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1 Introduction

The AdS/CFT correspondence [1] provides an elegant idea to the study of strongly coupled

quantum field theories by relating them to certain classical gravity theories or string sys-

tems. Nowadays, the holographic correspondence has also become a very efficient method

to deal with the strongly interacting systems in condensed matter physics. A great deal of

progress has been made in the application of this holographic method to condensed matter

physics. Some nice reviews on this subject can be found in [2–7].

The high temperature superconductor is an exciting while not completely understood

subject in condensed matter physics and it remains an unsolved mystery because its theoret-

ical basis might be a strongly coupled field theory. It is interesting to use the gauge/gravity

duality to obtain some insights into the properties of superconductors. The simplest model

to obtain a holographic superconductor with quite similar behavior to real superconductors

was first built in [8, 9] through Einstein gravity which is minimally coupled to a Maxwell

field and a charged complex scalar with a potential term. Below some critical temperature

Tc, the charged black hole solutions develop a non-trivial hair. From the point of view of

the dual field theory a U(1) symmetry breaks below Tc at a finite charged density because of

the condensation of a charged scalar.1 This model naturally realized s-wave superconduc-

tors and in this paper we will call this model the minimal model for simplicity. Complete

analysis including the backreactions of this system and about the zero temperature limit

has been considered in [14–17]. Later, following [18–20], the fermion spectral function in

this system was analyzed and very similar behavior to what was seen in the angle-resolved

1Note that, according to the dictionary of AdS/CFT, this U(1) symmetry on the field theory side

should be a global one, thus the dual field theory is superfluid [10, 11]. Discussions about how to make

the symmetry a local one can be found in [12, 13]. We assume that this U(1) symmetry will eventually

be gauged.
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photoemission experiments (ARPES) on high Tc cuprates was found in [21–23]. The real-

ization of p-wave superconductors has been studied in [24, 25], and d-wave superconductors

in [26–28].

Although the minimal holographic superconductor model has achieved much success, it

is still necessary to consider more generalized non-minimal holographic superconductors to

incorporate more (or some universal) features of superconductors in real physical systems,

or even to find the dual description of real superconductors. In [29, 30], a general class of

superconductors was considered and some universal behavior was found. Discussions on

other aspects of generalized holographic superconductors can be found e.g. in [31, 32].

One of these interesting generalized holographic superconductor models [30] is the

Einstein-Maxwell-dilaton model.2 For our aim to realize holographic superconductors from

Einstein-Maxwell-dilaton gravity, there are some additional constraints on the form of the

action of the gravity theory. One of these constraints is that AdS Reissner-Nordström (RN)

black holes should be solutions to the theory at a finite charge density. This excludes the

eαηF 2 type Einstein-Maxwell-dilaton models, as the equation of motion for the scalar field η

in this theory ensures that all the charged black holes carry non-trivial hair. This motivates

people to consider the Cosh(αη)F 2 type Einstein-Maxwell-dilaton models where AdS RN

black hole solutions can exist. This was first studied in the framework of holographic

superconductors in [30], where it was found that this model shares essentially the same

physics as the minimal model in [14] when α = 1. In a nice early paper [36], the phase

transition between AdS RN black holes and dilatonic black holes with neutral dilaton was

studied in this type of models and some novel behavior in the electric conductivity at low

frequencies was found. However, because the dilaton considered there is neutral, it does

not have a dual superconductor description. In this paper, we will consider this model with

general values of α and charged dilatons in the framework of holographic superconductors.

For the values of α and charge q we consider, there is always a critical temperature at

which a second order thermal phase transition occurs between a hairy black hole and the

AdS RN black hole in the canonical ensemble. Below this temperature the dual theory is

in a superconducting phase while above this temperature the dual theory is in a normal

phase. We also study the electric conductivity of the dual superconductor. For the values

of α and the charge q where α/q is small the dual superconductor has similar properties

to the minimal model as pointed out in [30]. However, for the values of α and q where

α/q is large enough, the electric conductivity of the dual superconductor exhibits novel

properties which are very different from the minimal model at low frequencies, e.g. near

2The terminology “dilaton” is not so accurate here. Generally “dilaton” refers to a real scalar field

which is non-minimally coupled to the Einstein-Maxwell theory. Hairy black hole solutions widely exist in

Einstein-Maxwell-dilaton theory and the holographic dual for Einstein-Maxwell-dilaton model is itself very

interesting because Einstein-Maxwell-dilaton gravity is very common in the low-energy effective theories of

string theory and black hole solutions in Einstein-Maxwell-dilaton gravity may exhibit some quite special

thermal properties [33]. The holography of dilaton black holes has been studied in [33–36] (see also [37–44]).

