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1 Introduction

It is believed that the holographic nature of quantum gravity [1, 2] renders anti-de Sitter

compactifications of string theory equivalent to dual gauge theories [3]. Many pairs of dual

theories have been proposed. They often involve anti-de Sitter backgrounds of string theory
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with Ramond-Ramond flux which arise in the near-brane limit of backreacted D-branes [4].

That makes it desirable to compute the spectrum of string theory on these Ramond-

Ramond backgrounds. The light-cone gauge is the most efficient gauge choice to determine

these spectra at present. Nevertheless it remains interesting to further our understanding of

the calculation of the spectrum in conformal gauge, for instance in a Berkovits formulation

of the worldsheet string action in these backgrounds (see e.g. [5] and references thereto).

These worldsheet conformal field theories involve supergroup or supercoset target spaces

in many interesting examples. The whole of target space (super)symmetry is manifestly

realized in these models.

Two-dimensional conformal field theories with supergroup or coset targets are also

interesting in their own right. They have been studied from various perspectives (see

e.g. [6–15]). One crucial feature of these theories is that they are logarithmic. The scaling

operator is not diagonalizable on the state space. Moreover, this feature already manifests

itself in the one-dimensional limit of these models. Indeed, the Laplacian on a supergroup

is typically not diagonalizable on the space of quadratically integrable functions [7, 8, 10,

16]. Moreover, the space of functions is typically an infinite dimensional indecomposable

representation of the supersymmetry algebra. Although space-time superisometries are

manifest, their representation is intricate.

String theory in particular Ramond-Ramond backgrounds and in conformal gauge will

be built using such a conformal field theory, but it will only make use of a physical state

space determined by a BRST cohomology. It is insensitive to BRST exact features of the

worldsheet conformal field theory. For complicated target spaces though, it can be hard

to discern what the BRST exact data in the worldsheet conformal field theory are that

one may wish to ignore. To gain insight into this question, we study simpler models that

exhibit some of the same crucial features.

Concretely, in this paper we compute the BRST cohomology for a reparameteriza-

tion invariant particle living on a supergroup manifold, and investigate to what extent the

curious features of the space of quadratically integrable functions survive in the physical

state space. In section 2 we show that implementing reparameterization invariance on the

physical state space is enough to render the quadratic Casimir diagonalizable. We illus-

trate the details of the structure of the representation space in the case of the supergroup

GL(1|1) in section 3. In section 4 we compute the full string BRST cohomology for com-

pactification independent states in AdS3 × S3 string theory with Ramond-Ramond and

Neveu-Schwarz-Neveu-Schwarz flux, and show that due to the more refined cohomology,

the space of physical states decomposes into finite dimensional representation spaces of

the supersymmetry algebra. As a byproduct, we show that this gives an efficient deriva-

tion of the equivalence of this subsector of string theory to supergravity, as well as a brief

and manifestly supersymmetric derivation of the Kaluza-Klein spectrum. Finally, we draw

general lessons for applications of logarithmic conformal field theories to string theory.
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2 A massless particle on a supergroup

In this section we study a massless particle on a supergroup G and argue that its Hamil-

tonian becomes diagonalizable in cohomology.

2.1 The action

Our model for a massless particle on a supergroup G is defined in terms of a reparameter-

ization invariant action. Due to the fermionic directions in target space, the model will be

non-unitary. The action is:

S =

∫

L

dτe−1〈g−1∂τg, g−1∂τ 〉, (2.1)

where the map g : L → G : τ 7→ g(τ) maps the worldline L of the massless particle into the

group manifold G, and 〈., .〉 denotes an invariant metric on a Lie super algebra g. We choose

it to be proportional to the supertrace in a matrix representation of the algebra. The field

e is an einbein on the worldline of the particle. After gauge fixing the reparameterization

invariance through the gauge choice e = 1, we find the gauge fixed action:

S =

∫

dτ〈g−1∂τg, g−1∂τ 〉 +

∫

dτb∂τc, (2.2)

where we introduced the (b, c) ghosts to take into account the measure factor arising from

gauge fixing. The physical state space in the quantum theory will be determined by the

cohomology of the BRST operator:

QB = cC2 (2.3)

where the quadratic Casimir C2 equals the Hamiltonian of the system.

2.2 The quadratic Casimir in cohomology

When we consider a particle on a supergroup, its wave-function will correspond to a function

on the supergroup. Functions on a supergroup can be expanded in the fermionic coordinates

on which they depend. We will study a space of functions such that the coefficients in

the fermionic coordinate expansion are quadratically integrable. We refer to this space

as the space of quadratically integrable functions on the supergroup G and will loosely

denote it by L2(G). When we consider the space of functions on a supergroup, the group

invariant Laplacian, which is equal to the quadratic Casimir operator C2, acts on the

space. The operator turns out to have a non-trivial Jordan form — it is generically not

diagonalizable [7, 8, 10, 16].

The first point we wish to make is that in our model the quadratic Casimir is diago-

nalizable in cohomology. When we impose the Siegel condition b = 0 on physical states,

we will also need to impose that the quadratic Casimir C2 annihilates physical states. For

simplicity, let’s suppose first that the quadratic Casimir C2 has the form:

C2 =

(

0 1

0 0

)

(2.4)

– 3 –
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in a certain sector of the state space. Its square is zero on this two-dimensional generalized

eigenspace. It is then clear that the state (0 1)t will not be annihilated by C2, while on

the space spanned by the state (1 0)t alone, the quadratic Casimir is diagonalizable. It is

diagonalizable in cohomology. This argument also holds when the quadratic Casimir has

a more elaborate Jordan form.

We think it is interesting to flesh out this general observation in a simple concrete

example. This will give us the opportunity to see how this simplification of the physical

state space relates to other algebraic properties of the state space. It will also allow us to

find the classical origin for the elimination of some generalized eigenvalue zero states from

the physical state space.

3 A massless particle on the supergroup GL(1|1)

In this section, we will analyze in some detail the example of a particle on the supergroup

G = GL(1|1). This simple example has the advantage that the decomposition of the space

of functions in terms of representations of the left and right regular action of the group

on itself is known [7, 8, 16], and not difficult to rederive. All calculations can be done

explicitly, and they illustrate concretely the more advanced algebra that we will use in a

later section.

