra higher-order
terms by “guessing”. (In each term shown there is a unique way to contract the indices.
The notation is the same as above.)

We believe that the shown terms are still not complete, though, since we also find
that, if the object is to transform by super-gauge transformations under supersymmetry, it
should contain other non-linear terms such as {φAC , φBD}(θ2)AB(θ2)CD. The full operator
thus presumably contains term going all the way up to order θ8. It would be useful in the
future to understand how the twistor transform generates such terms.

The two super-Wilson loops look at first sight very different. One contains corner
terms, the other does not. But this is not an invariant statement: one can always re-
write corner terms as suitable total derivates integrated along edges. It appears that the
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superconnection in [27] achieves this in a particularly clever way: for instance its ηiηi
component gives

ηiηi
2

∫ 1

0
dt

(
(1− t) λ̃iλi−1Dφ

2〈i i−1〉
+ t

λ̃iλi+1Dφ

2〈i i+1〉
+
〈i−1 i+1〉φ
〈i−1 i〉〈i i+1〉

)

=
ηiηi

2

∫ 1

0
dt

(
λ̃iλi−1Dφ

2〈i i−1〉
+
〈i−1 i+1〉φ
〈i−1 i〉〈i i+1〉

d

dt
(tφ)

)
(4.11)

where we have used the Schouten identity. The first term is precisely our edge term while
and the total derivative gives exactly our vertex term! We have also checked other scalar
components. The agreement is even more striking for products like ηiηi+1, which are
pure vertex terms for us but which appear in Mason and Skinner’s edges as pure total
derivatives. Given the role played by supersymmetry in both constructions, we expect
complete agreement for the other terms as well.

A second minor difference is that the connection in [27] contains no factors of the
coupling. Getting rid of factors of the coupling in (4.3) is actually easy, if one rescales
ψ̃ → c0ψ̃, φ→ c20φ and ψ → c30ψ. (This alters the reality condition (ψ̃α)∗ = ψα, but within
a Grassman path integral it is not clear whether this has any significance.) To get rid of
the coupling that multiplies the field strength operator one can introduce an auxiliary field
Gαβ, à la Chalmers-Siegel [35] and replace F/c40 → G inside the Wilson loop. After all this
the Lagrangian density (A.1) becomes

1
g2
L→ Nc

4π2

(
1
2
FαβG

αβ+
3
8

(Dαα̇ψ̃
α̇
A)ψαA− 1

8
ψ̃α̇ADαα̇ψ

αA+
1
8
φABD

2φAB+
1
4
φAB[ψ̃α̇A, ψ̃α̇B]

)
−g

2N2
c

(2π)4

(
1
4
GαβG

αβ − 1
4
φAB[ψAα , ψ

αB]− 1
64

[φAB, φCD][φAB, φCD]
)
. (4.12)

An important observation is that the first line is an action for self-dual N = 4 [35]. In
particular, at order g0 (tree-level), the super-Wilson loop depends only on the self-dual
sector. This is quite a surprise, and was also noted in [27].

4.4 The chiral better-half

Tree amplitudes are invariant under both chiral and antichiral supersymmetries. The above
makes manifest the qαA and s̃α̇A supersymmetries, but what about the other chiral half?3

If one acts with the other half one finds for instance(
−
∑
i

θAαi
∂

∂xαα̇i
+ c0q̃

A
α̇

)
2Ei(t) = λ̃iα̇(λiFθA(t) +

1
2

[φBC , φAC ]ηBi + c0λiψ
A) + . . . (4.13)

In particular, this is nonzero. However, how big is this?
If one uses the field rescaling just described, one trivially finds that this operator is

explicitly of order λ. That is, it contributes to O(λ) to any expectation value. This way the
super-Wilson loop makes completely manifest the fact that tree amplitudes are invariant

3The author is indebted to E. Sokatchev for emphasizing this question.
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under a larger set of symmetries than loop amplitudes. Physically, this enhancement must
clearly be related to the self-duality property which holds at zeroth order, although it is
not yet completely clear how.

The breaking of dual superconformal invariance in this formulation is thus explicit and
unrelated to regularization. This exactly parallels what was observed at the level of the
answer, in the original paper on dual superconformal invariance [19]. As an operator, the
chiral super-Wilson loop is invariant under only a chiral half of the supersymmetries.

5 A simple 1-loop NMHV example

To illustrate the formalism, let us describe a particularly simple helicity component of the
1-loop NMHV amplitude proportional to η1η2η3η5. It is easy to very from the NMHV
tree formula that this component vanishes at tree-level. This ensures that the one-loop
correction is finite. In fact its value can be extracted from the general results for the NMHV
ratio function that have been obtained in [19, 36], in the scattering amplitude context,

1
〈1235〉

log u2 log
u3

u1
(5.1)

where

u1 =
〈1234〉〈4561〉
〈1245〉〈3461〉

, u2 =
〈2345〉〈5612〉
〈2356〉〈4512〉

, u3 =
〈3456〉〈6123〉
〈3461〉〈5623〉

. (5.2)

In the super Wilson loop, two diagrams contribute to this helicity configuration:

1

2

3

4

5

6

+

1

2

3

4

5

6

Notice that the same topology contributes to amplitudes at various loop orders depending
on which fields enter it: the shown diagrams contribute to 2-loop MHV amplitudes, 1-
loop NMHV amplitudes, and tree N2MHV amplitudes, depending on how many powers
of η are extracted.

We would like to check that these diagrams indeed reproduce the answer known from
the scattering amplitude side. Notice we have a six-dimensional integral: 2 over the edge
insertions and 4 over the position of the vertex. We can perform these integrations in
various orders.

