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1 Introduction

Recently, following [1–6], non-relativistic variants of the AdS/CFT correspondence have

attracted considerable attention. This has brought to prominence deformations of (asymp-

totically) AdS space-time geometries that exhibit (asymptotic) isometry groups which are

suitable Galilean counterparts of the relativistic conformal group, such as the Schrödinger

group. These space-time geometries are interesting for at least three reasons:

1. First of all, of course, they are candidate gravitational duals to non-relativistic

strongly coupled (scale or conformally invariant) condensed matter and other phys-

ical systems (for reviews see e.g. [7] and [8]). This has led to new ways of looking
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at well-known (if not well understood) physical phenomena, but concrete and quan-

titative progress along these lines is currently hampered by the lack of precise dual

pairs, and by the fact that the holographic dictionary in these space-times is still not

nearly as well understood as in the AdS case.

2. Secondly, and related to the issue just raised, this set-up potentially provides one

with a novel implementation of holography which requires one to suitably generalise

and modify the standard AdS/CFT procedure. While holography is (on fairly gen-

eral and convincing grounds) expected to be a generic feature of a quantum theory of

gravity, currently the only case that is reasonably well understood is that of asymp-

totically AdS space-times. Attempts to generalise this to the assymptotically flat or

dS situation are fraught with technical and conceptual complications. On the other

hand, encouragingly some of the AdS/CFT recipes do appear to “carry over” in a

simple-minded way to the Schrödinger case. What is required now is a more sys-

tematic understanding and underpinning of the calculational procedures, analogous

to that for AdS based on a suitable notion of conformal boundary, the Fefferman-

Graham expansion, and holographic renormalisation (for some concrete work along

these lines see e.g. [9, 10]).

3. As a precursor to this, one needs to gain an as precise understanding as possible of

the properties of the model Schrödinger space-time that are shared with AdS, and

those that set it apart from AdS [11]. In particular, thirdly, Schrödinger space-time

provides us with an interesting and physically well-motivated example of a relativistic

space-time that exhibits a rather peculiar (and almost pathological) causal structure,

quite different from that of AdS (whose lack of global hyperbolicity is its only mild,

and well understood, potential source of pathology). It is thus of interest, both in

its own right and for the reasons mentioned above, to study to which extent the

behaviour of scalar fields, say, on such a space-time is sensitive to, or reflects, the

Galilean oddities of this causal structure (as conventionally defined in terms of point

particle probes and concepts).1

In this paper we will discuss in some detail the issues raised in (3.) in the case of

the Schrödinger space-time with critical exponent z = 2. In Poincaré-like coordinates its

metric takes the form

ds2 = −β2dt
2

r4
+

1

r2
(

−2dtdξ + dr2 + d~x2
)

(1.1)

(reducing to the AdS metric in Poincaré coordinates for β = 0). This coordinate system is

geodesically incomplete (particles can reach r = ∞ in finite proper time without encoun-

tering a singularity) [11]. While some causal properties can be (and have been [3, 14])

reliably read off from the Poincaré patch metric (1.1), a more detailed understanding of

the global and causal properties requires a more global presentation and picture of the

1This is similar in spirit to the question to what extent (quantum) fields are sensitive to point particle

notions of singularities, see e.g. [12, 13].
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Schrödinger space-time. This is provided by the global coordinates introduced in [11] in

which the metric takes the form

ds2 = −β2dT
2

R4
+

1

R2
(−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2) . (1.2)

This reduces to (1.1) for ω = 0, and also gives a (somewhat unusual) global coordinatisa-

tion of AdS for β = 0, ω 6= 0 (plane wave AdS). As a consequence, this allows us to directly

compare and contrast certain global properties of AdS (and of scalar propagation in this

background) with those of the Schrödinger space-time.

To set the stage, in section 2 we discuss various aspects of Schrödinger geometry re-

lated to the global coordinates (1.2). In particular, in section 2.2 we provide a codimension

2 isometric embedding of the Schrödinger space-time which naturally gives rise to these

global cooordinates. This embedding turns out to be not equivariant (i.e. not all isometries

are introduced from the isometries of the flat embedding space-time), and in appendix A

we prove, using some group theory arguments, that indeed there are no codimension 2

equivariant isometric embeddings of the Schrödinger space-time.

In section 3 we study various aspects of the causal structure of Schrödinger space-

time. In section 3.1 we focus on those properties that are common to the Schrödinger and

plane wave AdS geometries. Primarily these are properties of the global time-coordinate T

of (1.2). In particular, we highlight the fact that T , in spite of being a global function with

∂T everywhere timelike, is not a time function in the strict sense. The difference between

AdS and Schrödinger is that the former is stably causal and has a time function (the global

time coordinate τ of the usual global AdS coordinates, for instance) while Schrödinger is

not stably causal and hence admits no time function whatsoever. In this sense, T turns out

to be the closest one can get to having a time function because it only fails to label causally

related events that lie on a T = cst slice ΣT . In section 3.2 we discuss those aspects of the

causal structure that are peculiar to β 6= 0, in particular the non-distinguishing character

of this space-time already noted in [3, 14], and the ensuing strongly Galilean character of

its causal structure.

Among the myriad of definitions and concepts related to the causal properties of a

space-time (see e.g. [15, 16]) we have chosen to focus on those aspects of the causal struc-

ture that we found to have some counterpart in the analysis of scalar fields in the subsequent

section 4. Here we will in particular address the question to which extent time-evolution

of a scalar field is affected by the absence of a global time-function, and to which extent

the Galilean causal structure of the space-time is reflected and encoded in the Green’s

functions and propagators of the theory. Some technical details have been relegated to the

appendices.

2 Global Schrödinger geometry

In this section, we briefly recall some basic features of the geometry of Schrödinger space-

times and record some obervations regarding timelike Killing vectors. We also introduce

a codimension 2 isometric flat space embedding and discuss some aspects of Schrödinger
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geometry that are particularly transparent from this embedding point of view, in particular

global coordinates.

2.1 Isometries, timelike Killing vectors and global coordinates

The metric

ds2 = −β2dt
2

r4
+

1

r2
(

−2dtdξ + dr2 + d~x2
)

(2.1)

(d~x2 = (dx1)2 + · · · (dxd)2) is that of the (d + 3)-dimensional z = 2 Schrödinger space-

time Schd+3 in Poincaré-like coordinates for β2 > 0 and that of AdSd+3 in null Poincaré

coordinates for β = 0.

For β 6= 0 this has the characteristic transitive Schrödinger isometry algebra sch(d)

consisting of spatial rotations Mab and translations Pa and Galilean boosts Va (which we

will not make use of explicitly in the following, for details see appendix A) and a central

element N = ∂ξ of null translations, as well as of an sl(2,R) subalgebra formed by time-

translations H, anisotropic dilatations D and special conformal transformations C,

H = ∂t D = 2t∂t + r∂r + xa∂a C = t2∂t + tr∂r + txa∂a +
1

2
(r2 + ~x2)∂ξ . (2.2)

In particular, the algebra generated by the so(d)-singlets {H,C,D,N}, i.e. the isometry

algebra of 3-dimensional Schrödinger spacetime, is isomorphic to

sch(d = 0) ∼= so(2, 1) ⊕ RN . (2.3)

For β = 0 the Schrödinger isometry algebra sch(d) is enhanced to the AdS isometry algebra

so(2, d + 2), with dim so(2, d+ 2)− dim sch(d) = 2(d+ 1).

The above Poincaré coordinate system is geodesically incomplete as r→∞ (geodesics

can reach r = ∞ in finite affine parameter, and the geometry is non-singular there) [11].

This points to the necessity of introducing coordinates that also cover the region beyond

the Poincaré coordinate patch. A hint as to go about this for β 6= 0 comes from analysing

the timelike Killing vectors of this metric. For instance, the Killing vector H = ∂t becomes

lightlike at the Poincaré horizon r = ∞, and is therefore not a suitable candidate for a

global definition of time. If one considers, more generally, the linear combination

H̃ = aHH + aCC + aNN + aDD (2.4)

(these are the only relevant Killing vectors for these purposes), and calculates its norm

in Poincaré coordinates, one finds (for simplicity in the 3-dimensional case d = 0 since

nothing essential changes for d > 0)

||H̃||2 = −β
2

r4
(aH + 2aDt+ aCt

2)2 − 2aN (aH + 2aDt+ aCt
2)

r2
+ a2

D − aHaC . (2.5)

Thus a necessary condition for H̃ to be timelike beyond the Poincaré horizon is a2
D−aHaC >

0. The choice made in [11] based on these and other considerations was H̃ = H + ω2C.

Introducing coordinates (T, V ) adapted to H̃ and the central element N ,

H̃ = ∂T = H + ω2C, N = ∂V , (2.6)
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the global metric reads

ds2 = −β2dT
2

R4
+

1

R2
(−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2) . (2.7)

This coordinate system, in which the metric simply has the form of a plane wave deforma-

tion of the Poincaré-like metric (2.1), is geodesically complete for ω > 0 and reduces to the

incomplete Poincaré-patch metric for ω = 0. In [11] it was moreover shown that this metric

is closely related to the harmonic trapping of non-relativstic CFTs that plays an important

role in the non-relativistic operator-state correspondence [17]. In particular, time evolution

with respect to the global time T (∂T is everywhere timelike) is time-evolution with respect

to the trapped Hamiltonian H + ω2C, and the harmonic oscillator potential in the metric

corresponds to the trapping potential of the boundary theory.

One could, without loss of generality, choose ω = β = 1 for the global metric, but

we will keep ω and β explicit in order to facilitate the comparison of the properties of the

global Schrödinger metric with those of the Poincaré patch metric and, in particular, with

those of the AdS metric in global plane wave coordinates (plane wave AdS) [4, 11, 18] one

obtains for β = 0,

ds2 =
1

R2
(−2dTdV − ω2(R2 + ~X2)dT 2 + dR2 + d ~X2) . (2.8)

One other thing that one can read off and learn from (2.5) is that the metric (2.1) for

β2 < 0 has no timelike Killing vectors for r → 0 (since the first, now positive, term will

dominate as r → 0). As a consequence, even though the β2 < 0 metric has Schrödinger

isometry, it is not isometric to any patch of the global Schrödinger metric (2.7) (which has

an everywhere timelike Killing vector). This illustrates that geometries with Schrödinger

isometry are not locally unique.