The super Lie algebra g = gl(1|1) is an algebra that can be represented in terms of

2× 2 supermatrices. These supermatrices have bosonic diagonal entries and fermionic off-

diagonal elements. We can write the super Lie algebra in terms of generators h1,2, e1, f1

which satisfy the commutation relations:

{e1, f1} = h2

[h1, e1] = 2e1

[h1, f1] = −2f1, (3.1)

while all other commutation relations are zero. The fermionic annihilation and creation

operators e1 and f1 anti-commute into the central bosonic operator h2. We also have an

operator h1 whose eigenvalue is raised or lowered when we annihilate or create a fermion

When we have in mind applications to backgrounds of string theory with supercon-

formal symmetries, it can be useful to think of the gl(1|1) algebra as embedded into a

superconformal algebra. The generators of the gl(1|1) subalgebra can then be identified

with a subset of the superconformal generators and are more conventionally denoted as:

h2 =
1

2
(J − ∆) = P−

h1 = ∆ + J = 2P+

e1 = Q+

f1 = Q−, (3.2)

where ∆ measures the conformal dimension and J the R-charge while Q± are supercharges

of R-charge ±1 with correlated conformal dimension ±1. We note that the difference of the
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R-charge and the conformal dimension is a central generator in this subalgebra. In many

contexts, it is natural to take an exponentiation of the algebra in which the R-charge J

is the generator of a compact U(1) subgroup, while the scaling direction ∆ is taken to be

non-compact. A quadratic Casimir is given by the expression C2 = 1
2(J2 −∆2) + 2Q−Q+.

If we add any function of the central generator, the resulting operator remains central.

3.1 The classical foreshadowing

In this subsection, we will show that the reduction of the physical state space has a coun-

terpart in the classical theory. For our concrete calculations, it is convenient to choose a

matrix realization of the group elements as follows (see e.g. [7]):

g = e+i
√

2η−Q−

eix−P−+ix+P+e+i
√

2η+Q+

=

(

e
i
2
(−x++x−) + η+η−e

i
2
(x++x−) iη−e

i
2
(x++x−)

iη+e
i
2
(x++x−) e

i
2
(x++x−)

)

, (3.3)

where x± are light-cone coordinates in R×R.1 We have two Grassmann variables η±. The

classical action for a massless particle (in equation (2.1)) in this parameterization is:

S =

∫

(∂τx+∂τx
− + 2eix+

∂τη+∂τη−)dτ, (3.4)

and it is supplemented with the constraint equation

∂τx
+∂τx

− + 2eix+

∂τη+∂τη− = 0. (3.5)

When one solves the classical equations of motion, one finds that one needs to distinguish

two solution sets. The first solution set is parameterized by integration constants p±, x±
0

as well as π±, η±,0:

x+ = p−τ + x+
0

η± =
i

p−
e−ip−τ−ix+

0 π± + η±,0

x− = −i
2

p2
−

e−ip−τ−ix+

0 π+π− + p+τ + x−
0 , (3.6)

while the second one arises when the x+-momentum p− is zero, and it reads:

x+ = x+
0

η± = e−ix+

0 π±τ + η±,0

x− = 2ie−ix+

0 π+π−
τ2

2
+ p+τ + x−

0 . (3.7)

The constraint equation (3.5) on the first set reads:

p+p− = 0, (3.8)

1It is easy to adapt our analysis to the case where a bosonic direction of the group manifold is compact.
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or in other words the momentum p+ = 0 (since p− 6= 0 for the first set). More interestingly,

for the solution with zero light-cone momentum p−, we find that the constraint equation

remains non-trivial:

π+π− = 0, (3.9)

and we therefore find a second constraint, on top of the fact that the momentum p− is zero.

Thus we find that when the momentum satisfies p− = 0, the space of classical solutions is

smaller than when p− 6= 0. We have two types of trajectories. One is where the momentum

p+ is zero and the momenta p− and π± (as well as x+
0 , x−

0 , η±,0) are arbitrary. The other

type of trajectories is where the momentum p− is zero and the product of π+ with π− is

also zero.

The origin of the surprising structure of the solution space is a fermionic contribution

to the length of the curve. We chose to parameterize the curve by the proper time. The

length of the curve is always zero since we study a massless particle. The length of the curve

is ordinarily the product of momenta p+p−. However, when the momentum p− is zero, we

get a fermionic contribution to the (generalized) length from the product π+π−. We have

to put the latter combination to zero to obtain a curve of length zero. In subsection 3.3, we

will see that this reduction of the classical phase space is a foreshadowing of the reduction

of the state space in the quantum theory.

3.2 The space of functions on GL(1|1)

In this subsection, we review properties of the space of quadratically integrable functions

on the supergroup GL(1|1) [7, 16]. There is a (delta-function normalizable) basis of the

space of integrable functions given by the exponentials:

e0(p−, p+) = eip−x−+ip+x+

e±(p−, p+) = eip−x−+ip+x+

η±

e2(p−, p+) = eip−x−+ip+x+

η−η+. (3.10)

We denote the superspace functions with quadratically integrable component functions by

L2(GL(1|1)). For future purposes, we review the decomposition of the space of functions

in terms of representations of the left and right regular action of the group [7, 16]. The

infinitesimal group actions on the function space can be given in terms of differential

operators. The left-invariant vector fields act on the wave-functions as [7]:

LP−
= i∂x− LP+

= i∂x+ − η+∂+ LQ+ = −i∂+ LQ− = ieix+

∂− − η+∂x− , (3.11)

and the right invariant vector fields by:

RP−
= −i∂x− RP+

= −i∂x+ + η−∂− RQ+ = ieix+

∂+ + η−∂x− RQ− = −i∂−. (3.12)

In this example, the structure of the space of functions can easily be determined by explicit

calculation. It is useful to distinguish the typical and the atypical sectors of the state space

(where the nomenclature originates in reference [17]).