However, in the framework of holographic superconductors the scalar field arising in the bulk theory has to

be a complex one as it has to be charged under the Maxwell field, and in the title and the remainder of this

paper by “Einstein-Maxwell-dilaton model” we actually mean the Einstein-Maxwell gravity non-minimally

coupled to a complex scalar in a similar way to the dilaton field.
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ω → 0, a “Drude Peak” arises. This can also be seen from the shape of the Schrödinger

potential after translating the calculation of the electric conductivity into a one dimensional

scattering problem.

In the remainder of this paper, we will first construct the basics of Einstein-Maxwell-

dilaton model in section 2. In section 3 we give the numerical results of the phase transition

between hairy black holes and AdS RN black holes in a canonical ensemble. In section 4

we show the behavior of the electric conductivity of the dual superconductor. Section 5 is

devoted to conclusions and discussions.

2 Basic set-up for Einstein-Maxwell-Dilaton models

In this section we follow [30] to consider a generalized holographic superconductor model

built from the most generalized covariant gravity Lagrangian with at most two derivatives

of fields in 3+1 dimensions. The model has the following field contents: a metric field gµν ,

a U(1) gauge field Aµ, a real scalar field η and a Stückelberg field θ, which are coupled in

the following way

I =
1

16πG

∫

d4x
√
−g

[

R− 1

4
G(η)FµνFµν +

6

ℓ2
U(η)− 1

2
(∂η)2 − 1

2
J(η)(∂µθ−Aµ)2

]

, (2.1)

where G(η), U(η) and J(η) are three functions of the scalar η, whose forms can affect the

dynamics of the dual superconductor.

This system has a U(1) gauge symmetry and the gauge transformations are the stan-

dard one Aµ → Aµ + ∂µΛ, θ → θ + Λ, so we can choose the gauge θ = 0 in the following

calculations. In fact, we can interpret the scalar field η as the modulus of a complex scalar

ψ and θ as its phase, i.e. ψ = ηeiqθ.

The Einstein equation of motion for gµν is

Rµν − 1

2
gµν

(

R+
6

ℓ2
U(η) − 1

2
(∂αη∂

αη) − 1

4
G(η)F 2 − 1

2
J(η)A2

)

− 1

2
∂µη∂νη −

1

2
J(η)AµAν − 1

2
G(η)FµρF

ρ
ν = 0. (2.2)

The equation of motion for the gauge field Aµ is

∇µ

(

G(η)Fµν

)

− J(η)Aν = 0, (2.3)

and the equation of motion for the scalar field η is

∇µ∇µη − 1

4

∂G(η)

∂η
FµνF

µν +
6

ℓ2
∂U(η)

∂η
− 1

2

∂J(η)

∂η
AµA

µ = 0. (2.4)

The choices of the three functions G(η), U(η) and J(η) are crucial to the building of

the dual superconductor here. To build a superconductor from AdS/CFT, we need to have

an AdS vacuum solution in this system, which requires that U(η) has a finite and positive

extremum at η = 0. Also we require that AdS RN black hole is a solution to this system.
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As a very simple example, in this paper we consider the following choices of the functions

G(η), U(η) and J(η) as

G(η) = cosh(αη),

U(η) = 1 − ℓ2

12
m2η2,

J(η) = q2η2, (2.5)

where α, m and q are constants.

Under this choice, the system has an extra Z2 symmetry: η → −η. Note that the

AdS RN black hole would not be a solution to this system if we choose G(η) to be of the

form eαη, which can be easily seen from the equations of motion. This choice of the three

functions (2.5) has been studied in [30] and [36] for the cases α = 1, q = 3 and q = 0

with general α, respectively. In [30] it was pointed out that for α = 1 and q = 3, this

model gives a dual superconductor which has very similar properties to the minimal model

studied in [14]. In [36], the authors found that at q = 0 there are also phase transitions for

general α and as α increases, some novel properties arise. However, as q = 0 in this model,

the U(1) symmetry is not broken and the dual field theory does not have a superconductor

description. In this paper we will analyze this model in detail for general values of α and

q 6= 0 and find that as the value of α increases the dual superconductor has some different

behavior compared to the minimal model discussed in [14].

To give the dual superconducting phase, we need a hairy solution with the form as-

sumed to be

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2(dx2 + dy2),

A = φ(r)dt,

η = η(r). (2.6)

The equations of motion can be simplified to be

χ′ +
r

2
η′2 +

r

2g2
eχJ(η)φ2 = 0, (2.7)

1

4
η′2 +

G(η)

4g
eχφ′2 +

g′

rg
+

1

r2
− 3

ℓ2g
U(η) +

1

4g2
eχJ(η)φ2 = 0, (2.8)

φ′′ + φ′
(

2

r
+
χ′

2
+
∂ηGη

′

G

)

− J(η)

gG(η)
φ = 0, (2.9)

η′′ + η′
(

2

r
− χ′

2
+
g′

g

)