In Poincaré coordinates and in global coordinates the metric is stationary (time-

independent) but not static and one may wonder whether there is (at least locally) any

timelike Killing vector that is hypersurface-orthogonal. To analyse this question, let us

once again consider the linear combinations H̃ (2.4). Imposing the integrability condition

H̃[µ∇νH̃ρ] = 0, one finds

− β2

r4
(aH + 2aDt+ aCt

2)2 + (aHaC − a2
D) = 0 . (2.9)

For β 6= 0 the only solution is aC = aD = aH = 0 so that H̃ ∼ N which is not timelike but

null (and hypersurface orthogonal to the null surfaces t = const.). An analysis in global

coordinates leads to exactly the same result, and we can conclude that Schrödinger space-

times are globally stationary but admit no static patch. For β = 0, on the other hand,

one only finds the constraint aHaC − a2
D = 0. A typical time-like solution is aC = aD = 0

and H̃ = H +N which corresponds to choosing x0 = t+ ξ as the new (and standard and

obviously hypersurface-orthogonal) Poincaré time-coordinate. Of course, for β = 0 there

are other Killing vectors, and global (and also hypersurface orthogonal) time τ in the usual

global coordinates for AdS corresponds to the linear combination ∂τ = P0 + K0, K0 a

special conformal transformation.
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2.2 Isometric embeddings and global coordinates

For the AdS space-time AdSd+3 there exists a codimension 1 isometric embedding into the

pseudo-Euclidean space R2,d+2. It is relatively easy to see that no such embedding exists for

Schd+3, more specifically that any hypersurface with Schrödinger isometry is actually AdS-

invariant. Moreover, similar arguments show that there are no codimension 2 equivariant

isometric embeddings, i.e. isometric embeddings for which all the isometries are induced

by isometries of the flat embedding space. We will establish these results in appendix A.

However, a codimension 2 isometric (but not equivariant) embedding into R2,d+3

equipped with the metric

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd+2)2 − (dXd+3)2 + (dXd+4)2 (2.10)

exists and is given by

(X0,X1) =
ξ ± t

2 + t
2β

2f(t, r)

r

(Xd+2,Xd+3) =
1

2r

[

±1 + 2ξt− ~x2 − r2 − β2f(t, r)
]

X1+a =
xa

r
Xd+4 =

√
3

2
βf(t, r)

(2.11)

where a = 1, . . . , d and where f(t, r) = t2+1
r2 . Indeed, the metric induced by this embedding

on the codimension 2 surface parametrised by (t, ξ, r, ~x) is precisely the Schrödinger/AdS

metric in Poincaré coordinates (2.1). Explicitly, the (d+ 5) coordinates are related by the

two constraints

−(X0)2 + (X1)2 +
∑

a

(X1+a)2 + (Xd+2)2 − (Xd+3)2 = −1− 4

3
(Xd+4)2

β
[

(

X0 −X1
)2

+ (Xd+2 −Xd+3)2
]

=
2√
3
Xd+4

(2.12)

and the inverse transformation, subject to these constraints, is

t =
X0 −X1

Xd+2 −Xd+3
r =

1

Xd+2 −Xd+3
xa =

X1+a

Xd+2 −Xd+3

ξ =
1

2

[(

X0 +X1

Xd+2 −Xd+3

)

− 2βXd+4

√
3

(

X0 −X1

Xd+2 −Xd+3

)] (2.13)

The parameter β describes the deformation away from AdSd+3 and for β = 0 one repro-

duces the standard codimension 1 embedding into the hyperplane R2,d+2 ⊂ R2,d+3 given

by Xd+4 = 0. For β 6= 0, Xd+4 is non-trivial and the first constraint equation describes a

surface that can be viewed as AdSd+3 space-time of variable AdS radius where the radius

is a function of Xd+4. Just as for AdS, in order not to have closed time-like curves we work

with the universal cover.

As already alluded to above, the above isometric embedding has the property that not

all the Schrödinger isometries are actually induced by the ISO(2, d + 3)-isometries of the

embedding space R2,d+3. Indeed, for β 6= 0 the isometries that embed into SO(2, d + 3)
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(all the translational symmetries are manifestly broken by the constraints) are those of the

constant Xd+4 slices, namely Mab, Pa, Va, N and H +C, while the “accidental” additional

isometries are D and H − C. For instance, a shift in t (generated by H) is induced by a

non-linear transformation of the coordinates XA for β 6= 0 whereas it is realised by a linear

SO(2, 2)-transformation in the (X0,X1,Xd+2,Xd+3)-plane for β = 0, as it should be.

The geodesic distance between two points (relevant for our discussion of scalar fields

and Green’s functions in section 4) is invariant under the (simultaneous) action of the isom-

etry group of a space-time on the two points. If we had an equivariant isometric embedding,

we could introduce at least one isometry-invariant notion of the distance between two points

in terms of the standard pseudo-Euclidean distance between two points in the embedding

space. In the AdS case β = 0 this gives rise to the usual chordal distance and its relation

with the geodesic distance. For β 6= 0, however, this option is not available (the induced

distance function is not a Schrödinger invariant object). We will discuss and construct these

invariants (it turns out that there are two independent such functions) in appendix B.

In spite of its shortcomings, the above embedding is quite useful for a number of things.

For instance, the constraints (2.12) suggest a natural parametrisation of the form

X0 −X1 =
sinT

R
X0 +X1 =

1

R
(2V cos T + b sinT )

Xd+2 −Xd+3 =
cos T

R
Xd+2 +Xd+3 =

1

R
(2V sinT − b cos T )

X1+a =
Xa

R
Xd+4 =

β
√

3

2R2

(2.14)

with which the first constraint reduces to b = R2 + ~X2 + β2

R2 . Then the induced metric

is precisely the ω = 1 case of the global plane wave Schrödinger metric (2.7). From the

present embedding point of view we learn that this parametrisation indeed covers the en-

tire space-time (both for the codimension 1 embedding of AdS for β = 0 and for β 6= 0),

and that what was a geodesically complete coordinate system in [11] is now also global

from the embedding point of view. It follows from (2.13) that the Poincaré patch only

covers the region Xd+2 −Xd+3 > 0. This isometric embedding generalises the embedding

of plane waves found a long time ago in [19, 20] (see also [21]), and correspondingly the

equivariantly realised isometries Mab, Pa, Va, N and H +C form the isometry algebra of an

isotropic symmetric plane wave [21, 22].

Another issue that is particularly transparent from the embedding point of view is that

of potential conical singularities that arise if one compactifies the V (or, equivalently, ξ)

direction [4, 5]. The situation turns out to be identical for AdS and Schrödinger. First of

all we note that the shift V → V + α is a symmetry of both the two constraint equations

as well as of the embedding space-time for any α ∈ R. We want to see what happens if we

identify V ∼ V + 2πL.

Using that

V =
1

2

(

(X0 −X1)(Xd+2 +Xd+3) + (X0 +X1)(Xd+2 −Xd+3)

(X0 −X1)2 + (Xd+2 −Xd+3)2

)

(2.15)

– 7 –
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we see that the identification of V with V + 2πL leads to the identifications

X0 +X1 ∼ X0 +X1 + 4πL(Xd+2 −Xd+3)

Xd+2 +Xd+3 ∼ Xd+2 +Xd+3 + 4πL(X0 −X1) .
(2.16)

We therefore conclude that there are two conical singularities:

1. At (X0 +X1,Xd+2 −Xd+3) = (0, 0) which can be reached in the limit R→∞ with

sinT = 0 fixed (for ω = 1) and V,X finite but arbitrary.

2. At (Xd+2 +Xd+3,X0 −X1) = (0, 0) which can be reached in the limit R→∞ with

cos T = 0 fixed (for ω = 1) and V,X finite but arbitrary.

In Poincaré coordinates the limit mentioned in point 1 corresponds to the limits r → ∞,

t/r → 0 and ~x/r → 0. This is in agreement with the comments made in [5] regarding the

conical singularity after compactification of ξ. The singular locus of point 2, on the other

hand, lies outside the Poincaré patch.

3 Point particle probes of the causal structure

In this section we will discuss the causal structure associated with point particles moving

along causal curves in the space-time with global metric (2.7),

ds2 = −
(

β2

R4
+
ω2

R2
(R2 + ~X2)

)

dT 2 +
1

R2

(

−2dTdV + d ~X2 + dR2
)

. (3.1)

We will start with β-independent properties, i.e. those that also hold in the geodesically

complete plane wave AdS space-time. We then explore causality statements which are

specific to the Schrödinger space-time. We will focus on those aspects of the causal structure

that are relevant to our analysis of scalar fields in section 4. Definitions follow the standard

reference [15] and the more recent review [16].

3.1 Time functions and time coordinates

First of all, let us collect some basic properties of the global coordinate T :

1. T is a globally defined smooth function.

2. The vector field ∂T is an everywhere timelike Killing vector. In particular, it provides

a time orientation.