– 6 –



J
H
E
P
0
7
(
2
0
1
1
)
0
4
2

3.2.1 Typical sector

In the typical case where p− 6= 0, we have the following group matrix elements correspond-

ing to a direct summand M〈p−,p+〉 in the decomposition of the quadratically integrable

functions as a representation space under the left-right regular action [7]:

M〈p−,p+〉(g) =

(

eip−x−+i(p+−1)x+

iη−eip−x−+i(p+−1)x+

ip−η+eip−x−+i(p+−1)x+

p−η−η+eip−x−+i(p+−1)x+

+ eip−x−+ip+x+

)

. (3.13)

The functions in the first row of the above matrix form a basis of the summand HR
〈p−,p+〉 in

the right regular representation, where the space HR
〈p−,p+〉 is a typical graded representation

space labeled by eigenvalues 〈p−, p+〉 (of one state — the other state in the representation

has eigenvalues p− and p+ − 1). This can be checked by acting with the right generators

given in equation (3.12). The second row forms a basis of the summand HR′

〈p−,p+〉 which is

the same typical representation, with opposite grading. When we consider the left regular

action, we note that it mixes the two representation spaces with each other, to form a tensor

product representation HL
〈−p−,−p+〉 ⊗ HR

〈p−,p+〉 of the left-right group actions. The part of

the function space with momentum p− 6= 0 decomposes as a direct sum of these tensor

product representations. This type of structure is familiar from the Peter-Weyl theorem for

compact Lie groups. If we fix the momentum p− to be non-zero, we can draw a picture of

the action of the left and right generators on the summands of the state space (see figure 1).

In the diagram, we drop the common value of −i∂x− from the notation, write the eigenvalue

of −i∂x+ as a superscript and denote the function p−e2(p−, p+−1)+e0(p−, p+) by p−e
p−−1
2 .

For ease of illustration, we arbitrarily took the spacing between consecutive values of −i∂x+

to be one in the diagram.

Figure 1 represents the fact that each summand contains four states, that pair up two-

by-two to form representations of either the left or the right group action. The fermionic

creation and annihilation operations are invertible in this sector of the state space. The

action of the quadratic Casimir is diagonal and can be taken to be proportional to the

product of lightcone momenta p−p+.

3.2.2 Atypical sectors

The structure of the state space is more interesting when the lightcone momentum p−
satisfies p− = 0. Because we concentrated on a gl(1|1) algebra, this condition has a

particular chirality. It corresponds to demanding that the difference of twice the conformal

dimension and the R-charge is equal to zero. In this chiral subsector, the action of the

generators on a basis of states is as in figure 2.

We see that the vectors e
p+

0 , e
p+−1
+ , e

p+

− , e
p+−1
2 make up an indecomposable right repre-

sentation. The vectors e
p+

0 , e
p+

+ , e
p+−1
− , e

p+−1
2 generate an indecomposable left representa-

tion. Note that the action of the fermionic generators is no longer invertible. The quadratic

Casimir acts as the differential operator 2eix+

∂−∂+ in these representations, i.e. it maps

the state e
p+

2 to the state e
p++1
0 (for all momenta p+) and it annihilates all other states.

This sector forms an infinite dimensional indecomposable representation of the left-right

action of the group. We denote this summand of the representation space by Cp+
.
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Figure 1. The typical sector of the space of functions on GL(1|1) as a representation of the left-

right regular action of the group. The left action is indicated with solid lines, the right action with

stripes.
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Figure 2. The left-right group action on functions on GL(1|1) transforming in atypical represen-
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In summary, if we take the momentum p+ to be continuous, the following decomposi-

tion for the space of quadratically integrable functions holds [7, 16]:

L2(GL(1|1)) =

∫

p− 6=0

∫

dp+HL
〈−p−,−p+〉 ⊗ HR

〈p−,p+〉 ⊕
∫ 1

0
dp+Cp+

. (3.14)

The representation space Cp+
decomposes with respect to either the left or the right action

only as an infinite sum of projective four-dimensional representations [7, 16]. Note that pro-

jective representations cannot be further extended without introducing direct summands.

The quadratic Casimir is diagonalizable, except in the atypical sector. There it maps top

states to bottom states, and is otherwise zero.

3.3 The BRST cohomology

In the quantum theory for the gauge fixed particle action, we tensor the state space with

a (b, c) ghost system. We take the latter to be a two-state system on which the quantum

operators act as:

b| ↑〉 = | ↓〉, b| ↓〉 = 0

c| ↓〉 = | ↑〉, c| ↑〉 = 0. (3.15)

3.3.1 Typical sector

In the typical sector where p− 6= 0, the quadratic Casimir acts diagonally with eigenvalues

p+p−. The cohomology localizes on momentum p+ equal to zero. This is the familiar

on-shell condition for a massless particle.

3.3.2 Atypical sector

When the momentum p− is zero, the calculation of the cohomology is more interesting. In

this case, the quadratic Casimir is zero on a large part of the space, but it maps top states

e
p+

2 to bottom states e
p++1
0 . The BRST closed states are the up states, as well as the down

states annihilated by the quadratic Casimir. The BRST exact states are the up e0 states.

Therefore, the closed non-exact states are the up states tensored with e±, e2, and the e±, e0

down states.

The physical states satisfying the Siegel condition b|phys〉 = 0, namely the down states,

are the states e±, e0. Dually, the up states that are physical are e±, e2. In many contexts,

like the model of a particle in flat space, where the Hamiltonian acts diagonally, the Siegel

condition lifts a two-fold degeneracy in the physical state space cohomology. Here, because

the quadratic Casimir is not diagonalizable, this is not the case. The cohomology on up

states is dual to that on down states (under a duality that maps all fermionic occupied

states to unoccupied states and vice versa).

The action of the quadratic Casimir. In this example, we can see by inspection that

the action of the quadratic Casimir on the BRST cohomology has become diagonal. This

is a hands-on illustration of the general argument given in subsection 2.2. We also saw in

subsection 3.1 that this feature has a classical counterpart.