+
1

2g
eχ∂ηGφ

′2 +
6

ℓ2g
∂ηU +

1

2g2
eχ∂ηJφ

2 = 0, (2.10)

under the assumption (2.6). Note that (2.7) and (2.8) are the combinations of the Einstein

equations of motion for gtt and grr, while (2.9) and (2.10) are the equations of motion

for At and η, respectively. The equation of motion for gxx is not independent and it can

be derived from the four equations above.3 We can see that the AdS RN black hole is a

3Since this is not an obvious observation, we will give a simple proof in the appendix.
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solution to this system with

χ(r) = η(r) = 0, g(r) =
r2

ℓ2
− 1

r

(

r3+
ℓ2

+
ρ2

4r+

)

+
ρ2

4r2
and φ = ρ

(

1

r+
− 1

r

)

. (2.11)

It is difficult to find solutions to the equations of motion analytically and we will do

this in this paper using numerical methods. We can solve the equations by integrating

the fields from the horizon r+, which is determined by g(r+) = 0, to infinity numerically.

There are totally four physical fields which need to be solved: η(r), φ(r), χ(r) and g(r).

We demand that φ(r) vanish at the horizon in order for the gauge one-form to be well

defined at the horizon [8]. At the horizon there are four independent parameters

r+, η+ ≡ η(r+), E+ = φ′(r+), χ+ = χ(r+), (2.12)

as g(r+) = 0 and η′(r+) can be determined from the four parameters above using the

equations of motion expanded near the horizon:

[

rge−χ/2
]′ − 3r2

ℓ2
e−χ/2U(η) +

r2G(η)

4
eχ/2φ′2 = 0,

η′(r+)g′(r+) +
1

2
eχ+∂ηG(η+)E2

+ +
6

ℓ2
∂ηU(η+) = 0. (2.13)

We can get solutions of the system by integrating the equations of motion given the

initial values of the four parameters above at the horizon.

The Hawking temperature for the solution can be calculated as

T =
r+

16πℓ2

(

12e−χ+/2U(η+) − eχ+/2G(η+)E2
+ℓ

2

)

. (2.14)

Before doing the numerical calculations, we list the three scaling symmetries of this

system, which can help simplify the calculation. The first one is

eχ → b2eχ, t→ bt, φ→ φ/b, (2.15)

and we can use this scaling symmetry to set χ(r) = 0 at the boundary. The second one is

r → br, (t, x, y) → (t, x, y)/b, g → b2g, φ→ bφ, (2.16)

which can be used to set r+ = 1. The third scaling symmetry is

r → br, t → bt, ℓ→ bℓ, q → q/b, (2.17)

which rescales the metric to b2g(r) and A = φ(r)dt to bA. This scaling symmetry can be

used to set ℓ = 1 during the calculations.

At the AdS boundary r → ∞ the behavior of the fields are the following. For the

scalar field

η(r) ∼ ψ(△−)

r△−

+
ψ(△+)

r△+
, (2.18)

where

△± =
3 ±

√
9 + 4m2ℓ2

2
. (2.19)
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To have a stable theory we need to specify a boundary condition either ψ(△−) = 0 or

ψ(△+) = 0. For −9/4 < m2ℓ2 < −5/4, either ψ(△−) = 0 or ψ(△+) = 0 can be chosen as

the boundary condition. For −5/4 ≤ m2ℓ2, we can only impose the boundary condition

ψ(△−) = 0. In this paper we will set m2ℓ2 = −2 for simplicity and △− = 1 while △+ = 2

for this value of m. Thus with different choices of boundary conditions we can read off the

expectation value of a dimension one operator O1 or of a dimension two operator O2. For

the boundary condition ψ(1) = 0, we can have

〈O2〉 = ψ(2), (2.20)

and for the boundary condition ψ(2) = 0, we have

〈O1〉 = ψ(1). (2.21)

The boundary behavior of the gauge field is

φ(r) ∼ µ− ρ

r
, (2.22)

where µ is the chemical potential of the dual field theory while ρ is the charge density. The

boundary behavior of the metric fields χ(r) and g(r) can be determined from the equations

of motion to be

χ(r) ∼ △ψ(△)2

4ℓ2
1

r2△
, (2.23)

and

g(r) ∼ r2

ℓ2
+

△ψ(△)2

4ℓ2
1

r2△−2
− 2M

r
, if 1 < 2△ ≤ 3,

g(r) ∼ r2

ℓ2
− 2M

r
, if 3 < 2△. (2.24)

After using the scaling symmetries there are only two parameters at the horizon which can

be used as initial values: η+ and E+. At the boundary, we have five parameters which give

the properties of the dual field theory: µ, ρ, ψ(1), ψ(2) and M . Thus by integrating out

from horizon to infinity, we have a map:

(η+, E+) 7→ (µ, ρ, ψ(1), ψ(2),M). (2.25)

3 Numerical results for the condensates

In this section we give the numerical results for the condensates of the dual superconductor

in a canonical ensemble, i.e. the charge density of the system is fixed to a value ρ. For

the value of m we choose, there can be two boundary conditions for η(r): ψ(1) = 0 with

ψ(2) giving the condensate O2 or ψ(2) = 0 with ψ(1) giving the value of the condensate

O1. With the constraints from the boundary condition, the map (2.25) reduces to a one

parameter family of solutions for each choice of α and q. We can think of this parameter

as being the temperature of the theory at a fixed charge density.