For instance we can do the edge integrations first. The fermion field sourced by
edge 5 is

ψ(y) =
∫ 1

0
dt

λ̃5(x5 − y)
(x4 + tp5 − y)4

∝ λ̃5(x5 − y)
(y − x4)2(y − x5)2

(5.3)
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and a similar formula gives the fermion fields sourced by edge 1. Inserting these result into
the Yukawa vertex the first diagram gives for instance∫

d4y
[1(y − x1)(y − x5)5]

(y − x6)2(y − x2
1)(y − x2)2(y − x4)2(y − x5)2〈23〉

. (5.4)

This has the form of a d4x loop integral as typically found in the scattering amplitude
context. With the aim of making conformal invariance manifest we rewrite this as a
momentum twistor integral. Using the notation of [31] the two diagrams just become4∫

AB

〈AB 456 ∩ 612〉〈AB34〉 − 〈AB (456) ∩ 234〉〈AB61〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB56〉〈AB61〉

(5.5)

Notice that the sum of the two diagrams is manifestly finite (all soft and hard collinear
regions are killed by the numerator factor) and can be thus done directly in four dimensions.
The integral can be done relatively easily using Feynman parameterization, but this will
not discuss it further here, as we will now turn our focus to the more “Wilson-loop” form.
Finite integrals of this type will be discussed at length in a coming publication [37] (see
also [38–41]).

In the Wilson loop formulation it is possible to integrate over the vertex first. Using
the three-point function

〈ψ̃α̇(x)ψ̃β̇(y)φ(z)〉 ∝ (x− z)α̇α(y − z)β̇α

(x− z)2(y − z)2(x− y)2
. (5.6)

the first diagram is thus written as∫ 1

0
dadb

[1(x2 − x1)(x2 − x5)5]
(x4 + ap5 − x2)2((1− b)p1 + p2)2(x4 + ap5 − x6 − bp1)2〈23〉

(5.7)

Converted to momentum twistor variables the sum of the two diagrams becomes

〈2456〉
∫ ∞

0

dτAdτB〈1235〉
〈5A1B〉〈5A23〉〈1B23〉reg

+ 〈2456〉
∫ ∞

0

dτAdτC〈1234〉
〈5A12〉〈5A3C〉〈123C〉reg

(5.8)

where ZB ≡ Z3 + τBZ5 and ZC ≡ Z1 + τCZ5. The τ variables are related to the a, b

variables through a = 〈56〉τA
(〈54〉+〈56〉τA) . The advantage of the τ parametrization is that it

removes all 2-brackets, thereby making conformal invariance manifest; the τ -contours go
from 0 to infinity with constant argument such that e.g. τA

〈56〉
〈54〉 is real and positive.

Notice that divergence cancels between the two terms, but the individual (single-
logarithmic) divergences as τB → 0 and τC → 0 have to be regulated using dimensional
regularization. This amounts to 〈1B23〉 → 〈1B23〉( 〈1B23〉

〈1B〉〈23〉)
−ε. The integrals are not very

difficult and are carried out in appendix; the result

1
〈1235〉

log u2 log
u3

u1
(5.9)

agrees precisely with the one from the scattering amplitude side, confirming the duality at
NMHV 1-loop.

This confirms the duality, but also gives a way to generate many very interesting
relations between integrals of very different type.

4The symbol 〈AB i j k ∩ l mn〉 ≡ 〈A i j k〉〈B lmn〉 − (A↔ B).
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6 BCFW recursion relations: tree-level

A powerful tool in the computation of scattering amplitudes is the so-called BCFW on-shell
recursion relation. Similar recursion relations should thus apply on the Wilson loop side.
We will now see that this is the case. In fact, the recursion relations are so powerful that
this can be viewed as a proof of the duality.

Actually, the first thing to check is that the Wilson loop at tree-level is a rational
function. We have seen in our tree NMHV example above how the specific, chiral, form of
derivatives on the operators ensures this.

One general argument for rationality at order λ0 goes as follows. The argument uses
the antichiral supersymmetries q̃A and sA, which are valid at this order. They imply
that the Wilson loop at this order is invariant under the full superconformal algebra (32
real supercharges); however “there is no way to supersymmetrize a logarithm”: all such
invariants are rational functions [42, 43]. As will be noted below, it seems conceivable that
a much weaker argument based on the fact that we are computing a tree-level correlation
function in a conformal field theory would suffice, but this will not be pursued here.

6.1 Factorization limits

Let us thus consider the singularities which arise when two corners of the Wilson loop,
say xn and xi, become null-separated from each other. Any singularity in this limit will
be due to fields sourced at these corners, or on the edges very close to these corners. We
can use supersymmetry to vastly reduce the number of fields which are sourced. Indeed,
by using twelve of the Zα ∂

∂ηA (which are true symmetries of the Wilson loop) we can put
ηn = η1 = ηi = 0. We do not want to try to put ηi+1 = 0 as well, because the transformation
which would achieve this becomes singular when 〈n 1 i i+1〉 → 0, which is the limit we are
interested in. However, there is no problem in putting three of the η’s to zero.

Let us be more explicit. Imagine we want to use supersymmetry to set ηn,η1, ηi and
ηk to zero, where k is some other particle’s label. Then we can solve explicitly for the
shifted η

η′i =
〈n 1 i k〉ηi + cyclic

〈n 1 i k〉
. (6.1)

These obey η′n = η′1 = η′i = η′k = 0, yet the Wilson loop is unchanged W (η′) = W (η). The
choice k = i + 1 would clearly be singular in the limit considered, but any other choice is
perfectly fine.

With the η′ variables the computation simplifies dramatically. Only Aµ is sourced near
the corner xn of the Wilson loop, in Feynman gauge,

Aµ(x) ∼ g2

8π2
log(x− xn)2 ×

(
pµn

pn·(x− xn)
− pµ1
p1·(x− xn)

)
. (6.2)

We are ignoring terms that are nonsingular as (x − xn)2 → 0. Unless this hits some
derivative there will be no pole in 1/(xi − xn)2. We need either a field strength operator
inserted at the corner xi, or a derivative of the field strength integrated over edges close to
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xi. Since η′i = 0, using the form (4.3), the only term is from η′i+1
4 terms integrated along

segment i+1:

η′i+1
4

∫
0

dtλ̃i+1λiλiλi

2〈i i+1〉3
DF (xi + tpi+1)∼ g2

4π2c40

〈n1〉〈i i+1〉
〈nJ〉〈J 1〉〈i J〉〈J i+1〉

1
(xn−xi)2

〈i J〉4η′i+1
4

〈i i+1〉4
(6.3)

up to non-singular terms. The spinor λJ is the one associated with the null vector (xi−xn).
We’ll simplify this expression in a second.