– 9 –



J
H
E
P
0
7
(
2
0
1
1
)
0
4
2

en−1
+R

Q+

wwo o o o o

L
Q+

// en−1
0

en
+

R
Q+wwo o o o o

L
Q+

// en
0

en+1
+

L
Q+

// en+1
0

en−1
−

R
Q−

OO�
�
�
�
�
�
�
�

L
Q−

ggOOOOOOOOOOOOOOOOOOOOOOO

en
−

R
Q−

OO�
�
�
�
�
�
�
�

L
Q−

ffNNNNNNNNNNNNNNNNNNNNN

en+1
−

R
Q−

OO�
�
�
�
�
�
�
�

Figure 3. The left-right action of the superalgebra gl(1|1) on the down physical state space in the

atypical sector.

3.4 The action of space-time supersymmetry

We now wish to point out a further algebraic property arising in this and more elaborate

examples. First of all, we note that the space-time isometries commute with the BRST

operator. The BRST cohomology is therefore again a representation space of the super-

symmetry algebra. What is the structure of this representation space?

3.4.1 Typical

In this sector, the cohomology coincides with the function space, and the representation

space of the left-right supercharges are ordinary tensor products of long multiplets (i.e.

typical Kac modules).

3.4.2 Atypical

In the atypical sector, we will draw the representation space for the down states. The

top states are not present in the cohomology of down states. Removing them from the

diagram of states gives rise to the supercharge actions on the physical state space depicted

in figure 3.

We obtain a (non-unitary) indecomposable and infinite dimensional representation

space of the space-time super isometry algebra.

3.5 Summary

The non-diagonalizability of the Laplacian on the function space was removed in the phys-

ical state cohomology. We were motivated to analyze this phenomenon because in an

embedding of the particle model in a conformal field theory, the non-diagonalizability of

the Laplacian on the function space is inherited by the scaling operator [7, 8], and it makes

these conformal field theories with supergroup targets logarithmic in nature. It is interest-

ing to note that worldline reparameterization invariance reduces the physical state space

such that the quadratic Casimir becomes diagonalizable.

– 10 –
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In these particle models, we will still be left with a non-unitary theory in cohomology.

We could define further space-time supercharge cohomologies, on which the calculation of

certain chiral correlation functions localizes to unitarize these models. Alternatively, one

may simply analyze further features of these interesting non-unitary theories.

In the following however, we will explore further how to reconcile these models with

expected properties of stringy space-time physics. The low-dimensional example we stud-

ied up to now corresponds to the supersymmetrization of two light-cone directions. To

make progress, we consider an example with more space-time directions, in which physical

fluctuations can survive. And we will study a more refined cohomology that will alter the

structure of the physical state space more drastically than the cohomology associated to

reparameterization invariance alone.

4 A massless particle on AdS3 × S3

A central building block in the Berkovits formulation of string theory on AdS3 × S3 with

Neveu-Schwarz Neveu-Schwarz and Ramond-Ramond fluxes is a conformal field theory with

PSU(1, 1|2) supergroup target [18]. The physical state space is determined by computing a

cohomology on a large space of conformal field theory states [18, 19]. In this section, we wish

to solve for an important subset of the physical state space of this model. It corresponds to

the point particle limit for string theory on AdS3 × S3, in which we moreover concentrate

on compactification independent excitations. In other words, we solve for the physical

supergravity modes which correspond to massless particle excitations on the supergroup.

In this limit, the subspace of physical states is determined by a cohomology on the space of

functions on the supergroup. We will compute this cohomology, and show how it simplifies

the function space as a representation space of the super isometry group. We also compare

the physical states we obtain to the result of lengthy calculations linking the Berkovits

formulation to supergravity [19], as well as the Kaluza-Klein reduction of supergravity on

AdS3 × S3 [20]. The cohomological method for determining the physical excitations, as

well as their supermultiplet structure will turn out to be efficient. In this section we will

draw on more advanced (super) algebra techniques which the reader can study for instance

from the references [17, 21–24].

4.1 The space of functions on the group PSU(2|2)

We will mostly work with the version of the supergroup target which has a compact max-

imal bosonic subgroup. We consider the space of quadratically integrable functions on

G = PSU(2|2). The super Lie algebra g corresponding to the group consists of four by

four hermitian matrices with zero trace and supertrace. To compute the physical state

space, it is useful to understand how the function space decomposes into representations of

the left and right regular action of the group on itself. We will start by analyzing the left

regular action. To that end, we think of the function space as consisting of a component

function (which we take to be the top component of a superfield on the supergroup) on

the bosonic subgroup G0 = SU(2)×SU(2) acted upon by all fermionic generators through

– 11 –
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Figure 4. The short multiplet composition series of atypical Kac modules.

the left action of the group on itself. The function on the bosonic subgroup can be decom-

posed by the Peter-Weyl theorem into representations of g0 = su(2) ⊕ su(2) of the type
∑

j1,j2=0, 1
2
,... M

L
j1,j2

⊗ M∗R
j1,j2

where ML
j1,j2

is a representation of spins j1 and j2 under the

left action of the group on itself. Therefore the space of functions on the supergroup splits

into a sum of representations of the left regular action of the type [9]:

A = U(g) ⊗g0
ML

j1,j2
, (4.1)

where U(g) indicates the universal enveloping algebra of the super Lie algebra g. We

have kept the tensor product with the representation space of the right action of the

bosonic subgroup implicit for the moment. By the Poincaré-Birkhoff-Witt theorem for

the universal enveloping algebra U(g), the representation space A consists of the states

in the su(2) ⊕ su(2) representation, acted upon by all eight fermionic operators. The

representation space A has dimension 28(2j1 + 1)(2j2 + 1). We would like to decompose it

with respect to the left action of the superalgebra.

4.1.1 Representations of the algebra psu(2|2)

In order to present the solution to this problem, we briefly review some Lie superalgebra

representation theory (see e.g. [9]). We recall from the representation theory of psl(2|2)

that atypical Kac modules K(j, j) = [j, j] (composed by acting with all creation operators

on a highest weight state with spins (j, j)) are composed from short multiplets L(j, j) = [j]

as in figure 4 [9].

while a short multiplet [j] contains the following sl(2) ⊕ sl(2) representations [9]:

[j]g0
≡ (j + 1/2, j − 1/2) ⊕ 2(j, j) ⊕ (j − 1/2, j + 1/2). (4.2)

If we would draw the action of fermionic generators on bosonic multiplets within a short

representation, it would be isomorphic to the diagram of the composition series of atypical

Kac modules. We note that the diagrams that we draw are strictly speaking only valid for

j larger than a particular lower bound at which exceptions to the above diagrams occur.

