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1 Introduction

Recently, there have been some interests in three dimensional gravity theories containing

certain higher curvature terms in the action, which are initiated by the advent of the

new massive gravity(NMG) [1]. Though there are no propagating degrees of freedom only

with the Einstein-Hilbert term, the situation becomes different with these higher curvature

terms in the Lagrangian. It has long been known that the theory with gravitational Chern-

Simons term [2, 3] leads to massive gravitons and also allows black hole solutions [4]∼ [9].

The newly proposed NMG theory can be thought as the non-linear extension of Fierz-Pauli

massive graviton theory, and it preserves parity symmetry compared to the topologically

massive gravity(TMG). Whereas it has also been shown that there are black hole solutions

of the usual BTZ type in the NMG with cosmological constants, there are new type of

black holes [10] and those with the warped AdS asymptotics [11].

There have been various studies on NMG, which include supersymmetric extension,

its black hole solutions, the central charge of the dual conformal field theory(CFT), new

type black holes, etc [1, 10]∼ [17]. In the context of the quantum gravity, it is meaningful

to consider higher curvature corrections. The NMG may be regarded as three dimensional

gravity with curvature square correction terms. Therefore, it is natural to consider even

higher curvature corrections in the viewpoint of the quantum gravity or the string theory.

More recently, there are proposals to extend NMG to even higher curvature theories,

one of which is the extension of NMG to R3 terms in the Lagrangian [18]. This is consis-

tent with the holographic c-theorem. The other is the extension to the Born-Infeld type

Lagrangian [19]. These may be a good playground to go toward the quantum gravity and

to test the AdS/CFT correspondence.
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These two extensions become identical up to R3 order terms when a suitable matching

among parameters is performed. The linearized theory, which tells us the properties of

gravitons, is not yet investigated on these theories. Instead of this direction, we investigate

the properties of various AdS black holes in these theories and dual conformal field theories.

In this AdS/CFT era, whenever there is a AdS solution in some gravity theory, it

is standard to envisage the existence of the dual CFT on the boundary and consider the

implications of the gravity for the dual CFT [20–22]. For the three dimensional gravity

theory, it is natural to conjecture the dual theory as a kind of two dimensional CFT. The

first thing one may try to do is to obtain the central charge of the hypothetical 2d CFT

from gravity theory. This is one reason to study the entropy, temperature, etc. in these

theories in the view point of AdS/CFT correspondence.

Now, there are several ways to obtain central charges of the dual CFT. In this paper,

we use mainly the “Cardy formula” to obtain central charges of the dual CFT [23, 24]. This

formula may be thought as the relation between temperature and entropy. Concretely, by

writing the black hole entropy in terms of the black hole temperature and interpreting those

quantities in the CFT side according to the usual prescription of AdS3/CFT2 dictionary,

the Cardy formula is given by

SBH =
π2L

3
(cLTL + cRTR) .

Since the extended NMG theories considered in this paper are parity symmetric, the left

and the right central charge of the dual CFTs are identical c = cL = cR. One of the main

results in this paper is to present central charge, c, of the dual CFTs, explicitly. For the

asymptotically AdS case, there is another way to obtain central charge, which is developed

in [25]∼ [29], coined as central charge function formalism. We propose a slight extension

of this formalism to apply to new type black holes and show that it leads to the value

consistent with the above Cardy formula.

This paper is organized as follows. In section 2, we review briefly two types of the

extension of NMG proposed recently. One is the extension of NMG with curvature cubic

terms(R3-NMG) and the other is the Born-Infeld type extension of NMG(BI-NMG). In

section 3, after the some explanation of our method to obtain solutions, we present various

black hole solutions: BTZ black holes, warped AdS black holes and new type black holes.

Various physical quantities, especially the entropy and central charges of dual CFTs are

presented. Since this section is relatively long, we divide it into several subsections with

some introductory remarks. Our results are summarized and some future directions are

discussed in section 4. Some calculational details are relegated to the appendix.

2 The extended new massive gravity

There are new interests in three dimensional gravity theories with higher curvature terms.

Though there are no propagating degrees of freedom in three dimensions only with the

Einstein-Hilbert term, the situation becomes different with higher curvature terms in the

Lagrangian. It has long been known that the theory with gravitational Chern-Simons
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term [2, 3] leads to massive graviton and also allows black hole solutions. Recently, another

type of massive graviton theory has been explored (see for a review [30]), which is named

as new massive gravity(NMG).

One reason of these developments comes from the implication of these theories in

two dimensional CFT through AdS/CFT correspondence. One may ask whether it is

possible to extend NMG theory to the theory with even higher curvature terms. There are

recent works to answer this question. In doing so, we need some guideline to go to higher

curvature terms. If these theories have a string/M-theory embedding, one can obtain the

higher curvature corrections systematically. However, this embedding is not done yet, and

moreover, it is unclear that there is such embedding at all. Therefore, it seems desirable to

have another way to obtain higher curvature corrections, for instance, through AdS/CFT

correspondence. There is a recent attempt [18] to extend the new massive gravity by

considering the central charge function and c-theorem, which basically utilize AdS/CFT

machinery. There is another attempt [19] containing an infinite number of higher curvature

terms, which becomes identical with the previous one up to the curvature cubic order by

a suitable parameter matching.

2.1 The R3 extension of new massive gravity

The R3 extension of New Massive Gravity (R3-NMG) [18] is

S =
η

2κ2

∫

d3x
√−g

[

σR +
2

l2
+

1

m2
K +

ξ

12µ4
K ′

]

, (2.1)

where 2κ2 = 16πG is three dimensional Newton’s constant and η, σ and ξ take 1 or −1.

Here, K and K ′ are defined by

K = RµνRµν − 3

8
R2 ,

K ′ = 17R3 − 72RµνRµνR + 64R ν
µ R ρ

ν Rµ
ρ .

At the level of equations of motion, the overall sign η of the action is meaningless, but it has

some important consequence in the black hole entropy and in the positivity of the central

charge of dual CFT. So, we allow the overall sign choice η. Our convention is such that

κ2,m2, µ2 are always positive, but cosmological constant, 1/l2 may be positive or negative.

Note that the above K and K ′ satisfy the following interesting relations

gµν
∂K

∂Rµν
= −1

4
R , gµν

∂K ′

∂Rµν
= −24K .