In general there are interaction vertices in the bulk. We have to describe how they
affect the single propagator contribution we have just computed. Scalar propagators near
the light cone were analyzed in [44], where it was shown that the singular behavior simply
gets dressed by a Wilson line. The same will be true here. We cannot directly use their
result because we are considering a gauge field instead of a scalar field, however a simple
extension will suffice. Actually we will not need to work very hard because at this stage
we only need a tree-level result (in [44] the all-loop story was worked out). (Loops will be
discussed below.)

The argument goes as follows. First one notes that any interaction vertex with no
derivative, inserted along the propagator joining xn to xi, will remove the singularity.
Thus one needs only consider vertices with a derivative acting on the singular propagators.
These derivatives are essentially proportional to the (nearly) null vector (xi−xn). All this
is as in [44], here we only have to make sure that the index structure of the gauge three-
point vertex works out properly. Actually this is trivial, because (xi−xn) vanishes when
dotted into the induced field (6.2), or into the field strength operator at the other end of
the propagator. Thus (xi−xn) must be dotted into the external gauge field, which reduces
the vertex to a simple eikonal one. (The same argument rules out the gauge-scalar-scalar
vertex.) We refer to [44] for more details about the computation starting from this point.

Thus the singular propagator (6.3) just gets dressed by an adjoint Wilson line. This
means that the tree-level correlation function becomes the product of two Wilson loops, in
the planar limit, since there are no interactions between the two sides.

Tree

n 1

ii+1

→ [n 1 i i+1]× Tree Tree

n 1

ii+1

J

Taking residue 1/(xn − xi)2 → δ((xn − xi)2) for prettier notation and expressing
the prefactor (6.3) in terms of momentum twistors, which is done by simple algebraic
manipulations, we thus obtain the singular behavior:

Wn(1, . . . , n)→ [n 1 i i+1]×Wi+1(1, . . . , i, J)Wn−i+1(J, i+1, . . . , n) (6.4)
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where ZJ is the momentum super-twistor

ZJ = 〈k i i+1 [n〉Z1]. (6.5)

(On the pole this is independent of Zk.) This is exactly how the tree amplitudes Mn

factorize! This has been derived when η′n = η′1 = η′i = η′k = 0. However, being an equality
between manifestly supersymmetric objects, it holds for arbitrary values of the ηi.

In this expression

[n 1 i i+1] = δ(〈n 1 i i+1〉)δ
0|4(〈k n 1 i〉ηi+1 + 〈k 1 i i+1〉ηn + 〈k i i+1n〉η1 + 〈k i+1n 1〉ηi)

〈k n 1 i〉〈k 1 i i+1〉〈k i i+1n〉〈k i+1n 1〉
.

(6.6)
is a supersymmetric version of a cut propagator. (This is also independent of Zk, as follows
from the fact that, on the support of the bosonic delta function, all momentum twistors
lie in the same 3-dimensional subspace.)

6.2 Tree-level BCFW recursion relations

We have just seen that singularities of the super-Wilson loop factor the same way tree-level
scattering amplitudes do. From this it is a short step to introduce the BCFW recursion
relations [45, 46] (see also [20] for the supersymmetric version). Let us continue to discuss
it here using momentum twistor variables. One considers the (super-)deformation of the
external data

Ẑn = Zn + zZn−1 (6.7)

where z is a complex parameter. In the Wilson loop picture this corresponds to displacing
the point xn but not the other points. Because the Wilson loop at leading order is a rational
function of the external data, there is no problem in evaluating it at complex momenta.

Then one writes
W =

∮
dz

2πiz
W (z) (6.8)

where the contour is a small circle around the origin. We want to deform the contour and
express the integral in terms of the poles of W (z). The special values of z to consider are:

• z = ∞. In this limit xn → xn−1 and the Wilson loop reduces to one with one less
particle and Zn omitted.

• z = − 〈n 1 i i+1〉
〈n−1 1 i i+1〉 . These are the factorization channels quoted previously.

• z = − 〈n 1〉
〈n−1 1〉 . At this point xn approaches spacetime infinity. The Wilson loop does

not diverge in that limit, so there is no pole there.

Summing up the residues one thus find

Wn(1, . . . , n) = Wn−1(1, . . . , n−1)

+
n−3∑
i=2

[n−1n 1 i i+1]Wi+1(1, . . . , i, Ji)Wn−i+1(Ji, i+ 1, . . . , n− 1, n̂i)

(6.9)
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where the arguments are momentum super-twistors with

n̂i = 〈1 i i+1 [n〉n−1], Ji = 〈n−1n 1 [i〉 i+1]. (6.10)

This is the same recursion relation as obeyed by Mn (see [47] for its manifestly dual
conformal invariant formulation and [31] for its version in momentum twistor space similar
to here). It is valid at zeroth order in the coupling, corresponding to tree-level in the
scattering amplitude side. At this order, W4 = M4 = 1. Thus Wn = Mn for all n. The
super-Wilson loop computes all tree amplitudes of the theory!

7 Loops from chiral Lagrangian insertions

We now discuss loop corrections to the Wilson loop. It will be very useful to use the
Lagrangian insertion procedure used recently by Eden, Korchemsky and Sokatchev [29, 30]
in this context. As we will see, this allows the loop corrections to be matched on each side
already at the level of the integrand. The expectation value of the Wilson loop can be
written as the path integral ∫

[dAdψdφ]ei
1
g2

R
d4xL

W. (7.1)

The leading contributions to the super-Wilson loop (dual to tree-level scattering ampli-
tudes) are normalized to be of order g0. This is ensured by the proper choice for c0. Thus
loop corrections can be obtained directly by taking derivatives with respect to the cou-
pling constant, which will bring down powers of the Lagrangian. Actually, this requires
some care, since the derivatives will also act on the explicit factors of the coupling in the
expression in W . Also, one has to be careful with contact terms in the Lagrangian insertion.

The Lagrangian insertion procedure, in the context of supersymmetric field theories,
was first introduced in [48]. It was used to prove non-renormalization theorems [49] and
also as an efficient tool for 2-loop computations [50]. Contact terms play an important role
in the consistency of the formalism [49, 51].

7.1 Generalities

Let us first consider a simple example in λφ4 theory. The expectation value of some operator
or product of operators is written as the path integral (overall normalization omitted)

〈O[φ]〉 ≡
∫

[Dφ]ei
R
y(−

1
2
(Dφ)2− 1

4!
λφ4)O[φ]. (7.2)

In this form one clearly has the expansion

〈O[φ]〉 =
∑
`

(−iλ)`
∫
y1,...,y`

[
1
`!
〈O[φ]

φ4(y1)
4!