Those are not essential to our discussion, and we will ignore them throughout.

The projective representations are the largest indecomposable covers of these modules.

To describe them, we need more mathematical results, and we wish to discuss a subtlety in

their description. It has been proven by algebraic means [21, 22] that for representations of

type I supergroups that satisfy that the multiplicity of the simple quotient L(λ) of a Kac

module K(λ) in a composition series is no more than one, there is a Bernstein-Gelfand-

Gelfand reciprocity formula that holds. Namely, the multiplicity of the Kac module K(λ)
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Figure 5. The Kac composition of the projective representation P (j, j).
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Figure 6. The composition of the projective representation P (j, j) in terms of short multiplets.

in the projective representation P (µ) associated to the highest weight µ, is equal to the

multiplicity of the simple module L(µ) in the Kac module K(λ). We can state this briefly

and roughly as the fact that the Kac module is covered as it is composed. In the case at

hand, there is a slight complication which is (as we saw) that the multiplicity of the short

representation in the composition series of the atypical Kac module is not equal to one,

and that therefore the theorem quoted above cannot be applied directly. We circumvent

this complication by lifting the psl(2|2) representation to a representation of the algebra

gl(2|2). In other words, we provide the representation space with an extra grading that

keeps track of the number of fermionic creation minus the number of fermionic annihilation

operators that act on a ground state. Thus we lift the degeneracy of the short multiplet in

the composition series, and we can apply the result on the multiplicities of Kac modules in

the projective cover to confirm that the projective representation P (j, j) is composed out

of Kac modules as in figure 5 [9].

Moreover, we can use the results on how projective representations of the algebra

gl(2|2) are composed of short multiplets [24] to rederive that the projective representation

of P (j, j) has the structure of figure 6 [9].

For our purposes, if will be useful to have more explicit information about the grading.

It can be gleaned from the results of [24] which we recall in appendix A that the additional

u(1) grading that an embedding in gl(2|2) provides will partially lift the degeneracies in

the above diagram to those in figure 7.

This result is also coded in the earlier work [23] in the action of the outer automor-

phisms of psl(2|2) on the short multiplets. An intuitive reading of the diagram goes as

follows. In the projective representation P (j, j), we have two annihilation operators that

act non-trivially on a generating vector on the left, to generate two new top representations

in Kac composition factors (of charge −1 say). When both act consecutively, we have the

fourth and last top representation in a Kac composition factor (of charge −2). All other

short representations are obtained through the action of fermionic creation operators (of
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Figure 7. The graded composition of the projective representation P (j, j) in terms of short mul-

tiplets.

charge +1) within a given Kac composition factor.

The method we used in this subsection to lift sl(n|n) or psl(n|n) representations in

order to be able to apply results for gl(n|n) works generically.

4.1.2 The left regular representation on the superfield

With these prerequisites in hand, we can argue how the representation space A of equa-

tion (4.1) contained within a superfield V on the supergroup decomposes with respect to

the left regular action. First of all, it is known [21] that the representation space A permits

a Kac composition series. Moreover, it can be reconstructed as in the proof of Lemma 2.3

of [21]. In short, the Kac composition factors correspond one to one to the representa-

tions of the bosonic subalgebra appearing in a Kac module. When the two spins j1,2 of

the bosonic representation space ML
j1,j2

on which the representation A is built are equal,

j1 = j2, we have eight Kac composition modules that are atypical which combine four by

four into two projective representations P (j1, j1). When the spins satisfy j1 = j2 + 1, we

have four Kac composition modules that are atypical which combine into one projective

representation P (j1 − 1/2, j1 − 1/2), and for spins j1 = j2 − 1 we obtain the projective

representation P (j1 +1/2, j1 +1/2). All other Kac composition modules that appear in the

representation space A are typical (and therefore projective). They are direct summands

in the representation A. That characterizes fully the representation space A.

When we tensor back in the right representation space M∗R
j1,j2

, and concentrate on

the atypical summands in the superfield V , we obtain the atypical part of the space of

functions:

Vatyp =

∞
∑

j1=0

P (j1, j1)L ⊗ (2(j1, j1)R ⊕ (j1 + 1/2, j1 − 1/2)R ⊕ (j1 − 1/2, j1 + 1/2)R).(4.3)

The right representations of the Lie algebra g0 necessarily combine into a right short

multiplet:

Vatyp =

∞
∑

j1=0

P (j1, j1)L ⊗ [j1]R. (4.4)

The formula gives the decomposition of Vatyp under the left regular action (and not under

the full right regular action as we will see in detail). Again, we remind of the caveat that
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these results are strictly valid only for spins j1 large enough. We only wrote the atypical

part of the representation space since we will later be interested in the space of states with

quadratic Casimir generalized eigenvalue equal to zero. The typical part decomposes as in

the Peter-Weyl theorem for compact groups.

4.1.3 The big picture

We have fully characterized the left regular representation on the space of functions. We

want to combine it into one big picture with the action of the right generators on the

representation space. The picture is big since we have sixteen short multiplets in each

indecomposable representation on the left, and because the right action further mixes

left representation spaces. A partial diagram of the left and right actions on left-right

short multiplets that compose the representation space in the atypical sector is sketched in

figures 8 and 9. We drew the left projective representations (with full lines), and (a small

part of) the right action in striped lines. Figure 8 is a detail of figure 9. In the second

figure, we left out the labeling of the grid by tensor products of left-right short multiplets.

From these two pictures one can reconstruct the diagram extending towards higher and

lower spins. The picture degenerates near spin zero (in a way that can be derived from

the results in [24]). It is straightforward to further split and grade the picture with an

additional u(1) left and u(1) right grading (as we did in figure 7). We invite the reader to

picture the resulting diagram.