3. The gradient of T is null.

4. T is strictly increasing along any future-directed timelike curve.

5. T is non-decreasing along any future-directed null curve.

– 8 –
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The first two points are trivial and follow from the fact that (3.1) is a global coordinate

system. The third follows from gVV = 0. The last two points can be summarised saying

that Ṫ ≥ 0 along any future-directed causal curve, with Ṫ > 0 for timelike curves, implying

that the space-time is chronological (no closed timelike curves can occur). This can be seen

as follows: take any curve γ(λ) with tangent
(

Ṫ , V̇ , Ṙ, ~̇X
)

and require it to be causal,

(

β2

R2
+ ω2(R2 + ~X2)

)

Ṫ 2 + 2Ṫ V̇ ≥ Ṙ2 + ~̇X2 , (3.2)

and future-directed2 with respect to the timelike vector field
(

∂
∂T

)µ
,

(

β2

R4
+
ω2

R2
(R2 + ~X2)

)

Ṫ +
V̇

R2
> 0 . (3.3)

Then, since the right hand side of equation (3.2) is greater than or equal to zero it fol-

lows that

Ṫ

((

β2

R2
+ ω2(R2 + ~X2)

)

Ṫ + V̇

)

≥ −Ṫ V̇ . (3.4)

Now we prove that Ṫ ≥ 0 by arguing that Ṫ < 0 leads to a contradiction. Suppose Ṫ < 0,

then equations (3.3) and (3.4) implies Ṫ V̇ > 0 but since Ṫ < 0 it must be that V̇ < 0

which is then in contradiction with equation (3.3). Hence, we must have Ṫ ≥ 0 along all

future-directed causal curves. Similarly, by restricting (3.2) to timelike curves one shows

that Ṫ > 0 along all future-directed timelike curves (statement 4). Furthermore, one ob-

serves from (3.3) that if Ṫ = 0 then one necessarily has V̇ > 0 so that no closed causal

curve can ever be formed for non-compact V . This shows that the space-time is causal.

In the compact V case, closed causal curves exist (by construction), and the space-time is

only chronological.

A time function is a globally defined continuous function that is strictly increasing

along all future-directed causal curves. It therefore provides an ordering, as all causally

related events can then be labeled by different values of T . The existence of a time-function

is equivalent to the space-time being stably causal, and this in turn is equivalent to the exis-

tence of a (not necessarily the same) globally defined function whose gradient is everywhere

timelike [15, 16]. Because there exist future-directed causal curves for which Ṫ = 0, T is not

a time function (and neither is the gradient of T everywhere timelike; in fact, as mentioned

above, it is everywhere null). So what about stable causality of these space-times?

AdS is well known to be stably causal; thus even though T is not a time function one

can find a time function for β = 0 (this global time function can be taken to be τ , the

time coordinate of the usual global AdS coordinate system). But, as we will see in section

3.2, the Schrödinger space-time (β 6= 0) is not stably causal and hence it does not admit

any time function. In that respect, T is the closest one can get to having a time function

because it only fails to distinguish causally related events that lie on a T = cst slice ΣT .

2A curve γ is future-directed with respect to a timelike vector field Xµ if gµνXµγ̇ν < 0.

– 9 –
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Such causally related events with the same T are related by so-called lightlike lines.3

Indeed, a chronological space-time without such lightlike lines would be stably causal [23].

Lightlike lines are always null geodesics but the converse is generally not true. In space-

times such as Minkowski and AdS all null geodesics are lightlike lines, so that the existence

of lightlike lines alone does not signal any pathology.

From what we proved so far (statement 4) it follows that the surfaces ΣT are achronal

but not acausal. Hence in our context the lightlike lines are given by

γ(λ) = (T0, V (λ), R0, ~X0) , (3.5)

where V (λ) is a strictly monotonically increasing function of λ. These are precisely the null

geodesics (affinely parametrised for V (λ) ∼ λ) with zero lightcone momentum PV ≡ P− = 0

(cf. appendix D). The tangent is uµ = (0, V̇ , 0,~0), so that we have gµν

(

∂
∂T

)µ
uν < 0 from

which it follows that γ is a future-directed null geodesic along which the time coordinate

T remains constant.

Finally, let us us note that, as a consequences of the existence of these lightlike lines,

the future domain of dependence of a constant time slice ΣT , denoted by D+(ΣT ), is

empty.4 This has to be contrasted with AdS in the usual global coordinates where the

future domain of dependence of a global time slice τ is not empty. Actually there are two

distinct sources for the emptiness of the future and past domain of dependence: one has

D±(ΣT0) = ∅ because

1. for each time T > T0 there exists a future and past inextendible null geodesic that

has Ṫ = 0, those are the lightlike lines (3.5);

2. for any arbitrary point P = (T0 ± δ, V0, R0, ~X0), say, with δ > 0, that lies to the

future (+) or past (-) of T0 there exists a, respectively, past or future inextendible

timelike curve that goes all the way to the boundary at R = 0 without crossing the

slice ΣT0 . An example of such a timelike curve is given by

γpast(λ) =











T0 − δ
2e

−2λ − δ
2

R2
0

δ λ+ V0

R0e
−λ

~X0











γfuture(λ) =











T0 + δ
2e

2λ + δ
2

R2
0

δ λ+ V0

R0e
λ

~X0











(3.6)

3.2 Galilean-like causal structure

The dramatic effect of having a non-zero β is that it makes the space-time non-

distinguishing5 whereas it is stably causal for AdS. This has already been proven in [14] for

the z = 3 Schrödinger space-time using the Poincaré patch (and the possible connection

3A lightlike line is an achronal inextendible causal curve [23]. A set S is called achronal resp. acausal if

no two distinct points of S can be connected by a timelike resp. causal curve.
4The future domain of dependence D+(S) of a set S is the set of points p such that every past inextendible

causal curve through p intersects S.
5A space-time is called non-distinguishing if there exist two distinct points that have identical past and

future. Non-distinguishing space-times do not admit any time function.
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of this property with a Galilean-like causal structure was noted in [3]). The proof is based

on the existence of a causal curve that connects any two points whose time interval is

infinitesimally small. It can be shown that such a curve can be constructed for any z > 1

and because there exists a local defining property for a space-time to be distinguishing [16],

being non-distinguishing in the Poincaré patch is enough to assure that the space is also

non-distinguishing globally.6 For z = 2, such a curve can also be constructed directly in

global coordinates, leading to the same conclusions (see appendix C).

In appendix C, we show explicitly that the chronological future (past) I±(p0) of any

point p0 = (T0, V0, R0, ~X0) on the slice ΣT0 is the set of all points with T > T0 (T < T0).

Therefore, for any point p0 one has the decomposition

Sch = I−(p0) ∪ ΣT0 ∪ I+(p0) (3.7)

of the Schrödinger space-time. Since all points on a constant time slice share the same

future and past, the space-time is in a sense “maximally non-distinguishing”.

This is strongly reminiscent of a Galilean causal structure and Galilean relativity.

In order to sharpen this analogy, we need an appropriate notion of spacelike separation.

We will call two points x and x′ spacelike separated if there is no causal curve connecting

them. It is perhaps worth pointing out that this notion of spacelike separation does not

imply that two points are spacelike separated when they can be connected by a spacelike

geodesic: there are spacelike geodesics along which Ṫ 6= 0, while we already know that any

two points with T 6= T ′ can be connected by a timelike curve. This means that spacelike

separated points necessarily lie on an equal-time slice ΣT .

This appears to be completely Galilean, since in Galilean relativity any two non-

simultaneous events can be connected by the worldline of a (sufficiently fast moving)

particle, and the only events for which no such curve exists are those that are simultane-

ous. However, the novel and non-Galilean feature of the causal structure of Schrödinger

space-times is the presence of lightlike lines. Indeed, on a Schrödinger space-time all points

with the same value of T are either spacelike separated or separated by a lightlike line and

conversely all points that are either spacelike separated or separated by a lightlike line

lie on an equal time T surface. While any time coordinate on the Schrödinger space-time

whose values label the slices ΣT plays the role of some absolute (Galilean) time, the null

coordinate V (affinely) parametrises the lightlike lines and thus that part of the surfaces

ΣT that has no Galilean counterpart.

This Galilean-like structure is preserved by the subgroup

(T ′, V ′, R′, ~X ′) = (T ′(T ), V ′(T, V,R, ~X), R′(T,R, ~X), ~X ′(T,R, ~X)) (3.8)

of the full group of space-time diffeomorphisms. Indeed, any set of coordinates

(T ′, V ′, R′, ~X ′) obtained by acting on the global coordinates (T, V,R, ~X) with such a

6Alternatively, one can prove that the z > 1 Schrödinger space-times are non-distinguishing by observing

i) that in the Poincaré-like coordinate system they are conformal to a class of pp-wave space-times that

in [24] have been proven to be non-distinguishing, and ii) that being non-distinguishing is a local property

of a space-time which is therefore preserved under conformal transformations.
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diffeomorphism is such that T ′, the new time coordinate, labels surfaces of spacelike and

lightlike line separated events while any new V ′ coordinate parametrises the lightlike lines.

The normal to a constant T ′ slice ΣT ′ is proportional to the null Killing vector N , and the

(degenerate) induced metric on ΣT ′ agrees with the Galilean metric measuring the distance

between simultaneous (spacelike) separated events. This special class of diffeomorphisms

consists precisely of the double foliation preserving diffeomorphisms discussed in a related

context in [25]. Here the double foliation refers to the foliations associated with the equal

time surfaces and the lightlike lines.

4 Scalar field probes of the causal structure

In this section we will study the causal structure of Schrödinger space-times as seen by

scalar field probes and show that, even though the causal structure seen by point particles

is close to pathological, this is not so from the point of view of the scalars.

4.1 Canonical analysis

The action for a massive complex scalar field φ is

S = −
∫

dd+3x
√−g

(

∂µφ
∗∂µφ+m2

0φ
∗φ
)

+ · · · , (4.1)

where m0 is a mass parameter and the dots refer to intrinsic boundary terms, e.g. terms

that only involve the scalar φ, its tangential derivatives along the boundary and the induced

boundary metric. We will consider scalar fields φ that are eigenstates of the central element

∂V of the Schrödinger algebra, i.e.

φ(T, V,R, ~X) = e−imV ψ(T,R, ~X) , (4.2)

in which m 6= 0, and we will decompose solutions to the scalar field equation formally as

φ =
∑

M

aMuM , (4.3)

where the uM (T, V,R, ~X) form a complete set of modes with a fixed momentum m in the V

direction, uM (T, V,R, ~X) = e−imV vM (T,R, ~X). These states furnish a unitary irreducible

representation of the Schrödinger group with respect to the inner product

〈uM |uM ′〉 = i

2

∫

ΣT

dΣµu∗M
←→
∂µuM ′ . (4.4)

The T = cst slice ΣT is a lightlike surface whose normal is
(

∂
∂V

)µ
= δµ

V . The integration

measure is dΣµ = δµ
VR

−(d+1)dRdd ~XdV . Irreducibility follows from irreducibility with

respect to the centrally extended Galilean subgroup.