· · · φ
4(y`)
4!
〉
]

0

(7.3)

where the bracket is to be evaluated to zeroth order in the coupling. This is just the usual
perturbation theory. Now let us rescale φ→ φ√

λ
to bring the Lagrangian into a form closer

to what we have to deal with in a gauge theory. The same expectation is now written∫
[Dφ]e

i
λ

R
y Lφ4O[

φ√
λ

]. (7.4)
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where
Lφ4 =

1
2
φ∂2φ− 1

4!
φ4. (7.5)

The reason for writing the kinetic term in this particular fashion will become clear shortly.
The answer being the same as above we must still be able to compute loops by taking

derivatives with respect to the coupling. But now one also gets terms from the explicit
dependence on λ of the operator, as well as from the kinetic term in the Lagrangian. The
equivalence with (7.3) would appear to be lost. Consider for instance the first deriva-
tive of the two-point function (properly normalized so that the tree-level contribution is
of order λ0):

d

dλ
〈φ(x1)√

λ

φ(x2)√
λ
〉 = −〈φ(x1)φ(x2)

λ2
〉 − i

∫
d4y〈φ(x1)φ(x2)L(z)

λ3
〉. (7.6)

For a one-loop computation this is to be evaluated to order λ0. Now the first term would
appear to be of order λ−1, however, the second term contains contact terms since 〈(D2φ(y)−
1
6φ

3(y))φ(x)〉 = iλδ(x− y). These two sorts of terms are easily seen to exactly cancel each
other. Furthermore, this use of the equations of motion flip the sign of the potential term,
recovering precise agreement with the 1-loop term in (7.3).

The same works at higher-loops. Derivatives of the explicit 1/λ2 factors from previous
Lagrangian insertions get cancelled by contact terms where multiple Lagrangian insertions
go on top of each other.

The moral is that, in this theory, by writing the kinetic term in the appropriate fashion
it is possible to cancel contact terms against explicit coupling constant factors. Then it is
correct to freely use the equations of motion inside the Lagrangian insertions.

7.2 Chiral Lagrangian insertions

All this carry over to any gauge theory, and so we return to N = 4 super-Yang-Mills for
application.

The Wilson loop (4.3) depends explicitly on the coupling constant through the factors
c0 ∼ λ1/4. We would like to cancel this dependence against contact terms. This can be
canonically achieved by writing 3/4 of the fermion kinetic term in the form (Dψ̃)ψ, and the
remaining 1/4 in the form −ψ̃(Dψ). The precise formula is in appendix (A.1). Similarly,
using the self-dual form for the gauge kinetic term and the proper form for the scalar
kinetic term given there, one finds that all contact terms in the Lagrangian cancel one to
one against the explicit coupling dependence of Wn.

Thus the following expansion is valid

〈Wn〉 =
∑
`

(iλ)`
∫
y1,...,y`

[
1
`!
〈Wn
Lon-shell(y1)

λ2
· · · Lon-shell(y`)

λ2
〉
]

0

(7.7)

where the bracket is to be evaluated to tree-level (λ0). The on-shell Lagrangian is to be
evaluated from (A.1) by freely using the equations of motion, dropping all contact terms.
This gives

Lon-shell =
1
4
FαβF

αβ − 1
4
φAB[ψAα , ψ

αB]− 1
64

[φAB, φCD][φAB, φCD]. (7.8)
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Remarkably, this also happen to be a chiral operator: qαALon-shell = 0, without any total
derivative, as is easily verified.5

This is also obviously a conformal primary of dimension 4 (this especially obvious since,
by virtue of the Lagrangian insertion procedure, it is only ever needed to tree-level order).
Thus it is also invariant under the superconformal generators s̃α̇A. Under the remaining half
of the supersymmetries q̃Aα̇ and sAα it is not invariant, but transforms by total derivatives,
for instance

q̃Aα̇Lon-shell = −1
2
Dα̇α

(
ψAβ F

αβ +
1
2
ψBα[φAC , φBC ]

)
. (7.9)

We note that this is not quite the same as the Lagrangian insertion used in [30] or
in [29]. It is however very simply related to, for instance, (3.16) in [44]. One only has to
rescale the left-handed and right-handed fermions separately in (3.12) and remove the anti
self-dual part of the field strength by adding θ-term. Complete equivalence of the results
is therefore expected.6 We insist, however, that the form (7.7) is essentially forced upon us
by the coupling constant dependence of the super Wilson loop. Any other writing of the
kinetic terms would lead to uncanceled contact terms.

These cancellations are suggestive that a field redefinition can remove the coupling
dependence in W altogether, as in the above φ4 example. In fact, this field redefinition
is the Chalmers-Siegel one already mentioned around (4.12). We could have derived the
above expansion quite directly starting from that form.

7.3 BCFW for the loop integrand

The first important remark is that the Lagrangian insertion procedure yields an integrand
that is a rational function of its arguments yj . This was found in explicit computations [30].
In that context this was more or less guaranteed by the formulation as a tree-level corre-
lation function in a conformal field theory.

In our O(λ0) analysis above, we used dual superconformal invariance to argue for
rationality, but it appears a bit more difficult to make such an argument rigorous here
since the Lagrangian insertion is invariant only up to a total derivative (although it is
expected physically that this is always the total derivative of a rational function, as found
in the scattering amplitude side [31]. If this could be proved directly the argument would
thus carry over.) In [30], the main driving factor for rationality seemed to have been
that the integrand was identified with a tree-level correlation function in a conformal field
theory; thus it is also conceivable that a proof based on the weaker condition of conformal
invariance is possible.

This being said, it appears very likely that the integrand defined by Lagrangian in-
sertion is a rational function in general. In what follows we will assume that this is the
case, which will be justified a posteriori by the remarkable self-consistency of the emerging
picture. So we let the integrand be a rational function of the insertion points and external

5 This chirality property also ensures that contact terms associated with coincident Lagrangian insertions

produces terms proportional to Lon-shell, guaranteeing the validity of the formula (7.7) to all loops.
6Our form seems also to have been used in [52], as the top component of the superfield used there. I

thank E. Sokatchev for this observation.
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data. Then we can continue using the BCFW deformation technology we used at tree-level
to determine it.