– 6 –
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V

Figure 1. Free energies for the hairy black hole (the purple line) and the AdS RN black hole (the

blue line) at a fixe charge density for α = 5, q = 1 and the operator O1.

We find that for the values of α and q we considered, there is always a critical tempera-

ture Tc below which charged hairy black hole solutions can be found and above this critical

temperature only AdS RN black hole solutions exist at a fixed nonzero charge density.

The free energy in the canonical system can be calculated from the Euclidean gravity

action through a Legendre transformation. The free energy of the hairy black hole is

calculated to be [14, 36]

FHairy = V (−2M + µρ), (3.1)

and the free energy of the AdS RN black hole is

FRN =
V

r+

(

−r4+ +
3ρ2

4

)

, (3.2)

where V is the volume of the (x, y) plane.

At temperatures lower than the critical temperature Tc, hairy black holes have a smaller

free energy than the AdS RN black holes. As an illustration we plot the picture of free

energies for hairy black holes and AdS RN black holes for α = 5 and q = 1 and the operator

O1 in figure 1. Thus below this critical temperature, the system is in a superconducting

phase while above this critical temperature, the system is in a normal phase.

The origin of this instability of AdS RN black holes at low temperatures is the same as

in the minimal model [14], which can be attributed to the fact that the effective mass of the

scalar in the zero temperature limit of the AdS RN black holes violates the Breitenlohner-

Freedman (BF) bound near the horizon.

For the AdS RN black hole (2.11), the temperature is T = (12 − ρ2)/16π, so the

extremal limit is at ρ = 2
√

3 and the near horizon geometry of the AdS RN black hole is

AdS2× R2, i.e.

ds2 = −6(r − 1)2dt2 +
dr2

6(r − 1)2
+ dx2 + dy2, φ = 2

√
3(r − 1). (3.3)

Plug (3.3) into (2.10) and we can recover a wave equation in AdS2 in the η ≪ 1 limit,

η,r̃r̃ +
2

r̃
η,r̃ −

m2
eff

r̃2
η = 0, (3.4)

– 7 –
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0.0 0.2 0.4 0.6 0.8 1.0
0

2
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8

T�Tc

<qO1>

Tc

Figure 2. Values of the condensate O1 as a function of the temperature for all the combinations of

α = 0, 1, 2, 3, 5, and q = 1 (blue), 3 (black), 5 (green), 8 (purple). For each color, the lines from top

to down correspond to α = 0, 1, 2, 3, 5 with the same value of q dictated by the color respectively.

where we introduced a new effective mass

m2
eff =

m2 − 2q2 − 6α2

6
, (3.5)

and a new variable r̃ = r − 1.

An instability would arise when the mass of η violates the BF bound in the near

horizon region, i.e. the AdS2 spacetime, while satisfies the BF bound for four dimensional

AdS4 spacetime:

m2 − 2q2 − 6α2 < −3

2
, m2 > −9

4
. (3.6)

This kind of instability is very useful to the realization of holographic phase transition, and

a recent application can be found in [45].

The values of the condensates in the superconducting phase as functions of the tem-

perature for various values of α and q are plotted in figure 2 for O1 and in figure 3 for

O2 respectively. As noticed in [5, 36], for any given values of α and q there are usually

several different hairy black hole solutions with the same correct asymptotic behavior and

we always choose the only one solution with a monotonic scalar profile.

In figure 2, the values of the condensate O1 as a function of the temperature for

α = 0, 1, 2, 3, 5, and q = 1, 3, 5, 8 are plotted. It can be easily seen that for any fixed value

– 8 –
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0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

T�Tc

q < O2 >

Tc

Figure 3. Values of the condensate O2 as a function of the temperature for all the combinations

of α = 0, 1, 2, 3, 5, and q = 1 (blue), 3 (black), 5 (green), 8 (purple) except α = 0, q = 1. For each

color, the lines from top to down correspond to α = 0, 1, 3, 5, 8 with the same q dictated by the

color respectively. The case α = 0, q = 1 is not in the figure as it has a much larger
√

〈O2〉/Tc

(about 21) than other cases.

of q, the value of O1 decreases as the value of α increases. In figure 3, the values of O2 as

a function of the temperature for α = 0, 1, 2, 3, 5, and q = 1, 3, 5, 8 are plotted. Note that

as the maximum value of O2 for α = 0 and q = 1 is much larger than for the other values

of α and q, it is not plotted out in figure 3. In figure 3, it can also be discovered that as α

increases, the value of O2 decreases for fixed values of q.