The equations of motion for the R3-NMG are

σGµν − 1

l2
gµν +

1

2m2
Kµν − ξ

12µ4
K ′

µν = 0 , (2.2)
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where

Kµν = gµν

(

3RαβRαβ− 13

8
R2
)

+
9

2
RRµν−8RµαRα

ν +
1

2

(

4∇2Rµν−∇µ∇νR−gµν∇2R
)

,

K ′
µν = 17

[

− 3R2Rµν + 3∇µ∇νR
2+

1

2
gµνR3−3gµν∇2R2

]

−72
[

− 2RRµαRα
ν −RαβRαβRµν−∇2(RRµν)+∇µ∇ν(RαβRαβ)+2∇α∇(µ(Rα

ν)R)

+
1

2
gµνRαβRαβR−gµν∇α∇β(RRαβ)−gµν∇2(RαβRαβ)

]

+64
[

− 3R ρ
µRσ

ρ Rσν−
3

2
∇2(RµαRα

ν )+3∇α∇(µ(Rβ
ν)R

α
β )

+
1

2
gµνRαβRαβ− 3

2
gµν∇α∇β(Rα

ρ Rρβ)
]

.

2.2 The Born-Infeld extension of new massive gravity

The Born-Infeld extension of the new massive gravity (BI-NMG) [19] is also introduced,

whose action is

S = −η
2m2

κ2

∫

d3x
√−g

[
√

det
(

δµ
ν +

σ

m2
Gµ

ν

)

− 1 − 1

2m2l2

]

, (2.3)

where G denotes the Einstein tensor, Gµ
ν = Rµ

ν − 1
2δµ

νR, and η, σ will be taken as 1 or

−1.

Expanding the square root expression, one obtains

S =
η

2κ2

∫

d3x
√−g

[

σR +
2

l2
+

1

m2
K − σ

96m4
K ′ + O(R4)

]

. (2.4)

Note that this covers various cases by taking suitable signs of η and σ. Up to R3 terms,

the BI action becomes the same form of the previous extended new massive gravity by

choosing µ4 = 8m4 and ξ = −σ. However, note that the sign of the R3 term is fixed in

this case in terms of the sign of Einstein-Hilbert term.

Equations of motion for the BI-NMG with σ2 = 1 are given by

0 =
√

detA
[

2Bα
(µRν)α−BRµν

]

−2σm2gµν

(√
detA−1− 1

2m2l2

)

+gµν

[

∇α∇β

(√
detA Bαβ

)

−∇2
(√

detA B
)

]

(2.5)

+∇µ∇ν

(√
detA B

)

+∇2
(√

detA Bµν

)

−∇α∇µ

(√
detA Bνα

)

−∇α∇ν

(√
detA Bµα

)

,

where A and B are defined by

Aµ
ν ≡ δµ

ν +
σ

m2
Gµ

ν , Bµ
ν ≡ (A−1)µν , B ≡ Bµ

µ .

3 Black hole solutions

There are various types of black holes in the above mentioned gravity theories. It has

already been known that BTZ black holes are still solutions of any higher curvature gravity
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theories in three dimensions. Recently, it was shown that there are new type black holes [10]

and warped AdS black holes in NMG [11]. In this section, we will verify explicitly the same

form of the metrics are still solutions in the extended NMG case. Our main results are

the verification of the existence of such solutions and central charge expression of the

hypothetical dual CFTs.

Since we are dealing with higher curvature theories, the basic tool in obtaining black

hole entropy, which we will use, is the so-called Wald formula, pioneered in [32]∼ [34]. This

formula was derived by interpreting the black hole entropy as the Noether charge on the

horizon. Using simplified version of this formula [35–37], we will present our results for

the entropy of various black holes. By writing the black hole entropy in terms of the black

hole temperature and interpreting those quantities in the CFT side according to the usual

prescription of AdS3/CFT2 correspondence for the parity symmetric case c = cL = cR as

SBH =
π2L

3
(cLTL + cRTR) =

π2L

3
c(TL + TR) , (3.1)

we obtain the central charges of the dual CFTs.

According to the AdS/CFT correspondence, the central charges should be written in

terms of the parameters in the dual gravity Lagrangian but not of those in black holes,

which means that the central charge represents the property of theory but not of a specific

state. In other words, when there are different black holes with the same AdS asymptotics,

one can expect that the central charges obtained through each black hole system should

be the same. In the R3 extended NMG case, there are new type black holes of the same

asymptotic with BTZ ones, which are, henceforth, expected to lead to the same central

charges. In the following, we will show that there are new type black holes in the R3

extended NMG, like the NMG case, when parameters in the Lagrangian take specific

values. Indeed, when parameters are chosen accordingly, the central charge of the dual

CFT obtained from these new type black holes becomes identical with the central charge

given by BTZ black holes.

We use the dimensional reduction procedure of [11, 31, 38]∼ [40] to find solutions

with stationary circular symmetry. This method have already been used to get black hole

solutions in TMG and NMG case. According to this method, we can take a metric ansatz

with two Killing vectors ∂t and ∂φ as

ds2 = λab(ρ)dxadxb + ζ(ρ)−2R(ρ)−2dρ2 , (3.2)

where x0 = t, x1 = φ, R(ρ)2 = − detλ and ζ(ρ) is the scale factor for arbitrary

reparametrizations of the radial coordinate ρ. The special linear group SL(2,R) in the

two Killing vector space is locally isomorphic to the Lorentz group SO(2, 1), which sug-

gests the parametrization of the matrix λ

λ =

(

T (ρ) + X(ρ) Y (ρ)

Y (ρ) T (ρ) − X(ρ)

)

, (3.3)

such that special linear transformations of λ correspond to Lorentz transformations of the

vector ~X = (T,X, Y ) and R2 = ~X2 = ηijX
iXj = −T 2 + X2 + Y 2 is the norm in the

– 5 –
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Minkowski space. As usual, we represent the scalar and vector product of two vectors ~X

and ~Y in the following form

~X · ~Y = ηijX
iY j, ( ~X ∧ ~Y )i = ηijǫjklX

kY l , (3.4)

with ǫ012 = +1 for the wedge product.

For the chosen metric ansatz, we can obtain the Ricci tensor components as [9, 11]

Ra
b = −ζ

2

(

(ζRR′)′1 + (ζℓ)′
)a

b
, Rρ

ρ = −ζ(ζRR′)′ +
1

2
ζ2( ~X ′2) , ′ ≡ d

dρ
, (3.5)

where ℓ represents the matrix defined in terms of the components of the vector ~L =

(LT , LX , LY ) ≡ ~X ∧ ~X ′

ℓ =

(

−LY −LT + LX

LT + LX LY

)

. (3.6)

In the appendix we write down the details of this method in our case. Various curvature

scalars for the action in the case of R3-NMG are given by

R = σζ2

{

−2(RR′)′ +
1

2
( ~X ′2)

}

− 2σζζ ′RR′ , (3.7)

K = ζ4

{

1

2
(~L′2) − 1

4
(RR′)′( ~X ′2) +

5

32
( ~X ′2)2

}

+ζζ ′
{

(~L · ~L′) − 1

4
RR′( ~X ′2)

}

+
1

2
ζ2ζ ′2(~L2) , (3.8)