We denote the Killing vectors of the Schrödinger metric collectively by kA = kµ
A∂µ.

From the Noether theorem one obtains the corresponding conserved currents

jµA =
√−g kν

AT
µ

ν , (4.5)
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where Tµν is the energy momentum tensor. We define the corresponding charges KA by

KA =

∫

ΣT

dV dd ~XdR jTA =

∫

ΣT

dΣµkν
ATµν . (4.6)

For fields φ of the form φ = e−imV ψ(T,R, ~X) the charges KA can be written as

KA =

∫

ΣT

dV dd ~XdR
(

πkAφ+ π∗kAφ
∗ − kT

AL
)

, (4.7)

where kT
A is the T component of the Killing vector kA, L denotes the scalar field bulk

Lagrangian and where π denotes the canonical momentum

π =
∂L

∂(∂Tφ)
= R−(d+1)∂V φ

∗ . (4.8)

The canonical momentum is thus not independent of the initial data φ∗(T, V,R, ~X) spec-

ified at some equal time T surface, and imposing vanishing equal time Poisson brackets

between φ(T, V,R, ~X) and φ∗(T, V ′, R′, ~X ′) would be inconsistent with a non-vanishing

Poisson bracket {φ(T, V,R, ~X), π(T, V ′, R′, ~X ′)} 6= 0. This problem is resolved by taking

the following Poisson bracket (for fields with the same nonzero m):

{φ(T, V,R, ~X), φ∗(T, V ′, R, ~X ′)} = f(V − V ′)Rd+1δ( ~X − ~X ′)δ(R −R′) . (4.9)

The Poisson bracket for fields with different m is taken to vanish. The function f(V − V ′)

will be chosen such that

{KA, φ} = −kAφ , (4.10)

upon use of the Euler-Lagrange equations of the Lagrangian given in (4.1). If we consider

the Hamiltonian HT associated with the Killing vector ∂/∂T then this requirement means

that the Hamilton equations and the Euler-Lagrange equations coincide. In the definition

of the charges KA (4.6), the dV integral ranges from V1 to V2 where V1 6= V2 are arbitrary

finite points.

There exists a unique function f(V − V ′) which is such that (4.10) holds true for any

choice of V1 and V2. This function is given by

f(V − V ′) =
−i

2m(V2 − V1)
e−im(V −V ′) . (4.11)

When we compactify V by identifying V ∼ V +2πL then we should replace in the function

f the momentum m by the discrete momentum m/L with m ∈ Z and write V2−V1 = 2πL,

so that we get

f(V − V ′) =
−i

4πm
e−im(V −V ′)/L . (4.12)

For the case of a Schrödinger space-time with a non-compact V we will from now on take

V2 − V1 = 2π. This choice will prove useful later on. It is the value for which results

obtained for the free scalar field on a Schrödinger space-time after integration over m

gives us (for β = 0) the corresponding result on plane wave AdS (2.8). Also, for this value

the Poisson brackets for compact and non-compact V are identical.
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The form of the Schrödinger Poisson bracket can also be understood by starting with

the Poisson bracket for scalar fields in plane wave AdS and decomposing it into modes with

a fixed momentum in the V direction. If we then fix the momentum m the resulting Poisson

bracket takes the Schrödinger form. To see this consider plane wave AdS with a compact V

coordinate. Because T is like a lightcone time coordinate we must once again define equal

T Poisson brackets for φ(T, V,R, ~X) and φ∗(T, V ′, R′, ~X ′). Borrowing from the result used

in lightcone quantisation in Minkowski space-time with a compact null circle [26], appro-

priately generalised to AdS, the Poisson brackets turn out to also have the form (4.9), with

f(V − V ′) = −1

2

(

1

2
sign(V − V ′)− V − V ′

2πL

)

. (4.13)

The sign function can be decomposed into Fourier modes as

1

2
sign(V − V ′)− V − V ′

2πL
=
∑

m6=0

i

2πm
e−im(V −V ′)/L , (4.14)

and substituting the corresponding mode decomposition

φ(T, V,R, ~X) = ψ0(T,R, ~X) +
∑

m6=0

ψm(T,R, ~X)e−imV/L (4.15)

into the Poisson bracket, we find that the functions ψm6=0 satisfy the Schrödinger Poisson

bracket of (4.9) with the function f precisely as in (4.12).

As regards the m = 0 modes, let us first note that they have an arbitrary time-

dependence that is not fixed by the Klein-Gordon equation. Since these are the modes

with zero lightcone momentum, P−φ = 0, they can be thought of as the precise scalar field

counterparts of the lightlike lines discussed in section 3. It turns out that these modes

vanish for plane wave AdS with a compact V coordinate and for a free non-interacting

theory (see [26] for an explanation of this fact in Minkowski space-time with a compact

null circle). This follows from substituting the decomposition (4.15) into the Hamiltonian.

One of Hamilton’s equations is then the statement that ψ0 = 0. The problems encountered

with the m = 0 modes in [27] appear when one studies loop corrections in an interacting

theory. This lies beyond the scope of our work and it might be interesting to see what

kind of interacting theories on a Schrödinger space-time with a compact lightlike circle

are perturbatively well-defined.

To obtain the normalisable as well as the non-normalisable modes we impose the

condition that solutions are regular everywhere in the bulk. The normalisable modes

must furthermore satisfy the boundary condition that the inner product (4.4) is time

independent. This will be the case provided we have

lim
ε→0

∫

R=ε
R−(d+1)u∗M

←→
∂RuM ′dV d ~X = 0 . (4.16)

This is the condition that the flux of the current u∗M
←→
∂µuM ′ through the boundary at R = 0

vanishes. Imposing this boundary condition requires that ν defined by

ν =

√

(d+ 2)2

4
+m2

0 + β2m2 (4.17)
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is real so that all normalisable modes respect the Breitenlohner-Freedman bound [28].

There are two set of modes compatible with this boundary condition.7 They are given by

φ± = e−imV
∑

L,n,k

a±L,n,kv
±
L,n,k

= e−imV
∑

L,n,k

C±
L,n,ka

±
L,n,ke

−iE±

L,n,k
TYLe

− 1
2
ω|m|(ρ2+R2)ρLR∆± ×

×LL−1+d/2
n (ω|m|ρ2)L±ν

k (ω|m|R2) , (4.18)

where

∆± =
d+ 2

2
± ν . (4.19)

The energy of the +/− modes is given by

E±
L,n,k = sign(m)2ω

(

n+ k +
L

2
+

∆±

2

)

, (4.20)

with L, n, k = 0, 1, 2, . . .. For the minus modes we must assume 0 < ν < 1 while for the plus

modes we must assume that ν > 0. The cases ν = 0, 1, 2, . . . have to be dealt with separately

because they involve logarithmic solutions. Here we will always assume that ν 6= 0, 1, 2, . . ..

The constant C±
L,n,k will be chosen such that upon quantisation the creation and an-

nihilation operators a±L,n,k and a±
†

L,n,k satisfy the commutation relation

[a±L,n,k, a
±†
L′,n′,k′ ] =

1

2
sign(m)δLL′δnn′δkk′ . (4.21)

The constant C±
L,n,k can be taken to be real and positive and is found to be

(C±
L,n,k)

2 =
2(ω|m|)L+∆±

|m|π
n!k!

Γ(n+ L+ d
2 )Γ(1 + k ± ν)

. (4.22)

The sign function on the right hand side of (4.21) can be understood as follows. The

Fock space vacuum |0〉 is defined by a±L,n,k|0〉 = 0 for m > 0 and a±
†

L,n,k|0〉 = 0 for m < 0.

The interpretation of the latter statement is that a±
†

L,n,k for m < 0 is the annihilation oper-

ator for the antiparticle making a±L,n,k for m < 0 the creation operator for the antiparticle.

In lightcone quantisation it is common practise to rename the creation and annihilation op-

erators for m < 0 by a±−m,L,n,k = b±
†

m,L,n,k and likewise a±
†

−m,L,n,k = b±m,L,n,k and restrict m to

only take positive values. Here we will not use this notation because m is not summed over

anyway. We could always restrict m to be positive; however, to test results we find it useful

to keep track of the sign of m. One other motivation for keeping both signs of m comes

from the fact that from these results one can obtain the results for scalar field propagation

on AdS in plane wave coordinates (after setting β = 0 and summing over all values of m).

7These ± normalisable modes have also been discussed in global coordinates in [29] and in Poincaré

coordinates in [1]. For a different class of solutions, with cut-off dependent boundary conditions allowing

for imaginary ν (violating the Breitenlohner-Freedman bound) see [29].
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For the normalisable modes φ+ the Hamiltonian HT is conserved in time. For the

normalisable modes φ− this is not the case and for these modes the action (4.1) and the

charges KA (4.6) are not appropriate. For the normalisable modes φ− following [28, 30]

we expect it to be necessary to introduce non-minimal coupling terms for the scalar field

φ. This being said we stress that the condition (4.16) is only a condition on the modes

and is therefore insensitive to the addition of non-minimal coupling terms in the bulk and

boundary action of (4.1) since on-shell the Ricci scalar is constant and can be absorbed

into the definition of m0.

4.2 Time evolution

We show in this section that even though the future domain of dependence D+(ΣT0) of a

constant T slice ΣT0 is empty,

D+(ΣT0) = ∅ (4.23)

(section 3.1), the scalar field has a unique time evolution that is fully predictable given

appropriate initial data.

In the previous subsection we have identified two inequivalent Hilbert spaces, those of

the plus and minus modes φ± (4.18) respectively. Both of the spaces satisfy the property

that any element is an eigenfunction of N . Let us denote these two Hilbert spaces by H+
m

and H−
m.