It can be checked that
∂FHairy

V ∂T

∣

∣

∣

∣

T=Tc

= ∂FRN

V ∂T

∣

∣

∣

∣

T=Tc

while
∂2FHairy

V ∂T 2

∣

∣

∣

∣

T=Tc

6= ∂2FRN

V ∂T 2

∣

∣

∣

∣

T=Tc

,

so the phase transition at Tc is a second order phase transition. We can also see this

from the behavior of the condensates near the critical temperature Tc. Near Tc, both the

condensates O1 and O2 behave like qOi ≈ aiT
i
c(1−T/Tc)

1/2, for i = 1, 2 and a1 and a2 are

two constants which differ while α and q change. In table 1 we list the values of a1 and a2

corresponding to different values of α and q. The behavior qOi ≈ aiT
i
c(1 − T/Tc)

1/2, for

i = 1, 2 is consistent with the prediction from the mean field theory for second order phase

transitions [9].

The critical temperature Tc is proportional to
√
ρ and it also depends on the values of

α and q. Tc/
√
ρ increases as α or q increases. In figure 4, the values of Tc/

√
ρ as functions

– 9 –
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0.6Tc

Ρ
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Α 2

4

6

8

q

0.1

0.2

0.3

0.4
Tc

Ρ

Figure 4. Left: The values of Tc/
√
ρ as a function of α and q for the operator O1; Right: The

values of Tc/
√
ρ as a function of α and q for the operator O2.

q\α 0 1 2 3 5

1 8.0 6.7 4.7 3.4 2.2

3 9.0 8.7 8.4 7.5 5.7

5 9.1 8.9 8.7 8.6 7.6

8 9.3 9.3 9.3 9.0 8.6

q\α 0 1 2 3 5

1 670 100 30 17 9.3

3 182 153 97 60 31

5 155 146 126 98 57

8 148 145 137 122 92

Table 1. Left: The coefficient a1 for various combinations of α and q. Right: The coefficient a2

for various combinations of α and q.

of α and q are plotted for the operators O1 and O2 respectively.

4 Electric conductivity

The electric conductivity of the dual superconductor in the superconducting phase can

be calculated from linear perturbations of gtx and Ax around the hairy black hole in

the gravity side. We consider perturbations with zero momentum: Ax = ax(r)e−iωt and

gtx = f(r)e−iωt, and these perturbations can get decoupled from other perturbations. The

equations of motion for the two perturbations are

a′′x +

(

g′

g
− χ′

2
+
∂ηG

G
η′

)

a′x +

(

ω2

g2
eχ − J

gG

)

ax +
φ′

g
eχ

(

f ′ − 2

r
f

)

= 0, (4.1)

f ′ − 2

r
f +Gφ′ax = 0. (4.2)

Plug (4.2) into (4.1), and we can obtain a single equation of motion for ax(r):

a′′x +

(

g′

g
− χ′

2
+
∂ηG

G
η′

)

a′x +

(

(ω2

g2
− Gφ′2

g

)

eχ − J

gG

)

ax = 0. (4.3)

The asymptotic behavior of the Maxwell field near the boundary is

ax ∼ a(0)
x +

a
(1)
x

r
, (4.4)
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Figure 5. α = 5, q = 1. The three pictures on top are electric conductivities for the condensate

O1. From left to right, the real part of the electric conductivities are functions of w/T , w/Tc and

w/q〈O
1
〉 respectively. In the middle, the imaginary part of the conductivity is also plotted using

dashed lines. In the first picture, the lines correspond to to T/Tc = 1, 0.801, 0.499, 0.201 from top to

bottom while in the second and the third pictures, the lines correspond to T/Tc = 0.499, 0.201 from

top to bottom. The three pictures on the bottom are for the condensate O2. In the first picture,

the lines correspond to T/Tc = 1, 0.801, 0.504, 0.200 from top to bottom while in the second and

the third pictures, the lines correspond to T/Tc = 0.504, 0.200 from top to bottom. There is a delta

function in Re(σ) at w = 0, which is not plotted out.

and the conductivity of the dual superconductor can be calculated from the formula [14]

σ(ω) = − i

ω

a
(1)
x

a
(0)
x

. (4.5)

Thus in order to get the electric conductivity, we still have to use numerical calculations

to get the values of a
(0)
x and a

(1)
x on hairy black hole backgrounds with different temperatures

for various combinations of α and q. Before performing the numerical calculations, we need

to get the behavior of ax near the horizon. From (4.3) it can be easily seen that ax should

vanish as power law of g(r) near the horizon, i.e.