The contributions discussed in the previous section all go unscathed: they produce
products of lower-point amplitudes, only, now one has to distribute the Lagrangian inser-
tions in all possible ways between the two sides. However one expects new contributions
too: terms where the deformed vertex x̂n becomes null-separated from a Lagrangian inser-
tion point. In the scattering amplitude context [31] these terms are called single-cuts and
they coincide with the forward limit of lower-loop, higher-point scattering amplitudes.

n 1

→
∑ n 1

ii+1

+
∑ n 1

.

These “single-cut” terms were in fact our motivation for defining a super-Wilson loop,
so that it could reproduce those terms. Let us thus conclude our story by verifying that
the singularities of Lagrangian insertions indeed coincide with forward limits of Wn+2.

7.3.1 Single-cuts

This computation can again be greatly simplified if one judiciously uses supersymmetry to
set ηn−1 = ηn = η1 = 0. In that case the fields which are singular at null separation from
the corner (n1) are simply (6.2). Only the F 2(y) term in a Lagrangian insertion will be
singular, giving

g2

16π2

1
xn − y)2

〈n 1〉λÂλÂ
〈n Â〉〈Â 1〉

F (y). (7.10)

Interactions dress this propagator by an adjoint Wilson line, as verified above. Thus we
have a fundamental Wilson loop with two more edges and a field strength inserted at the
new corner, as claimed in the Introduction.

In the BCFW formula the corresponding pole adds a new term which is a Wilson loop
with a shifted point x̂n connected by an adjoint Wilson line to the insertion

g2

16π2

1
〈AB n−1n〉〈AB n 1〉 AB n−1 1〉〈AB〉3

× λÂλÂF (y). (7.11)

Here the line (AB) corresponds to the point y and we have multiplied by a trivial factor
1/〈AB〉4 for future convenience (this factor enters the Jacobian

∫
d4y → d4ZAZB/〈AB〉4)

and
n̂ = 〈AB 1 [n−1〉n], Â = 〈n−1n 1 [A〉B]. (7.12)

This normalization for Â is important here since (7.11) is not homogeneous in it. This
computation is valid when ηn−1 = ηn = η1 = 0.

We have to compare this result with the forward limit of the super-Wilson loop (4.3)
with n+ 2 particles.
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In the scattering amplitude context the forward limit is a somewhat singular limit but it
is well-defined, for massless particles, at least in any theory withN = 1 supersymmetry [32].
A form particularly convenient for N = 4 was given recently in [31]. This form uses a
contour integral to express the result in terms of strictly non-forward, hence manifestly
well-defined, data. It looks even prettier when inserted into the BCFW formula, giving
rise the BCFW term [31]∫

d4ηAd
4ηB

∮
GL(2)

[A′B′ n−1n 1]Mn+2(1, . . . , n̂, Â, B′). (7.13)

The contour integral is over GL(2) matrices G sending (A,B) to (A′, B′) = (A,B)G, and
is to be done on residues around A′ ∝ B′ ∝ Â.

So one expects that the above expression (7.11) is equal to∫
d4ηAd

4ηB

∮
GL(2)

[A′B′ n−1n 1]Wn+2(1, . . . , n̂, Â, B′). (7.14)

The verification is a straightforward computation using the explicit form of the edge and
vertex terms. This computation is reported in appendix with the result that expressions
(7.11) and (7.14) agree precisely.

7.3.2 Recursion relations

This equality allows us to write the BCFW formula for the loop integrand defined by
Lagrangian insertion in a form similar to that in [31]:

Wn(1, . . . , n; {AB}`) = Wn−1(1, . . . , n−1; {AB}`)

+
1
`!

∑
σ`

n−3∑
i=2

[i i+1n−1n 1] Wi+1(1, . . . , i, Ji; {AB}L)Wn−i+1(Ji, i+1, . . . , n̂; {AB)}R)

+
1
`

∑
j

∮
GL(2)

[AjBj n+1n 1] Wn+2(1, . . . , n̂ABj , Âj , Bj ; {AB}`\j) (7.15)

where the shifted momentum (super-)twistors that enter are

n̂j = 〈i i+1 1 [n−1〉n], Ji = 〈n−1n 1 [i〉 i+1],

n̂ABj = 〈AjBj 1 [n−1〉n], Âj = 〈n−1n 1 [Aj〉Bj ]. (7.16)

In the second line the sum is over all ways of distributing the loop momenta {AB}` into
two sets {AB}L,R.

This is exactly recursion relation for the loop integrand found in [31] in the scattering
amplitude context. It follows that, to all loop orders and for arbitrary external polariza-
tions, the loop integrands for the super-Wilson loop and that for scattering amplitudes are
identical.

Both integrals are actually divergent. The Wilson loop is ultraviolet-divergent while
scattering amplitudes are infrared-divergent. The leading divergences on both side agree
and are both controlled by the so-called “cusp anomalous dimension:” this quantity governs
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the singularities of null Wilson loops as well as the Sudakov factors in scattering ampli-
tudes. On the other hand, subleading and finite parts need not agree, because natural
regularization schemes on the two sides of the correspondence are different. To finish the
proof of the correspondence, it is important to make sure that the logarithm of the ampli-
tude (the relevant quantity) has a well-controlled scheme dependence. A general argument
for this is presented in appendix.

8 Conclusions

We have constructed, directly from field theory, a family of supersymmetric Wilson loop
operators in N = 4 Yang-Mills theory. This family depends on the same momentum and
polarization data as scattering amplitudes do. By analyzing the factorization properties of
this object in various channels, at leading order in the coupling, we have derived a recursion
relation for it. This relation is the same as the BCFW recursion obeyed by tree-level
scattering amplitudes, showing that the two objects are the same. Furthermore, we have
shown that similar recursion relations extend to appropriately defined “loop integrands”
which can be defined on each side. The duality between the two objects thus extends to
all loops, already at the level of integrands.