We will show that for the Hilbert spaces with m 6= 0 there exists a well-posed initial

value problem in the sense that given initial data for a scalar field in H±
m at some time

T = T0 it is possible to uniquely predict the future dependence. To see this one just has

to note that from φ(T = T0, V,R, ~X) and the mode decomposition (4.18) it is possible to

read off the coefficients aL,n,k via8

〈e−imV v±L,n,k|φ(T = T0)〉 = sign(m)a±L,n,k . (4.24)

Knowing all the a±L,n,k determines the full future dependence of the function φ (from (4.18)).

Note that in order to have a well-defined time evolution we only need to specify the values

of the field φ at time T = T0 and not its T -derivative.

This structure and property of the initial value problem and time-evolution of

scalar fields on Schrödinger space-times is preserved by the foliation-preserving diffeomor-

phisms (3.8). In any coordinate system obtained in this way, the Klein-Gordon equation

is a 1st order differential equation in the new time coordiante T ′, and the evolution of the

Klein-Gordon field φ is determined by the value of the field on the null surface ΣT ′ (and

the momentum in the V ′-direction, the mass).

We have thus resolved the problem associated with the emptiness of the future domain

of dependence D+(ΣT0). The emptiness of D+(ΣT0) resulted from 1) the existence of

lightlike lines and 2) from the existence of curves that reach the boundary before crossing

the equal time surface. The way the scalars get around this potential unpredictability

follows from i) the restriction to modes with m 6= 0 (as explained above, the m = 0 modes

8We have used the following two orthogonality relations:
R

dΩd−1YL′(Ω)YL(Ω) = δLL′ and
R

∞

0
dxxae−xLa

n(x)La
n′(x) = Γ(n+a+1)

n!
δnn′ where Rea > −1.
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are the scalar analogues of lightlike lines, and the restriction to m 6= 0 indeed avoids the

problems associated with these lightlike lines), and ii) from imposing suitable boundary

conditions which forbid information exchange with the boundary.

4.3 Wightman functions and Green’s functions

We will now first study the positive and negative frequency Wightman functions, G±(x, x′),

and then from those build the bulk-to-bulk propagator in global coordinates. We have

G+(x, x′) = 〈0|φ(x)φ†(x′)|0〉 , (4.25)

G−(x, x′) = 〈0|φ†(x′)φ(x)|0〉 . (4.26)

Our conventions for the creation and annihilation operators are given in (4.21). The posi-

tive and negative frequency Wightman functions, denoted by G+ and G− respectively, can

be defined for both Hilbert spaces H±
m where the ± refer to the two different sets of normal-

isable modes in (4.18). We will write the expressions for G+ and G− on H±
m simultaneously,

hoping that this does not cause any confusion. Using the mode decompositions (4.18) we

obtain for the Wightman functions the expressions

G+(x, x′) =
1

2
θ(m)e−im(V −V ′)

∑

L,n,k

(C±
L,n,k)

2e
−i2ω

“

n+k+ L
2
+

∆±

2

”

(T−T ′) ×

×YL(Ω)Y ∗
L (Ω′)ϕL,n(ρ)ϕL,n(ρ′)φ±k (R)φ±k (R′) , (4.27)

G−(x, x′) =
1

2
θ(−m)e−im(V −V ′)

∑

L,n,k

(C±
L,n,k)

2e
i2ω

“

n+k+ L
2
+

∆±

2

”

(T−T ′) ×

×YL(Ω)Y ∗
L (Ω′)ϕL,n(ρ)ϕL,n(ρ′)φ±k (R)φ±k (R′) . (4.28)

Both G± are solutions to the homogeneous Klein-Gordon equation. We have under complex

conjugation (G±(x, x′))∗ = G±(x′, x). As it stands the sums in the expressions for G± are

not convergent in the sense of functions. If we consider the various sums as series in the

parameter s = exp[−i2ω(T − T ′)] then the series only converges if |s| < 1. Thus, in order

to have convergent series we replace T − T ′ in G+ by T − T ′ − iǫ and T − T ′ in G− by

T − T ′ + iǫ, with ǫ > 0 infinitesimal. In terms of

sǫ = e−i2ω(T−T ′)−2ωǫ . (4.29)

the regulated G+ is then a series in sǫ and the regulated G− is a series in s∗ǫ .

In order to evaluate the sums we use the following generating function for the Laguerre

polynomials (see e.g. [31, Theorem 69] or [32])

∞
∑

n=0

e−
1
2
(x+y) (xy)

a
2 snn!

Γ(n+ a+ 1)
La

n(x)La
n(y) =

s−
a
2

1− s exp[−1

2
(x+ y)

1 + s

1− s ]e
−i π

2
aJa

(

2i

√
xys

1 − s

)

.

(4.30)

We will also need the decomposition of a plane wave into spherical harmonics which is

given by (see e.g. [33])

eizn̂·n̂′

= (2π)
d
2

∑

L

iLz−
d−2
2 JL+ d−2

2
(z)Y ∗

L (n̂)YL(n̂′) , (4.31)
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where n̂ and n̂′ are unit vectors on Sd−1 that are parametrised by Ω and Ω′, respectively.

In fact, the unit vector n̂ is nothing but the Cartesian vector ~X that appears in global

Schrödinger metric normalised to unit length.

Armed with these two expressions we can evaluate the sums that define the Wightman

functions. The result is

G+(x, x′) = θ(m)
i−∆±

(2π)
d
2 4πm

(mζ−ǫ)
d+2
2 J±ν(mζ−ǫ)e

imη−ǫ , (4.32)

G−(x, x′) = −θ(−m)
i∆±

(2π)
d
2 4πm

(−mζ+ǫ)
d+2
2 J±ν(−mζ+ǫ)e

imη+ǫ , (4.33)

where ζ±ǫ and η±ǫ are ǫ-deformations of the invariant functions ζ(x, x′) and η(x, x′) (B.2)

expressed in global coordinates. We have

ζ±ǫ =
ωRR′

sinω(T − T ′ ± iǫ) , (4.34)

η±ǫ = −(V − V ′) +
ω( ~X2 + ~X ′2 +R2 +R′2)

2 tan ω(T − T ′ ± iǫ) − ω ~X · ~X ′

sinω(T − T ′ ± iǫ) . (4.35)

It can be checked that, apart from the iǫ and the overall constant, the result for the Wight-

man functions agrees with the most general normalisable solution to the Klein-Gordon

equation for a function that only depends on η and ζ. The Poincaré coordinate expressions

for the Wightman functions can be obtained by taking the ω → 0 limit in (4.34) and (4.35).

Now that we have the two Wightman functions at our disposal we are in a position

to compute any Green’s function that we are interested in. For example the Feynman

propagator is given by

GF (x, x′) = θ(T − T ′)G+(x, x′) + θ(T ′ − T )G−(x, x′) , (4.36)

and the retarded and advanced Green’s functions read

GR(x, x′) = θ(T − T ′)
(

G+(x, x′)−G−(x, x′)
)

, (4.37)

GA(x, x′) = θ(T ′ − T )
(

G+(x, x′)−G−(x, x′)
)

, (4.38)

where G+(x, x′)−G−(x, x′) is called the commutator function.

It is clear, though, that in the Schrödinger case, due to the fact that m is not summed

over, there is no mixing between positive and negative frequency Wightman functions. For

example, for m > 0 the propagator and the retarded Green’s functions are the same, while

for m < 0 the propagator equals the advanced Green’s function.

The fact that in the Feynman propagator the step function θ(T − T ′) is multiplied by

the step function θ(m) appearing in the Wightman function G+ and similarly the fact that

θ(T ′−T ) multiplies θ(−m) appearing in G− has the following welcome consequence. Even

though T is not a global time function and as such does not allow one to label all causally

related events by a different value of T , it is not a problem to define a time ordering since

the time ordering in the Feynman propagator is correlated with the sign of m. The failure
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of T to provide a well-defined global time ordering only applies to events with the same

value of T . Propagation between such events with m > 0 or m < 0 does not occur.

The bulk-to-bulk propagator GF (x, x′), (4.36), satisfies the delta-function sourced

Klein-Gordon equation

(

�− m̃2
0

)

GF (x, x′) =
i

2π
e−im(V −V ′)Rd+1δ(T − T ′)δ(R −R′)δ( ~X − ~X ′) . (4.39)

The bulk-to-bulk propagator for the Schrödinger space-time has also been constructed

in [34]. Our result agrees with the expression in [34].9

We next approximate the bulk-to-bulk propagator for points that are close to being

separated by a lightlike line, i.e. for T−T ′ small, and show how it is related to the Feynman

propagator for a massless particle on Minkowski space-time. Using the asymptotic form

of the Bessel function we find that for T − T ′ small the bulk-to-bulk propagator can be

approximated by

GF (x, x′) = θ(m)θ(T − T ′)
1

2

i−
d+1
2 m

d−1
2

(2π)
d+3
2

(

RR′

T − T ′ − iǫ

)
d+1
2

e−imα−

+θ(−m)θ(T ′ − T )
1

2

i
d+1
2 (−m)

d−1
2

(2π)
d+3
2

(

RR′

T − T ′ + iǫ

)
d+1
2

eimα+ , (4.40)

where α± is

α± = ∓i
(

V − V ′ − 1

2

( ~X − ~X ′) + (R−R′)2

T − T ′ ± iǫ

)

. (4.41)

First of all notice that the expression is independent of β. Secondly, the relation with the

propagator for a massless particle on Minkowski space-time is obtained by integrating this

result over m. Doing so we find
∫ ∞

−∞
dmGF (x, x′) =

1

Vol Sd+2

1

d+ 1
(σ + iǫ)−

d+1
2 , (4.42)

where

VolSd+2 =
2π

d+3
2

Γ(d+3
2 )

. (4.43)

In obtaining this expression we used that σ is well approximated by the Minkowski

space-time geodesic distance for lightlike separated points. Equation (4.42) is the

standard expression for the propagator of a massless particle on Minkowksi space-time.

We thus conclude (by inverse Fourier transform) that the behavior of the Schrödinger

bulk-to-bulk propagator for points that are close to being separated by a lightlike line is

well approximated by the Minkowski space-time propagator for a massless particle with a

fixed momentum m in the V direction.