ax ∝ g
−iω

q

eχ

g′2

∣

∣

r=r+ . (4.6)

The values of electric conductivities as functions of ω/T , ω/Tc and ω/(q〈Oi〉)1/i, i =

1, 2 are plotted in figures 5, 6, 7, 8, 9, 10 for (α, q) = (5, 1), (0, 3), (2, 3), (3, 3), (5, 3), (3, 5)

respectively. As there is a pole at ω = 0 in the imaginary part of the electric conductivity,

a delta function arises in the real part of the electric conductivity at ω = 0 using the

Kramers-Kronig relations.

From these figures, we can see that at fixed values of q, the curves of the electric

conductivities behave similarly to the minimal model (figure 6) in [14] when α is small,

and as we increase the value of α some novel behavior of the electric conductivities arises.
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Figure 6. α = 0, q = 3. The three pictures on top are electric conductivities for the condensate

O1. In the first one, the lines correspond to T/Tc = 1, 0.792, 0.490, 0.204 from top to the bottom.

The three pictures on the bottom are for the condensate O2. The lines in the first one correspond

to T/Tc = 1, 0.804, 0.508, 0.205 from top to bottom. In the four pictures on the right, the lines

correspond to T/Tc = 0.5, 0.2 from top to bottom.
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Figure 7. α = 2, q = 3. The three pictures on top are electric conductivities for the condensate O1.

The lines in the first picture correspond to T/Tc = 1, 0.78, 0.51, 0.20 from top to the bottom. The

three pictures on the bottom are for the condensate O2. The lines in the first one correspond to

T/Tc = 1, 0.84, 0.52, 0.21 from top to bottom. In the four pictures on the right, the lines correspond

to T/Tc = 0.5, 0.2 from top to bottom.

As an illustration, we can compare figure 9 with figure 6 and find that at the small ω

region, the real parts of the conductivities of the two models behave quite differently. In

figure 9 with α = 5 the real part of the conductivity exhibits a “Drude Peak” in the region

ω → 0 and has a dip at a finite and small value of ω. Among these figures, figure 5 for

α = 5 and q = 1 has the largest deviation from the minimal model and it behaves similarly
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Figure 8. α = 3, q = 3. The three pictures on top are electric conductivities for the condensate

O1. The lines in the first picture correspond to T/Tc = 1, 0.8, 0.5, 0.2 from top to the bottom. The

three pictures on the bottom are for the condensate O2. The lines in the first picture correspond

to T/Tc = 1, 0.8, 0.5, 0.2 from top to bottom. In the four pictures on the right, the lines correspond

to T/Tc = 0.5, 0.2 from top to bottom.
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Figure 9. α = 5, q = 3. The top three pictures are for the condensate O1 and the bottom for O2.

The lines in the two pictures on the left correspond to T/Tc = 1, 0.8, 0.5, 0.2 from top to bottom.

In the four pictures on the right, the lines correspond to T/Tc = 0.5, 0.2 from top to bottom.

to figure 9 qualitatively while it has larger maximum values in the limit ω → 0, which are

0.93, 1.82, 7.2, 23 for O1 and 0.78, 1.44, 3.50, 3.0 for O2 in figure 5. This novel behavior

has also been found in holographic strange metals by [46] and in [36] for the case q = 0.

As there are peaks for Re(σ) at ω → 0 for certain values of α and q, the height of

the peaks depends on the temperature and α, q. In figure 11 we show the dependence of

the height on the temperature for some values of α and q. We can see that for α = 5,
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Figure 10. α = 3, q = 5. The top three pictures are for the condensate O1 and the bottom are

for O2. The lines in the two pictures on the left correspond to T/Tc = 1, 0.8, 0.5, 0.2 from top

to bottom. In the four pictures on the right, the lines correspond to T/Tc = 0.5, 0.2 from top to

bottom.
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Figure 11. Left: The height of the peak at ω → 0 for q = 3, α = 0 (blue), 2 (black), 3 (red), 5

(cyan) for the operator O2; Right: The height of the peak at ω → 0 for α = 5, q = 1 (blue), 3

(cyan), 5 (red), 8 (black) for the operator O2.

the height does not increase monotonically like in the minimal model and has a maximum

at some finite temperature. This maximum value also decreases as q increases. Thus we

can see that all these novel properties at small frequencies become more apparent as α/q

goes larger.