K ′ = ζ6

{

−3

2
(RR′)′( ~X ′2)2 +

9

8
( ~X ′2)3 + 24(RR′)′(~L′2) − 18( ~X ′2)(~L′2)

}

+ζ5ζ ′
{

−3

2
(RR′)′( ~X ′2)2 + 24(RR′)(~L′2) + 48(RR′)′(~L · ~L′)

−36( ~X ′2)(~L · ~L′)
}

+ ζ4ζ ′2
{

24(RR′)′(~L2) − 18( ~X ′2)(~L · ~L′)
}

+24ζ3ζ ′3(RR′)(~L2) . (3.9)

Using these expressions, one can reduce the R3-NMG action to the one-dimensional form

given in the appendix up to a surface term. From the reduced action, we can derive the

reduced equations of motion. After variation of ζ we can fix the gauge ζ = const using

the reparametrization invariance of the metric (3.2). The first form (A.1) of the reduced

action in the appendix gives us the equation of motion after variation with respect to ~X as

δA +
1

ζ2
δE +

1

ζ4
δH = 0 , (3.10)

where δA, δE and δH are written down explicitly in eq. (A.4)∼ (A.6) in the appendix.

It is convenient to use the second form (A.2) of the reduced action for the variation with

respect to ζ, which gives us the following Hamiltonian constraint:

H ≡ (5A − B′) +
1

ζ2
(3E − F ′) +

1

ζ4
(H − J ′) − 2

ℓ2

1

ζ6
= 0 . (3.11)

– 6 –
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In the BI-NMG case, we can obtain the equation of motion through the variation of the

action with respect to ~X

0 = 4(detA)2(~S′′ − ~Q′ + ~P ) − 4(detA)(detA′)~S′ − 2(detA)(detA′′)~S

+3(detA′)2~S + 2(detA)(detA′)~Q , (3.12)

and from the variation with respect to ζ, we can also obtain the Hamiltonian constraint,

0 =
1

2

(detA′)

detA N + M−N ′ − 2(detA) + 2(detA)1/2

(

1 +
1

2m2ℓ2

)

, (3.13)

where M, N and detA are written down explicitly in eq. (A.23), (A.24) and (A.12) in the

appendix. The variation of the reduced action in both R3-NMG and BI-NMG cases are

presented in detail in the appendix.

In order to obtain exact solutions, we can take a vector ~X as follows:

~X = ~αρ2 + ~βρ + ~γ , (3.14)

where ~α, ~β and ~γ are linearly independent constant vectors. Substituting this ansatz into

equation (3.10), we have to impose the following constraints on vectors ~α and ~β in order

to vanish the higher than the third order components which is given by

~α2 = 0, (~α · ~β) = 0 . (3.15)

These constraints induce two more constraints

~α ∧ ~β = b~α, ~β2 = b2 , (3.16)

with a real constant b. Using these conditions with (~α ·~γ) ≡ −z, we can obtain the equation

of motion and the Hamiltonian constraint in the R3-NMG case as

0 =

[

ξ

(

−33

8
b4+30b2z+24z2

)

− µ4

m2ζ2

(

17

4
b2+2z

)

−2
µ4

ζ4
σ

]

~α , (3.17)

0 =
ξ

12µ4

{

−3

8
b6−216b2z2+36b4z−384z3

}

+
1

ζ2m2

{

2z2− 1

32
b4+3b2z

}

+
σ

ζ4

b2

2
− 2

ℓ2ζ6
. (3.18)

In the BI-NMG case, we obtain

detA =

(

1 + σ
ζ2

m2

b2

4

)2{

1 + σ
ζ2

m2

(

b2

4
− 2z

)}

, (3.19)

and note that detA′ = detA′′ = 0 under the above conditions. The equation of motion

and the Hamiltonian constraint are given by

0 =

[

σ
ζ2

m2
+

5

2

ζ4

m4
b2+σ

9

16

ζ6

m6
b4

]

~α , (3.20)

0 = 1+σ
ζ2

m2

(

1

4
b2−z

)

+
ζ4

m4

(

3

4
b2z

)

−
(

1+
1

2m2ℓ2

)[

1+σ
ζ2

m2

(

1

4
b2−2z

)]1/2

. (3.21)
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As is given in the following, the case of ~α = 0 in the eq.s (3.17) and (3.20) leads to BTZ

black holes, whereas the other condition of ~α 6= 0 leads to warped black hole solutions.

This section is organized as follows. BTZ black holes are presented in subsection 3.1

with some explanation of generic features. In subsection 3.2, we present warped black hole

solutions. Finally, in subsection 3.3, we present new type black holes and propose some

straightforward extension of central charge function formalism for applying it to new type

black holes.

3.1 BTZ black holes

If we consider the condition ~α = 0, then the vector ansatz (3.14) reduces to

~X = ~βρ + ~γ . (3.22)

Taking two vectors ~β and ~γ to be ~β = [−(1 − ℓ2)/ℓ2,−(1 + ℓ2)/ℓ2, 0] and ~γ = [m̃(1 +

ℓ2)/4, m̃(1−ℓ2)/4,−j/2], then we find that the metric ansatz (3.2) becomes the BTZ black

hole solution [41, 42]

ds2 =

(

− 2

ℓ2
ρ +

m̃

2

)

dt2 − jdtdφ +

(

2ρ +
m̃ℓ2

2

)

dφ2 +
dρ2

( 4
ℓ2

ρ2 − m̃2ℓ2−j2

4 )
, (3.23)

for ζ = 1 and b2 = 4/ℓ2 [11]. If we change the coordinate ρ = r2/2 − m̃ℓ2/4, then we can

transform the (t, ρ, φ) coordinate system into the (t, r, φ) one. We can also reparametrize

r → ℓr, t → −Lt and φ → Lφ/ℓ in order for t and r to be dimensionless. With ζ = ℓ/L

and b2 = 4/ℓ2 we can see that BTZ black holes are solutions of the above equations of

motion, of which metric is given by

ds2 = L2

[

− (r2 − r2
+)(r2 − r2

−)

r2
dt2 +

r2

(r2 − r2
+)(r2 − r2

−)
dr2 +r2

(

dφ+
r+r−
r2

dt
)2
]

, (3.24)

where L is the AdS length. L should always be positive and it is natural to write physical

quantities in terms of this AdS length, L.