Information about the causal structure probed by scalars can be obtained by looking

at the zeros of the commutator function G+(x, x′) − G−(x, x′). By microcausality, the

9However, equation (3.27) of [34] contains a misprint. The normalisation constant which they denote by

C̃∆ should be the one given in (E.5). This latter normalisation constant agrees with the one in [35].
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commutator function must vanish for spacelike separated points x and x′. In a free field

theory the commutator function is a classical c-number quantity. Hence, it can only be

nonzero whenever two points can be connected by a classical path. The commutator

function is therefore sensitive to the possible geodesic non-connectedness. It follows that

the commutator function G+(x, x′)−G−(x, x′) must be zero when

1. x and x′ are spacelike separated (microcausality),

2. x and x′ cannot be connected by a geodesic.

Since G+ only exists for positive values of m and G− only for negative values of m, the

commutator function vanishes if and only if G± vanish separately. Below we will discuss

these two types of zeros of G±. For a recapitulation of the properties of the commutator

function in the AdS case which shows similar behaviour we refer to appendix E.

Any two points for which T − T ′ 6= 0 are timelike separated. Hence all spacelike

separated points are points for which necessarily T = T ′ (section 3.2). In appendix D it is

shown that points P and P̄ for which TP̄−TP = π
ω that do not satisfy (D.5) are geodesically

disconnected. It follows that, by points 1 and 2 above, the commutator function must

vanish whenever sinω(T − T ′) = 0. It can be checked that the iǫ prescription in the

Wightman function G± is precisely such that this is the case. Summarising we can say

that the commutator function probes the following part of the space-time

⋃

n∈Z

I+

(

T = T ′ + (n− 1)
π

ω

)

∩ I−
(

T = T ′ + n
π

ω

)

(4.44)

which, as we will now discuss, is the scalar field counterpart of the non-distinguishing

character of space-time as seen by point particle probes.

The boundary of the region on which the commutator function is nonvanishing is given

by sinω(T − T ′) = 0. To contrast this with the AdS case note that there the commutator

function is nonvanishing for |ηAdS| < 1 (see appendix E). In both cases the boundaries are

formed by lightlike lines. However, in AdS all lightlike lines are null geodesics and these

form a relativistic lightcone structure whereas in the Schrödinger case only null geodesics

with P− = 0 (see appendix D) form lightlike lines, and these describe a Galilean lightcone

structure. In the case of massive point particles we saw that they probe the entire chrono-

logical past and future I−(p0)∪I+(p0) of some point p0 (3.7). The fact that the propagator

only probes the horizontal sheets (4.44) rather than I−(p0) ∪ I+(p0) is something that is

also observed in the case of the propagator for the non-relativistic harmonic oscillator.

4.4 Bulk-to-boundary propagator

The bulk-to-boundary propagator KF can be obtained from:

KF (T, V,R, ~X ;T ′, V ′, ~X ′) = C lim
R′→0

R′−∆+GF (x, x′) , (4.45)
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where GF (x, x′) is the bulk-to-bulk propagator depending on ∆+. Using the expression for

the bulk-to-bulk propagator we find

KF (T, V,R, ~X ;T ′, V ′, ~X ′) =

= θ(m)θ(T − T ′)C
i−∆+m∆+−1

4π(2π)
d
2

(

ωR

sinω(T − T ′ − iǫ)

)∆+

eimη−ǫ(R′=0) (4.46)

+θ(−m)θ(T ′ − T )C
i∆+(−m)∆+−1

4π(2π)
d
2

(

ωR

sinω(T − T ′ + iǫ)

)∆+

eimη+ǫ(R′=0) .

The constant C is determined by requiring (in the sense of distributions):

lim
ǫ,R→0

R∆+−d−2KF (T, V,R, ~X ;T ′, V ′, ~X ′) =
1

2π
e−im(V −V ′)δ(T − T ′)δ( ~X − ~X ′) . (4.47)

In taking the limit we keep T−T ′

R2 and
~X− ~X′

R fixed as R goes to zero and furthermore ǫ̃ ≡ ǫ
R2

goes to zero as both ǫ and R go to zero. The result is that the constant C is given by

C =
i21−ν

Γ(ν)
. (4.48)

The normalisation of the bulk-to-boundary propagator agrees with the corresponding ex-

pression in [34, 36]. The Poincaré coordinate expression for the bulk-to-boundary propa-

gator can be obtained by taking the ω → 0 limit.

When it comes to the bulk-to-boundary propagator there appears an asymmetry in

the discussion of the solutions depending on ∆+ and those in which ∆+ is replaced by ∆−.

This also happens in AdS and has to do with the fact the bulk-to-boundary propagator

with ∆+ replaced by ∆− does not approach a boundary delta function in the limit where

both points lie on the boundary.

The boundary value of the scalar field φ(T, V,R, ~X) will be denoted by φ0(T, V, ~X)

and is defined by

φ0(T, V, ~X) = lim
R→0

R∆+−d−2φ(T, V,R, ~X) . (4.49)

A solution to the Klein-Gordon equation for a massive complex scalar on the Schrödinger

space-time for a normalisable mode in the background of a non-normalisable mode is

given by

φ(T, V,R, ~X) =

∫

dT ′dd ~X ′dV ′KF (T, V,R, ~X ;T ′, V ′, ~X ′)φ0(T
′, V ′, ~X ′)

+φ+(T, V, ~X,R) , (4.50)

where φ+(T, V, ~X,R) is given in (4.18). The solution φ+(T, V, ~X,R) corresponds to the

normalisable solution (4.18) while the part involving the bulk-to-boundary propagator cor-

responds to the non-normalisable solution (φ0 is the boundary value of a non-normalisable

solution). The non-normalisable solution contains both terms proportional to R∆− as well

as terms proportional to R∆+ in the near boundary expansion of the scalar field. The

normalisable solution only contributes to the term ∝ R∆+.
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When ν > 1 the term ∝ R∆− in the near boundary expansion of the scalar field is

dual to a source in the boundary theory. As is well-known when 0 < ν < 1 it is possible to

instead consider the term ∝ R∆+ as dual to a source. In the AdS/CFT context the terms

proportional to R∆+ and R∆− are conjugate variables in the sense that the generating

functional for the theory in which the term ∝ R∆+ acts as the source can be obtained

from the theory in which the on-shell action depends on the term ∝ R∆− via a Legendre

transformation [37] (see also [38] for the case of Lorentzian AdS/CFT). We expect that

a suitably modified version of this statement applies here as well, so that it is sufficiently

general to consider only the case where the term proportional to R∆− is dual to the source

and hence resides in the non-normalisable solution.

5 Discussion

We studied in detail the causal structure of the z = 2 Schrödinger space-time from the

point of view of both point particle and scalar field probes, emphasising and highlighting

those peculiar features of the point particle causal structure that have a counterpart for

scalar fields. For scalar fields, it turns out that the restriction to a fixed non-zero lightcone

momentum m (as dictated by the representation theory of the Schrödinger group) is suf-

ficient to avoid the occurence of near-to-pathological properties that one does encounter

in the case of point particle probes. For example, even though one cannot define a time

function and even though the future domain of dependence of slices ΣT of constant global

coordinate time T are empty, one can define a well-posed initial value problem for scalar

fields. We have shown that, for a given m this requires specification of the scalar field on

ΣT . This first-order nature of the Klein-Gordon initial value problem is preserved by the

so-called double-foliation preserving diffeomorphisms which leave the Galilean-like causal

structure (and the lightlike lines) of the z = 2 Schrödinger space-time invariant. This

Galilean-like causal structure, as defined by the properties of causal curves, is reflected in

the properties of the Wightman functions and propagators of the scalar field theory.

One obvious extension of this work is to consider Schrödinger space-times with values

of z different from two. The range of z that is interesting from the point of view of non-

relativistic physics is z > 1. From the study of tidal forces we know that for 1 < z < 2 the

space-times are singular [11]. This leaves us with the range z > 2. In this case one would

like to construct the counterpart of the z = 2 global metric. The construction of such a

global metric is hampered by the non-existence of an everywhere timelike Killing vector

which means that any global coordinate system is necessarily time-dependent. In order to

find an explicit global metric one could try to generalize the isometric embedding presented

here to other values of z. This is indeed possible but the result for us was not sufficiently

illuminating to derive from it a global metric. What can be stated just from knowing the

Poincaré like coordinates for z > 2 is that these space-times are non-distinguishing. This

can be proven using an appropriately adapted verion of the curve given in [14].