From figure 11, we can also find that as the temperature approaches zero, i.e. T/Tc → 0,

the height of the peak vanishes for all the values of α and q considered here. Thus as

T/Tc → 0, the peak vanishes and a gap arises, so the behavior of Re(σ) becomes again

similar to the case of the minimal model. From the figures 5, 6, 7, 8, 9, 10 we can also see

that the imaginary parts of the conductivities exhibit poles at ω = 0 and have minimums

at ω/Tc ≈ 8 for the operator O2, so we can also expect here that the width of the gap

ωg/Tc ≈ 8 as T/Tc → 0, which is also the same as in the minimal model [47].
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It is apparent that when we adjust the values of α and q we can get the curves of

electric conductivity with quite different shapes and it is expected that for certain values

of α and q we can get very close to the shapes of the curves observed in the experiments,

for example, figure 14 in [48].

The different small frequency behavior of electric conductivities can also be shown by

rewriting the equation (2.9) into a one dimensional Schrödinger equation and expressing

the electric conductivity using the reflection coefficient. To do this, we introduce a new

radial variable u which is defined by

du =
eχ/2

g
dr. (4.7)

At large r, du = dr/r2, so u = −1/r. In this new coordinate system, the boundary is at

u = 0 and the horizon corresponds to u = −∞. We can define a new field Ψ =
√
Gax,

and (4.3) becomes a one-dimensional Schrödinger equation in the new coordinate system,

d2Ψ

du2
+

[

ω2 − V (u)

]

Ψ = 0, (4.8)

with

V (u) = g(Gφ′2 +
J

G
e−χ) +

1√
G

d2
√
G

du2
, (4.9)

where the prime denotes the derivative with respect to r. The potential V (u) has an extra

contribution compared to the case of the minimal model.

To solve the equation (4.8) with ingoing wave boundary conditions at u = −∞, we

can first extend the definition of the potential to all u by setting V (u) = 0 for u > 0 and

then this equation can be solved through a one-dimensional scattering problem. Ψ(u) can

be taken as the wave function and we consider an incoming wave from the right. Thus the

transmitted wave is purely ingoing at the horizon, which satisfies our boundary condition.

While at u ≥ 0, the wave function is

Ψ(u) = e−iωu + Reiωu, u ≥ 0, (4.10)

where R is the reflection coefficient. Using the definition Ψ =
√
Gax and (4.5), we can

have

σ(ω) =
1 −R
1 + R − i

2ω

(

1

G

dG

du

)∣

∣

∣

∣

u=0

. (4.11)

For the case G = const, the formula above goes back to the original result obtained in [16].

Note that the second term is purely imaginary and will not affect the real part of the

conductivity. In fact, it vanishes after considering the asymptotical behavior of the scalar

field η and we can drop it out from the formula. Thus we can see that the real part of the

conductivity is fully determined by the reflection coefficient R, hence by the potential in

the Schrödinger equation.

The shape of V (u) is crucial to the value of the reflection constant and we can analyze

the property of V (u) near the horizon and the boundary. Using the near boundary u→ 0
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Figure 12. V(u) for the operator O2. Left: V (u) for q=3 and α = 0 (blue), α = 1 (cyan), α = 2

(purple), α = 3 (black), α = 5 (green) respectively, at T/Tc = 0.5. Right: V (u) for α = 3 and q = 1

(blue), q = 3 (purple), q = 5 (black), q = 8 (green) respectively, at T/Tc = 0.5.

behavior of the fields we can obtain the near boundary behavior of the potential as

V (u) ∼ ρ2u2 +

[

α2

2
△(2△− 1) + q2

]

ψ(△)2(−u)2(△−1). (4.12)

Thus it vanishes for △ > 1, and is a nonzero constant for △ = 1 while diverges for

1/2 < △ < 1. Near the horizon u → −∞, the first term in (4.9) dominates and the

potential vanishes as Vhe
4πTu. Thus in the following, we mainly focus on the behavior of

V (u) for the operator O2.

In figures 12 and 13 we show the shapes of the potential V (u) for some values of α and

q. In the minimal model, V (u) is always positive along the u-axis and its peak becomes

wider and higher as the temperature lowers. Thus in the minimal model the real part of the

conductivity approaches 1 at large frequencies and becomes very small at low frequencies.

As the temperature lowers, the value of Re(σ) at low frequencies also gets smaller. In our

model, as α/q increases, V (u) can become negative and develop a dip on the left of the

peak, which is quite different from the shape of V (u) in the minimal model. For large

frequencies this does not affect the reflection coefficient much, thus at large frequencies

Re(σ) behaves similarly to the minimal model. While at small frequencies, the reflection

coefficient is affected greatly and thus when α/q is large, Re(σ) exhibits novel behavior

compared to the minimal model.

5 Conclusion and discussion

In this paper we studied a next-to-minimal realization of holographic superconductors from

Einstein-Maxwell-dilaton gravity. There are two adjustable constants in our model: α and
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Figure 13. V (u) for α = 5, q = 1. Left: for the operator O1; Right: for the operator O2. Both of

them are for T/Tc = 1 (blue), 0.9 (cyan), 0.8 (purple), 0.5 (black), 0.2 (green).

q. α describes the coupling between the dilaton and the Maxwell field and q is the charge

of the dilaton.