4.2 The cohomology defined

We have understood the structure of the space of functions on the supergroup, and can

now determine which states are physical. The space of physical particle states which are

compactification independent is obtained by imposing constraints. These constraints were

derived in the Berkovits formulation of string theory on AdS3 × S3 with Neveu-Schwarz

Neveu-Schwarz and Ramond-Ramond fluxes [18]. First of all, it was argued that the

physical cohomology is coded in a single function V on the supergroup [18]. The square of

the quadratic Casimir should vanish on the function.2 Thus we can restrict our analysis to

generalized eigenspaces of eigenvalue zero.

It is convenient to express the further constraints in terms of generators that make the

so(4) representation content of the adjoint of the psl(2|2) algebra manifest. We can take

generators such that they satisfy the commutation relations [18]:

[Kab,Kcd] = δacKbd + δbdKac − δadKbc − δbcKad

[Kab, Fc] = δacFb − δbcFa, [Kab, Ec] = δacEb − δbcEa

{Ea, Fb} =
1

2
ǫabcdK

cd, (4.5)

while all other commutators are zero. The index a ∈ {1, 2, 3, 4} is an so(4) vector index

and the bosonic generators Kab are in the (anti-symmetric) adjoint. The further constraint

equations on the superfield V derived in [19] are that F 4V = 0 as well as KabF
aF bV = 0.

2That does not imply that the quadratic Casimir is zero, since it is not diagonalizable.
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Figure 8. Detail of the decomposition of the atypical sector of the function space as a sum of left

projective representations interconnected by the right group action.

Moreover, the functions of the form KabF
aF bW are gauge trivial. These constraints are

valid for both the left and the right actions on the function space, and are moreover psl(2|2)

covariant in a subtle way spelled out in [19]. Below we will concentrate on the cohomology

of the operator KabF
aF b in the space of generalized eigenfunctions of eigenvalue zero. All

other left constraints will then automatically be satisfied in this cohomology.

We will see that on the cohomology of the operator KabF
aF b the quadratic Casimir

vanishes. In particular, this implies that the model will be reparameterization invariant (as

for the massless particle on the supergroup in section 2). However, the string cohomology

is more refined and in particular it will also eliminate some unphysical fermionic directions

in space-time. The underlying idea is that the string cohomology must arise from a model

which also has fermionic reparameterization invariances.
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Figure 9. A selection and a slice out of an even bigger picture, showing how one (striped) right

projective representation interconnects with (solid) left projective representations in the atypical

sector of the space of functions on the supergroup. The figure has been rotated ninety degrees

clockwise with respect to the previous one.

4.3 The left cohomology in a projective summand

First we analyze the cohomology for the constraints associated to the left action of the

group on itself. Since the generalized eigenspaces of eigenvalue zero correspond to a sum

of atypical projective modules for the left action, we will work in one direct summand

projective module. The constraint for a state in the projective module to be physical is

KabF
aF b|phys〉 = 0. All states in the projective module can be generated from a single

state. It is a highest weight state of spins (j, j) with respect to the bosonic subalgebra

g0 = sl(2) ⊕ sl(2), and, as we saw before, it can be acted upon by up to two fermionic

annihilation operators E to give new top states for Kac composition factors. On those

states we can act with any number of fermionic creation operators F to fill out a Kac

module. We analyze the physical state condition level by level in the number of fermionic

creation operators F acting on the generator of the module. Here, a top state is a state at

level F 0.

We have that states obtained by the action of four creation operators F satisfy the

constraint automatically, as do states at level F 3. When two creation operators F act, we

must take into account the following facts. The constraint equation KabF
aF b|phys〉 = 0 is

scalar in terms of the bosonic subalgebra. It generates (2j′ + 1)2 independent constraints

in Kac modules built on (j′, j′) representations. In other words, for each Kac composition

factor in the projective module, the constraint equations eliminate one (bosonic) (j′, j′)
representation at the middle level. We are left with states in the (2 − 1)(j′, j′) ⊕ (j′ ±
1, j′) ⊕ (j′, j′ ± 1) g0-representations that satisfy the constraint equation at level F 2, in

each composite Kac module of spin (j′, j′). For future purposes, we note that the states

KabF
aF b acting on the top state in any Kac composition factor satisfy the constraint

automatically. That is because the constraint acting on such a state gives rise to the

bosonic quadratic Casimir operator. The bosonic quadratic Casimir evaluated on a top

state in an atypical Kac module is zero.

The analysis at first order in the operators F is a little more intricate. As an inter-
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Figure 10. The left cohomology in a graded atypical projective module.

mediate step, it will be useful to compute the action of the bosonic quadratic Casimir on

a generic state at level F 3. Since the bosonic quadratic Casimir Cbos
2 satisfies the follow-

ing relation with the total quadratic Casimir Ctot
2 : EaF

a = Ctot
2 − Cbos

2 , we will start by

computing the action of EaF
a on a state at level three:

EeF
ecdǫ

abcdFaFbFc|top〉 =

(3c[aKbc]FaFbFc +
1

4
cdǫabceFeFbFcFaEd)|top〉 =

(3c[aKbc]FaFbFc − caǫ
abceFeFbFcE

dFd)|top〉 =

(3c[aKbc]FaFbFc + caǫ
abceFeFbFc(C

bos
2 − Ctot

2 ))|top〉 =

(3c[aKbc]FaFbFc + Ctot
2 cdǫ

abcdFaFbFc)|top〉. (4.6)

We conclude that we have that the operator Cbos
2 = Ctot

2 −EaFa acting on a state at level

three is zero if and only if caKbcFaFbFc|top〉 is equal to zero. This implies that there is a

state caFa|top〉 at level one which satifies the constraint equation for every state at level

three whose bosonic quadratic Casimir is zero. That implies that the physical states at level

one in a Kac composition factor built on top states with spin (j′, j′) are the sl(2) ⊕ sl(2)

representations (j′ + 1/2, j′ + 1/2) and (j′ − 1/2, j′ − 1/2). Finally, at level zero, there are

no solutions to the constraint equation. Thus, we have found all closed states.