It would also be interesting to study metric perturbations. This is relevant for a number

of reasons. First of all, we know that since the z = 2 Schrödinger space-time is not stably

causal there exist perturbations of the lightcone structure that lead to the existence of
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closed timelike curves. This raises a number of questions: what kind of metric perturbations

produce this kind of behavior? are these physically relevant (e.g. do the perturbations have

finite energy in a suitable sense)? and how sensitive would scalar fields be to the presence

of such closed timelike curves in the perturbed metric? Secondly, in the analysis of the

scalars, representation theory played a dominant role (choosing a fixed nonzero m). It

would be nice to understand what this entails for the metric perturbations. Ultimately

one would like to understand the precise form of the asymptotic fall-off conditions for the

various fields (scalar, gauge, metric, etc.) and the required counterterms that allow one to

define a well-defined variational problem and understand the construction of holographic

renormalisation (see [3, 10, 43] for a discussion of some of the issues involved). These issues

are also relevant for the study of asymptotically Schrödinger black holes. In particular,

one might like to understand whether or not black holes in global Schrödinger exhibit any

interesting phase transitions [44].
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A Schrödinger algebra and isometric embeddings

We will denote the isometry algebra of the Schrödinger space-time Schd+3 by sch(d). It

consists of all the elements of the isometry algebra so(2, d+2) of AdSd+3 that commute with

the lightcone momentum P−: d-dimensional spatial rotations Mab and translations Pa,

Galilean boosts Va, time translations H, dilatations D, a special conformal transformation

C and, of course, the central element P− ≡ N . The latter four generators {H,C,D,N}
form the algebra

sch(d = 0) ∼= sl(2,R)⊕ RN
∼= so(2, 1) ⊕ RN

[H,C] = D [D,C] = 2C [D,H] = −2H .
(A.1)

The other non-trivial commutators are

[D,Pa] = −Pa [D,Va] = Va [Pa, Vb] = δabN [H,Va] = Pa [C,Pa] = −Va

[Mab, Pc] = δbcPa − δacPb [Mab, Vc] = δbcVa − δacVb

[Mab,Mcd] = δbcMad + δadMbc − δbdMac − δacMbd

(A.2)

In Poincaré coordinates a realisation of this algebra is given by

H = ∂t Pa = ∂a Va = xa∂ξ + t∂a Mab = xa∂b − xb∂a

N = ∂ξ D = 2t∂t + r∂r + xa∂a C = t2∂t +
1

2
(r2 + ~x2)∂ξ + tr∂r + txa∂a

(A.3)

The embedding of sch(d) into the AdS isometry algebra so(2, d + 2) proceeds principally

via the essentially unique embedding of sch(d = 0) into so(2, 2) via the double null splitting

so(2, 1) ⊕ RN →֒ so(2, 1) ⊕ so(2, 1) ∼= so(2, 2) . (A.4)
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Explicitly, in terms of the generators MAB of so(2, d+ 2) satisfying

[MAB ,MCD] = ηBCMAD + ηADMBC − ηBDMAC − ηACMBD

ηAB = diag(−1,+1, . . . ,+1,−1) A,B = 0, 1, . . . , d+ 3
(A.5)

and null coordinates (x0, x1) → x±, (xd+2, xd+3) → x±̂ with η+− = η+̂−̂ = 1, one can

choose

D = M+− +M+̂−̂ H = M−−̂ C = M++̂ (A.6)

and N any element of the other (commuting) so(2, 1) ⊂ so(2, 2) (A.4).

In particular, if one seeks a codimension 1 embedding of Sch3 into R2,2 (i.e. the

Schrödinger analogue of the standard embedding AdS3 →֒ R2,2), the equation defining

the hypersurface has to be invariant under {H,C,D,N} thought of as elements of so(2, 2)

via the above embedding of Lie algebras. Thus let f = f(x±, x±̂) be such a function.

Invariance under H, say, requires f to satisfy the equation
(

x+∂−̂ − x+̂∂−

)

f(x±, x±̂) = 0 , (A.7)

which is solved by f = f(x+, x+̂, x+x− + x+̂x−̂). Likewise, invariance under C relates the

x+- and x+̂-dependence, and one immediately finds

Hf = Cf = 0 ⇒ f = f(x+x− + x+̂x−̂) . (A.8)

But since

x+x− + x+̂x−̂ = −(x0)2 + (x1)2 + (xd+2)2 − (xd+3)2 (A.9)

this hypersurface describes AdS3 with the enhanced isometry algebra so(2, 2) ) sch(d = 0).

This argument immediately carries over to d > 0 to preclude the existence of an isometric

embedding Schd+3 →֒ R2,d+2.

We are thus lead to consider codimension 2 embeddings Schd+3 →֒ R2,d+3, with

ηd+4,d+4 = 1, and the corresponding embedding of isometry algebras

sch(d) →֒ so(2, d+ 3)⊕ R2,d+3 , (A.10)

in particular so(2, 1) ⊕ RN →֒ so(2, 3) ⊕ R2,3. A characteristic feature of the Schrödinger

algebra and Schrödinger geometry is the existence of the central element N realised as a

null Killing vector. Thus N can either arise from a null translation in the translational

part of the isometry algebra of the embedding space or from a null rotation. Let us first

show that the former is not possible (and that in fact the entire Schrödinger algebra

needs to be embedded into the rotational part so(2, d + 3) of the isometry algebra). The

argument is largely insensitive to the dimension and signature of the embedding space, so

we can consider a general (semi-direct product) isometry algebra so(p, q)⊕Rp,q with p+ q

large enough to accommodate the required translations, and we assume that N = P− is

identified with a null translation. Then

* to reproduce [Pa, Vb] = δabN , Pa and Vb cannot both be simultaneously translations

or rotations, so we choose Pa ∈ Rp,q, Va ∈ so(p, q) (the opposite choice is related to

this via the authomorphism Pa ↔ Va,H ↔ −C, D → −D, N → −N);
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* since C and D do not commute with Pa, they are elements of so(p, q);

* since [H,C] = D, one also has H ∈ so(p, q);

* but then [H,Va] ∈ so(p, q), which contradicts the relation [H,Va] = Pa.

Thus we need to choose N ∈ so(p, q). But then the Schrödinger algebra requires all

generators to be elements of so(p, q) (by similar reasoning), and we need to consider the

embedding of isometry algebras

sch(d) →֒ so(2, d + 3) , (A.11)

in particular so(2, 1)⊕RN →֒ so(2, 3). In addition to the embedding via so(2, 2) ⊂ so(2, 3)

discussed (and dismissed) above, there are the two regular embedddings

so(2, 1) ⊕ RN
∼= so(1, 2) ⊕ so(1, 1) ⊂ so(2, 3)

so(2, 1) ⊕ RN
∼= so(2, 1) ⊕ so(2) ⊂ so(2, 3)

(A.12)

However, in these cases N is identified either with a timelike boost generator or a spacelike

rotation generator and can therefore not possibly be null in the metric induced from

the metric on R2,3 (the only embedding that allows a null N is that via so(2, 2)). This

argument generalises in an obvious way to d > 0 (by first embedding the rotations into

so(d) ⊂ so(2, d+ 3) and then dealing with the commuting so(2, 1)⊕RN algebra as above).

We therefore conclude that there are no codimension 2 equivariant isometric embed-

dings of the Schrödinger space-time, i.e. isometric embeddings which are such that all isome-

tries are induced by the linear isometries (pseudo-orthogonal transformations) of the flat

embedding space. In this context it is worth noting that there exist G-equivariant versions

of the Nash embedding theorem (such as the Moore-Schlafly theorem [39]), but that these

do not produce useful upper bounds on the required dimension of the embedding space.

B Schrödinger invariants

In this appendix we briefly discuss the Schrödinger analogue of the AdS chordal distance

(or any AdS invariant measure of the distance of two points like the geodesic distance).

A characteristic feature of the Schrödinger space-time is that, due to its reduced isometry

(and isotropy) algebra, there are two independent invariant building blocks instead of just

the one unique chordal distance in the AdS case. To see this, let σ(x, x′) be any function

of two points x and x′ which is invariant under the simultaneous action of the isometry

group on x and x′,

σ(gx, gx′) = σ(x, x′) (B.1)

(geodesic distance is an example of such a function). If we consider σ(x, x′) as a function

of x only, keeping x′ fixed, fx′(x) = σ(x, x′), then this function is invariant under the

stabiliser Hx′ of the point x′.

Concretely in the case of the Schrödinger space-time (2.1) with its Schrödinger

isometry group, let us e.g. consider the point x′ = (t′, ξ′, r′, ~x′) = (0, ξ′, 1,~0) with ξ′
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arbitrary. Its stabiliser is generated by the Killing vectors that vanish at that point. It

is easily seen from (A.3) that these are the linear combinations of {C − 1
2N,Va,Mab} [40],

forming an algebra isomorphic to euc(d) ⊕ R (with euc(d) the Euclidean algebra). The

most general function invariant under these Killing vectors depends on two variables.

Indeed, starting with a function of all d + 3 coordinates, rotation invariance reduces the

number to 4 (3+ radial coordinate in the xa-directions). Then boost invariance reduces

this further by one (by correlating the t-dependence with the dependence on this radial

coordinate) and finally invariance under C − 1
2N reduces this to two.

Since the space-time is homogeneous, this counting argument gives the same number

at each point of the space-time. Hence, for each point x′ the function fx′(x) depends on two

variables. Therefore any Schrödinger invariant function σ(x, x′) of x and x′ is parametrised

by two Schrödinger invariant functions that we denote as η(x, x′) and ζ(x, x′). In Poincaré

coordinates they can be choosen to be

η(x, x′) = −(ξ − ξ′) +
r2 + r′2 + (~x− ~x′)2

2(t− t′) , ζ(x, x′) =
rr′

t− t′ . (B.2)

In particular, the standard AdS-invariant chordal distance is

ηAdS =
η

ζ
=
−2(ξ − ξ′)(t− t′) + r2 + r′2 + (~x− ~x′)2

2rr′
. (B.3)

C Chronological future

Here we prove that the chronological future of an arbitrary point p0 on the constant

global time slice ΣT0 consists of all points in the space-time with T > T0. To do so we

will show that any two points (T0, V0, R0, ~X0) and (T0 + ε, Vf , Rf , ~Xf ) with ε arbitrary

can be connected by a timelike curve. These curves can be constructed in strict analogy

to the curves that were used in [14] to prove the non-distinguishing character of the z = 3

Schrödinger space-time in Poincaré coordinates. First we adapt the curves to the z = 2

case, then we simply replace the Poincaré coordinates (t, ξ, r, ~x) by the global coordinates

(T, V,R, ~X). This produces a new curve which is not equivalent to the one used in

Poincaré coordinates by a coordinate transformation. Nevertheless, by construction, the

new curve has the same nice properties as the one used in [14]: for any two points P0 and

Pf with T0 6= Tf (but possibly Tf − T0 = ǫ > 0 infinitesimal), there exists a causal curve

connecting these points.10 Moreoever, as a consequence of the strictly positive terms

proportional to ω2 appearing in the global metric, the curve produced in this way is now

actually everywhere timelike (and not just causal).