The super-Wilson loop sheds some light on the nature of the duality. Understanding
this at tree level is already nontrivial and important, since in a loose sense loops are
made by sewing trees. In the Wilson-loop side it turns out that only the self-dual sector
contributes to tree amplitudes (this is especially clear in the Chalmers-Siegel form (4.12)
and even more so in the work [27]). This immediately makes a striking prediction on
the scattering amplitude side: there must be a subsector of N = 4 SYM that is sufficient
to compute all tree amplitudes. This sector is certainly not directly the self-dual sector,
because the asymptotic fields of negative helicity gluons are not self-dual by definition.
However it should be somehow close to the self-dual sector. The amount of its non-self-
duality is presumably related, through the T-duality, to the non-self-duality of the fields on
the support of the Wilson loop. So at this stage it is not clear what the subsector is, and
what its relation to self-dual N = 4 is, but it might be productive to understand this issue.

It is important to note that we have not computed completely the form of the Wilson
loop operator: we have computed only those components that we needed, dropping certain
nonlinear terms containing with 5 or more powers of θ at the corners. Most of our results
regarding factorization and recursion relations assumed little more than the existence of
a supersymmetry-covariant Wilson loop, as supersymmetry always allowed us to make do
without these terms. Nevertheless, since to our knowledge such a superconnection has
never be written down in complete detail, we feel that it would be good to see it worked
out fully somewhere.

On a technical side, the computational tool we have used has the unsatisfactory feature
that conformal invariance is not manifest at all intermediate steps. The six-dimensional for-
malism for four-dimensional conformal field theories, presented recently by Weinberg [53],
might be very useful in that respect. Especially when combined with momentum twistors,
which are in the spinor representation of SO(4,2) and allow for particularly compact ex-
pressions for chiral conformal invariants, this should provide an efficient way to calculate.
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Another question on which the super-Wilson loop sheds some light is the longstanding
observation that tree amplitudes are invariant under a full Yangian symmetry [24], while
loop amplitudes (even those which are finite) do not exhibit it [19]. In particular, half the
dual supersymmetries d/dθ are preserved to all loops, while the other half θd/dx is broken
starting from 1-loop. This has been understood as a holomorphic anomaly in [25]. The
Wilson loop defined here and in [27] makes the unbroken half of the supersymmetry fully
manifest but explicitly breaks the other half, As discussed in section (4.4), the Wilson loop,
constructed from various other requirements, turns out to violate explicitly these symme-
tries but by an amount explicitly proportional to g2. Thus the empirical observation of [19]
are built-in into the operator. The symmetry enhancement that occurs at tree-level must
clearly be related to the self-dual sector, although precisely how is not completely clear yet.

The explicit breaking suggests a novel way of computing what has appeared as an
“anomaly” before. Indeed, we have found that the variation is given by (7.9)

θAα
∂

∂xαα̇
log〈Wn〉 =

∮
dxα̇α

〈(c0ψA + FθA + . . .)αWn〉
〈Wn〉

, (8.1)

where the (color-adjoint) parenthesis is to be inserted along the Wilson loop; a similar ex-
pression holds for the superconformal generators sAα . (One expects an additional term on
the right-hand side in the case infrared divergent quantities, associated with the regular-
ization. The above term is unrelated to regularization and is expected to be the only term
present for infrared safe quantities such as the so-called ratio and remainder functions.)
As just remarked, the right-hand side is manifestly of order g2. Furthermore, at any loop
order, the right-hand side can have at most single-logarithmic divergences. In fact, it ap-
pears very likely that these divergences are concentrated to the corners of the dx integral,
so that the correlation function itself is finite to any loop order. If this formula is correct, it
might prove a particularly powerful way of computing derivatives of the logarithm of MHV
amplitudes at higher-loop levels; these derivatives (in fact the full answer) are known to
exhibit remarkable simplicity and structure [54].

Note added. After this work appeared as a preprint, it was shown [57] that a certain
regularization of supersymmetric Wilson loops by dimensional reduction does not preserve
its assumed supersymmetries. In the present paper, we have shown that assuming the exis-
tence of a supersymmetric regularization leads to a unique and self-consistent result for all
expectation values of super-Wilson loops. It would be interesting to find out if the prescrip-
tion in [57] can be modified in a simple way, so as to recover the supersymmetric result.
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A Lagrangian and supersymmetry generators

We now describe, mostly for the sake of fixing our conventions, the well-known N = 4
Lagrangian in a form which will be convenient for us:

L =
1
4
FαβF

αβ +
[

3
8

(Dαα̇ψ̃
α̇
A)ψαA − 1

8
ψ̃α̇ADαα̇ψ

αA

]
+

1
8
φABD

2φAB

+
1
4
φAB[ψAα , ψ

αB] +
1
4
φAB[ψ̃α̇A, ψ̃α̇B] +

1
64

[φAB, φCD][φAB, φCD]. (A.1)

This enters the path integral through the factor e−i
1
g2

R
d4xL. The self-dual field strength

tensor is defined through
Fαα̇ ββ̇ = εα̇β̇Fαβ + εαβFα̇β̇ (A.2)

where Fµν = ∂µAν−∂νAµ+[Aµ, Aν ]. (We suppress all color indices; [Aµ, Aν ]a ≡ fabcAbµAcν
and FαβF

αβ ≡ F aαβFαβa.)
The supersymmetry transformations, under which L transforms by a total derivative,

are

qαAA
ββ̇ = εαβψ̃β̇A, qαAψ̃

β̇
B = Dαβ̇φAB, (A.3)

qαAφ
BC = ψα[Bδ

C]
A , qαAψ

Bβ = δBAF
αβ +

1
2
εαβ[φAC , φBC ]. (A.4)

together with their parity conjugates, which are simply

q̃Aα̇Aββ̇ = εα̇β̇ψ̃Aβ, q̃Aα̇ψBβ = Dα̇βφAB, (A.5)

q̃Aα̇φBC = ψα[Bδ
A
C], q̃Aα̇ψ̃β̇B = δABF

α̇β̇ +
1
2
εα̇β̇[φAC , φBC ]. (A.6)

Our writing of the kinetic terms in the Lagrangian density may appear somewhat
unusual; the motivation for it is explained in the main text.

Let us finally summarize the rest of our notations. We have pαβ ≡ pµσαβµ where
σαα̇µ = (i,−i~σ) = −σµα̇α. The spinor products are 〈vw〉 = vαv

α and [vw] = vα̇v
α̇ where

indices are lowered using vα = vβεβα and vα̇ = vβ̇εβ̇α̇ with ε the antisymmetric symbol

with ε12 = ε1̇2̇ = 1. Indices are raised using the inverse symbol with ε12 = ε1̇2̇ = −1. The
fields obey the reality conditions φ∗AB = φBA and (ψAα)† = ψ̃α̇A.