The gauge trivial or KabFaFb exact states are found as follows. At level F 4, all states

are gauge trivial. At level F 3, we use again the calculation above that says that we can

reach all level three states whose bosonic quadratic Casimir is non-zero. We are left with

the states (j′±1/2, j′±1/2) at level three. At level two, the states KabF
aF b|top〉 are gauge

trivial, and form a (j′, j′) representation which is different from the one excluded by the

physical constraint condition (as follows by the remark made previously on the states at

level two). Thus, in each Kac composition factor [j′, j′], we are left with the representation

content of the two middle short multiplets [j′±1/2]. We apply this reasoning to all Kac com-

position factors in a left projective module and find that starting from figure 7, we are left

with a representation of the left psl(2|2) action on the cohomology described by figure 10.

4.4 The full cohomology

We have just computed the cohomology with respect to the generators of the left action

of the supergroup on itself. We now need to further compute the cohomology with respect
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Figure 11. The right cohomology in a graded atypical projective module.

to the right action of the supergroup. Since the cohomological operators commute (since

the left and the right action of the supergroup on itself commute), we can compute the

cohomologies independently, and then restrict to the representations which are non-trivial

in both complexes.

Since the right action of the group on itself is isomorphic to the left action of the

group on itself, we have a very similar answer for the right-moving cohomology in the right

atypical projective modules. There is one important difference, which is that we assign the

opposite grading to the right fermionic creation and annihilation operators.3 To make this

concrete, let’s first define the algebra of generators of the right action of the group on itself

to be again a psl(2|2) algebra as in equations (4.5). We denote all of them with an extra bar.

The right cohomology is now taken with respect to an operator K̄abF̄aF̄b of opposite

u(1) grading. Thus, where the representations [j ± 1/2]+1 survived in the left cohomol-

ogy, the representations [j ± 1/2]−1 will survive in the right cohomology, and vice versa.

The resulting right cohomology in a graded atypical right projective module will be as in

figure 11.

Therefore, in each projective module, after taking both left and right cohomologies

into account (combining figures 10 and 11 with figures 8 and 9), we will only be left with

the middle short multiplets [j + 1]0 ⊕ 2[j]0 ⊕ [j − 1]0 of zero grading. Indeed, the grade

+1 representations one removed from the top level are eliminated by the right cohomology

(see figure 11) while the grade −1 representations one removed from the top level are

eliminated by the left cohomology (see figure 10). A similar reasoning, exchanging left and

right cohomologies in the argument, shows that the level one removed from the bottom

level is also entirely eliminated in the double complex.

The full solution to our cohomological problem is then a sum over the spin j of the

representations ([j + 1]L ⊕ 2[j]L ⊕ [j − 1]L) ⊗ [j]R, where we tensored in the right short

multiplet of equation (4.4). In conclusion, we found the physical state space:

Vphys =
∞
∑

j=0

([j + 1]L ⊗ [j]R ⊕ 2[j]L ⊗ [j]R ⊕ [j]L ⊗ [j + 1]R), (4.7)

3This is dictated for instance by the demand that one recuperates flat space supergravity in the infinite

radius limit.
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where we have written the solution in a manifestly left-right symmetric manner. We note

that the full cohomology has reduced to a direct sum of tensor product spaces of short

representations of the left and right supersymmetry algebra. The big infinite dimensional

indecomposable structure has been cut into finite dimensional and unitary representations

by the sharp scissors of physical cohomology.

Remarks. Since the final result localized on middle short multiplets in the Kac compo-

sition factors, it should be clear that the quadratic Casimir itself vanishes in cohomology

(since the quadratic Casimir acts diagonally up to a term that changes the level of short

multiplets). All constraints on physical states are automatically satisfied once we restrict

to the above left-right cohomology.

An important difference with the reparameterization invariant superparticle on

GL(1|1) is the fact that the physical cohomology consists of finite dimensional represen-

tations of the supergroup. The origin of this further reduction lies in the fact that the

Berkovits cohomology is more refined, and in particular eliminates all fermionic target

space directions, rendering the model unitary. To obtain a similar finding in the GL(1|1)

case, one would need to refine the cohomology beyond the quadratic Casimir operator, for

instance by introducing a BRST operator proportional to a space-time supercharge.

4.5 The comparison with Kaluza-Klein supergravity results

We can compare our final answer to two related results in the literature. Firstly, in [19]

it was shown that the physical state conditions agree with the linearized supergravity

equations of motion, by explicitly realizing the action of the symmetry algebra as differential

operators acting on the component fields. Secondly, in [20] the Kaluza-Klein reduction of

(2, 0) chiral supergravity on AdS3×S3 was performed in terms of the component fields. The

final result of this two-step analysis of physical states can be seen in figures 1, 2 and 3 in [20].

In our compact notation, the figures 2 and 3 correspond to two [j]L×[j]R representations of

the algebra psu(2|2).4 Similarly, by rendering the su(2)⊕su(2) representation content of the

multiplets [j−1]L× [j]R and [j]L× [j−1]R manifest, we can match them onto the multiplet

visualized in figure 1 of [20], and its conjugate multiplet. We have found full agreement.

In passing we note that the technique used in [20] of comparing Kaluza-Klein reduction

on a sphere to Kaluza-Klein reduction on AdS3, by analytic continuation, precisely agrees

with the analytic continuation technique used here. We claim therefore that the analysis

in the case of PSU(1, 1|2) runs along precisely the same lines as the analysis performed in

this paper. The crucial technical aspect of the analysis will be that the weight spaces of

the representations that arise are all finite dimensional. It will be interesting to confirm

this expectation by explicitly analyzing the extension of the results of [24] on the struc-

ture of projective representations to the case of projective representations built on discrete

lowest and highest weight representations, and to carefully state the mathematical and co-

homological results in the context of the category of representations with finite dimensional

weight spaces.

4We have that n = 1 in [20] since we only have a single tensor multiplet in our supergravity theory [18].
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In conclusion, we observe that we not only coded the supergravity equations of mo-

tion [19] algebraically, but we also immediately obtained their solution upon Kaluza-Klein

reduction of supergravity on AdS3 × S3 [20]. By keeping the space-time super isometries

manifest, we were able to calculate very efficiently. We thus reaped a reward for working

in the Berkovits formalism.