For notational simplicity we give the curve in terms of its tangent and its intermediate

10Since P0 and Pf can be spatially arbitrarily close to each other, there exist causal curves that get

arbitrarily close to being closed causal curves. This is a violation of strong causality.
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points:

γ(λ) =



















γ1(λ) for λ ∈ [0, ε
4 ]

γ2(λ) for λ ∈ [ ε
4 ,

ε
2 ]

γ3(λ) for λ ∈ [ ε
2 ,

3ε
4 ]

γ4(λ) for λ ∈ [3ε
4 , ε]

P0 = (T0, V0, R0, ~X0) = γ(0)

P1 = (T0 + ε
4 , V1, R1, ~X0) = γ( ε

4)

P2 = (T0 + ε
2 , V1, R1, ~Xf ) = γ( ε

2)

P3 = (T0 + 3ε
4 , V2, R1, ~Xf ) = γ(3ε

4 )

Pf = (T0 + ε, Vf , Rf , ~Xf ) = γ(ε)

(C.1)

γ̇(λ) =



































γ̇1(λ) =
(

1, 8(R1−R0)2

ε2 − β2

2R(λ)2
, 4(R1−R0)

ε , 0
)

for λ ∈ [0, ε
4 ]

γ̇2(λ) =

(

1, 0, 0,
4( ~Xf− ~X0)

ε

)

for λ ∈ [ ε
4 ,

ε
2 ]

γ̇3(λ) =
(

1, 4(V2−V1)
ε , 0, 0

)

for λ ∈ [ ε
2 ,

3ε
4 ]

γ̇4(λ) =
(

1,
8(Rf−R1)2

ε2 − β2

2R(λ)2
,

4(Rf−R1)
ε , 0

)

for λ ∈ [3ε
4 , ε]

(C.2)

One sees that γ1 and γ4 are timelike by construction without requiring anything else,

while in order for the curve to be timelike along the segments γ2 and γ3 one needs to

satisfy the inequality in (3.2), leading to the conditions

β2

R2
1

+ ω2
(

~X(λ)2 +R2
1

)

>
16( ~Xf− ~X0)2

ε2 along γ2

β2

R2
1

+ ω2
(

R2
1 + ~X2

f

)

> 8
ε (V1 − V2) along γ3

(C.3)

where V1 − V2 can be expressed in terms of the arbitrary starting and end points as

V1 − V2 = V0 − Vf +
2

ε
(R1 −R0)

2 +
2

ε
(Rf −R1)

2 − β2 ε

8R0R1
− β2 ε

8R1Rf
. (C.4)

When β 6= 0, the conditions (C.3) can be satisfied for any beginning and endpoints P0 and

Pf of the curve, in particular for any given ǫ = Tf − T0 6= 0, by choosing R1 small enough

(i.e. by taking the path connecting the two points to go sufficiently close to the boundary

at R = 0). We thus find that the chronological future (past) of any point (T0, V0, R0, ~X0)

is the entire set of points with T > T0 (T < T0). In particular, all points on an equal time

slice ΣT0 have identical future and past, and in this sense the space-time is maximally

non-distinguishing. This argument also shows precisely how the construction of this curve,

and hence the argument, breaks down for β = 0 (plane wave AdS).

D Geodesics

In this appendix we describe those properties of the solutions to the geodesic equations

that are relevant for our purposes. We do not give the explicit solutions to the geodesic

equations.

The geodesic equations are

Ṫ = P−R
2 , (D.1)

V̇ = ER2 − β2P− − ω2P−R
2(R2 + ~X2) , (D.2)
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1

R2

d

dλ

(

1

R2
~̇X

)

= −ω2P 2
−
~X , (D.3)

k = β2P 2
− + ω2P 2

−R
4 + (~P 2 − 2P−E)R2 +

Ṙ2

R2
, (D.4)

where E, P− and ~P are integration constants and the dot indicates differentiation with

respect to λ which depending on k = 0,±1 is either proper time, proper length or some

affine parameter. P− is the lightcone momentum conjugate to V , and solutions to the

geodesic equation with P− = 0 either have k = 0 (these are lightlike lines - see section 3)

or k = 1. In this appendix we will always assume that P− 6= 0. There are three families of

solutions that depend on whether κ = k − β2P 2
− is negative, zero or positive.

When β = 0 we have κ = k and the three cases split into timelike, null and spacelike

geodesics. When β 6= 0 this does not happen. Both the timelike and the null geodesics are

sitting in the κ < 0 class of solutions, while the spacelike geodesics are divided among all

three classes with the κ = 0 and κ > 0 classes containing only spacelike geodesics.

Geodesics with κ < 0 describe bounded motion on 0 < R < ∞ and never reach the

points R = 0 and R = ∞. Since the κ < 0 class of solutions also contains spacelike

geodesics not all spacelike geodesics go to the boundary. The motion for κ < 0 is periodic

in the R and ~X directions with periods π/ω and 2π/ω, respectively. The motion in the

V direction (for non-compact V ) is however not periodic. This is due to the second term

(containing β) on the right hand side of (D.2). This term would not be there in plane

wave AdS. For compact V the periodicity of the motion in the R and ~X directions does

not generically coincide with the periodicity of identifications V ∼ V + 2πL.

All geodesics with κ < 0 that go through some point P , say, also go through the point

P̄ with coordinates
(

TP̄ , VP̄ , RP̄ ,X
a
P̄

)

=
(

TP +
π

ω
, VP − β2∆V,RP ,−Xa

P

)

, (D.5)

where ∆V is some β independent difference that depends on the locations of P and P̄ as

well as on the parameters of the geodesic connecting P and P̄ . In AdS points P and P̄

are examples of antipodal points.

It follows from the periodicity of the κ < 0 class of geodesics that points P and Q with

TQ−TP = π/ω and with RQ 6= RP can never be connected by a κ < 0 geodesic. Such points

P and Q can also not be connected by κ = 0 or κ > 0 geodesics because those reach the

boundary within a time interval of π/ω or less. This proves that the Schrödinger space-time

(just as AdS) is not geodesically connected. In the case of AdS, the geodesic disconnected-

ness can be compactly described in terms of the invariant distance ηAdS: if ηAdS(x, x′) ≤ −1

and x′ 6= x̄, then there is no geodesic connecting x and x′. In particular, for β = 0 the above

pair of points P,Q provides an example of such a pair of points since ηAdS(xP , xQ) < −1.

E AdS commutator function

The AdS Wightman functions, G±
AdS(x, x

′), can be obtained via

G±
AdS(x, x′) =

∫ ∞

−∞
dmG±

β=0(x, x
′) . (E.1)
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In order to perform the integral over m we allude to the following result taken from [41]

∫ ∞

0
dxe−αxJγ(βx)xµ−1 =

(

β
2α

)γ
Γ(γ + µ)

αµΓ(γ + 1)
F

(

γ + µ

2
,
γ + µ+ 1

2
; γ + 1;−β

2

α2

)

, (E.2)

where F is the hypergeometric function and where we must have

Re (µ+ γ) > 0 and Re(α± iβ) > 0 . (E.3)

By taking x = m, α = −iη−ǫ, β = ζ−ǫ, γ = ±ν, and µ = d+2
2 we obtain for G+

AdS

G+
AdS(x, x′) = C∆±

(

ηAdS
−ǫ

)−∆±

F

(

∆±

2
,
∆± + 1

2
;∆± −

d

2
; (ηAdS

−ǫ )−2

)

, (E.4)

where C∆±
is given by

C∆±
=

Γ(∆±)

2∆±π
d+2
2 (2∆± − d− 2)Γ(∆± − d

2 − 1)
, (E.5)

and where ηAdS
−ǫ is given by

ηAdS
−ǫ =

η−ǫ

ζ−ǫ
. (E.6)

Similarly, with α = iη+ǫ and the same choices for β, γ and µ, we obtain for G−
AdS(x, x′)

the same expression as we have for G+
AdS but this time as a function of ηAdS

+ǫ = η+ǫ

ζ+ǫ
. Note

that the iǫ prescription is such that the conditions (E.3) for α and β are fulfilled. To see

this more explicitly use the fact that to first order in ǫ we have

ζ±ǫ = ζ ∓ iω2ǫ
RR′ cosω(T − T ′)

sin2 ω(T − T ′)
, (E.7)

η±ǫ = η ∓ iω
2ǫ

2

R2 +R′2 + ~X2 + ~X ′2 − 2 ~X · ~X ′ cosω(T − T ′)

sin2 ω(T − T ′)
. (E.8)

Consider the commutator function [φ(x), φ(x′)] = G+
AdS(x, x′) − G−

AdS(x, x′). As long

as |ηAdS
±ǫ | > 1, where ηAdS

±ǫ = η±ǫ/ζ±ǫ, the hypergeometric function in G∓
AdS is defined by its

series expansion and is thus single-valued for any ǫ. Since the series converges absolutely

for |ηAdS| > 1, i.e. for ǫ = 0, we can take the limit ǫ → 0 and we get that for ǫ → 0 the

commutator function G+
AdS − G−

AdS vanishes for |ηAdS| > 1. This result is in agreement

with the region where the retarded AdS Green function vanishes11 [42].

Any two points x and x′ in AdS for which ηAdS(x, x′) > 1 are spacelike separated.

Any two points x and x′ 6= x̄ for which ηAdS(x, x′) ≤ −1 cannot be connected by any

geodesic. The fact that the commutator function vanishes for spacelike separated points is

often referred to as microcausality. The fact that the commutator function also vanishes

for points x and x′ for which ηAdS(x, x′) ≤ −1 follows from the fact that the commutator

11For values |ηAdS| < 1 the hypergeometric function in the expression for G±

AdS is defined via its analytic

continuation. This analytic continuation does depend on whether or not the function depends on ηAdS
−ǫ or

on ηAdS
+ǫ .
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function (in the case of a free theory) is a classical object which must vanish for points

that cannot be connected by a classical path of propagation. The commutator function is a

continuous function of ηAdS and since it vanishes for ηAdS > 1 it also vanishes for ηAdS = 1.

Points x and x′ for which ηAdS(x, x′) = 1 are separated by a null geodesic. It turns out

that in AdS all null geodesics are also lightlike lines, that is achronal sets.

Summarising, we conclude that we have

lim
ǫ→0

(

G+
AdS −G−

AdS

)

= 0 for |ηAdS| ≥ 1 . (E.9)
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