The Hawking temperature of the black hole can be obtained by dividing 2π of the

surface gravity κ, which is, for the above ADM form of the metric, given by

κ =
(

− 1

2
∇µξν∇µξν

)1/2
∣

∣

∣

∣

r=r+

=
1

L

∂rN√
grr

∣

∣

∣

∣

r=r+

,

where ξ is a null Killing vector at the Horizon with the normalization as ξ2 → −r2 for

r → ∞. This gives us

TH =
r+

2πL

(

1 − r2
−

r2
+

)

. (3.25)

Another way to obtain the Hawking temperature is to demand the regularity of the Eu-

clideanized form of the black hole metric with an appropriate choice of time coordinate

scale. The regularity condition in this case leads to the periodicity of the Euclidean time

and then it can be interpreted as the temperature. Using this approach, one obtains the

– 8 –
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same result with the above one in our case. The angular velocity at the horizon can be

defined as

ΩH =
1

L
Nφ(r+) =

1

L

r−
r+

. (3.26)

For BTZ black holes, the left and the right temperatures are given by [43]

TL =
r+ + r−

2πL
, TR =

r+ − r−
2πL

.

For higher curvature gravity theories, there are some difficulties to define conserved

charges and we need new ingredients to define various physical quantities like mass and

angular momentum [44]. Strictly speaking, it is required to define various physical quan-

tities in concrete ways and verify the first law of black holes systematically. However, we

will bypass these by assuming the validity of the first law of black holes in these higher

curvature gravity theories. Then, the mass and angular momentum of these black holes

may be read by integrating the first law of black hole thermodynamics

dM = THdSBH + ΩHdJ .

Note that the left and the right energies can also be defined as

EL ≡ π2L

6
cLT 2

L , ER ≡ π2L

6
cRT 2

R ,

which are related to mass and angular momentum in the BTZ case as

M = EL + ER , J = L(EL − ER) . (3.27)

For the parity symmetric case, one can see, through the above relations, that the mass and

angular momentum are proportional to the central charge c = cL = cR of dual CFT, and

check in both cases that the integral Smarr relation holds as

M =
1

2
THSBH + ΩHJ .

R
3-NMG case. The condition ~α = 0 gives the BTZ black hole solution (3.24), then this

solution has to satisfy the condition (3.18). With b2 = 4/l2 and ζ = l/L, L2 should satisfy

σ − L2

l2
− 1

4m2L2
− ξ

µ4L4
= 0 . (3.28)

The entropy is

SBH =
AH

4G
η

(

σ +
1

2m2L2
+

ξ

µ4L4

)

, AH ≡ 2πLr+ , (3.29)

where L2 is given by the solution of eq. (3.28). The mass and angular momentum are

given by

M =
r2
+ + r2

−

8G
η

(

σ +
1

2m2L2
+

ξ

µ4L4

)

, J =
Lr+r−

4G
η

(

σ +
1

2m2L2
+

ξ

µ4L4

)

. (3.30)
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From Cardy formula, one obtains the central charge for of the dual 2d CFT as

c =
3L

2G
η

[

σ +
1

2m2L2
+

ξ

µ4L4

]

. (3.31)

Note that the above mass and angular momentum are proportional to the central charge, in-

deed.

For a comparison, let us consider the central charge of the dual CFT obtained from the

NMG AdS black hole solution written in the same form with (3.31). In our convention,1

it is given by

c =
3L

2G
η
[

σ +
1

2m2L2

]

,

where

L2 ≡ l2

2

[

σ +

√

1 − 1

m2l2

]

.

One can see that η = σ = 1 is the sign choice in [10] and η = σ = −1 is the choice in [11].

BI-NMG case. In this case we have to consider the constraint (3.21) with b2 = 4/l2 and

ζ = l/L, then L2 should satisfy

1

L2
=

σ

l2

(

1 +
1

4m2l2

)

,

where 1/l2 is cosmological constant and may be negative, whereas AdS length, L, should

be always positive. One of interesting points of the higher curvature theories is that there

are asymptotically AdS solutions even though positive cosmological constants.

The entropy in this case is given by

SBH = −ησ
AH

4G

√
detA

(

Btt(gtt)−1 + Brr(grr)−1 − B
)
∣

∣

∣

r=r+

= ησ
AH

4G

√

1 + σ
1

m2L2
= ησ

πLr+

2G

√

1 + σ
1

m2L2
. (3.32)

By substituting L in terms of l and m, the entropy may be written in terms of parameters

in the Lagrangian with r+, for instance η = σ = 1, as

SBH =
πlr+

2G

(

1 +
1

2m2l2

)(

1 +
1

4m2l2

)−1/2
.

The mass of these black holes are given by

M = ησ
r2
+ + r2

−

8G

√

1 + σ
1

m2L2
, J = ησ

Lr+r−
4G

√

1 + σ
1

m2L2
. (3.33)

Noting that the Born-Infeld Lagrangian is also parity-symmetric, one can obtain the central

charge c = cL = cR of the dual 2d CFT as

c = ησ
3L

2G

√

1 + σ
1

m2L2
. (3.34)

1This is consistent with results in [12]∼ [10].
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Note that the positive central charge is allowed only when ησ = 1, which is the standard

sign choice of the Einstein-Hilbert term.

All the above central charges for BTZ black holes can also be obtained by the cen-

tral charge function formalism, which may be thought as the compact summary of the

above procedure:

c ≡ L

2G
gµν

∂L
∂Rµν

. (3.35)

For instance, in the BI case

c = ησ
L

2G

√
detAB ,

where √
detA =

(

1 + σ
1

m2L2

)3/2
, B = 3

(

1 + σ
1

m2L2

)−1
.

3.2 Warped AdS solutions

Setting the condition ~β2 = b2 = 1, (~β · ~γ) = 0, ~γ2 = −β2ρ2
0 and (1 − 2z) = β2, then we

can get R2 = (1 − 2z)ρ2 + ~γ2 = β2(ρ2 − ρ2
0). In addition to this condition we can choose

vectors as follows [11]

~α = (1/2,−1/2, 0), ~β = (ω,−ω,−1),

~γ = (z + u, z − u,−2ωz) (u = β2ρ2
0/4z + ω2z) , (3.36)

which lead to the metric form

ds2 = −β2(ρ2 − ρ2
0)

∆2
dt2 +

dρ2

ζ2β2(ρ2 − ρ2
0)

+ ∆2

(

dφ − ρ + (1 − β2)ω

∆2
dt

)2

, (3.37)

where ∆2 is defined by

∆2 = ρ2 + 2ωρ + 2u = ρ2 + 2ωρ + (1 − β2)ω2 +
β2ρ2

0

1 − β2
. (3.38)

If we take ζ2 = 3/(4β2 − 1) · 4/L2 and reparametrize t → t/(ζβ2) and φ → φ/ζ, then we

can obtain warped AdS black hole solutions as follows:

ds2 =
4β2 − 1

12β2
L2

[

− ρ2 − ρ2
0

∆2
dt2 +

dρ2

ρ2 − ρ2
0

+ β2∆2
(

dφ − ρ + (1 − β2)ω

β2∆2
dt
)2
]

, (3.39)

where we have chosen the overall coefficient such that L corresponds to the Ricci scalar

curvature as R = − 6
L2 . To see this, one may note that the asymptotic region is given by

taking ρ → ∞ as

ds2 ≃ 4β2 − 1

12β2
L2

[

− dt2 +
dρ2

ρ2
+ β2ρ2

(

dφ − 1

β2

1

ρ
dt
)2
]

, (3.40)

which can be shown to be the warped AdS3 in Poincaré coordinates by a suitable change

of variables.2 It is an interesting fact that the above warped AdS3 black hole metric has

2The coordinate transformations are not unique at the asymptotic region. For coordinate transformation

to the Schwarzschild type, see [45].
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constant curvature invariants of the same values with the warped AdS3, which allows to

obtain it by the quotienting method from the warped AdS3 space [29, 45].