B Vertex terms

In this section we report our computation of the vertex term in the super-Wilson loop
(4.3); for completeness we reproduce the edge term also.

2Ei = −λ̃iλiA+
1
c0
λ̃iψ̃Aη

A
i +

1
2c20

λ̃iλi−1DφAB
〈i i−1〉

ηAi η
B
i

− 1
3!c30

εABCD
λ̃iλi−1λi−1Dψ

A

〈i i−1〉2
ηBi η

C
i η

D
i −

1
4!c40

εABCD
λ̃iλi−1λi−1λi−1DF

〈i i−1〉3
ηAi η

B
i η

C
i η

D
i ,

(B.1)
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Vi i+1 = 1 +
φAB

c20〈i+1 i〉

(
ηAi+1η

B
i −

1
2
〈i−1 i+1〉
〈i−1 i〉

ηAi η
B
i

)
+

1
3!c30

〈i−1 i+1〉(〈i i−1〉λi+1 + 〈i i+1〉λi−1)ψ
〈i−1 i〉2〈i i+1〉2

ηiηiηi +
1

2c30

λi+1ψ

〈i i+1〉2
ηiηiηi+1

− 1
2c30

λiψ

〈i i+1〉2
ηiηi+1ηi+1 +

1
4.4!

〈i−1 i+1〉2

〈i i−1〉2〈i i+1〉2
φABφ

ABη4
i

+
1

4!c40

〈i−1 i+1〉(〈i i−1〉2λi+1λi+1+〈i i−1〉〈i i+1〉λi+1λi−1+〈i i+1〉2λi−1λi−1)F
〈i i−1〉3〈i i+1〉3

η4
i

+O(ηiηi+1η
2) +O(η5). (B.2)

We found it difficult to find a simple organizing principle for the vertex terms. Fortunately,
the omitted terms in the vertices will not be need for the analyses in this paper. These
omitted terms are all proportional to at least one power of ηi and one power of ηi+1, and
we expect them to form a nontrivial series ranging all the way up to η4

i η
4
i+1.

This is “supersymmetric” (under half of the supersymmetries) in the sense that edges
transform by a gauge transformation (qαA + c0λ

α ∂
∂ηA

)Ei = (∂t − [Ei, )Xα
iA, where

Xα
iA ≡

λαi−1

c0〈i i−1〉

(
φABη

B
i −

1
2c0

εABCD
λi−1ψ

B

〈i i−1〉
ηCi η

D
i −

1
3!c20

εABCD
λi−1λi−1F

〈i i−1〉2
ηBi η

C
i η

D
i

)
.

The vertices transform by the same “gauge transformation,” (qαA + c0λ
α ∂
∂ηA

)Vi i+1+
Xα
iAVi i+1 − Vi i+1X

α
i+1A = 0 so that the Wilson loop (4.3) is invariant.

C Integral in the 1-loop example

In this appendix we consider the integral

〈2456〉
∫ ∞

0

dτAdτB〈1235〉
〈5A1B〉〈5A23〉〈1B23〉reg

+ 〈2456〉
∫ ∞

0

dτAdτC〈1234〉
〈5A12〉〈5A3C〉〈123C〉reg

(C.1)

which arose in our NMHV 1-loop example, with ZA = Z4 + τAZ6, ZB = Z2 + τBZ1

and ZC = Z2 + τCZ4 and the contours as described in the main text. The (single-
logarithmic) divergences as τB → 0 and τC → 0 are regulated using dimensional regu-
larization, 〈1B23〉 → 〈1B23〉( 〈1B23〉

〈1B〉〈23〉)
−ε. The divergences cancel between the two terms.

After doing the τB and τC integrals one is thus left with a finite integral

〈2456〉
∫ ∞

0

dτA
〈5A12〉〈5A23〉

log
(
〈5A12〉〈5A34〉〈6123〉
〈5A61〉〈5A23〉〈1234〉

)
. (C.2)

To proceed further we rewrite this as a function of cross-ratios by rescaling τA → a 〈5412〉
〈5612〉 ,

such that the integral becomes

1− 1/u2

〈1235〉

∫ ∞
0

da

(1 + a)(1 + a/u2)
log
(
a(1 + a)
1 + a/u2

〈4512〉2〈3456〉〈6123〉
〈1234〉〈2345〉〈4561〉〈5612〉

)
. (C.3)

We now observe that the rational factor has a symmetry under a→ u2/a. Upon symmetriz-
ing the integrand, the a-dependence inside the logarithm disappears. Thus the integrand
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does not produce dilogarithms but only products of logarithms:

1− 1/u2

〈1235〉

∫ ∞
0

da

(1 + a)(1 + a/u2)
log
(
〈4512〉〈3456〉〈6123〉
〈1234〉〈4561〉〈5623〉

)
=

1
〈1235〉

log u2 log
u3

u1
. (C.4)

D Forward limits

In this section we check that the contour integral version of the forward limit∫
d4ηAd

4ηB

∮
GL(2)

[A′B′ n−1n 1]Wn+2(1, . . . , n̂, Â, B′). (D.1)

reproduces just (7.11).
A simple and correct way to do the integral over the GL(2) is as follows. Since invari-

ance under the diagonal component of the GL(2) is already manifest, the integral to be
done is really over only the off-diagonal components. This can be done in two steps. First
one integrates over the off-diagonal component A′ = A+ τ1B. The only dependence on τ1
is through the R-invariant, which readily gives∮

dτ1
2πi

[A′B n−1n 1] =
δ0|4(ηA〈B nn−1 1〉+ cyclic)

〈AB n−1n〉〈AB n 1〉〈AB n−1 1〉〈B n−1n 1〉2
. (D.2)

To proceed further we restrict to ηn−1 = ηn = η1 = 0 as in section (7.3.1). In this
case ηÂ = 0 due to the fermion δ-function: all the ηA, ηB dependence of W is through
ZB′ = ZB + tau2ZA. Thus we are extracting the component of order η4

B′ . We can use this
to do perform the fermion integrals,∫

d4ηAd
4ηB

δ0|4(ηA〈B nn−1 1〉+ cyclic)
〈B′ n−1n 1〉2

δ0|4(ηB + τ2ηA) = 〈B′ n−1n 1〉2. (D.3)