5 Conclusions

The space of functions on a supergroup has a quadratic Casimir, or Laplacian, with non-

trivial Jordan form. That property is inherited by conformal two-dimensional sigma-models

with supergroup target. We showed that for a massless particle on a supergroup with

reparameterization invariant action, the quadratic Casimir operator becomes diagonalizable

in cohomology.

Secondly, to analyze further how the on-shell spectrum of string theory in AdS back-

grounds with RR flux unitarizes in conformal gauge, we studied the stringy physical state

space cohomology for a particle on the supergroup PSU(1, 1|2). By keeping space-time

supersymmetry manifest at all stages, we were able to efficiently compute the Kaluza-

Klein supergravity spectrum (corresponding to the particle limit), and to understand alge-

braically how unitary superconformal multiplets arise in cohomology.

We believe our kinematical analysis shows that we should make an effort to isolate

those properties of the logarithmic conformal field theories arising on supergroups and

their cosets that will survive in the physical state space of string theory. From our study

it is clear that a lot of the intricate properties of correlation functions associated to the

logarithmicity of the conformal field theories will not survive in the BRST cohomology,

simply because the states involved in those intricate correlators are not physical. It is an

important open problem to thoroughly understand how to efficiently isolate the stringy

data within these logarithmic conformal field theories.

As a byproduct of our analysis of these questions, we showed that by using super

algebra we can very efficiently compute Kaluza-Klein supergravity spectra on maximal

bosonic subgroups of supergroups. Our technique generalizes to cosets of supergroups, like

AdS5 × S5 or AdS2 × S2, etcetera, and is likely to provide a very efficient calculation of

the full Kaluza-Klein spectrum.

We find it interesting that working in a manifestly supersymmetric formalism requires

one to adopt super algebra representations that are considerably more intricate than Kac

modules.
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A A few results in gl(2|2) representation theory

In the bulk of the paper, we refer to some results in the representation theory of the super-

algebra gl(2|2) of four-by-four super matrices. The superalgebra sl(2|2) is a subalgebra of

gl(2|2), consisting of matrices of zero supertrace, and the superalgebra psl(2|2) is an ideal

of sl(2|2) where we mod out by the identity matrix. As a consequence, a representation of

psl(2|2) lifted to a representation of gl(2|2) will have a trivial representation of the identity

matrix, while the representation of the other extra u(1) is not determined uniquely. Note

that under the extra anti-diagonal u(1), the fermionic entries of the supermatrix, corre-

sponding to the fermionic generators, are charged. The point of embedding the psl(2|2)

representations in gl(2|2) representations is that we have this extra u(1) charge grading at

our disposal in order to distinguish various representation spaces.

Lifting representations. The super algebra gl(2|2) has a Cartan subalgebra h of diago-

nal matrices H = diag(h1, h2, h3, h4). We define linear functionals ǫi(H) = hi and δj(H) =

h2+j for i ∈ {1, 2}. The algebra has the roots ǫi − ǫj, δi − δj for i 6= j and ǫi − δj , δi − ǫj for

i, j ∈ {1, 2}. Here we follow [24] closely, and denote the weights λ of a gl(2|2) representation

by λ = (a1, a2|b1, b2) for the weight λ = a1ǫ1 + a2ǫ2 + b1δ1 + b2δ2. We have that the weight

λ = (a1, a2|b1, b2) is atypical when one of the numbers a1 +b1 +1, a1 +b2, a2 +a1, a2 +b2−1

is zero. It is maximally atypical when the weight is of the form λ = (a1, a2| − a2,−a1).

We want to lift representations of the super algebra psl(2|2) to representations of

the super algebra gl(2|2). To that end, we demand first of all that the identity matrix

in gl(2|2) be represented trivially, namely that the coefficients of the weight λ satisfy
∑2

i=1(ai+bi) = 0. It should also be clear that the spins j1, j2 of the sl(2)⊕sl(2) subalgebras

of both gl(2|2) and psl(2|2) are associated to the coefficients of the weights ǫ1 − ǫ2 and

δ1 − δ2 in the weight λ while there is also another overall anti-diagonal u(1) associated

to the coefficient of the weight
∑

i(ǫi − δi) in the weight λ. Therefore, a possible choice

of lift of a psl(2|2) representation characterized by spins j1,2 is to take the weight of the

lifted representation of gl(2|2) to be λ = j1(ǫ1 − ǫ2) + j2(δ1 − δ2) = (j1,−j1|j2,−j2). If

we consider positive spins only, we have an atypical weight when j1 = j2. Indeed, the Kac

module built on a ground state with spins j1 = j2 is atypical. When the spins are equal,

we automatically have maximal atypicality from the perspective of the algebra gl(2|2).

The Kac composition series for maximally atypical modules. We concentrate

on the relevant case of the atypical psl(2|2) modules, which lift to maximally atypical

modules of the algebra gl(2|2). Moreover, we will focus on spins j1 = j2 = j which are not

too small, to avoid exceptional cases. We then have from the results of ([24] theorem 4.1.5),

that the Kac modules that appear in the Kac decomposition series of the projective cover

are the modules K(j,−j|j,−j), K(j,−j + 1|j − 1,−j), K(j + 1,−j|j,−j − 1) as well as

K(j+1,−j+1|j−1,−j−1). When we restrict to the psl(2|2) action, these Kac modules of

gl(2|2) correspond to psl(2|2) Kac modules K(j, j), K(j−1/2, j−1/2), K(j +1/2, j +1/2)

and K(j, j). Their anti-diagonal U(1) charges (divided by two) distinguish the first and

last K(j, j) representations. Their anti-diagonal gradings are 0, 1, 1, 2 respectively.
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The composition series. We can also borrow the result for the composition series of

the projective cover in terms of short multiplets from the gl(2|2) result. Indeed, the result

of ([24] corollary 4.1.5 and lemma 4.1.6) is used in figure 7 representing the composition

series of the projective representation in terms of irreducible modules drawn in the bulk of

the paper (and [24] contains even more detail). Thus, through the embedding, we gained

that we are able to distinguish short representations by their anti-diagonal u(1) charge,

and that we can borrow freely from gl(2|2) representation theory where we can apply the

Berenstein-Gelfand-Gelfand duality theorem.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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