By a suitable coordinate transformation with parameters relations

ρ0 =
1

2
(r+ − r−) , (1 − β2)ω =

1

2

(

r+ + r− − 2β
√

r+r−

)

, β2 =
ν2 + 3

4ν2
,

the above metric can be written as [45]

ds2 = L2

[

− N(r)2dt2 + R(r)2(dθ + N θ(r)dt)2 +
dr2

4R(r)2N(r)2

]

, (3.41)

where

N(r)2 =
(ν2 + 3)(r − r+)(r − r−)

4R(r)2
,

N θ(r) =
2νr −

√

r+r−(ν2 + 3)

2R(r)2
,

R(r)2 =
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

.

We will use this form of the metric for the entropy, Hawking temperature, etc in the

following.

The black hole temperature and the angular velocity are given by

TH =
β2

2πL

√

3

4β2−1

(

r+−r−
r+−β

√
r+r−

)

, ΩH =
1

L

√

4β2−1

3

(

1

r+−β
√

r+r−

)

. (3.42)

The left and the right temperatures of these warped AdS black holes are given by [45]

TL =
r+ + r− − 2β

√
r+r−

2πL

(

3β2

4β2 − 1

)

, TR =
r+ − r−

2πL

(

3β2

4β2 − 1

)

, (3.43)

which are related to the above Hawking temperature and angular velocity as

1

TH
= πL

√

4β2 − 1

3β4

(

TL + TR

TR

)

,
ΩH

TH
=

1

TRL
.

It was suggested in [45] that more useful charges in the warped case are the left and the

right moving energies which are defined by

EL ≡ π2L

6
cLT 2

L , ER ≡ π2L

6
cRT 2

R .

By construction, these charges satisfy

∂SBH

∂EL
=

1

TL
,

∂SBH

∂ER
=

1

TR
. (3.44)

The mass and angular momentum can be related to these charges as3

M =

√

3β4

4β2 − 1

√

2cLEL

3L
, J = L(EL − ER) . (3.45)

3We have modified slightly the relations given in [45] in order to apply these to our case. These modified

ones also lead to the correct results in TMG case.
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One can check that (M,J) defined in the above satisfy, through the formula (3.44), the

first law of black holes,

dM = THdSBH + ΩHdJ .

By using the left and the right temperatures in terms of black hole parameters r+, r− and

recalling cL = cR = c in our case, one may write the mass and the angular momentum in

terms of the central charges as follows:

M =
β

6L

(

3β2

4β2 − 1

)3/2
[

r+ + r− − 2β
√

r+r−

]

c , (3.46)

J =
1

24

(

3β2

4β2 − 1

)2
[

(r+ + r− − 2β
√

r+r−)2 − (r+ − r−)2
]

c , (3.47)

where c denotes the central charge of dual CFT. One may also write (M,J) in terms of the

black entropy since the central charges are proportional to the entropy in the present case.

Using black hole entropy, SBH , given in the following, one can show that the above

formula satisfies Smarr-like relation

M = THSBH + 2ΩHJ ,

and verify the differential form of the first law of black holes explicitly. We will not present

the mass and angular momentum explicitly in each of the extended NMG’s , since it is

straightforward to obtain those for the given central charges which are given in the follow-

ing.

R
3-NMG case. Substituting the values b2 = 1, z = (1 − β2)/2 and ζ2 = 3/(4β2 − 1) ·

4/L2 into two equations (3.17) and (3.18),then we can see that L and β should satisfy

two equations

0 = σ − 3(4β2 − 21)

2(4β2 − 1)

1

m2L2
− ξ

27(4β2 − 3)(4β2 − 15)

(4β4 − 1)2
1

µ4L4
,

0 = σ− 4β2−1

3

L2

l2
+

3(16β4−80β2+63)

4β2−1

1

4m2L2
+

9(4β2−3)(32β4−108β2+75)

(4β4−1)2
ξ

µ4L4
.

Note that L can be solved as

L2 =
σ

(4β2 − 1)

3

4m2µ2

{

(4β2 − 21)µ2 ±
√

(4β2 − 21)2µ4 + 48ξσ(4β2 − 3)(4β2 − 15)m4

}

.

Using Wald’s formula, one obtains

SBH =
AH

4G
η

[

σ +
3(5 − 4β2)

2(4β2 − 1)m2L2
− ξ

9(3 − 4β2)(13 − 12β2)

(4β4 − 1)2µ4L4

]

, (3.48)

AH ≡ 2πLR(r+) = 2πL

√

3

4β2 − 1

(

r+ − β
√

r+r−

)

,

where β and L2 are given by the solutions of the above equation.
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The central charges for the warped AdS black holes can also be obtained by the

Cardy formula

S =
π2L

3
(cLTL + cRTR) =

π2L

3
c(TL + TR) ,

which leads to

c =
L

2G

√

3(4β2 − 1)

β2
η

[

σ +
3(5 − 4β2)

2(4β2 − 1)m2L2
− ξ

9(3 − 4β2)(13 − 12β2)

(4β4 − 1)2µ4L4

]

. (3.49)

The naive application of the central charge function formalism leads to

c =
3L

2G
η

[

σ +
1

2m2L2
− ξ

3(4β2 − 3)(4β2 − 7)

(4β4 − 1)2µ4L4

]

, (3.50)

which gives the different answer in this case, which is not unexpected since the central

charge function formalism is developed for the AdS space not warped AdS space.

One can see that the above result (3.49) reproduces the new massive gravity case if

one set ξ = 0

β2 =
1

4(1 − m2l2)

(

21 − 9m2l2 ± 2
√

3(7 + 5m2l2)m2l2
)

,

1

L2
=

2(4β2 − 1)σm2

3(4β2 − 21)
=

2σ

63l2

(

− 39m2l2 ± 10
√

3(7 + 5m2l2)m2l2
)

, (3.51)

which implies

SBH =
AH

4G
η

[

σ +
3(5 − 4β2)

2(4β2 − 1)m2L2

]

=
AH

4G

16ησ

21 − 4β2
=

AH

4G
η
(4

5
σ − 6

5m2L2

)

,

and

c = ησ
8L

G

√

3(4β2 − 1)

β2(21 − 4β2)
.