For the values of α and q we considered, we found that there is always a critical

temperature at which a second order phase transition occurs between a hairy black hole

and the AdS RN black hole in the canonical ensemble. Below this temperature the dual

theory is in a superconducting phase while above this temperature the dual theory is in a

normal phase.

We calculated the value of the condensates in the superconducting phase and found

that as α increases with fixed q, the value of the condensate gets smaller. We also studied

the electric conductivity of the dual superconductor and found that for the values of α and

q where α/q is small the dual superconductor has similar properties to the minimal model

as pointed out in [30]. However, for the values of α and q where α/q is large enough, the

electric conductivity of the dual superconductor exhibits novel properties which are very

different from the minimal model at low frequencies: a “Drude Peak” arises at ω → 0 and

the height of the peak depends on the temperature in a non-monotonic way. This can be

seen from the shape of the potential V (u) which becomes negative at some finite u. For all

the values of α and q we considered, the imaginary part of the electric conductivity always

has a minimum at ω/Tc ≈ 8 for the operator O2, which is the same as in the minimal

model. It is expected that ωg/Tc for the operator O2 is also approximately 8 for all the

values of α and q.

One immediate question is about the zero-temperature limit of the superconductor as

in this paper we mainly focus on the finite temperature behavior. It would be interesting to

add magnetic fields to this system to study the Meissner effect of the dual superconductor

and to understand the structure of fermion spectral functions in this system [21–23, 49]. It
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would also be interesting to try to embed these phenomenological models into the frame-

work of string theory, just as in [50], and add DC currents to the dual field theory to study

the effects of the DC currents as in [51].
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A The proof for footnote 3

In this appendix we show that the equation of motion for gxx can be derived from other

four equations of motion. With our ansatz (2.6) for the solutions, there are only three

nonzero equations of motion (2.2) for gµν , i.e. the equations of motion for grr, gtt and gxx.

These three equations of motion are

−gttRtt + grrRrr + 2gxxRxx +
6

ℓ2
U(η) − 1

2
∇αη∇αη +

1

4
G(η)F 2 +

1

2
J(η)A2 = 0, (A.1)

gttRtt − grrRrr + 2gxxRxx +
6

ℓ2
U(η) +

1

2
∇αη∇αη +

1

4
G(η)F 2 − 1

2
J(η)A2 = 0, (A.2)

gttRtt + grrRrr +
6

ℓ2
U(η) − 1

2
∇αη∇αη −

1

4
G(η)F 2 − 1

2
J(η)A2 = 0. (A.3)

Now our task is to obtain (A.3) from (A.1) and (A.2). (A.1) and (A.2) can be simplified

to be

gttRtt − grrRrr = −1

2
∇αη∇αη +

1

2
J(η)A2, (A.4)

gxxRxx = − 3

ℓ2
U(η) − 1

8
G(η)F 2. (A.5)

To prove the independence, we need to prove that we can obtain (A.3) from (A.4) and (A.5).

For the metric obeying the form of the ansatz (2.6), we have

gttRtt + grrRrr = 2gxxRxx + r(gxxRxx)
′ +

1

2
(gttRtt − grrRrr)

[

1 + r
g′

g
− rχ′

]

+
1

2

[

r(gttRtt − grrRrr)

]′

. (A.6)

Substituting (A.4) and (A.5) into the above equality (A.6), and using (2.4) and the

following useful expression

∂r∂
rη = ∇2η −

(

2

r
− χ′

2

)

∂rη, (A.7)

we can obtain

gttRtt + grrRrr = − 6

ℓ2
U(η) +

1

2
J(η)A2 +

1

2
∇µη∇µη − 1

4
G(η)F 2 + r

[

− 1

4
∂ηG(η)η′F 2

−1

8
G(η)(F 2)′ +

1

4
J(η)(A2)′ +

1

4f
J(η)A2(g′ − gχ′)

]

. (A.8)
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From the equation of motion for the gauge field (2.3), i.e.

(

−χ
′

2
+

2

r

)

G(η)F rt + ∂ηG(η)η′F rt +G(η)∂rF
rt = JAt, (A.9)

we obtain the following identity on shell

G(η)(F 2)′ = −4

r
G(η)F 2 − 2∂ηG(η)η′F 2 + 4J(η)FrtA

t, (A.10)

and at the same time, we also have the following off-shell relation

(A2)′ = 2FrtA
t +

(

χ′ − g′

g

)

A2. (A.11)

Substituting (A.10) and (A.11) into (A.8), we obtain (A.3). Thus only two equations of

motion in (2.2) are independent.
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