The τ2 integral is to be done on a small circle around the special value where 〈B′ n−1n 1〉 =
0. Now all we got so far near this point is a double zero. However some terms in the Wilson
loop (B.1) contain denominators 1/〈i i−1〉 → 〈B′A〉, which produce poles. The terms in
the Wilson loop contain at most three such powers, which is exactly what we need to
obtain a finite residue. Thus we need only keep those terms with three powers of 1/〈i−1i〉.
These are

1
c40

∮
dτ2
2πi

〈B′ n−1n 1〉2

〈AB n−1n〉〈AB n 1〉〈AB n−1 1〉〈B′ Â〉3
〈Â 1〉
〈B′ 1〉

×
(
−1

2

∫ 1

0
dtλ̃ÂλÂλÂλÂDF (y + tp) + λÂλÂF (y + p)

)
. (D.4)

The edge integral in the parenthesis is a total derivative, which cancels precisely against
the vertex term at one endpoint. There remains only the other endpoint, located at y.
Finally the contour integral can be expressed as

g2Nc

16π2

1
〈AB n−1n〉〈AB n 1〉 AB n−1 1〉〈AB〉3

× λÂλÂF (y). (D.5)
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This agrees precisely with (7.11), as anticipated in the main text.
More precisely, this equality has been derived for ηn−1 = ηn = η1 = 0. However, both

the correlation function with Lagrangian insertions and the expression (D.1) are manifestly
invariant under Zα ∂

∂ηA
supersymmetries. Thus it follows that they agree for all values of

the η.

E Relationship between different infrared regulators

Several natural regulators are possible for the Wilson loop:

• Dimensional regularization to D = 4− 2ε dimensions.

• Dimensional regularization of the measure in the Lagrangian insertion procedure,
keeping the integrand in four dimensions [30].

• Multiplication of the Lagrangion insertion integrand by
∏
i

(y−xi)2
(y−xi)2+m2)

(similar to
adding masses in the Higgs-inspired scheme of [26]).

and similarly several natural regulators are possible for scattering amplitudes:

• Dimensional regularization to D = 4 + 2ε dimensions.

• Multiplication of the massless, four-dimensional integrand by
∏
i

(y−xi)2
(y−xi)2+m2)

(similar
to above).

• Higgs regulator [26].

None of these regulators will produce the same answer. The last two differ in whether
masses are kept in numerators. Here we would like to argue that the logarithm of the
Wilson loop, which is the relevant physical quantity, can only differ from one approach to
the other in a very mild and controlled way.

More precisely, the logarithm of the Wilson loop takes the form (see for instance [5]
and references therein)

log〈Wn〉 =
∑
i

(
γcusp log2 pi·pi+1

m2
+ d log

pi·pi+1

m2
+ C

)
+ Finite. (E.1)

In the scattering amplitude side this form follows from factorization theorems in the
planar limit.

It is completely expected, and verified in practice (to four loops in [55]), that different
regulators only affect the scheme dependent constants d and C but the “finite part” is
unchanged. This is part of the physical content of factorization. The modest point we
would like to make in this appendix is that factorization is made particularly explicit by
the Lagrangian insertion procedure.

First we observe that all the above regulators are compatible with the Lagrangian
procedure (in fact, some are only defined within it). So, we can use it in our analysis. The
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main observation then is that in this procedure the logarithm can be taken already at the
level of the integrand. That is, for instance, at two-loops, one can consider the integral

log〈Wn〉 =
∫
y1,y2

(
MMHV
n (y1, y2)− 1

2
MMHV
n (y1)MMHV(y2)

)
. (E.2)

The claim is that the parenthesis is much better behaved then each term in it object, with
divergent regions with y1 and y2 not close canceling explicitly. This can be easily verified at
two-loop using the well-known two-loop integrand for four particles [56]. More generally,
we would like to argue that divergences in the logarithmic occur only from the regions
where all particles collectively approach the same singular region. In other words, that
factorization occurs already at the integrand level.

The mechanism we suggest is very simple: Lagrangian insertions are color singlet
operators. Imagine that, at ` loops, a subgroup of Lagrangian insertions approaches a
singular region. There is a scaling parameter s, for instance near a hard collinear singular
region, (y+

i , y
−
i , y

⊥
i )→ (y+

i , s
2y−i , sy

⊥
i ), which we can introduce to make all these insertions

approach the hard collinear region at the same rate. Similar scaling variables can be
introduced to deal with the soft wide-angle and soft-collinear regions. In the scaling limit
we have a number of color-singlet operators inserted very close to an edge, plus other
“passive” insertions at some other fixed locations. We know from general power-counting
that the singularity in this limit will be at most logarithmic: the correlation function times
the measure factor cannot not blow up in the limit. The only terms which survive thus
behave like dimension-0 color-single corrections to the edge operator, as seen from the
passive insertions. But such a correction can only be proportional to the edge itself. That
is the field induced by the edge region is not affected, in the scaling limit, by the presence
of the insertions. This implies the factorization of the integrand in this limit into a product
of two correlation functions, one involving the singular subgroup, and one involving the
passive subgroup.

Since such products are killed by the logarithm, we conclude that the integrand for
the logarithm of the W is regular whenever a proper subgroup of insertions approaches
a singular region. As a corollary, if we take the scaling limit as all Lagrangian insertions
approach a singular region, and strip off a collective d4y, the integral over the relative
coordinates must be finite. A very explicit example of this at works at two-loop can be
seen in section 5 of [40].

This divergent integral multiplies the zeroth order expectation value of the Wilson
loop. Since the physical mechanism is the color neutrality of the Lagrangian insertion, it
applies in D dimensions as well and thus implies the equality of the first three regulators
listed above, up to the finite “constants under the logarithm”. (The scaling limit in the
soft directions, under which soft singularities factorize independently, is multiplicative.
Thus the integral over relative rapidities, of the integrand for hard collinear divergences,
is guaranteed to be finite.)

A definite prediction of this argument is that there should exist a finite 4(` − 1)-
dimensional integral which gives the cusp anomalous dimension to ` loops. Its integrand is
the connected correlation function of ` Lagrangian insertions in the universal background
field very close to a segment of the Wilson loop, that is sourced by this segment and the
two cusps at its endpoints.
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