These results are consistent with the choice of η = σ = −1 in [46].

BI-NMG case. Substituting the values b2 = 1, z = (1−β2)/2 and ζ2 = 3/(4β2−1)·4/L2

into the equations (3.20) and (3.21), we obtain

L2 =− 27σ

(4β2 − 1)m2
, (3.52)

0 = 1+
3(2β2−1)

4β2−1

σ

m2L2
− 54(β2−1)

(4β2−1)2
1

m4L4
−
(

1+
1

2m2l2

)[

1+
3(4β2−3)

4β2−1

σ

m2L2

]1/2
, (3.53)

where we may note that there are warped solutions only for σ = −1.

Using Wald’s formula, one obtains (AH ≡ 2πLR(r+))

SBH = −ησ
AH

4G

√
detA

(

Btt(gtt)−1 + Brr(grr)−1 − B
)
∣

∣

∣

ρ=ρ0

,

= ησ
AH

4G

(

1 +
3σ

(4β2 − 1)m2L2

)[

1 + σ
3(4β2 − 3)

(4β2 − 1)m2L2

]−1/2

. (3.54)
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Using the Cardy formula, we also get the central charges,

c = ησ
L

2G

√

3(4β2 − 1)

β2

(

1 +
3σ

(4β2 − 1)m2L2

)[

1 + σ
3(4β2 − 3)

(4β2 − 1)m2L2

]−1/2

, (3.55)

where L and β are given by the solution of eqs. (3.52) and (3.53).

These may be written as

SBH = ησ
AH

4G

4

3
√

3 − β2
= ησ

AH

4G

8

3

(

11 +
27σ

m2L2

)−1/2
,

c = ησ
2L

G

√

(4β2 − 1)

3(3 − β2)

1

β2
.

The central charge function formalism leads to central charge of the dual CFT as

c = ησ
L

2G

√
detAB =

2L

3G
η

(β2 − 4)
√

3 − β2
, (3.56)

which is different from the above one.

3.3 New type black holes

There are new type black hole solutions, which exist for a specific values of parameters in

the Lagrangian in the R3-NMG case.4 One can check these type black holes solutions exist

only in the R3-NMG case. These black holes are shown to exist in the NMG case, but

their properties are not investigated in detail even in the NMG case. (However, see [48] for

some study of their properties and extension to the rotating new type black holes in the

NMG case.) Its metric is given by

ds2 = L2

[

− (r2 + br + c)dt2 +
dr2

r2 + br + c
+ r2dφ2

]

. (3.57)

When b is zero, this reduces the BTZ case of r− = 0.

To satisfy the EOM’s, l2 should satisfy the following equations

l2 =
(12σξm4 + µ4)L2 + 6ξm2

m2(8ξm2 + µ4L2)
, (3.58)

and L2 is given by

L2 =
σ

4m2µ2

(

µ2 ±
√

µ4 + 48σξm4
)

. (3.59)

Note that in the NMG limit (or ξ → 0) these conditions become

l2 =
1

m2
, L2 =

1

2m2
, σ = 1 .

4This is already pointed out in [18].
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For the b 6= 0 case, the black hole horizon is at r± = (−b±
√

b2 − 4c)/2 and the entropy

and the temperature of the black holes are given by

SBH =
πL

2G

√
b2 − 4c

3
η

[

2σ +
1

2m2L2

]

,

TH =

√
b2 − 4c

4πL
=

r+ − r−
4πL

,

where we have used the value of L2 given in eq. (3.59) to simplify the expression for the

entropy. For the above static black hole solutions, one may use AdS/CFT dictionary

SBH = 2π2L
3 cTH to obtain the central charge as

c =
L

G
η

[

2σ +
1

2m2L2

]

, (3.60)

where L2 is given in the eq. (3.59). This result is consistent with [47] in the limit of ξ = 0

with η = σ = 1. One can see that this central charge is identical with (3.31) by noting

that the chosen value of L2 in (3.59) leads to

ξ

µ4L4
=

1

3

(

σ − 1

2m2L2

)

.

One way to define the mass of these black holes resorts to the AdS/CFT dictionary

through the relation M = EL + ER. In this case, this relation becomes M = π2L
3 cT 2

H ,

which leads to

M =
b2 − 4c

48G
η
[

2σ +
1

2m2L2

]

, (3.61)

This mass formula satisfies the simple form of the first law of black holes, dM = THdSBH

and reduces to the correct value in the BTZ limit, b = 0. However, it is unclear how to

apply the first law of black holes in this case, since the nature of parameter b is obscure.

In fact, there is an attempt to realize the first law of black holes with the parameter b and

to understand its meaning as a new gravitational hair [48].

For new type black holes, the central charge function formalism leads to non-constant

central charge. This fact is simply the indication that the curvature invariants of new

type black holes are not constant. Therefore, we need some modification of the known

central charge function formalism in this case. However, by recalling the fact that dual

CFT resides in the boundary of bulk AdS space, it is very suggestive to define the central

charge in this case as

c = ησ
L

2G

√
detAB

∣

∣

∣

∣

r→∞

, (3.62)

where r is the radial coordinate and r = ∞ denotes the position of the boundary. Because

the value obtained in this way is identical with the one by the Cardy formula, this formula

is a natural generalization of the usual central charge function formula.
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4 Conclusion

We have verified that BTZ, warped AdS black holes and new type black holes are solutions

in the extended new massive gravity theories, and investigated their properties in the view

point of the AdS/CFT correspondence.

Firstly, we have presented various physical quantities, mass, angular momentum,

Hawking temperature and entropy, of black holes in all the cases. Secondly, we have

obtained central charges of hypothetical dual CFT using Cardy formula and central charge

function formalism. Our results of entropy and central charges reduce to the known NMG

cases in the NMG limit.

We have considered two version of extended NMG, R3-NMG and BI-NMG, which seem

to be related intimately. One may regard BI-NMG as a natural extension of R3-NMG to

the case of an infinite number of higher curvature terms. However, it needs to be clarified

why the new type black holes exist only for the R3-NMG case and whether the BI-NMG

can be derived by the same argument for the extension of NMG to R3-NMG.

We have obtained central charges of the dual CFTs by assuming the validity of Cardy

formula, which is not self-transparent and may be thought as conjectural. Therefore, it

will be interesting to obtain the central charges in other ways and verify our results, for

example, by the approach in [25, 49]∼ [51]. Mass and angular momentum are also derived

through the AdS/CFT dictionary. It is required to obtain these quantities as conserved

charges like in [44].

We have verified that the central charge function formalism leads to the same results

with the Cardy formula for asymptotically AdS black holes including new type black holes.

For the new type black holes, we need a simple extension of central charge function for-

malism to match the results. However, in warped AdS black holes, central charge function

formalism, which is developed mainly for BTZ black holes, leads to different results from

Cardy formula. It is very interesting to extend central charge function formalism to the

warped AdS case.

There are various direction to pursue in the future. First, though the gravitons are

massive in the NMG case, it is not yet known that is the case for the extended NMG case.

Therefore, it is necessary to analyze the linearized theory to see the nature of gravitons, and

to see whether massive gravitons and positive mass black holes are compatible, which was

not the case in the NMG or TMG case. It will also be interesting to study the possibility

of string theory embedding or the supersymmetric extension of extended NMG.

Finally, new type black holes should be studied in more detail to see their meaning.

They seem to have new type gravitational hair which is not yet understood completely.

The fact that BI-NMG doesn’t allow the new type black holes may also be addressed to see

whether the existence of new type black holes is artifact or leads to some important lessons.
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A Equations of motion

In the NMG case, the reduced one-dimensional action derived from the action (2.1) is

given by

S1 =

∫

dρ[Aζ5 + Bζ4ζ ′ + Cζ3ζ ′2 + Dζζ ′3 + Eζ3 + Fζ2ζ ′ + Gζζ ′2

+ Hζ + Jζ ′ +
2

ℓ2
ζ−1] , (A.1)

=

∫

dρ

[(

A − 1

5
B′

)

ζ5 + Cζ3ζ ′2 + Dζ2ζ ′3 +

(

E − 1

3
F ′

)

ζ3 + Gζζ ′2

+(H − J ′)ζ +
2

ℓ2
ζ−1

]

, (A.2)

where

A =
ξ

12µ4

{

−3

8
( ~X ′2)3 − 3

2
( ~X ′2)2( ~X · ~X ′′) + 6[( ~X ′2) + 4( ~X · ~X ′′)]( ~X ∧ ~X ′′)2

}

,

B =
ξ

12µ4

{

−3

2
( ~X ′2)2( ~X · ~X ′) + 24( ~X · ~X ′)( ~X ∧ ~X ′′)2

+12[( ~X ′2) + 4( ~X · ~X ′′)]( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)
}

,

E =
1

m2

{

1

2
( ~X ∧ ~X ′′)2 − 1

4
( ~X ′2)( ~X · ~X ′′) − 3

32
( ~X ′2)2

}

,

F =
1

m2

{

( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′) − 1

4
( ~X ′2)( ~X · ~X ′)

}

,

H = −σ

{

3

2
( ~X ′2) + 2( ~X · ~X ′′)

}

,

J = −2σ( ~X · ~X ′) ,

and ( ~A ∧ ~B) · (~C ∧ ~D) = −( ~A · ~C)( ~B · ~D) + ( ~A · ~D)( ~B · ~C). Other terms are not needed to

get equation of motion and Hamiltonian constraint.

The variation relative to ~X for the first form of the action (A.1) gives the equation of

motion as following

δA +
1

ζ2
δE +

1

ζ4
δH = 0 , (A.3)
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where

δA =
ξ

12µ4

{

(12( ~X ′2) + 48( ~X · ~X ′′))[ ~X ∧ ( ~X ′′′′ ∧ ~X)]

+(24( ~X ′2) + 96( ~X · ~X ′′))[ ~X ′ ∧ ( ~X ′′′ ∧ ~X) + ~X ∧ ( ~X ′′′ ∧ ~X ′) + ~X ′ ∧ ( ~X ′′ ∧ ~X ′)]

+6( ~X ′2)[ ~X ′′′ ∧ ( ~X ∧ ~X ′) + ~X ′′ ∧ ( ~X ∧ ~X ′′)] + 12( ~X ′ · ~X ′′)[ ~X ′′ ∧ ( ~X ∧ ~X ′)]

+(144( ~X ′ · ~X ′′) + 96( ~X · ~X ′′′))[ ~X ∧ ( ~X ′′′ ∧ ~X) + ~X ′ ∧ ( ~X ′′ ∧ ~X) + ~X ∧ ( ~X ′′ ∧ ~X ′)]

+(72( ~X ′′2) + 120( ~X ′ · ~X ′′′) + 48( ~X · ~X ′′′′))[ ~X ∧ ( ~X ′′ ∧ ~X)]

−3

4
( ~X ′2)2 ~X ′′ + 36( ~X ∧ ~X ′′)2 ~X ′′ + 3( ~X ′2)( ~X ′ · ~X ′′) ~X ′

+72( ~X ∧ ~X ′′) · ( ~X ′ ∧ ~X ′′) ~X ′ + 72( ~X ∧ ~X ′′) · ( ~X ∧ ~X ′′′) ~X ′

+48( ~X ′ ∧ ~X ′′)2 ~X + 48( ~X ∧ ~X ′′′)2 ~X + 48( ~X ∧ ~X ′′) · ( ~X ∧ ~X ′′′′) ~X

+96( ~X ′ ∧ ~X ′′) · ( ~X ∧ ~X ′′′) ~X + 96( ~X ∧ ~X ′′) · ( ~X ′ ∧ ~X ′′′) ~X
}

· δ ~X , (A.4)

δE = − 1

m2

{

~X ∧ ( ~X ∧ ~X ′′′′) +
5

2
~X ∧ ( ~X ′ ∧ ~X ′′′) +

3

2
~X ′ ∧ ( ~X ∧ ~X ′′′)

+
9

4
~X ′ ∧ ( ~X ′ ∧ ~X ′′) − 1

2
~X ′′ ∧ ( ~X ∧ ~X ′′) − 1

8
( ~X ′2) ~X ′′

}

· δ ~X , (A.5)

δH = −σ ~X ′′ · δ ~X . (A.6)

The variation relative to ζ for the second form of the action (A.2) gives the Hamiltonian

constraint

H ≡ (5A − B′) +
1

ζ2
(3E − F ′) +

1

ζ4
(H − J ′) − 2

ℓ2

1

ζ6
= 0 , (A.7)

where

B′ =
ξ

12µ4

{

−3

2
( ~X ′2)3 − 3

2
( ~X ′2)2( ~X · ~X ′′) − 6( ~X ′2)( ~X · ~X ′)( ~X ′ · ~X ′′)

+36( ~X ′2)( ~X ∧ ~X ′′)2 + 72( ~X · ~X ′′)( ~X ∧ ~X ′′)2 + 48( ~X · ~X ′)( ~X ∧ ~X ′′) · ( ~X ∧ ~X ′′)′

+72( ~X ′ · ~X ′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′) + 48( ~X · ~X ′′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)

+12( ~X ′2)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)′ + 48( ~X · ~X ′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)′
}

, (A.8)

F ′ =
1

m2

{

( ~X ∧ ~X ′′)2 + ( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′′) +
3

2
( ~X ∧ ~X ′) · ( ~X ′ ∧ ~X ′′)

−1

4
( ~X ′2)2 − 3

4
( ~X ′2)( ~X ∧ ~X ′′)

}

, (A.9)

J ′ = −2σ
{

( ~X ′2) + ( ~X · ~X ′′)
}

. (A.10)
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Then the Hamiltonian constraint can be represented as follows

H =
ξ

12µ4

{

−3

8
( ~X ′2)3 − 6( ~X ′2)( ~X ∧ ~X ′′)2 − 18( ~X ′2)( ~X ∧ ~X ′) · ( ~X ′ ∧ ~X ′′)

−12( ~X ′2)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′′) − 72( ~X ′ · ~X ′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)

+48( ~X · ~X ′′)( ~X ∧ ~X ′′)2 − 48( ~X · ~X ′′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)

−48( ~X · ~X ′)( ~X ∧ ~X ′′) · ( ~X ∧ ~X ′′)′ − 48( ~X · ~X ′′)( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′)′
}

+
1

ζ2m2

{

1

2
( ~X ∧ ~X ′′)2 − 1

32
( ~X ′2)2 − ( ~X ∧ ~X ′) · ( ~X ∧ ~X ′′′)

−3

2
( ~X ∧ ~X ′) · ( ~X ′ ∧ ~X ′′)

}

+
1

ζ4

1

2
σ( ~X ′2) − 2

ℓ2ζ6
= 0 . (A.11)

In the Born-Infeld type case, the action is given by the form (2.3) and the determinant of

matrix Aµ
ν = δµ

ν + σ
m2 Gµ

ν is represented as a form

detA = 1 +
σ

m2
F +

1

m4
G +

σ

m6
H , (A.12)

where

F = ζ2( ~X · ~X ′)′ − 1

4
ζ2( ~X ′2) + ζζ ′( ~X · ~X ′) , (A.13)

G =
1

4
ζ4[( ~X · ~X ′)′2 − (~L′2)] − 1

16
ζ4( ~X ′2)2 +

1

2
ζ3ζ ′[( ~X · ~X ′)( ~X · ~X ′)′ − (~L · ~L′)]

+
1

4
ζ2ζ ′2[( ~X · ~X ′)2 − (~L2)] , (A.14)

H =
1

64
ζ6( ~X ′2)3 +

1

16
ζ6( ~X ′2)[( ~X · ~X ′)′2 − ( ~X ′2)( ~X · ~X ′)′ − (~L′2)]

− 1

16
ζ5ζ ′( ~X ′2)2( ~X · ~X ′) +

1

8
ζ5ζ ′( ~X ′2)[( ~X · ~X ′)( ~X · ~X ′)′ − (~L · ~L′)]

+
1

16
ζ4ζ ′2( ~X ′2)[( ~X · ~X ′)2 − (~L2)] . (A.15)

The variation of the BI type action relative to ~X for equation of motion is given by

δS ≃
∫

dρ
1

8ζ
(detA)−5/2

[

4(detA)2(~S′′ − ~Q′ + ~P ) − 4(detA)(detA′)~S′

− 2(detA)(detA′′)~S + 3(detA′)2~S + 2(detA)(detA′) ~Q
]

· δ ~X (A.16)

From this variation of action, we can obtain the equation of motion

4(detA)2(~S′′ − ~Q′ + ~P ) − 4(detA)(detA′)~S′ − 2(detA)(detA′′)~S

+ 3(detA′)2~S + 2(detA)(detA′) ~Q = 0 , (A.17)
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where

~P = σ
ζ2

m2
~X ′′ +

ζ4

m4

[

1

2
( ~X ′2) ~X ′′ +

1

2
( ~X · ~X ′) ~X ′′ +

1

2
( ~X ′′2) ~X

−1

2
( ~X · ~X ′′) ~X ′′

]

+ σ
ζ6

m6

[

1

16
( ~X ′2)2 ~X ′′ +

1

8
( ~X ′2)( ~X · ~X ′′) ~X ′′

+
1

8
( ~X ′2)( ~X ′′2) ~X − 1

8
( ~X ′2)( ~X · ~X ′′) ~X ′′

]

, (A.18)

~Q = σ
ζ2

m2

3

2
~X ′ +

ζ4

m4

[

3

4
( ~X ′2) ~X ′ + ( ~X · ~X ′′) ~X ′

]

+ σ
ζ6

m6

[

3

32
( ~X ′2)2 ~X ′

+
1

4
( ~X ′2)( ~X · ~X ′′) ~X ′ +

1

8
( ~X · ~X ′′)2 ~X ′ − 1

8
( ~X ∧ ~X ′′)2 ~X ′

]

, (A.19)

~S = σ
ζ2

m2
~X +

ζ4

m4

[

1

2
( ~X ′2) ~X +

1

2
( ~X2) ~X ′′

]

+ σ
ζ6

m6

[

1

16
( ~X ′2)2 ~X

+
1

8
( ~X ′2)( ~X · ~X ′′) ~X +

1

8
( ~X2)( ~X ′2) ~X ′′ − 1

8
( ~X ′2)( ~X · ~X ′′) ~X

]

(A.20)

with ζ = const.

The variation of the action with ζ is given by

δζS ∼
∫

dρ
1

2ζ2
(detA)−1/2

{

M +
1

2

(detA′)

detA N −N ′

− 2

[

(detA) − (detA)1/2

(

1 +
1

2m2ℓ2

)]}

δζ . (A.21)

From the above variation of the action, we can get the Hamiltonian constraint

1

2

(detA′)

detA N + M−N ′ − 2(detA) + 2(detA)1/2

(

1 +
1

2m2ℓ2

)

= 0 , (A.22)

where

M = σ
ζ2

m2

[

2( ~X · ~X ′)′ − 1

2
( ~X ′2)

]

+
ζ4

m4

[

( ~X · ~X ′)′2 − 1

4
( ~X ′2)2 − (~L′2)

]

+σ
ζ6

m6

[

3

32
( ~X ′2)3 +

3

8
( ~X ′2)( ~X · ~X ′)′2 − 3

8
( ~X ′2)2( ~X · ~X ′)′ − 3

8
( ~X ′2)(~L′2)

]

,(A.23)

N = σ
ζ2

m2
( ~X · ~X ′) +

ζ4

m4

[

1

2
( ~X · ~X ′)( ~X · ~X ′)′ − 1

2
(~L · ~L′)

]

+σ
ζ6

m6

[

− 1

16
( ~X ′2)2( ~X · ~X ′) +

1

8
( ~X ′2)( ~X · ~X ′)( ~X · ~X ′)′ − 1

8
( ~X ′2)(~L · ~L′)

]

(A.24)

with ζ = const.
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